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The variational principle for a marked Gibbs point process with
infinite-range multibody interactions

Benedikt Jahnel, Jonas Köppl, Yannic Steenbeck, Alexander Zass

Abstract

We prove the Gibbs variational principle for the Asakura–Oosawa model in which particles of
random size obey a hardcore constraint of non-overlap and are additionally subject to a temperature-
dependent area interaction. The particle size is unbounded, leading to infinite-range interactions,
and the potential cannot be written as a k-body interaction for fixed k. As a byproduct, we also
prove the existence of infinite-volume Gibbs point processes satisfying the DLR equations. The
essential control over the influence of boundary conditions can be established using the geometry
of the model and the hard-core constraint.

1 Introduction

The Gibbs variational principle is a corner stone in the equilibrium theory of spatially interacting par-
ticle systems. In a nutshell, according to the laws of thermodynamics, equilibrium states of a system
(subject to thermodynamic principles) must minimize the free energy, which reflects the competition
between minimizing energy and maximizing entropy.

On the other hand, equilibrium systems of interacting particles are often described by their conditional
finite-volume distributions, in terms of Boltzmann weights with respect to some boundary conditions.
Under a consistency condition on these finite-volume measures, one can then hope to find infinite-
volume measures that are still consistent with the finite-volume description, and are able to properly
describe the macroscopic behavior of the system. This infinite-volume consistency is described via
the so-called DLR equations, and ensuring the existence of such measures is one the key tasks in
statistical mechanics. In particular, the DLR equations can potentially be solved by multiple infinite-
volume measures, constituting a phase transition of non-uniqueness of equilibrium states. However,
for a measure to solve the DLR equations and also minimize the free energy is not automatic.

In the case of lattice systems, under the assumption of translation invariance, this link between the DLR
equations and the thermodynamic description of equilibria has been established under quite general
assumptions for a very large class of models, see [Geo11, Pre76, LR69]. However, moving towards
continuum systems, where particles are placed in Euclidean space and even particle numbers in fixed
volumes are allowed to fluctuate, the literature becomes much more sparse and usually only deals
with particular case studies. In [Geo94, Geo95] the Gibbs variational principle is derived for bounded
and unbounded pair potentials in the context of large-deviation results, and with the goal to establish
equivalence of ensembles. In particular, no higher-order interactions are allowed, and the particles
may not carry individual marks that would for example allow to model interactions between particles
of varying sizes. Next, in [DG09] the Gibbs variational principle is established for a particular class
of planar models in which (unmarked) particles interact via their associated Delaunay triangulation.
More recently, [Der16] considers the case of Gibbs point processes with a finite-range interaction and
where the existence of the energy density is guaranteed. However, establishing the existence of the
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energy density is not always easy and needs to be shown specifically for the model at hand. Moreover,
many interesting models do not have a finite-range interaction.

The contribution of the present manuscript is therefore to provide a first example of a Gibbs varia-
tional principle in the continuum for a system of particles with unbounded marks and with a multibody
interaction in which also an unbounded number of particles may jointly interact.

We focus on the Asakura–Oosawa model with depletion interaction [AO54, AO58], which may be in-
formally described as follows. Imagine a volume with a random number of balls of a random size. The
balls cannot penetrate each other, leading to a hardcore repulsion. Additionally, there are second-class
particles with a fixed size which may penetrate each other without restriction, but not the balls of the
first type. Integrating out the Poisson point process of second-class particles, it can be observed that
the balls of type one must additionally obey an area interaction: for them to take up more space comes
with the additional cost that, in that space, no second-class particles are present. For more details on
the relevance of this colloid-polymer mixture model, see [Vri76, BVS14, RED00, LTV24]. Let us men-
tion that this model can be seen as a generalization of the Widom–Rowlinson model [WR70, CCK95,
DH19, DH01, JK17] with an additional internal hardcore. The existence of infinite-volume Gibbs mea-
sures (in the sense of the DLR equations) for the Asakura–Oosawa model can be deduced from the
criteria presented in [RZ20]. Recently, the model has been analyzed more extensively, for example via
cluster-expansion techniques [JT20a, JT20b, JLW22] and with respect to the corresponding Langevin
dynamics [FKRZ24].

The proof rests on establishing existence of energy and entropy densities for which it is essential to
control the influence of far away particles. This is usually achieved by a finite-range or deterministic
decay assumption on the (pair) interaction potential. However, in our case we work only with an as-
sumption on the tails of the mark distribution, and use the hard-core constraint as well as geometric
arguments.

The manuscript is organized as follows. In Section 2, we introduce the framework in which we are
working, and set up the required notation before we state our main results in Section 3. We then
proceed by explaining the structure and key ideas of the main proof in Section 4. After this, we finally
start with the main work and carry out the proof of our main results in Sections 5–9.

2 Setting and Notation

Throughout the article, we will often use the short-hand notation f ≲ g to express that there exists a
finite constant c > 0, independent of f and g, such that f ≤ c · g. We write f ≲A g if c = c(A)
depends on some parameter A, for example the dimension d of the ambient space.

2.1 Point process formalism

Consider the space Ω of locally finite measures on the state space Rd × [0,∞), d ≥ 1, that is

Ω :=
{
ω =

∑
i≥0

δxi
| xi = (xi, Ri) ∈ Rd × [0,∞)

}
.

Since, in what follows, we consider only simple point configurations, we may identify them with their
support, i.e., ω =

∑
i≥0 δxi

≡ {xi}i≥0 ⊂ Rd × [0,∞). For any subset Λ ⊆ Rd, we denote by ωΛ

the restriction of the configuration ω ∈ Ω to the set Λ × [0,∞), that is ωΛ = ω ∩ (Λ × [0,∞)).
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Infinite-range multibody Gibbs variational principle 3

Furthermore, for Borel setsΛ ∈ B(Rd),A ∈ B([0,∞)), and positive measurable functions f : Rd×
[0,∞) → [0,∞], we define the counting variables

N f
Λ,A(ω) :=

∑
x=(x,Rx)∈ω∩(Λ×A)

f(x,Rx),

and denote in particular

N f
Λ := N f

Λ,[0,∞), NΛ,A := N1
Λ,A and NΛ := N1

Λ.

Next, we endow Ω with the canonical σ-algebra F generated by the family of local counting variables,
that is

F = σ
(
NΛ,A : Λ ∈ Bb(Rd), A ∈ Bb([0,∞))

)
,

where Bb denotes the set of bounded Borel sets. We also fix some special sets of the position space
Rd which will be denoted by

Λn := [−n/2, n/2)d , n ∈ N, and C := Λ1

throughout the whole manuscript.

In order to define classes of test functions, let ψ : [0,∞) → [1,∞) be given by

ψ(R) := 1 +Rd, R ∈ [0,∞)

and call a function f : Ω → R local, if f = f(·Λ) and tame if |f | ≲ (1+Nψ
Λ ) for some Λ ∈ Bb(Rd).

The set of all tame and local functions will be denoted by L.

Finally, we denote by P the set of all probability measures P on Ω, and by PΘ the set of all translation-
invariant probability measures on Ω with finite ψ-intensity, i.e., with P [Nψ

C ] < ∞. Here and in the
sequel, P [f ] denotes the expected value of f w.r.t. the probability measure P . We equip PΘ with the
so-called τL-topology, which is the coarsest topology that makes the mappings P 7→ P [f ] continuous
for all f ∈ L.

2.2 Colloidal multi-body interaction

The following model describes the effective interaction between colloids in a polymer bath; it is known
as depletion interaction in the Asakura–Oosawa model, see e.g. [AO54]. For a finite configuration
ω = {(xi, Ri)}1≤i≤n = {xi}1≤i≤n, the interaction is given by

H(ω) := Hhc(ω) +Har(ω), (2.1)

where

■ Hhc(ω) :=
∑

1≤i<j≤n ϕhc(xi,xj) = (+∞)
∑

1≤i<j≤n 1{|xi − xj| ≤ Ri + Rj} is a hard-
core pair interaction;

■ Har(ω) :=
∣∣⋃n

i=1B(xi, Ri + r)
∣∣ is the total area covered by ω, with radii enlarged by r > 0.
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In other words, the interaction models colloidal particles of radiusRi centred at xi in a bath of polymers
of size r. Note that, by inclusion-exclusion, the area-interaction term can be rewritten in terms of k-
body potentials as

Har(ω) =
∑
k≥1

ϕk(x1, . . . ,xk),

where
ϕk(x1, . . . ,xk) := (−1)k−1

∣∣B(x1, R1 + r) ∩ . . . ∩B(xk, Rk + r)
∣∣.

Remark 2.1 (k-body interactions via sufficiently small r). Let us note that there exists a value ρc :=
ρc(d) > 0 such that, if r/R ≤ ρc, where R = min{R1, . . . , Rn}, the k-body interactions vanish for
k ≥ 4, that is,

Har(ω) =
n∑
i=1

ϕ1(xi) +
∑

1≤i<j≤n

ϕ2(xi,xj) +
∑

1≤i<j<k≤n

ϕ3(xi,xj,xk). (2.2)

In dimension d = 2, this value is obtained by considering four spheres, with maximal radius R cen-
tered on the vertices of a square of side length 2R. There can be a 4-way overlap only if the distance
between any vertex and the center of the square is less than 2(R + r), that is if r/R > ρc(2) =√
2− 1. An analogous reasoning applies in dimension d ≥ 3. Replacing the square by a tetrahedron,

this for example gives ρc(3) =
√

3/2− 1.

Next, we define the conditional energy of ω ∈ Ω in a bounded subset Λ ⊆ Rd with boundary
configuration ζ ∈ Ω via

HΛ,ζ(ω) := Hhc
Λ,ζ(ω) +Har

Λ,ζ(ω) (2.3)

with Hhc
Λ,ζ(ω) :=

∑
{x,y}⊆ωΛζΛc : {x,y}∩Λ ̸=∅ ϕhc(x,y) and

Har
Λ,ζ(ω) :=

∣∣∣ ⋃
x∈ωΛ

B(x,Rx + r) \
⋃

y∈ζΛc

B(y,Ry + r)
∣∣∣, (2.4)

where Λc := Rd \ Λ and ωΛζΛc = ωΛ ∪ ζΛc denotes the concatenation of the configurations ωΛ

and ζΛc . For the choice ζ = ∅, we call HΛ,∅(ω) the (conditional) energy of ω in Λ with free boundary
conditions. Another noteworthy special case is if ζ = ω and we then just write HΛ(ω) instead of
HΛ,ω(ω) and speak of the conditional energy of ω in Λ.

2.3 Gibbsian formalism

Based on the energy, we now define the finite-volume equilibrium Gibbs measures with respect to
suitable boundary conditions. For this, let πzΛ denote the iid-marked Poisson point process on Λ ×
[0,∞) with intensity measure z1{x ∈ Λ}dx ⊗ R(dr), with Λ ∈ B(Rd) and R a probability
measure on [0,∞). We write πz := πzRd . Throughout the paper, we make the following integrability
assumption, ∫

er
d+δR(dr) <∞ for some δ > 0.

Definition 2.2 (Finite-volume Gibbs measures). For any bounded Λ ∈ B(Rd), the finite-volume
Gibbs measure with parameters z, β > 0 and boundary condition ζ ∈ Ω is the probability measure
GΛ,z,β,ζ on point configurations in Λ given by

GΛ,z,β,ζ(dωΛ) =
1

ZΛ,z,β,ζ

e−βHΛ,ζ(ωΛ)πzΛ(dωΛ), (2.5)
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Infinite-range multibody Gibbs variational principle 5

Let us note that, since HΛ,ζ ≥ 0 and HΛ,ζ(∅) = 0, we have that exp(−z|Λ|) ≤ ZΛ,z,β,ζ ≤ 1 and
thus the finite-volume Gibbs measures are well-defined for all boundary conditions.

Definition 2.3 (Gibbs measures). A probability measure P ∈ PΘ is called an infinite-volume Gibbs
measure for z, β > 0 if the following DLR equation holds for any bounded Λ ∈ B(Rd) and any
measurable function f ≥ 0,∫

P (dω) f(ω) =

∫
P (dζ)

∫
GΛ,z,β,ζ(dωΛ) f(ωΛζΛc). (2.6)

We write Gz,β(H) for the set of all infinite-volume Gibbs measures for z, β > 0.

Let us already note, that our main result will in particular establish existence of infinite-volume Gibbs
measures for the model defined in Equation (2.1). However, the existence could also be verified by
checking the conditions presented in [RZ20].

2.4 Specific entropy

On the way to present our main result, the Gibbs variational principle, we need to introduce the three
main ingredients of the variational formula, the specific entropy, the energy density, and the pressure.

First, we introduce the entropic part and recall its basic properties. For this, consider the (finite-volume)
relative entropy for bounded Λ ∈ B(Rd) given by

I(PΛ |πzΛ) =
∫
PΛ(dωΛ) log

(
dPΛ

dπzΛ
(ωΛ)

)
,

if PΛ ≪ πzΛ and I(PΛ |πzΛ) = ∞ otherwise. The proof of the following standard result can be found
for example in [GZ93, Proposition 2.6].

Proposition 2.4 (Specific entropy). For every activity z > 0 and P ∈ PΘ, the specific entropy

Iz(P ) := lim
n↑∞

I(PΛn |πzΛn
)

|Λn|
= sup

Λ∈Bb(Rd)

I(PΛ | πzΛ)
|Λ|

(2.7)

exists. Moreover, the map P 7→ Iz(P ) is lower-semicontinuous and the level sets {Iz ≤ c}, c ∈ R,
are compact and sequentially compact w.r.t. the τL-topology.

2.5 Energy density

The energetic component in the Gibbs variational formula, namely the energy density is formally de-
fined as

H(P ) := lim
n↑∞

P [HΛn∅]

|Λn|
.

In contrast to the specific entropy, its existence and continuity properties are not guaranteed by general
principles and need to be established in a model-dependent way. This will already constitute one part
of our main result.
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2.6 The pressure

The third ingredient of the variational principle is the so-called pressure, i.e., the density limit of the
partition function, formally defined as

ψ(z, β) := lim
n→∞

log(πzΛn

[
e−βHΛn,ζ

]
)

|Λn|
.

Here, the existence of the limit is also quite subtle and depends on the choice of the boundary condition
ζ . We will show that, for a class of sufficiently nice boundary conditions, it exists and actually does not
depend on the boundary condition itself.

3 Main result

The following Gibbs variational principle is the main result of this work.

Theorem 3.1 (Gibbs variational principle). Let z > 0 and β > 0 be fixed.

i. The functional

PΘ ∋ P 7→ Iz(P ) + βH(P ) ∈ [0,∞]

is well-defined and lower-semicontinuous.

ii. The functional attains its finite infimum on PΘ and this infimum coincides with the pressure, i.e.,

inf
P∈PΘ

[Iz(P ) + βH(P )] = −ψ(β, z).

iii. A measure P ∈ PΘ minimizes the functional if and only if it is a Gibbs measure.

Note again that, as a byproduct of our main result, existence is guaranteed.

Corollary 3.2 (Existence). For any activity z > 0 and any inverse temperature β > 0, there exists at
least one infinite-volume Gibbs measure for the model defined in Equation (2.1).

Before we shift gears and discuss the overall strategy of the proof, let us remark that the statement
of Theorem 3.1 remains true if one replaces PΘ with the set of all translation-invariant probability
measures on Ω. The energy density H(P ) is still well-defined and can even be infinite, but P [NC ] =
∞ necessarily implies Iz(P ) = ∞.

Moreover, we conjecture that Theorem 3.1 still holds if one makes minor modifications to the model
such as

1 replacing spheres by some other type of convex body,

2 replacing the hard-core part by a Lennard–Jones-type soft-core potential (with sufficiently strong
short-range repulsion),

3 using an interaction potential which is not the area interaction but satisfies the properties in
Lemma 5.1 below.

All of these generalizations seem reasonable, but one would certainly pay the price of longer and
harder-to-read proofs and potentially obscuring the main ideas. Let us also mention that our integra-
bility assumption on the marks is possibly not optimal and the Gibbs variational principle still holds
under weaker assumptions.

DOI 10.20347/WIAS.PREPRINT.3126 Berlin 2024
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4 Strategy of proof

For the proof of Theorem 3.1 we will treat the main ingredients of the variational principle, namely the
energy density and the pressure, separately, and then conclude by putting everything together. Let us
briefly explain some of the key steps and note that this can also serve as a blueprint for establishing
Gibbs variational principles for other models.

4.1 The energy density and its continuity properties

Our first result deals with the existence and continuity properties of the energy density.

Proposition 4.1. For all P ∈ PΘ the energy density

H(P ) := lim
n↑∞

P [HΛn,∅]

|Λn|

exists. The functional

PΘ ∋ P 7→ H(P ) ∈ [0,∞]

is continuous on {P ∈ PΘ : H(P ) <∞} and in particular lower semicontinuous on PΘ with respect
to the τL-topology.

The proof is based on deriving an explicit representation of H(P ) in terms of the Palm measure of P .
Proving the continuity of H(·) on {P ∈ PΘ : H(P ) < ∞} requires some geometric considerations
to control the unbounded-range interactions. The details are provided in Section 6. Let us also note
that the map P 7→ H(P ) is not continuous on the whole set PΘ. An example of point of discontinuity
is given in Remark 6.6.

4.2 Tempered configurations and measures

Especially for the existence of the pressure, we need to control the effect of considering different
boundary conditions. There, it will be very useful to only work with boundary conditions which are
sufficiently nice, these are the so-called tempered configurations. Of course, the set of nice configu-
rations also needs to be sufficiently large such that all relevant measures are concentrated on it, so
there is a certain trade-off. Let us start by introducing some more notation. Fix some γ ∈ (0, δ/d)
and set

ϵ :=
(
1− γd

δ

) δ

d+ δ
,

where δ > 0 is such that
∫
[0,∞)

er
d+δ

R(dr) <∞ and define

g(n) := n1−ϵ, n ∈ N.

In particular,

R(R ≥ g(n)) ≲R,δ e
−|Λn|1+γ

.
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Then, we define the set of tempered configurations by

Ω∗ = {ω ∈ Ω | ∃N ∈ N ∀n ≥ N ∀x ∈ ωΛn : Rx ≤ g(n)} .

With this notation at hand, we can now introduce the class of measures we will be particularly inter-
ested in.

Definition 4.2 (Temperedness). A measure P ∈ PΘ is called tempered, if

P (Ω∗) = 1.

Restricting our attention to tempered measures is not problematic for the following two reasons. First,
non-tempered measures have infinite specific entropy, so they will not appear as minimizers in the
Gibbs variational principle.

Lemma 4.3 (Finite specific entropy implies temperedness). Let P ∈ PΘ with Iz(P ) <∞, then P is
tempered.

Second, all infinite-volume Gibbs measures for the model we consider are tempered.

Lemma 4.4 (Infinite-volume Gibbs measures are tempered). Let P ∈ PΘ be an infinite-volume Gibbs
measure P ∈ Gz,β(H), then P is tempered.

The proofs of Lemma 4.3 and Lemma 4.4 can be found in Section 7. Summarizing, one sees that only
considering tempered measures is not really a restriction but enables us to proceed as follows.

4.3 Existence of the pressure

The next step is to show the existence of the pressure, i.e., the density limit of the partition function. We
do this step-by-step by exchanging the boundary conditions and start out by considering the periodic
case. For this, we define HΛn,per(ωΛn) to be the finite-volume energy when Λn is identified with the
d-dimensional torus.

Proposition 4.5. We have

lim
n→∞

log
(
πzΛn

[
e−βHΛn,per

])
|Λn|

= − inf
P∈PΘ

[Iz(P ) + βH(P )] .

Let us now writeHΛ,∅(ω) := HΛ(ωΛ) for the energy with free boundary conditions. Extending Propo-
sition 4.5 to free boundary conditions is essentially a consequence of the following comparison be-
tween free and periodic boundary conditions.

Proposition 4.6. We have

lim inf
n→∞

log
(
πΛn

[
e−βHΛn,per+log(z)NΛn

])
|Λn|

= lim inf
n→∞

log
(
πΛn

[
e−βHΛn,∅+log(z)NΛn

])
|Λn|

and

lim sup
n→∞

log
(
πzΛn

[
e−βHΛn,per

])
|Λn|

= lim sup
n→∞

log
(
πzΛn

[
e−βHΛn,∅

])
|Λn|

.
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Infinite-range multibody Gibbs variational principle 9

After this intermediate step, one can then extend the existence of the pressure to boundary conditions
sampled from a tempered measure P with finite energy.

Proposition 4.7. Let P ∈ PΘ be tempered and with H(P ) <∞. Then,

lim
n→∞

log
(
πzΛn

[
e−βHΛn,ζ

])
|Λn|

= − inf
P∈PΘ

[Iz(P ) + βH(P )]

for P -a.e. ζ ∈ Ω.

The proof is again based on a comparison estimate, now with the case of free boundary conditions.
All the details can be found in Section 8.

4.4 The variational principle

In the end, we put all of the previous ingredients together to prove our main result Theorem 3.1. For
this, our strategy is based on the two-body situation in [Geo95]. As a first step, we show that the
variational principle is non-trivial in the following sense.

Lemma 4.8. We have

inf
P∈PΘ

[Iz(P ) + βH(P )] = min
P∈PΘ

[Iz(P ) + βH(P )] <∞,

i.e., P 7→ Iz(P ) + βH(P ) attains its infimum and it is finite.

To show that the set of minimizers coincides with the infinite-volume Gibbs measures, we need to
compare measures P ∈ PΘ with finite-volume Gibbs measures. For this note that in finite volumes
Λn we have

log(ZΛn,z,β) + βPΛn [HΛn,∅] + I(PΛn | πzΛn
) = PΛn

[
log

(
dPΛn

dGΛn,z,β

)]
=: I(PΛn |GΛn,z,β),

whereGΛn,z,β is just the finite-volume Gibbs measure with free boundary conditions and normalization
constant ZΛn,z,β . Of course, the term on the right-hand side is nothing but a relative entropy. By using
that the energy density and the pressure exist one sees that the relative entropy density exists and
satisfies

δF (P ) := lim
n→∞

I(PΛn |GΛn,z,β)

|Λn|
= [Iz(P ) + βH(P )]− inf

Q∈PΘ

[Iz(Q) + βH(Q)] .

So a measure P ∈ PΘ is a minimizer, if and only if its relative entropy density (or excess free energy)
vanishes. By controlling the effect of different boundary conditions this identity allows us to show that
every infinite-volume Gibbs measure is indeed a minimizer.

Proposition 4.9. Let P be an infinite-volume Gibbs measure for activity z and inverse temperature β,
i.e., P ∈ Gz,β(H), then

Iz(P ) + βH(P ) = inf
Q∈PΘ

[Iz(Q) + βH(Q)] .

As a final step, we need to argue that the Gibbs measures are actually the only minimizers. As usual,
this is the harder part of the Gibbs variational principle.
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Proposition 4.10. Let P ∈ PΘ. If

Iz(P ) + βH(P ) = inf
Q∈PΘ

[Iz(Q) + βH(Q)] ,

then P is an infinite-volume Gibbs measure for activity z and inverse temperature β, i.e., P ∈
Gz,β(H).

Recall that, in order to show that P ∈ PΘ is a Gibbs measure, one needs to show that for any bounded
measurable Λ ⊂ Rd and any measurable f ≥ 0, one has∫

P (dζ) f(ζ) =

∫
P (dζ)

[∫
GΛ,z,β,ζ(dω) f(ωΛζΛc)

]
.

For this, the strategy is similar to the classical proof of [Geo11, Theorem 15.37] on the lattice. Rougly
speaking, the calculations above tell us that if P ∈ PΘ is a minimizer, then the relative entropy
density δF (P ) vanishes. In particular, this implies that restrictions PΛ to sufficiently large but bounded
volumes Λ ⊂ Rd are absolutely continuous with density gΛ with respect to the finite-volume Gibbs
measuresGΛ,z,β . Moreover, the asymptotic control over the relative entropy in large volumes, which is
implied by the vanishing relative entropy density, provides control over these densities for sufficiently
large Λ. Making this precise is slightly technical but based on adapting standard arguments to our
situation.

5 Preliminaries

Let us start by collecting some properties of the conditional energy. Recall that we write f ≲a g in
order to indicate that there exists a constant c = c(a) that (only) depends to the parameter a, such
that f ≤ cg.

Lemma 5.1 (Properties of the energy). The energy function satisfies the following properties:

1 For all Λ ∈ Bb(Rd) we have that Hhc
Λ , H

ar
Λ , HΛ ≥ 0.

2 We have that
Har(ω) ≲d

∑
x∈ω

(Rx + r)d. (5.1)

3 If ω ∈ Ω respects the hardcore condition, we have that∑
x∈ω

Rd
x ≲d H

ar(ω). (5.2)

4 If ω ∈ Ω respects the hardcore condition and is finite, then

Har(ω) =
∑
x∈ω

(
ϕ1(x) +

∑
k≥2

1
k

∑
{y1,...,yk−1}⊆ω\x

ϕk(x,y1, . . . ,yk−1)
)
. (5.3)

In particular, for all x ∈ ω and ω not necessarily finite,∣∣∣∑
k≥2

1
k

∑
{y1,...,yk−1}⊆ω\x

ϕk(x,y1, . . . ,yk−1)
∣∣∣

≤ |B(x,Rx + r) \B(x,Rx)| ≲d,r (1 +Rd−1
x ).

(5.4)

DOI 10.20347/WIAS.PREPRINT.3126 Berlin 2024
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5 For all ζ ∈ Ω and Λ ∈ B(Rd), the map ω 7→ HΛ(ωΛζΛc) is increasing.

Proof. Note that Item (1) is clear from the definitions. Item (2) follows from the estimates

Har(ω) =
∣∣∣ ⋃
x∈ω

B(x,Rx + r)
∣∣∣ ≤ ∑

x∈ω

|B(x,Rx + r)| ≲d

∑
x∈ω

(Rx + r)d.

For Item (3), note that, by the hardcore condition,

H(ω) =
∣∣∣ ⋃
x∈ω

B(x,Rx + r)
∣∣∣ ≥ ∣∣∣ ⋃̇

x∈ω

B(x,Rx)
∣∣∣ = ∑

x∈ω

|B(x,Rx)| ≳d

∑
x∈ω

Rd
x.

Now, for Item (4), we have that∑
y∈ω\x 1B(y,Ry+r)∑
y∈ω 1B(y,Ry+r)

1B(x,Rx+r) =
∑
k≥2

(−1)k

k

∑
{y1,...,yk−1}⊆ω\x

1B(x,Rx+r)

k−1∏
i=1

1B(yi,Ryi+r)
,

which can be seen by induction, and therefore

Har(ω) =
∣∣∣ ⋃
x∈ω

B(x,Rx + r)
∣∣∣ = ∫

dz 1{z ∈
⋃
x∈ω

B(x,Rx + r)}

=

∫
dz

∑
x∈ω

(∑
y∈ω

1{z ∈ B(y,Ry + r)}
)−1

1{z ∈ B(x,Rx + r)}

=

∫
dz

∑
x∈ω

(
1−

∑
y∈ω\x 1{z ∈ B(y,Ry + r)}∑
y∈ω 1{z ∈ B(y,Ry + r)}

)
1{z ∈ B(x,Rx + r)}

=
∑
x∈ω

|B(x,Rx + r)| −
∫

dz

∑
y∈ω\x 1{z ∈ B(y,Ry + r)}∑
y∈ω 1{z ∈ B(y,Ry + r)}

1{z ∈ B(x,Rx + r)}

=
∑
x∈ω

(
ϕ1(x) +

∑
k≥2

1
k

∑
{y1,...,yk−1}⊆ω\x

ϕk(x,y1, . . . ,yk−1)
)
,

as desired. Further, again by the hardcore condition,∣∣∣∑
k≥2

1
k

∑
{y1,...,yk−1}⊆ω\x

ϕk(x,y1, . . . ,yk−1)
∣∣∣

=

∫
dz

∑
y∈ω\x 1{z ∈ B(y,Ry + r)}∑
y∈ω 1{z ∈ B(y,Ry + r)}

1{z ∈ B(x,Rx + r)}

=

∫
dz

∑
y∈ω\x 1{z ∈ B(y,Ry + r)}∑
y∈ω 1{z ∈ B(y,Ry + r)}

1{z ∈ B(x,Rx + r) \B(x,Rx)}

≤ |B(x,Rx + r) \B(x,Rx)| ≲r,d (1 +Rd−1
x ).

Note that, by the hardcore condition, only finitely many intersections of B(x,Rx + r) are non-empty
such that everything above is well-defined even for a configuration ω with infinitely many points.

Item (5) is again clear from the definition of HΛ(ωΛζΛc), as adding points to ω clearly does not
decrease Har

Λ (ωΛζΛc) or Hhc
Λ (ωΛζΛc).

Let us also collect some basic properties of the entropies. Here FΛ denotes the sub-σ-algebra of
events in F , which are measurable in Λ ∈ B(Rd).
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Lemma 5.2. For probability measures µ and ν defined on the same probability space and a positive
random variable f it holds that

ν[f ] ≤ log(µ[ef ]) + I(ν |µ). (5.5)

In particular, for P ∈ PΘ and a positive FΛ-measurable random variable f on Ω with Λ ∈ Bb(Rd),
we have

P [f ] ≤ log
(
πz[ef ]

)
+ |Λ| Iz(P ). (5.6)

Proof. For the first inequality, see e.g. [Var84, Lemma 10.1]. The second inequality is an application
of the first to ν = PΛ, µ = πzΛ combined with Equation (2.7).

6 Energy density

Let us define, for any x ∈ Rd, the spatial shift operator θx : Ω → Ω with θxω = θx((xi, Ri)i≥0) =
(xi − x,Ri)i≥0. The following standard result establishes the Palm measure, that is the measure
that describes a translation-invariant system from the perspective of a typical particle. Its proof can be
found for example in [GZ93, Remark 2.1].

Proposition 6.1 (Palm measure). For allP ∈ PΘ, there is a unique measureP o on ([0,∞)× Ω,B([0,∞))⊗F),
called the Palm measure of P , such that∫

Rd

dx

∫
Ω×[0,∞)

P o(dω, dRo) f(x,Ro, ω) =

∫
Ω×[0,∞)

P (dω)
∑
x∈ω

f(x,Rx, θxω) (6.1)

for all measurable f : Rd × [0,∞)×Ω → [0,∞]. In particular, P o is a finite measure with P o(Ω×
[0,∞)) = P [NC ] <∞, and

P o[Rd
o] = P

[∑
x∈ωC

Rd
x

]
. (6.2)

Note that the Palm measure is supported on the set {(R,ω) ∈ [0,∞)×Ω | (o,R) ∈ ω}. With Palm
measures at hand, we can now state the following refined version of Proposition 4.1.

Proposition 6.2 (Existence and continuity properties of the energy density). For all P ∈ PΘ, the
energy density

H(P ) := lim
n↑∞

P [HΛn,∅]

|Λn|

exists and is given by

H(P ) =

{
P o[fH ], if P

[∑
{x,y}⊆ω ϕhc(x,y)

]
<∞ and P

[∑
x∈ωC

Rd
x

]
<∞,

+∞, otherwise,

where P o is the Palm measure of P , and

fH(Ro, ω) := ϕ1(o,Ro) +
∑
k≥2

1
k

∑
{x1,...,xk−1}⊆ω\o

ϕk((o,Ro),x1, . . . ,xk−1).

Additionally, P 7→ H(P ) is continuous on {P ∈ PΘ |H(P ) <∞} and in particular lower semicon-
tinuous on PΘ w.r.t. the τL-topology.
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The proof of Proposition 6.2 is based on a few technical lemmas, which we provide now. The proof of
Proposition 6.2 is given at the end of this section.

Lemma 6.3 (Finite-volume Palm representation). Let P ∈ PΘ. If

P
[ ∑
{x,y}⊆ω

ϕhc(x,y)
]
<∞ and P

[ ∑
x∈ωC

Rd
x

]
<∞,

then

P [HΛn,∅]

|Λn|
= P o[fH,n],

where

fH,n(Ro, ω) := ϕ1(o) +
∑
k≥2

1
k

∑
{x1,...,xk−1}⊆ω\o

ϕk(o,x1, . . . ,xk−1)

∣∣⋂k−1
i=1 (Λn−xi)∩Λn

∣∣
|Λn| .

Proof. By Equation (5.3), we have that

Har
Λn,∅(ω) =

∣∣∣ ⋃
x∈ωΛn

B(x,Rx + r)
∣∣∣

=
∑

x∈ωΛn

(
ϕ1(x) +

∑
k≥2

1
k

∑
{y1,...,yk−1}⊆ωΛn\x

ϕk(x,y1, . . . ,yk−1)
)
.

Hence, by translation invariance, and since under P we can ignore the hardcore term,

HΛn,∅(ω) = Har,∅
Λn

(ω) =
∑
x∈ω

gn(x, θxω),

where

gn(x, ω) := ϕ1((o,Rx))1{x ∈ Λn}

+
∑
k≥2

1
k

∑
{y1,...,yk−1}⊆ω\(o,Rx)

ϕk((o,Rx),y1, . . . ,yk−1)1
{
x ∈

k−1⋂
i=1

(Λn − yi) ∩ Λn

}
.

The defining property of the Palm measure P o, Equation (6.1), gives

P [HΛn,∅] = P
[∑
x∈ω

gn(x, θxω)
]
=

∫
dx

∫
P o(dω, dRo) gn((x,Ro), ω)

=

∫
P o(dω, dRo)

∫
dx gn((x,Ro), ω)

= P o[|Λn| fH,n],

as desired.

Lemma 6.4 (Infinite-volume Palm representation). LetP ∈ PΘ be such that bothP
[∑

{x,y}⊆ω ϕhc(x,y)
]
<

∞ and P
[∑

x∈ωC
Rd
x

]
<∞. Then P o(fH) is well-defined for

fH(Ro, ω) := ϕ1(o) +
∑
k≥2

1
k

∑
{x1,...,xk−1}⊆ω\o

ϕk(o,x1, . . . ,xk−1)

and furthermore, P o(fH) = limn↑∞ P o[fH,n].
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Proof. The random variable fH is integrable w.r.t. P o, since ϕ1 is integrable by the moment assump-
tion on P (see Equation (6.2)) and, by Equation (5.4),

|fH(Ro, ω)− ϕ1(o)| ≲ ϕ1(o).

The dominated convergence theorem now implies P o(fH) = limn↑∞ P o(fH,n).

Proposition 6.5 (Continuity of the energy density). The map P 7→ H(P ) described in Proposition 6.2
is continuous on {P ∈ PΘ : H(P ) < ∞} and in particular lower-semicontinuous w.r.t. the τL-
topology on PΘ.

Proof. Let (Pα)α be any net in {P ∈ P : H(P ) < ∞} which converges to P ∈ PΘ in the τL-
topology. We first establish that P has to respect the hardcore condition. Clearly, every Pα has to
respect the hardcore condition, since H(Pα) <∞. Moreover, since

P
( ∑

{x,y}⊆ω

ϕhc(x,y) = ∞
)
= sup

n∈N
P
( ∑

{x,y}⊆ωΛn

ϕhc(x,y) = ∞
)

and by the definition of the τL-topology

0 = Pα

( ∑
{x,y}⊆ωΛn

ϕhc(x,y) = ∞
)
→ P

( ∑
{x,y}⊆ωΛn

ϕhc(x,y) = ∞
)
,

we get

P
( ∑

{x,y}⊆ω

ϕhc(x,y) = ∞
)
= 0.

By the definition of the τL-topology, we also have that

Pα

[ ∑
x∈ωC

Rd
x

]
→ P

[ ∑
x∈ωC

Rd
x

]
,

so that, either

H(P ) ≳ P
[ ∑
x∈ωC

Rd
x

]
= ∞

and also limαH(Pα) ≳ limα Pα[
∑

x∈ωc
Rd
x] = ∞ by Equation (5.1), or

P
[ ∑
x∈ωC

Rd
x

]
= lim

α
Pα

[ ∑
x∈ωC

Rd
x

]
≤ c

for some c > 0, and we can assume without loss of generality that

sup
α
P o
α[R

d
o] = sup

α
Pα

[ ∑
x∈ωC

Rd
x

]
≲ sup

α
H(Pα) ≤ c,

where we used Equation (6.2) and Equation (5.1). Given that this holds, we have

H(P ) = P o [ϕ1(o) +X] ,
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where

X := X(Ro, ω) :=
∑
k≥2

1
k

∑
{x1,...,xk−1}⊆ω\o

ϕk(o,x1, . . . ,xk−1).

We now show that P o
α [X] → P o [X]. Fix an ϵ > 0 and consider boxes ∆1, . . . ,∆M ⊆ Rd to be

specified later. Then, for Q ∈ {P, Pα}, we have

∣∣∣Qo [X]−Qo
[
X1N∆1

,...,N∆M
>0 and Ro≤ϵ−1

]∣∣∣ ≤ M∑
m=1

Qo
[
|X|1N∆m=0

]
+Qo [|X|1Ro>ϵ−1 ] .

Recall that |X| ≲ 1 +Rd−1
o ≲ Rd−1

o for Ro ≥ 1 by Equation (5.4). Hence,

Qo
[
|X|1Ro>ϵ−1

]
≤ ϵQo

[
|X|Ro

]
≲ ϵQo

[
Rd−1
o Ro

]
≲ ϵ.

We also have

Qo [|X|1N∆=0] = Q
[ ∑
x∈ωC

|X(Rx, θxω)|1N∆=0(θxω)
]

≤ Q
[( ∑

x∈ωC

|X(Rx, θxω)|
)
1N∆−=0(ω)

]
= Q

[( ∑
x∈ωC

∣∣∣∑
k≥2

1
k

∑
{x1,...,xk−1}⊆ω\x

ϕk(x,x1, . . . ,xk−1)
∣∣∣)1N∆−=0(ω)

]
≤ Q

[( ∑
x∈ωC

|B(x,Rx + r) \B(x,Rx)|
)
1N∆−=0,NC ̸=0(ω)

]
≤ Q

[( ∑
x∈ωC

|B(x,Rx + r) \B(x,Rx)|
)d/(d−1)](d−1)/d

Q(N∆− = 0, NC ̸= 0)1/d,

where ∆− is the maximal box inside ∆ such that θx∆− ⊆ ∆ for all x ∈ C , and we used Equa-
tion (5.4). However, by the hardcore condition,( ∑

x∈ωC

|B(x,Rx + r) \B(x,Rx)|
)d/(d−1)

=
( ∑

x∈ωC

|B(x,Rx + r) \B(x,Rx)|
)d/(d−1)

1{NC > 1}

+
( ∑

x∈ωC

|B(x,Rx + r) \B(x,Rx)|
)d/(d−1)

1{NC = 1}

≲ |C|d/(d−1) + 1 +
( ∑

x∈ωC

Rd
x

)
≲ 1 +

∑
x∈ωC

Rd
x,

and hence

Qo
[
|X|1N∆=0

]
≲ Q

[
1 +

∑
x∈ωC

Rd
x

](d−1)/d

Q(N∆− = 0, NC ̸= 0)1/d

=
(
1 +Qo[Rd

o]
)(d−1)/d

Q(N∆− = 0, NC ̸= 0)1/d

≲ Q(N∆− = 0, NC ̸= 0)1/d.
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o 2A

∼ 1
2
√
d−1A

1/ε

∆

∆i

6A

Figure 1: Such a geometric arrangement forces balls with centers outside ∆, which intersect
[−A,A]d ⊃ B(0, ϵ−1), to contain at least one of the ∆j .

For a fixed box ∆, we then have

Pα(N∆− = 0, NC ̸= 0) → P (N∆− = 0, NC ̸= 0) (6.3)

by the definition of the τL-topology. On the other hand, for ∆ ↑ Rd we have

P (N∆− = 0, NC ̸= 0) ≤ P (N∆− = 0, ω ̸= ∅) = P (N∆−
o
= 0, ω ̸= ∅)

↓ P (NRd = 0, ω ̸= ∅) = 0,

by translation invariance, where ∆−
o is the translate of the box ∆− which is centered at the origin.

In summary, if we choose ∆ large enough, we have

Pα(N∆− = 0, NC ̸= 0) → P (N∆− = 0, NC ̸= 0) < ϵ

and can therefore assume without loss of generality that∣∣∣Qo [X]−Qo
[
X1N∆1

,...,N∆M
>0 and Ro≤ϵ−1

]∣∣∣ ≲Mϵ
1
d + ϵ

for Q ∈ {P, Pα}. Therefore, we only need to provide some fixed number M ∈ N such that there are
arbitrarily large sets ∆1, . . . ,∆M with

P o
α

[
X1N∆1

,...,N∆M
>0 and Ro≤ϵ−1

]
→ P o

[
X1N∆1

,...,N∆M
>0 and Ro≤ϵ−1

]
.

We will do this by choosing ∆1, . . . ,∆M in such a manner that there is a bounded ∆ with

X1{N∆1
,...,N∆M

>0 and Ro≤ϵ−1}

=
(∑
k≥2

1
k

∑
{x1,...,xk−1}⊆ω∆\o

ϕk(o,x1, . . . ,xk−1)
)
1{N∆1

,...,N∆M
>0 and Ro≤ϵ−1},

(6.4)

i.e., such that we actually only have to look at interactions in the fixed, bounded volume ∆. This
can be achieved by choosing, for some scale parameter A ≥ ϵ−1, the set ∆ = [−3A, 3A]d and
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decomposing the “boundary” ∆ \ [−A,A]d into M ∼ 2d(3d − 1)(d − 1)d/2 rectangles with edge
length ∼ A

2
√
d−1

. See Figure 1 for a sketch. This geometric arrangement now has the property that

every ball with center outside ∆ which intersects [−A,A]d ⊃ B(0, ϵ−1) has to fully contain ∆j for
at least one j ∈ {1, . . . ,M}. The latter property together with the hardcore condition in our model
guarantees Equation (6.4).

We are now in the position to prove the main result of this section.

Proof of Proposition 6.2. IfP
[∑

{x,y}⊆ω ϕhc(x,y)
]
= ∞ orP

[∑
x∈ωC

Rd
x

]
= ∞, thenP [HΛn ] =

∞ for all n ∈ N sufficiently large, by Equation (5.1). Therefore, we can assumeP
[∑

{x,y}⊆ω ϕhc(x,y)
]
<

∞ andP
[∑

x∈ωC
Rd
x

]
<∞ from now on. Then, we haveP [HΛn,∅]/ |Λn| = P o[fH,n] by Lemma 6.3

and therefore we have that

H(P ) = lim
n↑∞

P [HΛn,∅]

|Λn|
= lim

n↑∞
P o[fH,n] = P o[fH ]

by Lemma 6.4. The continuity properties of H are shown in Proposition 6.5.

Before the start of the next section, let us note the following.

Remark 6.6. If infinite energies are allowed, the map P 7→ H(P ) is not continuous. Here is an
example of translation-invariant probability measures (Pn)n∈N such that H(Pn) = ∞ for all n ∈ N
and Pn → P in the τL-topology, but H(P ) < ∞. Fix some S ≥ ρr and define the periodic hard-
core-respecting configuration

ωgood =
∑
i∈2SZd

δ(i,S),

and the periodic non-hard-core-respecting (i.e., overlapping) configuration

ωbad,n =
∑
i∈2nZd

δ(i,2n).

Finally, define the translation-invariant states

µgood = S−d
∫
[−S,S]d

δθyωgood dy and µbad,n = n−d
∫
[−n,n]d

δθyωbad,n dy,

and set Pn = (1− 1/n)µgood + (1/n)µbad,n. Then, we have that H(Pn) ≥ (1/n)H(µbad,n) = ∞,
while on the other hand H(µgood) <∞ and Pn −−−→

n→∞
µgood =: P in the τL-topology.

7 The support of good measures: Temperedness

Let us start by defining the following subsets of configurations related to the temperedness condition.
For K,N,M ∈ N with N ≤M we will write

Ω∗
K := {ω ∈ Ω | ∀n ≥ K ∀x ∈ ωΛn : Rx ≤ g(n)} ,

Ω∗
N,M := {ω ∈ Ω | ∀n ∈ N ∩ [N,M ] ∀x ∈ ωΛn : Rx ≤ g(n)} .
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For Λ ∈ B(Rd), we let

(ΩΛ)
∗
K = {ω ∈ ΩΛ | ∀n ≥ K ∀x ∈ ωΛn∩Λ : Rx ≤ g(n)} (7.1)

and we will later also need

Ω∗,Λ
K = {ω ∈ Ω | ∀n ≥ K ∀x ∈ ωΛn∩Λ : Rx ≤ g(n)} .

With this notation at hand, we first derive some quantitative estimates for the underlying Poisson point
process.

Lemma 7.1 (Temperedness estimates in the Poisson case). We have that

πz((Ω∗
N,M)c) ≲R,γ,z e

−|ΛN |1+γ

and in particular, for all K ∈ N,

πz((Ω∗
K)

c) = sup
M≥K

πz((Ω∗
K,M)c) ≲R,γ,z e

−|ΛN |1+γ

.

Proof. We have that

πz(Ω∗
N,M) = πz(∀x ∈ ωΛN

: Rx ≤ g(N))
M∏

n=N+1

πz(∀x ∈ ωΛn\Λn−1 : Rx ≤ g(n))

= exp
(
− z |ΛN |R(R > g(N))− z

M∑
n=N+1

|Λn \ Λn−1|R(R > g(n))
)
,

which implies that

πz((Ω∗
N,M)c) = 1− exp

(
− z |ΛN |R(R > g(N))− z

M∑
n=N+1

|Λn \ Λn−1|R
(
R > g(n)

))
≤ 1− exp

(
− z |ΛN |R(R > g(N))− z

∞∑
n=N+1

|Λn \ Λn−1|R
(
R > g(n)

))
≤ 1− exp

(
− c′R,γ,ze

−|ΛN |1+γ

− c′′R,γ,ze
−|ΛN |1+γ

)
≲R,γ,z exp(− |ΛN |1+γ),

as desired.

We directly apply this technical helper to show that measures P with finite specific entropy are neces-
sarily tempered.

Proof of Lemma 4.3. Let us note that the obvious union bound does not work for d = 1 because then
|Λn|−γ is not summable for γ ∈ (0, 1), hence the following slightly more complicated analysis. From
the general inequality Equation (5.6) and Lemma 7.1 we have for all N,M ∈ N with N ≤M ,

P
(
(Ω∗

N,M)c
)
=
P [|ΛM |1+γ/2 1{(Ω∗

N,M)c}]
|ΛM |1+γ/2

≤
log

(
e|ΛM |1+γ/2

πz
(
(Ω∗

N,M)c
)
+ 1

)
|ΛM |1+γ/2

+
Iz(P )

|ΛM |γ/2

≤
log

(
cR,γ,ze

|ΛM |1+γ/2

e−|ΛN |1+γ

+ 1
)

|ΛM |1+γ/2
+

Iz(P )

|ΛM |γ/2
.
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For the special choice N = Nk and M = Nk+1 where Nk = k4/γ we thus have that

P ((Ω∗
Nk,Nk+1

)c) ≲
log

(
cR,γ,ze

−cdk4(1+1/γ)(1−k−2((k+1)/k)4(1/2+1/γ)) + 1
)

k(4+1/2)d
+
Iz(P )

k2d
≲ k−2d.

Since Ω∗ =
⋃
K∈N

⋂
k≥K Ω∗

Nk,Nk+1
we finally have

P
(
(Ω∗)c

)
≤ inf

K∈N

∑
k≥K

P
(
(Ω∗

Nk,Nk+1
)c
)
≲ inf

K∈N

∑
k≥K

k−2d = 0,

as desired.

In order to show that infinite-volume Gibbs measures are tempered, we first provide a finite-volume
comparison result.

Lemma 7.2 (Temperedness estimates for finite-volume Gibbs measures). Let Λ ∈ Bb(Rd) and
K ∈ N, then, for every boundary configuration ζ ∈ Ω,

GΛ,z,β,ζ

(
(ΩΛ)

∗
K

)
≥ πz(Ω∗

K).

Proof. Since ωΛ 7→ exp(−βHΛ,ζ(ωΛ)) and ωΛ 7→ 1{ωΛ ∈ (ΩΛ)
∗
K} are both decreasing, the result

follows by applying the Harris-/FKG-inequality, i.e.,

GΛ,z,β,ζ

(
(ΩΛ)

∗
K

)
= πzΛ

[
e−βHΛ,ζ

ZΛ,z,β,ζ

1(ΩΛ)
∗
K

]
≥ πzΛ

[
e−βHΛ,ζ

ZΛ,z,β,ζ

]
πzΛ((ΩΛ)

∗
K)

= πzΛ((ΩΛ)
∗
K) ≥ πz(Ω∗

K).

This finite-volume comparison now allows us to conclude that the infinite-volume Gibbs measures are
also tempered.

Proof of Lemma 4.4. By the definition of infinite-volume Gibbs measures and Lemma 7.2, we have
that

P (Ω∗,Λ
K ) =

∫
P (dζ)

∫
GΛ,z,β,ζ(dωΛ)1{ωΛζLc ∈ Ω∗,Λ

K } =

∫
P (dζ)GΛ,z,β,ζ

(
(ΩΛ)

∗
K

)
≥

∫
P (dζ)GΛ,z,β,ζ

(
(ΩΛ)

∗
K

)
≥

∫
P (dζ)πz(Ω∗

K) = πz(Ω∗
K).

But then, using Lemma 7.1,

P (Ω∗) = sup
K∈N

P (Ω∗
K) = sup

K∈N
inf

Λ∈Bb(Rd)
P (Ω∗,Λ

K ) ≥ sup
K∈N

πz(Ω∗
K) = 1.

We conclude this section with another regularity result for the concatenation of tempered measures
with the finite-volume Gibbs specification. This will be important for the proof of Theorem 3.1 in Sec-
tion 9.3.
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Lemma 7.3. Let P ∈ PΘ be tempered. Then, for all Λ ∈ Bb(Rd), the measure νΛ = PGΛ defined,
for any A ∈ F , by

νΛ(A) =

∫
P (dζ)

∫
GΛ,z,β,ζ(dωΛ)1{ωΛζΛc ∈ A}

is also tempered. Moreover,

sup
Λ∈Bb(Rd)

νΛ(Ω
∗
K
c) −−−→

K↑∞
0.

Proof. For any Λ ∈ Bb(Rd), using Lemma 7.2, we compute

νΛ(Ω
∗
K) = PGΛ(Ω

∗
K) =

∫
P (dζ)

∫
GΛ,z,β,ζ(dω)1{ωΛζΛc ∈ Ω∗

K}

≥
∫

P (dζ)

∫
GΛ,z,β,ζ(dω)1{ζ ∈ Ω∗,Λ

K }1{ωΛ ∈ (ΩΛ)
∗
K}

=

∫
P (dζ)1{ζ ∈ Ω∗

K}GΛ,z,β,ζ

(
(ΩΛ)

∗
K

)
≥

∫
P (dζ)1{ζ ∈ Ω∗

K} πz(Ω∗
K)

= P (Ω∗
K)π

z(Ω∗
K),

where the right-hand side is independent of Λ and tends to one as K ↑ ∞ by the temperedness
assumption on P and Lemma 7.1.

8 Existence of pressure via large deviations

In this section, we show the existence of the density limit of the partition function. We do this step-by-
step by exchanging boundary conditions. We start by considering the periodic case and then extend
to free and tempered boundary conditions via comparison estimates.

8.1 Periodic boundary conditions

The fundamental idea is to use an underlying large-deviation result for the stationary empirical field

Rn,ω := |Λn|−1

∫
Λn

δθxω(n) dx.

Recall thatHΛn,per(ωΛn) denotes the finite-volume energy whenΛn is identified with the d-dimensional
torus. The precise relation between Rn,ω and HΛn,per(ωΛn) is given in the next lemma.

Lemma 8.1. We have that

NΛn(ω) = |Λn|Rn,ω[NC ] and HΛn,per(ω) = |Λn|H(Rn,ω).
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Proof. The first equality is included in [GZ93, Remark 2.3, (1)]. Further, by [GZ93, Remark 2.3, (3)],
we have that

(Rn,ω)
o = |Λn|−1

∑
(x,Rx)∈ωΛn

δ(Rx,θxω(n))

is the Palm measure of Rn,ω. Therefore, Proposition 4.1 implies

|Λn|H(Rn,ω) = |Λn| (Rn,ω)
o(fH) = HΛn,per(ω),

at least if the periodized configuration ω(n) respects the hardcore configuration. But otherwise both
left- and right-hand side are ∞.

Proof of Proposition 4.5. Let us first note that

Iz(P ) = I(P ) + (z − 1)− log(z)P (NC)

with I(P ) := I1(P ) and

log(πzΛn

[
e−βHΛn,per

]
)

|Λn|
=

log(πΛn

[
e−βHΛn,pere|Λn|(1−z)z−NΛn

]
)

|Λn|

=
log(πΛn

[
e−(βHΛn,per−log(z)NΛn )

]
)

|Λn|
+ (1− z).

Now, the upper bound

lim sup
n→∞

log(πzΛn

[
e−βHΛn,per

]
)

|Λn|
= lim sup

n→∞

log(πΛn

[
e−(βHΛn,per−log(z)NΛn )

]
)

|Λn|
+ (1− z)

≤ − inf
P∈PΘ

[I(P ) + βH(P )− log(z)P (NC)] + (1− z)

= − inf
P∈PΘ

[Iz(P ) + βH(P )]

follows directly from [GZ93, Theorem 3.1]. The assumptions of the cited theorem are met since
H is trivially stable by being positive and lower-semicontinuous by Proposition 6.5 and we have∣∣ |Λn|−1 (βHΛn,per(ω)−NΛn

)
−

(
βH(Rn,ω)−Rn,ω[NC ]

)∣∣ = 0 by Lemma 8.1.

The lower bound

lim inf
n→∞

log(πzΛn

[
e−βHΛn,per

]
)

|Λn|
≥ − inf

P∈PΘ

[Iz(P ) + βH(P )]

does not directly follow from the mentioned theorem of Georgii–Zessin, but by inspection of its proof
together with the fact that H is continuous on {H < ∞} (see Proposition 6.5) and the ergodic
approximation given in Lemma 8.2 below.

Lemma 8.2. Let P ∈ PΘ with Iz(P ) + H(P ) < ∞. Then, there is a sequence (P (n))n∈N0 of
ergodic probability measures with P (n) −−→

n↑∞
P in the τL-topology and

lim sup
n→∞

Iz(Pn) +H(Pn) ≤ Iz(P ) +H(P )
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Proof. Consider the events Bn = {ω ∈ ΩΛn | ∀x ∈ ωΛn : Rx < n1−ϵ}, n ∈ N, for some fixed
ϵ ∈ (0, 1). Letmn := n+n1−ϵ, n ∈ N. Define P̂ (n) to be the probability measure on the configuration
space for which the restrictions to Λmn + 2mni, i ∈ Zd, are iid with a distribution which does not
place particles in (Λmn \ Λn) + 2mni and equals P (· |Bn) ◦ θ−1

i on Λn + 2mni. Notice that P̂ (n)

respects the hardcore condition by construction (by restriction to Bn) and it inherits from P the fact
that it has a finite energy density. Now let

P (n) :=
1

|Λmn|

∫
Λmn

(P̂ (n) ◦ θ−1
x ) dx.

It is somewhat standard to show that each P (n) is ergodic, that lim supn→∞ Iz(P ) ≤ Iz(P ), and
P (n) −−→

n↑∞
P in the τL-topology, see for example [Geo94, Lemma 5.1] for a similar construction and

details in this analogous case. The only two additional ingredients that we need are P (Bn) −−→
n↑∞

1

and that supx∈Rd PΛn

[
Nψ
x+∆1Bc

n

]
−−→
n↑∞

0 for all bounded measurable ∆ ⊆ Rd.

In Lemma 7.1 we saw that

πzΛn
[Bc

n] ≤ ce−|Λn|1+γ

for some γ = γ(ϵ) > 0 and all n large enough.

Then we have, by inequality Equation (5.6),

PΛn(B
c
n) =

PΛn

[
|Λn|1+γ 1Bc

n

]
|Λn|1+γ

≤
log

(
πzΛn

[
e|Λn|1+γ

1Bc
n

])
|Λn|1+γ

+
|Λn|

|Λn|1+γ
I(P )

=
log

(
e|Λn|1+γ

πzΛn
(Bc

n) + πzΛn
(Bn)

)
|Λn|1+γ

+
Iz(P )

|Λn|γ

≤ log (c+ 1)

|Λn|1+γ
+
Iz(P )

|Λn|γ
−−→
n↑∞

0.

With the same entropy inequality, we see that (Nψ
x+∆)x∈Rd is uniformly integrable w.r.t. P . Indeed,

this follows with Nψ
x+∆(ω) = Nx+∆(ω) +

∑
y∈ω∆+x

Rd
y and

P

[(
Nψ
x+∆

)1+ d
δ

]
= P

[(
Nψ
x+∆

)1+ d
δ

]
= P

[(
Nψ
x+∆

)1+ d
δ
1Nx+∆>1

]
+ P

[(
Nψ
x+∆

)1+ d
δ
1Nx+∆>1

]
≲ |x+∆|+ P

[ ∑
y∈ω∆+x

Rd+δ
y

]
≤ |∆|(1 + Iz(P )) + log

(
πz
[
e
∑

y∈ω∆+x
Rd+δ

y

])
= |∆|(Iz(P ) + (1− z) + zR(eR

d+δ

)) <∞,

where we used the hardcore condition in the first inequality, and the analogous and well-known bound

sup
x∈Rd

P [Nx+∆ · log+(Nx+∆)] ≤ |∆| Iz(P ) + log(πz[eN∆ log+(N∆)]) <∞.
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Hence, for all bounded measurable ∆ ⊆ Rd,

sup
x∈Rd

PΛn

[
Nψ
x+∆1Bc

n

]
≤ sup

x∈Rd

P
[
Nψ
x+∆1Bc

n

]
−−→
n↑∞

0.

Finally, asH is continuous on the set {H <∞}, andH(Pn) <∞, we have that lim supn→∞ Iz(Pn)+
H(Pn) ≤ Iz(P ) +H(P ).

8.2 Free boundary conditions

Let us write HΛ,∅(ω) = HΛ(ωΛ) for the energy with free boundary conditions. The aim of this section
is the following extension of Proposition 4.5 to free boundary conditions.

Proposition 8.3. We have

lim
n→∞

log(πzΛn

[
e−βHΛn,∅

]
)

|Λn|
= − inf

P∈PΘ

[Iz(P ) + βH(P )] .

As already explained above, this is a direct consequence of the comparison estimate in Proposition 4.6
which we will now prove.

Proof of Proposition 4.6. Remember that

πz
(
∃x ∈ ωΛK

: Rx ≥ g(K)
)
= πz((Ω∗

K,K)
c) ≲ e−|ΛK |1+γ

by Lemma 7.1, which we will use in the following to establish limits.

Consider the events An = {ω ∈ ΩΛn |ωΛn\Λn−g(n)
= ∅} and Bn = {ω ∈ ΩΛn | ∀x ∈ ωΛn : Rx <

g(n)}. Then, on An ∩Bn, we have HΛn,per = HΛn,∅ = HΛn−g(n),∅ and therefore

πzΛn

[
e−βHΛn,per

]
≥ πzΛn

[
e−βHΛn,per1An1Bn

]
= πzΛn

[
e
−βHΛn−g(n),∅1An1Bn

]
= πzΛn

[
e
−βHΛn−g(n),∅1An

]
− πzΛn

[
e
−βHΛn−g(n),∅1An1Bc

n

]
= ez|Λn|−z|Λn−g(n)|πzΛn−g(n)

[
e
−βHΛn−g(n),∅

]
− πzΛn

[
e
−βHΛn−g(n),∅1An1Bc

n

]
.

It follows that

lim inf
n→∞

log(πzΛn

[
e−βHΛn,per

]
)

|Λn|
≥ lim inf

n→∞

log
(
πzΛn−g(n)

[
e
−βHΛn−g(n),∅

])
|Λn−g(n)|

≥ lim inf
n→∞

log(πzΛn

[
e−βHΛn,∅

]
)

|Λn|
.

Now let A′
n = {ω ∈ ΩΛn+g(n)

|ωΛn+g(n)\Λn = ∅} and B′
n = {ω ∈ ΩΛn+g(n)

| ∀x ∈ ωΛn : Rx <
g(n)}. Then, we have

πzΛn+g(n)

[
e
−βHΛn+g(n),per

]
≥ πzΛn+g(n)

[
e
−βHΛn+g(n),per1A′

n
1B′

n

]
= πzΛn+g(n)

[
e
−βHΛn+g(n),∅1A′

n
1B′

n

]
= πzΛn+g(n)

[
e
−βHΛn+g(n),∅1A′

n

]
− πzΛn+g(n)

[
e
−βHΛn+g(n),∅1A′

n
1B′

n
c

]
= ez|Λn+g(n)|−z|Λn|πzΛn

[
e−βHΛn,∅

]
− πzΛn+g(n)

[
e
−βHΛn+g(n),∅1A′

n
1B′

n
c

]
.
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It follows that

lim sup
n→∞

log
(
πzΛn

[
e−βHΛn,per

]
)

|Λn|
≥ lim sup

n→∞

log
(
πzΛn+g(n)

[
e
−βHΛn+g(n),per

])
|Λn+g(n)|

≥ lim sup
n→∞

log(πzΛn

[
e−βHΛn,∅

]
)

|Λn|
.

Finally,

e−βHΛn,∅1Bn ≥
(
eβc

(
|Λn|−|Λn−g(n)|

)
e−βHΛn,per1HΛn,per<∞ + 0 · 1HΛn,per=∞

)
1Bn

= eβc
(
|Λn|−|Λn−g(n)|

)
e−βHΛn,per1Bn

for some c > 0, which implies

πzΛn

[
e−βHΛn,∅

]
≥ eβc

(
|Λn|−|Λn−g(n)|

)
πzΛn

[
e−βHΛn,per

]
+ πzΛn

[
e−βHΛn,∅1Bc

n

]
− eβc

(
|Λn|−|Λn−g(n)|

)
πzΛn

[
e−βHΛn,per1Bc

n

]
,

and thus

lim inf
n→∞

log
(
πzΛn

[
e−βHΛn,∅

] )
|Λn|

≥ lim inf
n→∞

log
(
πzΛn

[
e−βHΛn,per

] )
|Λn|

,

and also

lim sup
n→∞

log
(
πzΛn

[
e−βHΛn,∅

] )
|Λn|

≥ lim sup
n→∞

log
(
πzΛn

[
e−βHΛn,per

] )
|Λn|

,

as desired.

8.3 Tempered boundary conditions sampled from a finite-energy measure

As a last step, we now show how to extend the existence of the pressure to boundary conditions
sampled from a tempered measure P with finite energy.

Proof of Proposition 4.7. The result will follow by comparing with the case of free boundary conditions,
Proposition 8.3. Analogously to the proof of Proposition 4.6, consider the event

An = {ω ∈ ΩΛn |ωΛn\Λn−g(n)−g(n+1)
= ∅},

here with a slightly bigger buffer zone, and

Bn = {ω ∈ ΩΛn | ∀x ∈ ωΛn : Rx < g(n)}.

The temperedness assumption on P means that we can assume that there is some N ∈ N (depend-
ing on ζ), such that Rx ≤ g(n) for all x ∈ ζΛn and n ≥ N .
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Then HΛn,ζ = HΛn,∅ on An ∩Bn and therefore

πzΛn

[
e−βHΛn,ζ

]
≥ πzΛn

[
e−βHΛn,ζ1An1Bn

]
= πzΛn

[
e
−βHΛn−g(n)−g(n+1),∅1An1Bn

]
= πzΛn

[
e
−βHΛn−g(n)−g(n+1),∅1An

]
− πzΛn

[
e
−βHΛn−g(n)−g(n+1),∅1An1Bc

n

]
= ez|Λn|−z|Λn−g(n)−g(n+1)|πzΛn−g(n)

[
e
−βHΛn−g(n),∅

]
− πzΛn

[
e
−βHΛn−g(n)−g(n+1),∅1An1Bc

n

]
.

It follows that

lim inf
n→∞

log
(
πzΛn

[
e−βHΛn,ζ

])
|Λn|

≥ lim inf
n→∞

log
(
πzΛn−g(n)−g(n+1)

[
e
−βHΛn−g(n)−g(n+1),∅

])
|Λn−g(n)|

≥ lim inf
n→∞

log
(
πzΛn

[
e−βHΛn,∅

])
|Λn|

.

Moreover, for some c > 0,

e−HΛn,∅1Bn ≥
(
ec
(
|Λn|−|Λn−g(n)−g(n+1)|

)
e−HΛn,ζ1HΛn,ζ<∞ + 0 · 1HΛn,ζ=∞

)
1Bn

= ec
(
|Λn|−|Λn−g(n)−g(n+1)|

)
e−HΛn,ζ1Bn ,

which implies that

πzΛn

[
e−βHΛn,∅

]
≥ eβc

(
|Λn|−|Λn−g(n)−g(n+1)|

)
πzΛn

[
e−βHΛn,ζ

]
+ πzΛn

[
e−βHΛn,∅1Bc

n

]
− eβc

(
|Λn|−|Λn−g(n)−g(n+1)|

)
πzΛn

[
e−βHΛn,ζ1Bc

n

]
.

We then conclude that

lim inf
n→∞

log
(
πzΛn

[
e−βHΛn,∅

])
|Λn|

= lim sup
n→∞

log
(
πzΛn

[
e−βHΛn,∅

])
|Λn|

≥ lim sup
n→∞

log
(
πzΛn

[
e−βHΛn,ζ

])
|Λn|

,

which completes the proof.

9 Proof of the variational principle

In this section, we put together the arguments needed to prove the variational principle, as stated in
Theorem 3.1.

9.1 Existence and non-triviality of minimizers

Proof of Lemma 4.8. First note that P 7→ Iz(P ) + βH(P ) takes finite values, since for P = δ∅ we
see I(P ) + βH(P ) = z + β0 = z < ∞. We now argue that {Iz + βH ≤ c} is compact (in the
τL-topology) for all c ∈ R, which is enough to see that an infimum of P 7→ Iz(P ) + βH(P ) has
to be attained. For this, note that the level sets {Iz ≤ c} are compact and sequentially compact for
all c ∈ R, see Proposition 2.4. Moreover, {H ≤ c} is closed and H is continuous on this set for all
c ∈ R, see the proof of Proposition 6.5 in Section 6. As H is also positive, this already implies that
{Iz + βH ≤ c} is a closed subset of the compact set {Iz ≤ c} and therefore also compact for all
c ∈ R.
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9.2 Gibbs measures are minimizers

We now show that infinite-volume Gibbs measures are minimizers of the variational formula. For this,
we first show that the energy density does not depend on the choice of boundary conditions. This will
allow us to restrictions of infinite-volume Gibbs measures to the finite-volume Gibbs measure with free
boundary conditions.

Lemma 9.1. Let P ∈ PΘ with P
(∑

{x,y}⊆ω ϕhc(x,y)
)
<∞ and P

(∑
x∈ωC

Rd
x

)
<∞. Then we

have

lim
n↑∞

P (|HΛn −HΛn,∅|)
|Λn|

= 0.

Proof. We have

|HΛn(ω)−HΛn,∅(ω| = HΛn,∅(ω)−HΛn(ω)

= −
∑

x∈ωΛn

(∑
k≥2

1
k

∑
{y1,...,yk−1}⊆ω\x,

∃j∈{1,...,k−1} : yj∈ωΛc
n

ϕk(x,y1, . . . ,yk−1)
)

and an analogous argument as in Lemma 6.3 and Lemma 6.4 shows

P (|HΛn −HΛn,∅|)
|Λn|

= −P o
(∑
k≥2

1
k

∑
{y1,...,yk−1}⊆ω\o

ϕk(o,y1, . . . ,yk−1)
|Λn ∩ (Λcn − y1)|

|Λn|

)
−−→
n↑∞

0,

as desired.

This now enables us to show the first direction of the Gibbs variational principle.

Proof of Proposition 4.9. We have

I(PΛn |GΛn,z,β) = PΛn

[
log

(
dPΛn

dGΛn,z,β

)]
= PΛn

[
log

(
ZΛn,z,βe

βHΛn ,∅
dPΛn

dπzΛn

)]
= log(ZΛn,z,β) + βPΛn [HΛn,∅] + I(PΛn |πzΛn

)

and therefore

δF (P ) := lim
n→∞

I(PΛn |GΛn,z,β)

|Λn|
= lim

n→∞

log(ZΛn,z,β)

|Λn|
+ Iz(P ) + βH(P )

= [Iz(P ) + βH(P )]− inf
Q∈PΘ

[Iz(Q) + βH(Q)]
(9.1)

by Proposition 8.3. We have to show that

δF (P ) = 0.

For this we upper bound I(PΛ |GΛ,z,β) for Λ ⊆ Rd. From the DLR equations for P it follows that

gΛ(ω) :=
dPΛ

dGΛ,z,β

(ω) = P

[
dGΛ,z,β,•(ω)

dGΛ,z,β(ω)

]
.
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Herein we have

dGΛ,z,β,ζ(ω)

dGΛ,z,β(ω)
=

ZΛ,z,β

ZΛ,z,β,ζ

eβHΛ,∅(ω)−βHΛ,ζ(ω).

With the densities gΛ calculated above it is

I(PΛ |GΛ,z,β) = GΛ,z,β [gΛ log(gΛ)] .

Since the function x 7→ x log(x) is convex, we can apply Jensen’s inequality to obtain

gΛ(ω) log(gΛ(ω)) = P

[
dGΛ,z,β,•(ω)

dGΛ,z,β(ω)

]
log

(
P

[
dGΛ,z,β,•(ω)

dGΛ,z,β(ω)

])
≤ P

[
dGΛ,z,β,•(ω)

dGΛ,z,β(ω)
log

(
dGΛ,z,β,•(ω)

dGΛ,z,β(ω)

)]
.

By using that P satisfies the DLR equations we get

I(PΛ |GΛ,z,β) = GΛ,z,β [gΛ log(gΛ)]

≤ Gω
Λ,z,β

[
P ζ

[
dGΛ,z,β,ζ(ω)

dGΛ,z,β(ω)
log

(
dGΛ,z,β,ζ(ω)

dGΛ,z,β(ω)

)]]
= P ζ

[
Gω

Λ,z,β

[
dGΛ,z,β,ζ(ω)

dGΛ,z,β(ω)
log

(
dGΛ,z,β,ζ(ω)

dGΛ,z,β(ω)

)]]
= P ζ

[
Gω

Λ,z,β,ζ

[
log

(
dGΛ,z,β,ζ(ω)

dGΛ,z,β(ω)

)]]
= P

[
log

(
dGΛ,z,β,•(•)
dGΛ,z,β(•)

)]
= βP [HΛ,∅(•)−HΛ(•)] + [log(ZΛ,z,β)− P (log(ZΛ,z,β,•))] .

Moreover, by Fatou’s lemma

lim sup
n→∞

I(PΛn |GΛn,z,β)

|Λn|

≤ β lim sup
n→∞

P [HΛn,∅(•)−HΛn(•)]
|Λn|

+

[
lim sup
n→∞

log(ZΛn,z,β)

|Λn|
− lim inf

n→∞

P [log(ZΛn,z,β,•)]

|Λn|

]

≤ β lim sup
n→∞

P [HΛn,∅(•)−HΛn(•)]
|Λn|

+

[
lim sup
n→∞

log(ZΛn,z,β)

|Λn|
− P

[
lim inf
n→∞

log(ZΛn,z,β,•)

|Λn|

]]
.

But now Lemma 9.1 and Proposition 4.7 imply

lim sup
n→∞

I(PΛn |GΛn,z,β)

|Λn|
≤ 0 ≤ lim inf

n→∞

I(PΛn |GΛn,z,β)

|Λn|

which of course implies

δF (P ) = lim
n→∞

I(PΛn |GΛn,z,β)

|Λn|
= 0,

which concludes the proof.
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9.3 Minimizers are Gibbs measures

Now comes the harder part of the Gibbs variational principle. We want to show that minimizers of the
variational formula are Gibbs measures in the sense of Definition 2.3.

Before we start with the proof of Proposition 4.10 we prove two technical results which will allow us
to estimate certain error terms. The first one provides us with a tool to localize by cutting of boundary
conditions outside of a sufficiently large volume.

Lemma 9.2. Let P ∈ PΘ with Iz(P ) < ∞. Then, for all bounded measurable L ⊂ Rd and for all
δ > 0 there is a K ∈ N such that for all k ≥ K it holds∫

ν(dζ)
∥∥∥GL,z,β,ζΛk

−GL,z,β,ζ

∥∥∥
TV
< δ

for ν = P and ν = PGΛ for all bounded measurable Λ.

Proof. Consider for K ∈ N the events Ω∗
K from (7.1) and define

BK := {ω ∈ ΩL | ∀x ∈ ωL : Rx ≤ g(K)}.

Then we have HL,ζ(ω) = HL,ζΛk
(ω) for K large enough, all k ≥ K and ωL ∈ BK , ζ ∈ Ω∗

K . It
follows that

∥∥∥GL,z,β,ζΛk
−GL,z,β,ζ

∥∥∥
TV

≤ 2
πzL

(
|e−βHL,ζ − e

−βHL,ζΛk |
)

max
{
ZL,z,β,ζ , ZL,z,β,ζΛk

} ≤ 4ez|L| πzL (B
c
K) ,

at least if ζ ∈ Ω∗
K . Hence,∫
ν(dζ)

∥∥GL,z,β,ζΛk
−GL,z,β,ζ

∥∥
TV

≤ 4ez|L| πzL (B
c
K) ν(Ω

∗
K) + 2ν(Ω∗

K
c).

For example the proof of Proposition 4.6 shows that πzL (B
c
K) → 0 and ν(Ω∗

K
c) → 0, as K → ∞,

uniformly in Λ ∈ Bb(Rd) see Lemma 7.3.

Now note that, if 0 = δF (P ) = limn→∞
1

|Λn|I(PΛn |GΛn,z,β), then, by the translation invariance
of P , it follows that PΛ ≪ GΛ,z,β with some density gΛ for large enough cubes Λ. For every subset
∆ ⊂ Λ, we consider the restriction

GΛ,∆ = (GΛ,z,β)∆.

From the DLR equations for Gibbs measures in finite volumes, we have P∆ ≪ GΛ,∆, with density

gΛ,∆(ζ∆) :=

∫
GΛ\∆,z,β,ζ∆(dωΛ\∆) gΛ(ωΛ\∆ζ∆).

We now estimate the expected cost of replacing gΛ,∆ by gΛ,∆\L.

Lemma 9.3 (Consequence of δF (P ) = 0 for involved densitites). Consider the situation of (the proof
of) Proposition 4.10, in particular a P with δF (P ) = 0. Then, for every every k ∈ N with L ⊆ Λk
and δ > 0, there exist sets ∆,Λ ⊂ Rd with Λk ⊂ ∆ ⊂ Λ, such that

GΛ,z,β[|gΛ,∆ − gΛ,∆\L|] < δ.
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Proof. Let us denote I(P∆ | (GΛ,z,β)∆) by I∆(P |GΛ,z,β) for bounded measurable sets ∆ ⊆ Λ ⊂
Rd in this proof. According to Lemma 9.4 the claim follows if we can show that for all δ > 0 there are
sets ∆,Λ ⊂ Rd with Λk ⊂ ∆ ⊂ Λ, such that

I∆(P |GΛ,z,β)− I∆\L(P |GΛ,z,β) < δ.

The assumption 0 = δF (P ) = limn→∞
I(PΛn |GΛn,z,β)

|Λn| implies that there exists n ≥ k such that
I(PΛn |GΛn,z,β)

|Λn| < δ
2d|Λk|

. Choose m ∈ N such that k ≤ n
m

≤ 2k (e.g., m = ⌊n
k
⌋). We then have

md|Λk| ≤ |Λn| ≤ (2m)d|Λk|. Now choose md-many disjoint translates Λk(l) = Λk+ i(l) ⊂ Λn of
Λk in Λn, i(l) ∈ Zd, 1 ≤ l ≤ md, and denote ∆(l) =

⋃l
i=1 Λk(i).

We now justify why the claim follows by choosing Λ := Λn − i(l) and ∆ := ∆(l) − i(l) for a
specifically chosen l. From the monotonicity of the relative entropy, we have

m−d
md∑
l=1

[
I∆(l)(P |GΛn,z,β)− I∆(l)\(L+i(l))(P |GΛn,z,β)

]
≤ m−d

md∑
l=1

[
I∆(l)(P |GΛn,z,β)− I∆(l)\Λk(l)(P |GΛn,z,β)

]
.

Furthermore,

md∑
l=1

I∆(l)(P |GΛn,z,β) =
md−1∑
l=0

I∆(l+1)\Λk(l+1)(P |GΛn,z,β) + I∆(md)(P |GΛn,z,β)

=
md∑
l=1

I∆(l)\Λk(l)(P |GΛn,z,β) + I∆(md)(P |GΛn,z,β).

This means (using the monotonicity of the entropy in the second inequality)

m−d
md∑
l=1

[
I∆(l)(P |GΛn,z,β)− I∆(l)\(L+i(l))(P |GΛn,z,β)

]
≤ m−dI∆(md)(P |GΛn,z,β) ≤ m−dIΛn(P |GΛn,z,β)

<
δ|Λn|

(2m)d|Λk|
≤ δ.

Since the terms I∆(l)(P |GΛn,z,β)− I∆(l)\(L+i(l))(P |GΛn,z,β) are on average smaller than δ, there
has to be at least one specific l such that

I∆(l)(P |GΛn,z,β)− I∆(l)\(L+i(l))(P |GΛn,z,β) < δ.

Using translation invariance (i.e.,I∆+x(P |GΛ+x,z,β) = I∆(P |GΛ,z,β)), we have thus found suitable
sets Λ := Λn − i(l) and ∆ := ∆(l)− i(l).

Lemma 9.4. Consider the situation of (the proof of) Lemma 9.3. Then, for all δ > 0, there exists a
δ′ > 0 such that GΛ,z,β

[∣∣gΛ,∆ − gΛ,∆\L
∣∣] < δ if I∆(P |GΛ,z,β)− I∆\L(P |GΛ,z,β) < δ′.
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Proof. Consider the function ψ(x) = 1 − x + x log(x). Then, for any ϵ > 0, there exists rϵ > 0
such that

ψ(x) ≥ (|x− 1| − ϵ/2)/rϵ.

We compute

I∆(P |GΛ,z,β)− I∆\L(P |GΛ,z,β) = P [log(gΛ,∆)]− P [log(gΛ,∆\L)]

= P
[
log

(
gΛ,∆

gΛ,∆\L

)]
= GΛ,z,β

[
gΛ,∆ log

(
gΛ,∆

gΛ,∆\L

)]
= 1− 1 +GΛ,z,β

[
gΛ,∆\L

(
gΛ,∆

gΛ,∆\L

)
log

(
gΛ,∆

gΛ,∆\L

)]
= GΛ,z,β[gΛ,∆\L]−GΛ,z,β

[
gΛ,∆\L

(
gΛ,∆

gΛ,∆\L

)]
+GΛ,z,β

[
gΛ,∆\L

(
gΛ,∆

gΛ,∆\L

)
log

(
gΛ,∆

gΛ,∆\L

)]
= GΛ,z,β

[
gΛ,∆\L ψ

(
gΛ,∆

gΛ,∆\L

)]
.

From the above estimate for ψ, we get

I∆(P |GΛ,z,β)− I∆\L(P |GΛ,z,β) = GΛ,z,β

[
gΛ,∆\L ψ

(
gΛ,∆

gΛ,∆\L

)]
≥ 1

rϵ

(
GΛ,z,β

[
gΛ,∆\L

∣∣∣ gΛ,∆

gΛ,∆\L
− 1

∣∣∣]− ϵ
2

)
=

1

rϵ

(
GΛ,z,β

[∣∣gΛ,∆ − gΛ,∆\L
∣∣]− ϵ

2

)
,

that is,

GΛ,z,β

[∣∣gΛ,∆ − gΛ,∆\L
∣∣] ≤ ϵ

2
+ rϵ

(
I∆(P |GΛ,z,β)− I∆\L(P |GΛ,z,β)

)
.

Choosing ϵ < δ and δ′ = δ/(2rϵ) concludes the proof.

With these technical tools at our hands, we are finally ready to provide the proof of Proposition 4.10
and thereby finishing the proof of Theorem 3.1.

Proof of Proposition 4.10. Let P ∈ PΘ with Iz(P )+βH(P ) = infQ∈PΘ
[Iz(Q) + βH(Q)]. As we

have already seen in Equation (9.1), this is equivalent to δF (P ) = 0.

Recall, that in order to show that P is a Gibbs measure, we need to show that the DLR equation
Equation (2.6) is satisfied for any bounded measurable L ⊂ Rd and any measurable f ≥ 0, namely∫

P (dζ) f(ζ) =

∫
P (dζ)

[∫
GL,z,β,ζ(dω) f(ωLζLc)

]
.

Without loss of generality (using the functional monotone class theorem), we can assume 0 ≤ f ≤ 1
and that f is a local function, i.e., it only depends on the particles in a bounded region. We will show
that, for any δ > 0,∣∣∣∣∫ P (dζ) f(ζ)−

∫
P (dζ)

[∫
GL,z,β,ζ(dω) f(ωLζLc)

]∣∣∣∣ < 3δ. (9.2)

First note that 0 = δF (P ) = limn→∞
1

|Λn|I(PΛn |GΛn,z,β) and the translation invariance of P , imply
that PΛ ≪ GΛ,z,β with some density gΛ for sufficiently large cubes Λ. For every subset ∆ ⊂ Λ, we
consider the restriction

GΛ,∆ = (GΛ,z,β)∆.
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From the DLR equations for Gibbs measures in finite volume, we have P∆ ≪ GΛ,∆, with density

gΛ,∆(ζ∆) :=

∫
GΛ\∆,z,β,ζ∆(dωΛ\∆) gΛ(ωΛ\∆ζ∆).

We are then able to choose k so large that

(a) L ⊆ Λk,

(b) f just depends on particles inside Λk,

(c) and ∫
ν(dζ)

∥∥GL,z,β,ζΛk
−GL,z,β,ζ

∥∥
TV
< δ

for ν = P and ν = PGΛ for all Λ.

Here, (a) and (b) are clear and (c) follows from Lemma 9.2.

Moreover, for each such k, we can apply Lemma 9.3 to choose ∆,Λ ⊂ Rd such that Λk ⊂ ∆ ⊂ Λ,
and

GΛ

[∣∣gΛ,∆ − gΛ,∆\L
∣∣] < δ.

The rest of the proof is structured according to the following six steps:∫
P (dζ) f(ζ)

(1)
=

∫
GΛ,z,β(dζ) gΛ,∆(ζ) f(ζ)

(2)
≈

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ) f(ζ)

(3)
=

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ)

[∫
GL,z,β,ζ(dω) f(ωLζLc)

]
(4)
≈

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ)

[∫
GL,z,β,ζΛk

(dω) f(ωLζΛk\L)

]
(5)
=

∫
P (dζ)

[∫
GL,z,β,ζΛk

(dω) f(ωLζΛk\L)

]
(6)
≈

∫
P (dζ)

[∫
GL,z,β,ζ(dω) f(ωLζΛk\L)

]
,

where we write X ≈ Y if |X − Y | < δ.

(1) This is true since∫
P (dζ) f(ζ) =

∫
P (dζ) f(ζ∆) =

∫
P∆(dζ) f(ζ) =

∫
GΛ,∆(dζ) gΛ,∆(ζ) f(ζ)

=

∫
GΛ,z,β(dζ) gΛ,∆(ζ∆) f(ζ∆) =

∫
GΛ,z,β(dζ) gΛ,∆(ζ) f(ζ),

as f only depends on particles inside Λk ⊂ ∆ and gΛ,∆(ζ) =
dP∆(ζ)

dGΛ,∆(ζ)
per definition.
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(2) This holds since, from the assumptions, we have GΛ,z,β[|gΛ,∆ − gΛ,∆\L|] < δ. Then, it immedi-
ately follows that

∣∣∣∣∫ GΛ,z,β(dζ) gΛ,∆(ζ) f(ζ)−
∫

GΛ,z,β(dζ) gΛ,∆\L(ζ) f(ζ)

∣∣∣∣
≤

∫
GΛ,z,β(dζ)

∣∣gΛ,∆(ζ)− gΛ,∆\L(ζ)
∣∣ |f(ζ)|

≤ GΛ,z,β[|gΛ,∆ − gΛ,∆\L|] < δ,

because we assumed 0 ≤ f ≤ 1.

(3) This is true since,

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ) f(ζ) =

∫
GΛ,z,β(dζ)

[∫
GL,z,β,ζ(dω) gΛ,∆\L(ωLζLc) f(ωLζLc)

]
=

∫
GΛ,z,β(dζ)

[∫
GL,z,β,ζ(dω) gΛ,∆\L(ζ∆\L) f(ωLζLc)

]
=

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ∆\L)

[∫
GL,z,β,ζ(dω) f(ωLζLc)

]
=

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ)

[∫
GL,z,β,ζ(dω) f(ωLζLc)

]
,

as GL,z,β,ζ is the appropriate conditional distribution and gΛ,∆\L only depends on the particles in
∆ \ L.

(4) Using the fact that 0 ≤ f ≤ 1 and that f just depends on the particles inside Λk,

∣∣∣∣ ∫ GΛ,z,β(dζ) gΛ,∆\L(ζ)

∫
GL,z,β,ζ(dω) f(ωLζLc)

−
∫

GΛ,z,β(dζ) gΛ,∆\L(ζ)

∫
GL,z,β,ζΛk

(dω) f(ωLζΛk\L)

∣∣∣∣
≤

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ)

∣∣∣∣∫ GL,z,β,ζ(dω) f(ωLζLc)−
∫

GL,z,β,ζΛk
(dω) f(ωLζΛk\L)

∣∣∣∣
≤

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ)

∥∥GL,z,β,ζ −GL,z,β,ζΛk

∥∥
TV
.

Now, using the fact that GΛ\(∆\L),z,β,ζ is the conditional distribution of GΛ,z,β given the configuration
ζ∆\L in ∆ \ L, as well as that gΛ,∆\L just depends on the particles in ∆ \ L and that gΛ,∆\L is the
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density of P with right to GΛ,z,β for events in ∆ \ L, we have that∫
GΛ,z,β(dζ) gΛ,∆\L(ζ)

∥∥GL,z,β,ζ −GL,z,β,ζΛk

∥∥
TV

=

∫
GΛ,z,β(dζ)[∫
GΛ\(∆\L),z,β,ζ(dω) gΛ,∆\L(ζ∆\L)

∥∥GL,z,β,ωΛ\(∆\C)ζ∆\L −GL,z,β,(ωΛ\(∆\C)ζ∆\L)Λk

∥∥
TV

]
=

∫
GΛ,z,β(dζ)

gΛ,∆\L(ζ)

[∫
GΛ\(∆\L),z,β,ζ(dω)

∥∥GL,z,β,ωΛ\(∆\C)ζ∆\L −GL,z,β,(ωΛ\(∆\C)ζ∆\L)Λk

∥∥
TV

]
=

∫
P (dζ)

[∫
GΛ\(∆\L),z,β,ζ(dω)

∥∥GL,z,β,ωΛ\(∆\C)ζ∆\L −GL,z,β,(ωΛ\(∆\C)ζ∆\L)Λk

∥∥
TV

]
=

∫
PGΛ\(∆\L)(dζ)

∥∥GL,z,β,ζ −GL,z,β,ζΛk

∥∥
TV
.

By Lemma 9.2,
∫
PGΛ\(∆\L)(dζ)

∥∥GL,z,β,ζ −GL,z,β,ζΛk

∥∥
TV
< δ. Therefore,∫

GΛ,z,β(dζ) gΛ,∆\L(ζ)

[∫
GL,z,β,ζ(dω) f(ωLζLc)

]
≈

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ)

[∫
GL,z,β,ζΛk

(dω) f(ωLζΛk\L)

]
.

(5) Since gΛ,∆\L(ζ) =
dP∆\L(ζ)

dGΛ,∆\L,z,β(ζ)
, we have

∫
GΛ,z,β(dζ) gΛ,∆\L(ζ)

[∫
GL,z,β,ζΛk

(dω) f(ωLζΛk\L)

]
=

∫
P (dζ)

[∫
GL,z,β,ζΛk

(dω) f(ωLζΛk\L)

]
,

as the corresponding integrand only depends on particles in Λk \ L ⊂ ∆ \ L.

(6) This is true since, using the fact that 0 ≤ f ≤ 1, we obtain∣∣∣∣∫ P (dζ)

[∫
GL,z,β,ζΛk

(dω) f(ωLζΛk\L)

]
−
∫

P (dζ)

[∫
GL,z,β,ζ(dω) f(ωLζΛk\L)

]∣∣∣∣
≤

∫
P (dζ)

∣∣∣∣∫ GL,z,β,ζΛk
(dω) f(ωLζΛk\L)−

∫
GL,z,β,ζ(dω) f(ωLζΛk\L)

∣∣∣∣
≤

∫
P (dζ)

∥∥∥GL,z,β,ζΛk
−GL,z,β,ζ

∥∥∥
TV
< δ,

where the last inequality is again an application of Lemma 9.2.

Putting the steps (1)− (6) together yields (9.2), as desired.
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