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Modeling and simulation of an isolated mini-grid including battery operation
strategies under uncertainty using chance constraints

René Henrion, Dietmar Hömberg, Nina Kliche

Abstract

This paper addresses the challenge of handling uncertainties in mini-grid operation, crucial for achiev-
ing universal access to reliable and sustainable energy, especially in regions lacking access to a national
grid. Mini-grids, consisting of small-scale power generation systems and distribution infrastructure, offer a
cost-effective solution. However, the intermittency and uncertainty of renewable energy sources poses chal-
lenges, mitigated by employing batteries for energy storage. Optimizing the lifespan of the battery energy
storage system is critical, requiring a balance between degradation and operational expenses, with battery
operation strategies playing a key role in achieving this balance. Accounting for uncertainties in renewable
energy sources, demand, and ambient temperature is essential for reliable energy management strategies.
By formulating a probabilistic optimal control problem for minimizing the daily operational costs of stand-
alone mini-grids under uncertainty, and exploiting the concept of joint chance constraints, we address the
uncertainties inherent in battery dynamics and the associated operational constraints.

1 Introduction

As outlined by the United Nations, 675 million people still lack access to electricity with four out of five residing in
sub-Saharan Africa. As an immediate consequence, one sustainable development goal aims at ensuring univer-
sal access to affordable, reliable, sustainable and modern energy. This goal encapsulates two primary tasks. The
first task is to prioritize universal access to electricity, ensuring that every individual has the fundamental right to
reliable power. The secondary task entails decarbonizing the energy sector, transitioning towards cleaner and
more sustainable sources of power. A concrete example is rural Ethiopia, where 70 % of the population lacks
reliable access to electricity. Extending the main grid is prohibitively expensive such that mini-grids – localized
energy networks – emerge as a cost-effective and dependable solution. They typically consist of small-scale
power generation systems and distribution infrastructure which potentially has connection to the main grid. The
typical installation includes a back-up diesel generator and utilizes some renewable energy source (RES), for
instance photovoltaics or wind, aligning with the goal of decarbonizing electricity. However, the intermittency
and uncertainty of RES poses challenges. To mitigate this, batteries are employed. They serve to store excess
power when available and provide it during periods of insufficient output from RES [7] as well as to stabilize the
mini-grid as they can buffer uncertainties in both generation and consumption.

The integration of a battery energy storage system (BESS) is crucial to address as we navigate towards a
sustainable and reliable energy future [16] and investment and replacement costs are of critical concern as we
aim at striking a balance between affordability and quality. The concept of second-life lithium-ion batteries (LIBs)
emerges as a promising solution: by repurposing LIBs, we can significantly decrease investment costs while
simultaneously strengthening sustainability efforts. In this regard, the lifespan of a BESS holds considerable
significance. Understanding and optimizing longevity ensures that investments yield lasting benefits, aligning
with our sustainability goals. On that account, we aim at operating the BESS in a manner that strikes balance
between minimizing degradation alongside operational expenses. Degradation is closely related to the state-of-
health (SOH) of a battery. Although there is no uniform definition for the SOH of a battery it still can be quantified
in terms of resistance increase and capacity decrease. There are two main aging mechanisms, namely calendar
and cycle aging. Calendar aging is the aging mechanism happening when at rest while cycle aging is the
aging mechanism happening when in use. During cycle aging, calendar aging still occurs. It is observed that
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depth-of-discharge (DOD) and temperature both exhibit a significant influence on battery degradation. Higher
DODs and higher temperatures lead to faster degradation over time in both capacity and resistance resulting in
both capacity and power loss, respectively [3, 18]. Oversizing of a BESS is a viable but very costly solution to
prevent high DODs and high temperatures. For this very reason, a battery operation strategy can become key
in achieving an optimal trade-off between minimal degradation and optimal operational costs [8]. Thus, tailoring
battery operation strategies to the specific demands of the application ensures that LIBs operate optimally and
have an extended lifespan.

Another important characteristic of mini-grid management is the presence of uncertainty as naturally introduced
by RES, demand and ambient temperature. While these elements can be predicted to some extent, accounting
for forecast errors is crucial for a reliable and resilient energy management strategy.

This paper tackles a key challenge in mini-grid operation: handling uncertainties. An energy management strat-
egy for minimizing the daily operational costs of a stand-alone mini-grid under uncertainty is presented. The
proposed energy management considers a predefined mini-grid layout and takes into account a prescribed
battery (thermal) operation strategy. Building upon this design, a probabilistic optimal control problem (OCP)
is set up and solved numerically. The OCP includes state equations describing battery dynamics in form of a
coupled ordinary differential equation (ODE) and state constraints, i.e. ranges for battery temperature and state-
of-charge (SOC), corresponding to the battery (thermal) operation strategy. Due to the presence of uncertainty
such as solar energy, energy demand and ambient temperature, the state constraints become uncertain. As
our decisions on optimal dispatch of the mini-grid have to be optimized and applied prior to the realization of
uncertainty, it is reasonable to formulate probabilistic state constraints in which a decision is declared to be fea-
sible whenever the random state constraints are satisfied with at least some given probability. Such probabilistic
or chance constraints have been introduced in [1] (see also the fundamental monograph [14]). In the context
of mini-grids, chance constraints have been considered, for instance, in [9, 23], who investigated the so-called
probability of successful islanding when, due to a possible outage of the main grid, a mini-grid has to survive
in isolated mode for a certain period of time with a given probability. In those papers, the chance constraints
were formulated point-wise in time. Though point-wise (or: individual) constraints are easy to deal with at least
in the models of these papers, one has to be aware of that pointwise high probability may potentially result in
a low probability of satisfying the corresponding constraints over the whole time horizon. Therefore, so-called
joint chance constraints are preferred in general, but coming at the price of more sophisticated analysis and
numerics because of dealing with multivariate distributions.

In a recent paper [11], joint chance constraints were considered in the context of probability of successful
islanding of weakly connected mini-grids and the advantages over point-wise constraints became clearly visible.
At the same time, in this and many related papers, the battery operation was modeled in quite an elementary
manner. The main novelty of the present paper consists in combining joint chance constraints with a more
realistic model of battery operation. Mathematically, this leads to the challenge of treating chance constraints in
the framework of differential equations.

The paper is organized as follows. Section 2 is dedicated to modeling the power balance, the BESS and the
uncertainties. In Section 3 the desired probabilistic OCP will be derived. Section 4 gives details on how to
compute probabilities and their derivatives by means of the spherical-radial decomposition. In Section 5 the
proposed OCP is solved numerically. Results are given followed by a critical discussion and an outlook.

2 Modeling

2.1 Power balance

The power balance states that power supply and consumption must always be in equilibrium at any time t with
power measured in watts (W). It is given in the form of the algebraic equation Pin = Pout. For a stand-alone
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mini-grid it reads according to Figure 2.1,

ηPV PPV + ηbattP
−
batt + PDG = Pload +

1

ηbatt
P+
batt + PBTMS + Pdump (1)

with PPV the photovoltaic (PV) power, PDG the power provided by the back-up diesel generator (DG) and
Pload the demand. Pbatt = P+

batt − P−
batt corresponds to battery power with P+

batt the charging and P−
batt

the discharging power. The PBTMS represents the power needed by the battery thermal management system
(BTMS) for cooling or heating. The model also includes the excess power Pdump that has to be dumped if there
is a power surplus and the BESS is fully charged. The inverter efficiencies ηbatt, ηPV < 1 are assumed to be
constant in this work.

PV Inverter
PPV ηPV PPV

BESS Inverter

P+
batt η−1

battP
+
batt

P−
batt ηbattP

−
batt

BTMS
PBTMS

DG
PDG

Load
Pload

Figure 2.1: A simplified depiction of the installation of a mini-grid and its corresponding power flow. On the
left hand-side, the direct current sources and sinks are depicted. On the right hand-side, the alternate current
sources and sinks are illustrated. The double-dash line represents the distribution infrastructure where the power
balance must hold at any time. The excess power Pdump is not part of this illustration but must not be neglected
in the power balance.

2.2 Modeling of the battery energy storage system

In the following section, we introduce a model that combines a battery model with a temperature model for a
BESS. A BESS consists of several battery packs which, in turn, consist of several battery modules connected in
series and parallel. Battery modules are made of battery cells also connected in series and parallel. The exact
topology is usually determined by economic and safety considerations and shall not be discussed in this work.
Instead, we consider a generic BESS consisting of N battery cells. Electric power is computed as the product
of current and voltage, i.e. for a single cell Pcell(t) = V (t) · I(t) and for a BESS consisting of N cells

Pbatt(t) = N · Pcell(t) = N · V (t) · I(t). (2)

We now seek describing equations for the voltage and the current of a battery cell as well as equations describ-
ing the dynamics of such a cell.
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Rτ I

V−
+Voc

Figure 2.2: 0th order equivalent circuit model

Battery features as e.g. voltage responses, are often and usually approximated using equivalent circuits. An
electric circuit serves as an analogue to predict battery’s behavior [13]. More precisely, we use a charge reservoir
model [13, 17] that defines capacity in units of ampere-hours (Ah). For a day-ahead optimization with a forecast
horizon of one day and low time resolution, a 0th order equivalent circuit model (ECM), c.f. Figure 2.2, is
appropriate and sufficient [17]. By Kirchhoff’s law, see for instance [6], the terminal voltage V , measured in volts
(V), is given by

V (t) = VOC +RτI(t) (3)

with VOC the open-circuit voltage (OCV), Rτ the internal resistance measured in Ohm (Ω) and I the current
flowing through the battery measured in ampere (A). We write

I(t) = I+(t)− I−(t) =

{
> 0 for charging
< 0 for discharging

I± ≥ 0,

where we have agreed on the notation I+ = max{0, I} the positive part and I− = max{0,−I} the
negative part. The OCV is the terminal voltage of the battery when measured at rest, i.e. when the current
is zero. The OCV is a function of SOC, SOH and battery temperature. In the following, we will assume VOC =
VOC(SOC) as we assume on the one hand the variations w.r.t. to SOH to be small and on the other hand,
we operate in a temperature-controlled environment such that we may neglect temperature dependency. From
[3], the OCV can be fitted to a function in SOC , c.f. Figure 2.3. The nominal internal resistance R0 typically
is part of the manufacturer’s specifications. The progressive increase of resistance over time is one facet of
battery degradation. The higher the internal resistance, the higher the voltage drop across the battery such that,
eventually, increase in resistance due to degradation translates into power loss. The degraded resistance is
denoted byRτ . The gradual loss of capacity over time is another facet of battery degradation. The capacity of a
battery indicates the amount of electric charge that a battery can deliver or store according to the manufacturer’s
specifications. It is given as the nominal capacity Q0 measured in ampere-hours for a new battery. In the
following, the degraded capacity of a second-life battery will be denoted by Qτ .

The SOC is quantified as the ratio of available capacity and degraded (total) capacity. The SOC of a 0th order
ECM can be modeled by means of Coulomb counting, i.e. integrating the current over time.

SOC(t) =
Q(t)

Qτ
= SOC(t0) +

∫ t

t0

I(s)

Qτ
ds.

This yields the dynamics for the SOC,

QτSOC
′(t) = I(t) = C-rate · Q0

1 h
. (4)

At this point, the C-rate has been introduced, too. The C-rate quantifies the rate at which a battery is charged or
discharged in relation to its nominal capacity and is defined as the inverse of the time it takes, in hours (h), to
fully discharge a battery.

Given the 0th order ECM, equations for the battery temperature evolution can be set up by means of Newton’s
law of cooling yielding an ODE, see for instance [17]. The temperature of a battery is a function of heat generated
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Figure 2.3: Open-circuit voltage as a function of state-of-charge

by the battery through operation and the heat exchange between the battery and its environment and typically
is given in units of Kelvin (K). For the considered 0th order ECM, the heat generated by the battery that is taken
into account is the Joule heating. Heat is generated (or consumed) in further ways, which will be neglected in
the following as they are comparably small [17]. The rate at which heat is transferred through a material is given
by [6]

λA

l
∆T = UA∆T

with l, given in meters (m), representing material thickness, λ measured in W/m ·K the thermal conductivity
andA the exposed material surface area (the “interface”) given in units of m2. Eventually, we call U the thermal
transmittance which is given in units of W/m2·K.

In a mini-grid application, several battery packs are stored in an enclosure. This means that there must be a
separation of the weather-dependent environment and the actual environment the batteries are operating in. We
thus seek a coupled ODE describing battery cell and battery enclosure temperature. To regulate the battery cell
temperature, we introduce a BTMS. Denote Tcell the battery cell temperature, Ten the enclosure temperature
and Tamb the ambient temperature. The battery temperature then evolves, by Newton’s law of cooling, according
to the following coupled ODE,

CcellT
′
cell(t) = RτI

2 + Ucell

(
Ten − Tcell

)
(5a)

CenT
′
en(t) = ηBTMSPBTMS +N · Ucell

(
Tcell − Ten

)
+ Uen

(
Tamb − Ten

)
(5b)

with QBTMS = ηBTMSPBTMS the thermal power given as a fraction of the electric power PBTMS needed
for cooling. This approach assumes a constant air velocity and can be further developed by adding a fan and a
heat exchanger. Ccell, Cen are the battery and enclosure heat capacity, respectively, while Ucell, Uen denote
their battery and enclosure thermal conductances. N refers to the number of battery cells the BESS consists
of.

In this work, a high energy 18650 lithium-ion cylindrical battery cell manufactured by Sanyo, labeled UR18650E
has been considered. The cell specifications according to the data sheet as well as some thermodynamic
properties are summarized in Table 2.1. Some thermodynamic parameters of the battery enclosure are listed in
Table 2.2. Note that the thermodynamic parameters are not meant to represent a specific enclosure topology.
Instead, we assume that the BESS consists of well-insulating materials.
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Table 2.1: Cell specification and thermodynamic properties

Description Symbol Value

Nominal capacity Q0 2.05 Ah
Battery specific heat capacity ccell 890 J/kg ·K [4]
Battery thermal transmittance λcell 0.2 W/m ·K [2]

Table 2.2: Thermodynamic properties of battery enclosure

Description Symbol Value

Enclosure heat capacity Cen 63 kJ/W [17]
Enclosure thermal conductance Uen 0.45 W/m2 ·K

2.3 Modeling the uncertainties

For a day-ahead optimization, we consider uncertainties in the forecasts of PV power, demand and and ambient
temperature. Using historical data, future values are forecasted coming at the price of prediction errors. We thus
represent xt = x̂t + ξt, where x̂t corresponds to the deterministic forecast and ξt to the uncertain prediction
error.

Causal and invertible ARMA(p, q) processes can be forecasted up to some prediction error [19]. A time series
{xt}t is called an ARMA(p, q) process if xt+

∑p
j=1 ϕjxt−j = ωt+

∑q
j=1 θjωt−j where ωt ∼ iid N (0, σ2ω).

An ARMA(p, q) model is said to be causal if xt =
∑∞

j=0 ψjωt−j , ψ0 = 1 with
∑∞

j=0 |ψj | < ∞. The
ψ-weights of a causal ARMA(p, q) process satisfy{

ψj +
∑p

k=1 ϕkψj−k = 0 if j ≥ max (p, q + 1)

ψj +
∑p

k=1 ϕkψj−k = θj if 0 ≤ j ≤ max (p, q + 1).
(6)

An ARMA(p, q) model is said to be invertible if ωt =
∑∞

j=0 πjxt−j , π0 = 1 with
∑∞

j=0 |πj | < ∞ and the
π-weights of an invertible ARMA(p, q) satisfy an analogue to Equation (6).

Let {xt}t be a causal and invertible ARMA(p, q) process. Assume there exists a complete history of mea-
surements {x0, x−1, x−2, . . . }. It holds xt = x̂t + ξt with x̂t the prediction and ξt the prediction error. More
precisely,

x̂t = −
t−1∑
j=1

πj x̂t−j −
∞∑
j=t

πjxt−j

ξt =
t−1∑
j=0

ψjωt−j

and the prediction errors are correlated with cov(ξt, ξt+m) = E
(
ξtξt+m

)
= σ2ω

∑m−1
j=0 ψjψj+m.

3 Optimal control formulation

Given a battery and a battery temperature model, a probabilistic OCP that aims at minimizing the daily opera-
tional costs subject to a battery (thermal) operation strategy will be proposed. The probabilistic OCP takes into
account the uncertainties introduced by PV power, demand and ambient temperature, yielding a reliable energy
management strategy. We proceed in the following manner. In a first step, a deterministic OCP for minimizing
the daily operational costs of an isolated mini-grid will be introduced. In a second step, it will be discussed how
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one can deal with the uncertainties and the approach taken in this work will be described. In a last step, the
discretized OCP considered in this work will be established.

The operational costs of a stand-alone mini-grid are determined by fuel consumption of the back-up DG, miti-
gating financial expenses as well as environmental impact. Without knowledge of the exact DG, we decide to
minimize the total DG power. Motivated by the fact that excess power is undesirable as it can affect the stability
of a mini-grid, c.f. [15], one could also consider penalizing dumping excess power.

3.1 Deterministic problem formulation

For a day-ahead optimization the goal is to find an optimal energy management strategy that minimizes the
operational costs. In the off-grid case, this translates into minimizing diesel fuel consumption. The optimization
is subject to the algebraic power balance (1), subject to a battery model (2), (3) and (4), and temperature model
(5) and subject to SOC and battery temperature constraints corresponding to the battery operation strategy.
Before proceeding, we need to decide on control variables. One obvious control variable is the cooling power
PBTMS . Battery systems can respond quickly to fluctuations in both supply and demand, making them ideal for
managing short-term variations and uncertainties in PV generation and load. Conversely, a DG is better suited
for providing power over longer periods rather than handling rapid changes. Thus, the variables declared as
controls are the DG power PDG and the excess power Pexcess. Battery power adjusts accordingly. Rearranging
the power balance, Equation (1), yields

η−1
battP

+
batt − ηbattP

−
batt = ηPV P̂PV + PDG − P̂load − PBTMS − Pdump =: Pbrutto

⇐⇒ Pbatt = P+
batt − P−

batt = ηbattmax {0, Pbrutto} − η−1
battmax {0,−Pbrutto} =: Pnetto (7)

The equivalence follows due to the easy observation Pbrutto = max {0, Pbrutto} −max {0,−Pbrutto}. On the
other hand, it holds

Pbatt = NPcell = N(V · I) = N
(
Voc +RτI

)
I = N

(
VocI +RτI

2
)
. (8)

Combining Equation (7) and Equation (8) eventually yields an expression for the current I ,

2RτI = −Voc +
√
V 2
oc + 4RτN−1Pnetto.

The OCP taken into considerations reads as follows. Minimize the DG fuel consumption subject to state equa-
tions, and subject to state and final state constraints outlined in the battery operation strategy. The final state
constraints (or cycling constraints) are imposed in order to ensure that tomorrow’s energy management does
not come at the expense of the energy management of the day after tomorrow. More precisely,

min

∫ tf

t0

PDG(t) dt (9a)

s.t. SOC ′(t) =
−Voc +

√
V 2
oc + 4RτN−1Pnetto

2RτQτ
(9b)

CcellT
′
cell(t) = RτI

2 + Ucell

(
Ten − Tcell

)
(9c)

CenT
′
en(t) = ηBTMSPBTMS +N · Ucell

(
Tcell − Ten

)
+ Uen

(
Tamb − Ten

)
(9d)

SOC(t) ∈ [SOCmin, SOCmax] ∀t ∈ [t0, tf ] (9e)

Tcell(t) ∈ [Tmin, Tmax] ∀t ∈ [t0, tf ] (9f)

SOC(tf ) ≥ SOCf (9g)

Tcell(tf ) ≤ Tf (9h)
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We denoteu = (u(1),u(2),u3)T = (PBTMS , PDG, Pdump)
T the control variable andx = (x(1),x(2),x(3))T =

(SOC, Tcell, Ten)
T the state variable. Accordingly, the OCP reads,

min
u

J(u) =

∫ tf

t0

u(2)(t) dt

s.t.
dx(t;u)

dt
= F (t,x,u) = Ax+ f(t,x,u)

x(i)(t;u) ∈ [x
(i)
min, x

(i)
max] ∀t ∈ [t0, tf ], i = 1, 2

x(1)(tf ;u) ≥ x
(1)
f

x(2)(tf ;u) ≤ x
(2)
f

with

A =


0 0 0

0 −Ucell
Ccell

Ucell
Ccell

0 N ·Ucell
Cen

−N ·Ucell
Cen

− Uen
Cen

 and f(t,x,u) =


Q−1

τ I(t;x(1),u)

Rτ
Ccell

I2(t;x(1),u)

ηBTMSu
(1)

Cen
+ Uen

Cen
Tamb(t)


Remark. 1 A battery operation strategy not only asks for SOC and temperature management but also for

keeping voltage and current bounded. This is not explicitly included in this work as a consequence of
a mini-grid being a low C-rate application resulting in rather low currents and restricting diesel usage.
Choosing the interval [SOCmin, SOCmax] in (4) suitably justifies dropping bounds for the voltage, too.

2 Including a back-up DG asks for the binary decision of switching on and off the generator. This is ne-
glected in this undertaking. The reader is referred to e.g. [12].

3.2 Probabilistic problem formulation

Recall the uncertainties PV power PPV , demand Pload and ambient temperature Tamb. Denote by ξ the uncer-
tainty. By choice of the control variables, it follows Pbrutto = Pbrutto(t;u, ξ) yielding I = I(t;x(1),u, ξ). This
immediately gives that the uncertainty in the forecasts of solar power and demand translate into uncertainty in
the battery SOC dynamics. Similarly, battery temperature becomes uncertain. With a slight abuse of notation,
we write

dx(t;u, ξ)

dt
= F (t;x,u, ξ)

and the state constraints have to take another form for which several possibilities exist. A pretty cheap but not
very robust solution is to ask the state to stay bounded in expectation. In contrast, a very robust but also very
expensive formulation is to ask the state to stay bounded for every possible realization of the uncertainty. As
a good and fair trade-off between robustness and costs, a probabilistic constraint comes into play: we ask the
state variable to stay bounded with a given, prescribed probability level (PL). This is the path we will take in this
work. To be exact,

min
u

J(u) =

∫ tf

t0

u(2)(t) dt

subject to the state equations

dx(t;u, ξ)

dt
= F (t;x,u, ξ)

= Ax+ f(t;x,u, ξ)
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with

A =


0 0 0

0 −Ucell
Ccell

Ucell
Ccell

0 N ·Ucell
Cen

−N ·Ucell
Cen

− Uen
Cen

 and f(t;x,u, ξ) =


1
Qτ
I(t;x(1),u, ξ)

Rτ
Ccell

I2(t;x(1),u, ξ)

ηBTMSu
(1)

Cen
+ Uen

Cen
Tamb(t; ξ)


subject to the joint chance constraints (JCCs)

P
(
x(i)(t;u, ξ) ∈ [x

(i)
min, x

(i)
max] ∀t ∈ [t0, tf ]

)
≥ pi, i = 1, 2

and subject to the cycling chance constraints (CCCs)

P
(
x(1)(tf ;u, ξ) ≥ x

(1)
f

)
≥ q1

P
(
x(2)(tf ;u, ξ) ≤ x

(2)
f

)
≥ q2

3.3 Discretized problem formulation

The approach taken is a first-discretize-then-optimize approach. Therefore, in a first step, a discretization scheme
is chosen. Using this discretization, the above ODEs are solved using an implicit Euler scheme. Eventually, the
calculation of the gradients of the output equations are discussed. For readability, set

Ξ(t; ξ) :=
(
PPV (t; ξ), Pload(t; ξ), Tamb(t; ξ)

)T
.

Let {t0, t1, . . . , tK = tf} be an equidistant discretization of the time horizon with tk = t0 +
tf−t0
K k, k =

1, . . . ,K . For readability, again, set

uk = u(tk)

Ξk = Ξ(tk; ξ)

xk = x(tk).

By implicit Euler scheme, the discretized state equations read

xk+1 = xk +∆t
(
Axk+1 + f

(
tk+1,xk+1,uk+1,Ξk+1

))
,

= xk +∆t
(
Axk+1 + f̂

(
tk+1uk+1, I(x

(1)
k+1,uk+1,Ξk+1),Ξk+1

))
, k = 0, . . . ,K − 1.

Next, we introduce the indices K̂(i) = argmaxkx
(i)
k and k̂(i) = argminkx

(i)
k . It holds for i = 1, 2,

x
(i)
k ∈ [x

(i)
min,x

(i)
max] ∀k = 0, . . . ,K

⇐⇒ max
k

x
(i)
k − x(i)max ≤ 0 and x

(i)
min −min

k
x
(i)
k ≤ 0

⇐⇒ max
{
x
(i)

K̂(i)
− x(i)max, x

(i)
min − x

(i)

k̂(i)

}
≤ 0.

Denote

g(i)(u, ξ) = max
{
x
(i)

K̂(i)
− x(i)max, x

(i)
min − x

(i)

k̂(i)

}
, i = 1, 2

h(1)(u, ξ) = x
(1)
f − x

(1)
K

h(2)(u, ξ) = x
(2)
K − x

(2)
f

such that the discretized output equations read

φ(i)(u) = P
(
g(i)(u, ξ) ≤ 0

)
≥ pi, i = 1, 2

γ(i)(u) = P
(
h(i)(u, ξ) ≤ 0

)
≥ qi, i = 1, 2.
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4 Spherical-radial decomposition

How can we compute the above probabilities and, within an optimization framework, determine their derivatives?
One effective approach is the spherical-radial decomposition.

For a centered m-dimensional Gaussian random vector ξ ∼ N (0,Σ) the so-called spherical-radial decompo-
sition ξ = ηLζ with η ∼ χ(m) (one-dimensional Chi-distribution with m degrees of freedom), ζ ∼ U(Sm−1)
(uniform distribution on unit sphere) and L such that LLT = Σ holds true. This implies that the Gaussian
probability of a measurable set M ⊆ Rm may be represented as the spherical integral∫

v∈Sm−1

µη ({r ≥ 0 | rLv ∈M}) dµζ(v).

Applied to a set defined as an inequality M = {z ∈ Rm | g(u, z) ≤ 0} (where u can be interpreted as a
fixed control), this yields that

φ(u) := P (g(u, ξ) ≤ 0) =

∫
v∈Sm−1

µη ({r ≥ 0 | g(u, rLv) ≤ 0}) dµζ(v).

If g is regular enough, meaning that it is continuous and for each v ∈ Sm−1 the ray {rLv | r ≥ 0} enters or
leaves the set {z ∈ Rm | g(u, z) ≤ 0} only for a finite number nu,v of times, this probability can be specified
as

φ(u) =

∫
v∈Sm−1

nu,v∑
i=1

µη ([ri(u, v), Ri(u, v)]) dµζ(v) (10a)

=

∫
v∈Sm−1

nu,v∑
i=1

[
Fη

(
Ri(u, v)

)
− Fη

(
ri(u, v)

)]
dµζ(v). (10b)

Here, r1 is defined to be the smallest r ≥ 0 such that g(u, rLv) ≤ 0. Accordingly, the [ri(u, v), Ri(u, v)]
are the disjoint intervals describing the intersection of the ray {rLv | r ≥ 0} with the closed set {z ∈ Rm |
g(u, z) ≤ 0}. Note, that the last such interval could be unbounded, hence Rnu,v(u, v) = ∞ is possible.
In the last formula, Fη denotes the cumulative distribution function of the one-dimensional Chi-distribution with
m degrees of freedom. Determining the Gaussian probability of a set in this way rather than by crude Monte
Carlo simulation provides estimates with possibly significantly reduced variance [5, Table 1], [20, Eq. (1.5)]. The
numerical approximation of the spherical integral involved would result in turning into a finite sum according to
an efficient uniform sampling of the unit sphere and by averaging this sum.

If it comes to optimization subject to the chance constraint φ(u) ≥ 0, then at least first order information about
φ should be available. Differentiability of φ is a delicate issue even in case that all input data of the problem
are differentiable. In particular, g will be supposed to be differentiable. More precisely, growth conditions and
certain constraint qualifications have to be satisfied (see, e.g., [21]). These would then allow one to interchange
differentiation and integration in (10):

∇φ(u) =
∫
v∈Sm−1

nu,v∑
i=1

[
F ′
η(Ri(u, v))∇uRi(u, v)− F ′

η

(
ri(u, v)

)
∇uRi(u, v)

]
dµζ(v), (11)

where we exploited that the distribution function Fη is differentiable with derivative F ′
η(t) = fη(t) and fη being

the probability density of the Chi-distribution with m degrees of freedom. Appropriate conditions would also
guarantee that the endpoint functions ri(u, v), Ri(u, v) of the intervals considered above are differentiable
with gradients computable via the implicit function theorem. One would then obtain the gradient formulae

∇u(ri/Ri)(u, v) =
∇ug(u, (ri/Ri)Lv)

⟨∇zg(u, (ri/Ri)Lv), Lv⟩
(i = 1, . . . , nu,v).
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Altogether, this yields the gradient formula

∇φ(u) =
∫
v∈Sm−1

nu,v∑
i=1

[
fη
(
Ri(u, v)

)( ∇ug(u,RiLv)

⟨∇zg(u,RiLv), Lv⟩

)
−fη

(
ri(u, v)

)( ∇ug(u, riLv)

⟨∇zg(u, riLv), Lv⟩

)
dµζ(v).

As can be seen from the latter equation, for this purpose gradients w.r.t. u and ξ have to be computed.

In order to compute the gradient of the individual state variables w.r.t. the control variables, one derives the Ja-
cobian ∂xm∗

∂u(i) ∈ R3×K , i ∈ {1, 2, 3}. The gradient is computed using the implicit Euler scheme. For readability
set

Ik = I(tk,x
(1)
k ,uk,Ξk),

f̂k = f̂
(
tk,uk, Ik,Ξk

)
.

Using the implicit Euler scheme, one computes for k ∈ {1, . . . ,K} fixed, i ∈ {1, 2, 3}, l ≤ k,

∂xk

∂u
(i)
l

=
∂xk−1

∂u
(i)
l

+∆t

(
A
∂xk

∂u
(i)
l

+
∂f̂k

∂u
(i)
l

)

=
∂xk−1

∂u
(i)
l

+∆t

(
A
∂xk

∂u
(i)
l

+
∂f̂k

∂u
(i)
k

∂u
(i)
k

∂u
(i)
l

+
∂f̂k
∂Ik

∂Ik

∂u
(i)
l

)

=
∂xk−1

∂u
(i)
l

+∆t

(
A
∂xk

∂u
(i)
l

+
∂f̂k

∂u
(i)
k

∂u
(i)
k

∂u
(i)
l

+
∂f̂k
∂Ik

[
∂Ik
∂xk

∂xk

∂u
(i)
l

+
∂Ik

∂u
(i)
k

∂u
(i)
k

∂u
(i)
l

])

giving (
I −∆t

[
A+

∂f̂k
∂Ik

∂Ik
∂xk

])
∂xk

∂u
(i)
l

=
∂xk−1

∂u
(i)
l

+∆t

[
∂f̂k

∂u
(i)
k

+
∂f̂k
∂Ik

∂Ik

∂u
(i)
k

]
δk,l

eventually yielding Algorithm 4.1.

As before, to compute the gradient w.r.t. the uncertainties, one derives the Jacobian ∂xm∗
∂ξ ∈ R3×m and then

restricts to the respective row yielding. Again, one computes the gradient w.r.t. ξ using the implicit Euler scheme.
For k ∈ {1, . . . ,K} fixed

∂xk

∂ξ
=
∂xk−1

∂ξ
+∆t

(
A
∂xk

∂ξ
+
∂f̂k
∂ξ

)

=
∂xk−1

∂ξ
+∆t

(
A
∂xk

∂ξ
+
∂f̂k
∂Ξk

∂Ξk

∂ξ
+
∂f̂k
∂Ik

∂Ik
∂ξ

)

=
∂xk−1

∂ξ
+∆t

(
A
∂xk

∂ξ
+
∂f̂k
∂Ξk

∂Ξk

∂ξ
+
∂f̂k
∂Ik

[
∂Ik
∂xk

∂xk

∂ξ
+
∂Ik
∂Ξk

∂Ξk

∂ξ

])

giving (
I −

[
∆tA+

∂f̂k
∂Ik

∂Ik
∂xk

])
∂xk

∂ξ
=
∂xk−1

∂ξ
+∆t

(
∂f̂k
∂Ξk

∂Ξk

∂ξ
+
∂f̂k
∂Ik

∂Ik
∂Ξk

∂Ξk

∂ξ

)

eventually yielding Algorithm 4.2.
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Algorithm 4.1: Computation of ∂xm∗
∂u(i)

1 for l = 1, . . . ,K do
2 if l ≤ m∗ then
3 Compute ∂xl

∂u
(i)
l

by solving

(
I −∆t

[
A+

∂f̂l
∂Il

∂Il
∂xl

])
∂xl

∂u
(i)
l

= ∆t

[
∂f̂l

∂u
(i)
l

+
∂f̂l
∂Il

∂Il

∂u
(i)
l

]
4 for k = l + 1, . . . ,m∗ do
5 Compute ∂xk

∂u
(i)
l

by solving

(
I −∆t

[
A+

∂f̂k
∂Ik

∂Ik
∂xk

])
∂xk

∂u
(i)
l

=
∂xk−1

∂u
(i)
l

6 return ∂xm∗

∂u
(i)
l

7 else

8 return ∂xm∗

∂u
(i)
l

= 0;

9 return ∂xm∗
∂u(i) =

(
∂xm∗

∂u
(i)
1

, ∂xm∗

∂u
(i)
2

, . . . , ∂xm∗

∂u
(i)
K

)T
∈ R3×K

Algorithm 4.2: Computation of ∂xm∗
∂ξ

1 Set ∂x0
∂ξ = 0 ∈ R3×m. ;

2 for k = 1, . . . ,m∗ do
3 Compute ∂xk

∂ξ by solving(
I −

[
∆tA+

∂f̂k
∂Ik

∂Ik
∂xk

])
∂xk

∂ξ
=
∂xk−1

∂ξ
+∆t

(
∂f̂k
∂Ξk

∂Ξk

∂ξ
+
∂f̂k
∂Ik

∂Ik
∂Ξk

∂Ξk

∂ξ

)

4 return ∂xm∗
∂ξ ∈ R3×m

Remark. In [20], as mentioned above, in order to make use of the gradient formula (11) enough regularity is
presumed. More precisely, convexity in the uncertainty, i.e. in the second argument, of the function g is assumed.
In addition, the function g is clearly assumed to be differentiable. This holds not true in our case. Nonetheless,
we exploit the gradient formula for performing numerical computations.

5 Numerical results

In a very first step, the mini-grid design has to be determined. Special attention should be paid to the integration
of BESS, its sizing and its operation strategy. In a second step, the uncertainties are introduced. Eventually, the
results will be presented and discussed critically with a focus on the lack of systematic methodology for sizing
and corresponding room for improvement in order to ensure optimal performance.

Given a demand profile, PV output power can be scaled such that, integrated over time, they are roughly equal.
After having decided on a battery operation strategy and having at hand demand and PV power profiles, the
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Figure 5.1: Realization of the uncertainties

BESS can be sized, i.e. the number of cells N the BESS consists of can be determined. A useful initial guess,
ignoring internal resistance, battery inverter efficiency and cooling power is given by

N ≈
⌈∫ tf

t0

max {0, PPV (t)− Pload(t)}
Pnominal
cell · DOD

dt

⌉
.

For the sake of sizing, we thus have to agree on a battery operation strategy, i.e. we have to agree on bounds
[SOCmin, SOCmax] for the SOC. We recall that battery degradation is accelerated the higher the DOD is.
For the SOC we choose to follow the standard

[SOCmin, SOCmax] = [0.2, 0.8]. (12)

The number of battery cells found to work well and used in this work is N = 17 500. We recall that higher
temperatures also favor battery degradation. Hence, for battery thermal operation strategy, we choose not to
follow the widely accepted recommendation [10] of [Tmin, Tmax] = [15 ◦C, 35 ◦C]. For mini-grid operation,
choosing a narrower temperature range aligns well with optimizing performance and ensuring longevity since
managing battery temperature within the desired range is achievable without excessive energy consumption.
This is due to a mini-grid being a low C-rate application resulting in little Joule heat being generated compared
to a high C-rate application. Hence, we choose

[Tmin, Tmax] = [20 ◦C, 25 ◦C]. (13)

Finally, we impose SOCf = 0.5 and Tf = 22.5 ◦C. Throughout this section, the same uncertain demand
Pload and the same uncertain ambient temperature Tamb is assumed; compare to Figure 5.1a and Figure 5.1b,
respectively. For PV power, two scenarios are taken into consideration: a very sunny day, as shown in Figure
5.1c and a partly cloudy day, as illustrated in Figure 5.1d.
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5.1 Results and discussion

The proposed energy management strategies illustrated in Figure 5.2 are each result of solving the discretized
probabilistic OCP numerically w.r.t. increasing joint PLs p = pi ∈ {0.5, 0.75, 0.95} and cycling PLs q = qi =
min {0.75, pi}, i = 1, 2. The reader is referred to Table 2.1 and Table 2.2 for the thermodynamic parameters
used for the numerical simulations.

The optimized control variables considering a sunny day are illustrated in Figures 5.4a, 5.4c, and 5.4e and the
resulting state variables are depicted in Figure 5.5. Prescribed and actual (realized) PLs can be found in Table
5.1. Similarily, the optimized control variables for a partly cloudy day are depicted in Figures 5.4b, 5.4d and 5.4f.
and the resulting state variables are depicted in Figure 5.6. Prescribed and actual (realized) PLs can be found
in Table 5.2. A depiction of the power balance for sunny and partly cloudy day for the forecast can be seen in
Figure 5.2a and Figure 5.2b, respectively.

On a sunny day, generally, the higher the desired reliability, the higher the usage of the DG and the higher the
amount of excess power that has to be dumped as becomes very evident from Figure 5.4c and Figure 5.4e. In
the early morning, when there is no PV power available, the DG has to be switched on in order to not violate the
JCC on SOC by falling (in too many scenarios) below the lower bound on SOC. During mid-day, when there is
PV power available, increasing the joint PL p1 means that the amount of excess power Pdump to be dumped
increases in order to not over-charge the battery (too frequently). The DG is switched on again in the evening
due to the imposed CCC on SOC. The usage of DG in the evening increases even for non-increasing cycling
PL q1 as the joint PL p1 is nonetheless rising: the excess power that has to be dumped in the (after-)noon is
then missing in the evening again. Cooling takes place mostly during mid-day when there is PV power available
and when it is hottest. At a first glance, there seems to be no clear ordering w.r.t. reliability level, c.f. Figure
5.4e. Taking a very close look reveals that the overall cooling power increases until the joint PL p2 on battery
temperature reaches a value of 0.75 and then starts to decrease. This is due to the cycling PL q2 being kept
constant after having reached a value of q2 = 0.75. Simultaneously, the higher the joint PL p2, the higher the
cooling power in the early morning in order to not exceed the upper bound (too often). In the afternoon, cooling
power is lower for higher joint PL p2 in a maximal possible way without violating the JCC on the lower bound.
For cooling in the evening, the DG has to run again. Thus, cooling is performed in the afternoon as much as
possible such that the JCC on battery temperature is still met, i.e. the lower bound on battery temperature is not
violated (too frequently).

Also on a partly cloudy day, generally, the higher the desired reliability, the higher the usage of DG, see Figure
5.4d. In contrast, there is no excess power at all for any PL, compare to Figure 5.4f. An important observation is
that PLs on the JCC of SOC are not binding until very high probabilities. This is due to the CCC on SOC being
the driving force: the higher the PL q1 on the CCC, the more DG power has to be imported. Thus, the higher the
cycling PL, the lower the realized probability for the JCC as the upper bound becomes active. This can be seen
from Table 5.2. The CCC being the driving force is highlighted in Figure 5.3b, where the objective increases until
PL qi = pi = 0.75, i = 1, 2 and afterwards nearly stays constant – as the cycling PL stays constant, too.
Cooling is performed in a way that is just enough: the upper bound on battery temperature is the active one and
cooling increases with increasing joint PL.

5.2 Conclusion and outlook

Given the task of finding an optimal energy management strategy for an isolated mini-grid, a probabilistic OCP
taking into account has been set up and solved numerically using the concept of chance constraints.

As evident from Figure 5.3, the partly cloudy day comes at higher cost due to augmented need for DG power.
DG usage on a partly cloudy day is driven by meeting the CCC on SOC. On a sunny day, compared to a partly
cloudy day, there is an excess of power that needs to be dumped. Cooling on a sunny day is conducted such
that cooling is minimal in the evening as for cooling in the evening the DG has to run. On a partly cloudy day
cooling power is just enough to meet the JCC and CCC on battery temperature. The reader’s attention is also
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Figure 5.2: Power balance for p1 = p2 = 0.95, q1 = q2 = 0.75 for the forecasts P̂PV , P̂load and T̂amb.
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Figure 5.3: Total DG power needed as a function of joint PL p = p1 = p2. The cycling PL q = q1 = q2 is given
by q = min {p, 0.75}.

drawn to the fact that usage of the DG is not necessarily unique as it could be shifted in time yielding pretty
much the same results. This could be further addressed by refining fuel consumption of the DG. In addition, by
introducing binary variables for switching on and off the DG, ramp-up rates of the DG can be included. A cold
DG does not run as efficiently as a warm one [12].

The numerical results presented in the previous section indicate that the probabilistic OCP delivers an energy
management strategy that strikes balance between reliability and cost. The higher the PL, the higher the oper-
ational costs and the operator may decide, based on these findings, which strategy and which reliability level
to choose. The results indicate that the solution concept presented in this paper offers a generic good way of
optimizing energy management. Nonetheless, the resulting energy management strategy heavily depends on
the choice of parameters.

Having at hand those numerical results, there are a bunch of open questions. Most importantly, usage of the
DG is pretty high. In addition to the fact that there is even an excess of power at some times, this indicates
that the BESS is not sized very well. Also, deciding on battery (thermal) operation strategies can potentially be
improved. This indicates that sizing and designing mini-grids and their operation can be further enhanced. This
is ongoing work: set up and study a two-time scale optimization problem including battery degradation dynamics
for the optimal design, i.e. layout and operation strategies, of stand-alone mini-grids.
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Figure 5.4: Optimized control variables for different joint probability levels p. The cycling probability levels are
given by q = min {0.75, p}.
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Figure 5.5: Resulting state variables on a sunny day. A total of 20 trajectories is plotted each. Black: trajectories
that satisfy the joint chance constraint. Red: trajectories that do not satisfy the joint chance constraint.

Table 5.1: Prescribed and realized probability levels for SOC and battery cell temperature on a sunny day.
Printed in bold: binding probability level.

P
(
SOC(t) ∈ [0.2, 0.8] ∀t

)
p1 P

(
SOC(tf ) ≥ 0.5

)
q1

0.5 0.5 0.5 0.5
0.75 0.75 0.75 0.75
0.95 0.95 0.75 0.75

P
(
Tcell(t) ∈ [20, 25] ∀t

)
p2 P

(
Tcell(tf ) ≤ 22.5

)
q2

0.5 0.5 0.5 0.5
0.75 0.75 0.75 0.75
0.95 0.95 0.75 0.75
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Figure 5.6: State variables on a partly cloudy day. A total of 20 trajectories is plotted each. Black: trajectories
that satisfy the joint chance constraint. Red: trajectories that do not satisfy the joint chance constraint.

Table 5.2: Prescribed and realized probability levels for battery cell temperature on a partly cloudy day. Printed
in bold: binding probability levels.

P
(
SOC(t) ∈ [0.2, 0.8] ∀t

)
p1 P

(
SOC(tf ) ≥ 0.5

)
q1

0.97 0.5 0.5 0.5
0.93 0.75 0.75 0.75
0.95 0.95 0.75 0.75

P
(
Tcell(t) ∈ [20, 25] ∀t

)
p2 P

(
Tcell(tf ) ≤ 22.5

)
q2

0.5 0.5 0.5 0.5
0.75 0.75 0.75 0.75
0.95 0.95 0.75 0.75
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Abbreviations

BESS . . . . . . . . . . . . . . . . . . . . . . . Battery energy storage system

BTMS . . . . . . . . . . . . . . . . . . . . . . . Battery thermal management system

CCC . . . . . . . . . . . . . . . . . . . . . . . . Cycling chance constraint

DG . . . . . . . . . . . . . . . . . . . . . . . . . Diesel generator

DOD . . . . . . . . . . . . . . . . . . . . . . . . Depth-of-discharge

ECM . . . . . . . . . . . . . . . . . . . . . . . . Equivalent circuit model

JCC . . . . . . . . . . . . . . . . . . . . . . . . Joint chance constraint

LIB . . . . . . . . . . . . . . . . . . . . . . . . . Lithium-ion battery

OCP . . . . . . . . . . . . . . . . . . . . . . . . Optimal control problem

OCV . . . . . . . . . . . . . . . . . . . . . . . . Open-circuit voltage

ODE . . . . . . . . . . . . . . . . . . . . . . . . Ordinary differential equation

PL . . . . . . . . . . . . . . . . . . . . . . . . . Probability level

PV . . . . . . . . . . . . . . . . . . . . . . . . . Photovoltaic

RES . . . . . . . . . . . . . . . . . . . . . . . . Renewable energy source

SOC . . . . . . . . . . . . . . . . . . . . . . . . State-of-charge

SOH . . . . . . . . . . . . . . . . . . . . . . . . State-of-health

Data availability

Data will be made available on reasonable request.

Software and tools used

The Python programming language was used to solve [22] the problem under consideration and to visualize the
respective results.
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