
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Multilevel CNNs for parametric pdes based on adaptive finite

elements

Janina Schütte, Martin Eigel

submitted: August 30, 2024

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: janina.schuette@wias-berlin.de

martin.eigel@wias-berlin.de

No. 3124

Berlin 2024

2020 Mathematics Subject Classification. 35R60, 65N22, 65J10, 68T07, 68T05, 65N15, 65N30, 65N50, 65N55.

Key words and phrases. Parametric PDE, adaptive finite element method, multilevel decomposition, neural network ap-
proximation.

We acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in the the
priority programme SPP 2298 "Theoretical Foundations of Deep Learning".

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/

Multilevel CNNs for parametric pdes based on adaptive finite
elements

Janina Schütte, Martin Eigel

Abstract

A neural network architecture is presented that exploits the multilevel properties of high-
dimensional parameter-dependent partial differential equations, enabling an efficient approxi-
mation of parameter-to-solution maps, rivaling best-in-class methods such as low-rank tensor
regression in terms of accuracy and complexity. The neural network is trained with data on adap-
tively refined finite element meshes, thus reducing data complexity significantly. Error control is
achieved by using a reliable finite element a posteriori error estimator, which is also provided as
input to the neural network.

The proposed U-Net architecture with CNN layers mimics a classical finite element multigrid
algorithm. It can be shown that the CNN efficiently approximates all operations required by the
solver, including the evaluation of the residual-based error estimator. In the CNN, a culling mask
set-up according to the local corrections due to refinement on each mesh level reduces the overall
complexity, allowing the network optimization with localized fine-scale finite element data.

A complete convergence and complexity analysis is carried out for the adaptive multilevel
scheme, which differs in several aspects from previous non-adaptive multilevel CNN. Moreover,
numerical experiments with common benchmark problems from Uncertainty Quantification illus-
trate the practical performance of the architecture.

1 Introduction

In recent years, the intersection of partial differential equations (PDEs) and neural networks has
emerged as a powerful and promising field of research. In a wider sense, this increasingly popu-
lar research area is called scientific machine learning (SciML), which strives to make use of modern
deep learning methods for the solution of differential equations that are common to model physical
processes in engineering and the natural sciences. Opposite to many tasks in classification or gen-
eration of images, videos, sounds or text, the data in SciML typically has specific properties that can
be exploited, e.g. regularity or sparsity of functions. Moreover, data often can be generated syntheti-
cally by running (possibly computationally very costly) simulations with classical solvers such as finite
elements (FE).

We consider parametric PDEs as a flexible mathematical model to describe real-world phenomena,
allowing for the incorporation of variable, stochastic parameters that capture uncertainties and chang-
ing properties. Problems of this type have been examined extensively in Uncertainty Quantification
(UQ) in recent years. They can be approached with sampling methods or by computing functional
surrogates in different model classes such as low-rank tensors [17, 15], by which a larger part of or
the entire statistics of the quantity of interest is approximated. Neural network surrogate models in

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 2

an infinite-dimensional setting have been analyzed, e.g. the DeepONet (deep operator network) ar-
chitecture in [9, 30, 33, 43, 35, 39], neural operators based on model reduction in [2], and the FNO
(Fourier neural operator) in [32, 28] and references therein. In a discretized setting the problem is
combined with reduced basis methods in [29, 21, 10]. In [5, 6], adaptively created meshes are used to
train a fully connected neural network mapping, the parameter and the point in the physical domain to
the evaluation of the corresponding solution. A multilevel collocation approach to the pPDE problem
can be found in [41] and a neural network multilevel method for recovering a quantity of interest is
presented in [34].

Many results on NN parameter complexity estimates for function approximation are based on the
pivotal work [46], where it is shown that NNs with a ReLU activation function are able to efficiently
represent polynomials. In this work (as in [27]) the analysis is based on an approximation of the multi-
plication operator with a fixed number of trainable parameters independent of the desired accuracy as
shown in [25, Corollary C.3]. Here, it is assumed that the activation function is three times continuously
differentiable in a neighborhood of some point with nonzero second derivative, see Assumption 5.1.
Then parameter bounds for an architecture as described in [38] can be derived.

1.1 Adaptive neural network approach

In this paper we present an approach to solve parametric PDEs based on training data generated by
an adaptive FE discretization. This is combined with a multilevel neural network (ML-Net) architecture,
which mimics a classical multilevel solver and supports local corrections, corresponding to local mesh
refinements.

In [27] the ML-Net architecture is derived to approximate the finite element coefficients of the solu-
tions on uniformly refined grids. We generalize this approach by introducing local corrections with
respect to the global discretization mesh with data being generated by an efficient adaptive solver.
We show that CNNs are able to efficiently approximate a posteriori finite element error estimators and
construct a culling mask based on the estimations, which only adds parts of the domain where fine
scale corrections are needed. By this, only small parts on each level are considered in the multigrid
scheme. As a consequence of this data reduction, in principle much finer meshes (and hence a higher
approximation accuracy) can be used for the training.

We consider the parametric stationary diffusion PDE (also known as "parametric Darcy problem")
with a possibly countably infinite dimensional parameter space Γ ⊂ RN and a physical domain
D ⊂ Rd, d ∈ {1, 2}. The objective is to find u : D × Γ→ R such that

−∇ · (κ(·,y)∇u(·,y)) = f on D,

u(·,y) = 0 on ∂D

for every y ∈ Γ with a parameter field κ : D × Γ→ R and a right-hand side f ∈ H−1(D).

We propose an adaptive finite element solver for this task. Starting with a coarse uniform triangulation
as an initial discretization, the following well-known steps are executed iteratively:

Solve → Estimate → Mark → Refine. (1.1)

To solve the PDE in each iteration, we derive a successive subspace correction algorithm (SSC),
for which we refer to [44, 8]. The algorithm is based on a multilevel discretization of the domain.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 3

+ +

u(·,y) =

v1(·,y) v2(·,y) v3(·,y)

u(·,y)κ(·,y)

Figure 1.1: The first row depicts the parameter κ to solution u map for a realization of the parameter
vector y ∈ Γ for (2.2). In the second row, the multigrid decomposition of the solution into a coarse
grid function v1 and finer grid corrections v2, v3 is visualized.

On coarser grids, the amplitude of the functions is larger. Given sufficient regularity, it decreases
quickly on finer grids, where higher frequencies of the solution have to be represented. The principle
is illustrated in Figure 1.1. To estimate the approximation error in the energy norm, a classical residual
based finite element error estimator is implemented. The local error on each triangle T with side
length hT is bounded by

η2T := h2
T ∥f +∇ · (κ(·,y)∇u)∥2L2(T) + hT ∥[[κ(·,y)∇u]]∥2L2(∂T) .

Given an estimation of the local error contributions, triangles are selected for refinement e.g. with a
Dörfler or a threshold marking strategy. The approximation space is enriched by adding nodal basis
functions from a uniformly refined grid to the current basis. The structure of such a non-standard
approximation space is illustrated in Figure 1.2. It can be seen that the constructed space consists of
a selection of FE basis functions on different levels, which does not resemble a typical FE space.

We derive a suitable CNN architecture based on U-Nets for the problem and show that the architecture
is expressive enough to accurately approximate each step in the adaptive solver in Section 2.5. The
local refinements are incorporated in a the network by 0/1-masks. Our main result is summarized as
follows.

Theorem 1.1 (CNNs can approximate adaptive finite element solvers). Assume that κ is uniformly
bounded from below and above. Let ε > 0 and K,L ∈ N be the number of iterations of the de-
rived AFEM and the maximal refinements of each triangle, respectively. Consider a threshold mark-
ing strategy. Then there exists a CNN Ψ such that the number of parameters of the network is in
O(LK log(ε−1)/ log(c−1

L)) with cL := cL
1+cL

, c > 0. Moreover, for any y ∈ Γ the network maps
finite element coefficients of the parameter field κ to coefficients of a finite element approximation of
the solution u of the pPDE (2.2) such that

∥u(·,y)− C(Ψ(κy, f))∥H1(D) ≤ ∥u(·,y)− C(AFEM(V1, K))∥H1(D) + ε,

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 4

Figure 1.2: In the top row the support of the considered nodal basis functions on different levels is
visualized. Uniformly refined meshes as used in [27] are shown in the top row, locally refined meshes
as used in this work in the bottom row. The local refinement is realized by using a subset of the nodes
in the uniformly refined meshes.

where C maps the finite element coefficients to the corresponding function.

The proof is based on the observation that U-Nets are able to approximate a successive subspace al-
gorithm based on a multigrid decomposition. The required interpolation between grids can be achieved
efficiently with strided and transpose strided convolutions. Furthermore, we show that the estimator
can be approximated and refinement in each step of the adaptive algorithm. This is realized by 0/1-
masks multiplied by large images making it possible to work with sparse images for fine grids.

Since the solution representation is based on local contributions (corresponding to small regions of
images with higher resolution), the proposed architecture can significantly improve computational
efficiency by exploiting representation sparsity.

1.2 Main contributions

A multigrid solver, error estimator and refinement strategy are chosen, such that the corresponding
AFEM can provably be approximated by an introduced CNN architecture. Complexity bounds for the
approximation of the AFEM are shown for the architecture. In the course of the proof it is shown that
CNNs can approximate a multigrid solver on locally refined grids. Moreover, CNNs can approximate
the error estimator and the refinement can be incorporated by a novel error estimator based masking.
This leads to an implicitly adaptive CNN tracking the error of individual outputs by error estimator
prediction. The sparsity introduced by the masks on high resolution grids leads to a smaller number
of operations on each grid and a higher accuracy for the same number of nonzero entries.

In contrast to the work carried out in [27], here the proof relies on actions on only parts of each
image in the CNNs computations. Therefore, on each level, the boundary of the subsets has to be
considered carefully and different index sets need to be considered in the analysis to always be able
to represent all necessary information on each grid. In practice, the locality translates to manifold
sparse convolutions, where kernels are only applied to nonzero entries of each image.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 5

1.3 Structure of the paper

After the problem statement and a short finite element introduction, the individual steps of the AFEM
and the algorithm itself are introduced in Section 2. The multigrid solver in the algorithm is explained
in detail and its convergence is shown in Section 3. Section 4 is concerned with the the used data
decomposition of continuous and discontinuous finite element functions to represent the solutions and
estimators as images in the CNN. Furthermore, types of convolutions are discussed shortly. The main
results, i.e. the expressivity theorems for the solver, the estimator and the whole AFEM algorithm
can be found in Section 5. In Section 6 a numerical test is presented. Summary and outlook are given
in Section 7.

2 Finite element discretization and notation

To generate data-efficient data, the finite element method (FEM) with an adaptive algorithm (coined
AFEM) is used. This section is concerned with the introduction of this AFEM, which is steered by an
a posteriori error estimator. This forms the basis of the subsequently derived neural network architec-
ture. A more detailed introduction to finite elements can e.g. be found in [3].

2.1 Problem setting

We assume a regular conforming triangulation T of the (smoothly bounded) domain D, e.g. as de-
picted in Figure 1.1. Let Vh = span{φj}dimVh

j=1 ⊂ H1
0 (D) be a finite-dimensional subspace spanned

by conforming first-order (Lagrange) basis functions (a FE function space). Any function vh ∈ Vh has
a representation

vh =

dimVh∑
i=1

viφi,

where coefficient vectors with respect to the basis of Vh are written in bold face. Throughout this paper
it is assumed that the parameter field fulfills a uniform boundedness assumption c ≤ κ(x,y) ≤ C
for all x ∈ D,y ∈ Γ and some constants c,C > 0 independent of y. We are concerned with finding
a discrete solution uh ∈ Vh of the variational formulation for any y ∈ Γ such that for all test functions
wh ∈ Vh it holds that

ay,h(uh, wh) :=

∫
D

κh(·,y)⟨∇uh,∇wh⟩dx =

∫
D

fwhdx =: f(wh). (2.1)

This is equivalent to determining u ∈ RdimVh by solving the algebraic system

Ayu = f (2.2)

with the right-hand side f := (f(φj))
dimVh
j=1 and discretized operator

Ay := (ay,h(φi, φj))
dimVh
i,j=1 . (2.3)

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 6

We consider the following norms for T ⊂ Rd and u : Rd → R

∥u∥2L2(T) :=

∫
T

u2dx, ∥u∥2H1(T) :=

∫
T

u2dx+

∫
T

⟨∇u,∇u⟩ dx, ∥u∥2ay,h := ay,h(u, u).

For u ∈ Rd, we define the discrete norm

∥u∥2Ay
:= u⊺Ayu.

Note that

∥u∥2Ay
=

dimVh∑
i,j=1

uiujay,h(φi, φj) = ay,h

(
dimVh∑

i

uiφi,

dimVh∑
j=1

ujφj

)
= ay,h(uh, uh) = ∥uh∥ay,h .

Furthermore, we make use of the essential supremum norm L∞ and the discrete supremum norm
ℓ∞.

2.2 Error estimation

We recollect the common residual based a posteriori error estimator for the Galerkin solution uh of
the (parametric) Darcy problem in Vh solving (2.1), cf. [42, 7] and [16] for the parametric setting.

Definition 2.1 (Jump & error estimator). The jump along the edge γ between the triangles T 1, T 2 ∈
T with∇u(1)

h and∇u(2)
h the gradients on the triangles, respectively, is defined by

[[κh(·,y)∇uh]] := κh(·,y)
Ä¨
∇u(1)

h , n(1)
γ

∂
+
¨
∇u(2)

h , n(2)
γ

∂ä
, (2.4)

where n
(1)
γ , n

(2)
γ are the normal vectors of γ pointing out of the triangles T 1, T 2, respectively. We

define the local error contribution on each triangle T by

η2T := h2
T ∥f +∇ · (κh(·,y)∇uh)∥2L2(T) + hT ∥[[κh(·,y)∇uh]]∥2L2(∂T) . (2.5)

We henceforth assume that the data error ∥κ− κh∥ is negligible in the used norms. Then, the esti-
mator is reliable and efficient, i.e. there exist constants cy, C such that

∥u− uh∥2ay,h ≤ C
∑
T∈T

η2T and

ηT ≤ cy∥u− uh∥ay,h for any T ∈ T .

For the sake of a self-contained presentation, the derivation for the upper bound is recalled in Ap-
pendix A while a full analysis of this and other error estimators is carried out in standard references
such as [42, 3].

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 7

2.3 Marking

For a complete adaptive finite element scheme as in (1.1) and as discussed in the next subsection,
different marking strategies can be considered. A popular marking for which a fixed error convergence
of the AFEM over the degrees of freedom can be shown is the Dörfler marking strategy [12, 36].

Definition 2.2 (Dörfler marking). Let θ ∈ (0, 1). DefineM such that∑
T∈M

η2T ≥ θ
∑
T∈T

η2T .

Alternatively, a maximum strategy can be considered [11]. When performing a marking decision for
each element, access to the estimator for all other elements has to be available. Since the examined
CNN architecture acts only locally on neighbouring elements, these marking strategies hence cannot
be implemented and we resort to a threshold marking.

Definition 2.3 (Threshold marking). For k ∈ [L] let δh > 0 be thresholds depending on the size of
the triangles h, e.g. the maximal side length. Mark all elements T ∈ T with size h for refinement if
η2T > δh.

2.4 Mesh refinement

The next step of the AFEM consists of refining the current mesh in marked areas. In this work, in the
Lth step of the AFEM the current space consists of the sum of subspaces of FE spaces on uniformly
refined meshes with nodes Nk for k ∈ [L] and corresponding basis functions {φk

i }i∈Nk
. To refine

a mesh element, all basis functions on a uniformly refined mesh (one level finer than the marked
element) with overlapping support to the marked elements are included in Vh. LetM =

⋃L
k=1Mk

be the decomposition of the marked elements into sets of elements in the same uniformly refined
mesh. Then the local mesh refinement is given by

Vh = Vh +
L∑

k=1

span{φk+1
i : ∃T ∈Mk in level k with suppφk+1

i ∩ T ̸= ∅}.

2.5 Adaptive finite element method (AFEM)

Adaptive finite element methods are applied to find quasi optimal representations of PDE solutions
by resolving local properties. Classical introductions can e.g. be found in [3, 42]. A version of AFEM
used in the present work is depicted in Algorithm 1 and visualized in Figure 2.1. A multigrid solver
introduced in Section 3 and the estimator in (2.5) are employed to approximate the solution of the
Darcy problem (2.2) adaptively.

Starting with an initial FE function space V and an initial approximation u = 0, the following steps
are executed iteratively in the solver. The current solution corresponding to u is interpolated onto the
current space V and u is set to the coefficients of the interpolated solutions. Then, the correction v
to the best approximation in the current space is calculated by solving the system of linear equations

Ayv = f − Ayu.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 8

Figure 2.1: Two iterations of the adaptive finite element method on a unit square are depicted, where
the first image on the left is a visualization of a possible parameter field κ(·,y). In the rest of the first
row, the first mesh, solution, local error estimator and marker are depicted. The second row shows
these steps for a locally refined mesh.

The solver is described in Section 3. The current solution is updated through u = u+v. Local errors
are estimated based on the a posteriori error estimator discussed in (2.5). Large errors are marked
and the the space V is refined by including all basis elements of the next uniformly refined mesh in
the current basis, which have an overlapping support with the marked regions.

To illustrate the practical performance, an example AFEM error convergence for the benchmark
problem described in Section 6 can be compared to solutions on uniformly refined meshes in Fig-
ure 2.2. In addition to the relative errors in the H1 and the L2 norms, the error estimator is plotted.
It can be observed, that the error estimator has the same decay as the true error in the H1 norm as
expected.

Algorithm 1: Adaptive finite element method AFEM(κ, f, V,K)

1 Set u = 0.
2 for K iterations do
3 Interpolate the current solution in V and set u to its coefficients.
4 Find v such that Ayv = f − Ayu. (Section 3)
5 Update u = u+ v.
6 Estimate the error η2. (Section 2.2)
7 Set L to the number of levels of V .
8 Mark elementsMk on each level k ∈ [L]. (Section 2.3)
9 Refine the space

V = V +
∑L

k=1 span{φk+1
i : ∃T ∈Mk in level k with suppφk+1

i ∩ T ̸= ∅}.
(Section 2.4)

10 end

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 9

Figure 2.2: The two plots show the advantage of the AFEM in terms of degrees of freedom (FE
coefficients) compared to solutions on uniformly refined meshes. Here, the mean and variance of
the relative H1 (left) and L2 (right) errors of 100 samples of the problem described in Section 6 are
plotted for the Dörfler marking with θ = 0.1.

3 Solving on multiple grids

In this section, we derive a multigrid algorithm on the sum FE subspaces for uniformly refined grids to
compute the corrections v in each step of Algorithm 1. It is closely related to classical FEM multigrid
solvers, see e.g. [4, 26, 3]. Similarly, the convergence analysis is based on the more general frame-
work of successive subspace correction (SSC) algorithms, see [44, 8]. It is exactly this algorithm that
our CNN multilevel architecture is able to mimic. As shown in [27], an accurate and efficient NN rep-
resentation of a multigrid solver exists for regular and uniform grids. In this work, the previous result is
extended to locally refined grids and consequently to local multigrid corrections. While this should lead
to a significant complexity improvement of the architecture and the training process, several technical
difficulties are inevitably introduced by the locality of the subspace corrections.

We start our considerations with a number of levels L ∈ N, which corresponds to the current maximal
refinement in the step of the AFEM, where the solver is employed. Furthermore, a sequence of
uniformly refined unit square grids with the set of nodes (Nℓ)

L
ℓ=1 indexed by1 i ∈ [nℓ]× [nℓ] =: IℓU

and set of triangles (Tℓ)Lℓ=1 is considered. The corresponding spaces spanned by the piecewise linear
nodal hat functions φℓ

i : R2 → R at nodes i ∈ IℓU are denoted by U ℓ := span {φℓ
i : i ∈ IℓU}.

Since we intend to work on locally refined grids, on each level ℓ = 1, . . . , L only a subset of the index
set IℓV ⊂ IℓU and the corresponding triangles T ℓ

V are considered. These indices correspond to the
nodal basis functions used in the local mesh refinement in Section 2.4 on each level. The discrete
problem is then formulated with respect to Vh :=

∑L
ℓ=1 V

ℓ for V ℓ := span{φℓ
i : i ∈ IℓV } with level

ℓ ∈ [L] and vh ∈ Vh. It can be represented by

vh =
L∑

ℓ=1

vℓ =
L∑

ℓ=1

∑
i∈Iℓ

V

vℓ
iφ

ℓ
i (3.1)

with coefficients vℓ ∈ RIℓ
V for ℓ ∈ [L] as visualized in Figure 3.1. We set the closure of IℓV to

IℓV := IkV ∪ {i ∈ IℓU : suppφℓ ∩ suppV ℓ ̸= ∅} to include all indices in IℓU , for which the

1we use the convention [n] := {1, . . . , n}

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 10

vh v1 v2 v3

= + +

Q⊺
1v

1: Q⊺
2v

2: Q⊺
3v

3:

Figure 3.1: Depicted is the decomposition of a continuous function v ∈ Vh into coarse grid parts
and fine grid corrections on uniformly refined grids. Each function on a uniformly refined grid can be
represented by an image, where one pixel corresponds to the value of one node. For local corrections
the images are sparse.

corresponding functions have overlapping support with V ℓ. Additionally, set the closure of V ℓ to V ℓ :=
span{φℓ

i : suppφ
ℓ
i∩suppV ℓ ̸= ∅}. The closure is visualized in Figure 3.2. This set is of importance

in the SSC algorithm with CNN, when projecting information of all subsets to one refinement level. It
is a formal technicality that is due to the introduction of local contributions to the solution that were not
present in [27].

3.1 Levelwise discretization

Since CNNs can only act on one discretization level (corresponding to one image size) at a time, we
derive a SSC acting on the different levels separately. For this, define the ℓ2–projection, restricting an
element in the whole space to one subspace by

Qk : R∪ℓ∈[L]Iℓ
V → RIk

V with v = (vℓ,j)ℓ∈[L],j∈Iℓ
V
7→ (vk,i)i∈Ik

V
=: vk.

The transpose Q⊺
k then trivially embeds an element of the subspace in the larger space. The above

decomposition is visualized in Figure 3.1, depicting Q⊺
kv

k for each level k = 1, . . . , L. Furthermore,

we set v<k ∈ R
∑L

ℓ=1 Iℓ
U to be the contribution of v corresponding to levels smaller than k and

v>k ∈ R
∑L

ℓ=1 Iℓ
U to correspond to levels larger than k. Formally, this is defined by

v<k :=
k−1∑
ℓ=1

Q⊺
kv

k and v>k :=
L∑

ℓ=k+1

Q⊺
kv

k

with v<1 = v>L = 0 ∈ R∪ℓ∈[L]Iℓ
V such that

v = v<k +Q⊺
kv

k + v>k. (3.2)

An SSC solving Ayu = f for some f ∈ R∪ℓ∈[L]Iℓ
V consists of smoothing updates on each level,

carried out in a successive manner. One such update on level k ∈ [L] has the form

uk ← uk + ωk
y(f

k −QkAyu),

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 11

Figure 3.2: Refining a coarse mesh (compare first mesh in Figure 2.1) in the marked corner leads to
the mesh depicted in the first row on the left-hand side. New degrees of freedom with indices in I1V
stemming from this refinement (new nodes without the boundary nodes to incorporate the Dirichlet
boundary condition) are depicted in the second image in the first row by a function, which is 1 on I1V
and 0 otherwise. To visualize I1V , a function, which is 1 on indices in I1V and 0 otherwise, is plotted in
the last image in the first row. The corresponding masks on I1U are plotted in the second row.

where for each index i ∈ IkV on level k and each index on any level (k2, j) ∈ ∪ℓ∈[L]{ℓ} × IℓV the
operator is set to (QkAy)i,(k2,j) := ay,h(φ

k
i , φ

k2
j). Since the operator needs information of u on all

levels, the operation has to be decomposed into contributions for each level individually. Therefore,
in order to calculate QkAyu, we consider the different contributions of the decomposition separately
using the following prolongation and weighted restriction operations, which transfer discrete functions
from one level to a consecutive level.

Definition 3.1 (Prolongation & weighted restriction). For L ∈ N and k = 1, . . . , L − 1 define

the prolongation Pk : RIk
V → RIk+1

V as the nodal interpolation of V k onto V k+1. We call P ⊺
k the

weighted restriction with φk
i (x) =

∑
j∈Ik+1

V

(P ⊺
k)i,jφ

k+1
j (x) for x ∈ suppVk+1.

These operators can be used to connect different levels and calculate the application of the operator
Ay to the whole vector u (with contributions from all levels) for a smoothing step on each level.

Theorem 3.1 (Levelwise calculation of QkAyu). Let Ak
y be defined as in (2.3) for indices in IkV ×IkV

and functions φk
i ∈ IkU . Furthermore, set uk

i ∈ RIk
V equal to uk

i for i ∈ IkV and zero otherwise. To
calculate QkAyu

<k and QkAyu
>k, for k ∈ [L] we define the auxiliary vectors

ũ1 := 0, ũk := Pk−1

Ä
ũk−1 + uk−1

ä
and (3.3)

ūL := 0, ūk := P ⊺
k

Ä
ūk+1 + Ak+1

y

⊺
uk+1
ä
, (3.4)

where ũk denotes the interpolation of u<k into the current space and ūk denotes the projection of
u>k onto the current space. This makes it possible to represent the multiplication with Ay on each
level only using levelwise calculations, prolongations and weighted restrictions by

QkAyu = Ak
y

Ä
uk + ũk

ä
+ ūk|Ik

V
.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 12

Proof. Since Ay is a linear operator, we considering the multiplication with the different parts of u
separately. For j ∈ IkV it holds that

(QkAyQ
⊺
ku

k)j =
∑
i∈Ik

V

uk
i

∫
κh

〈
∇φk

i ,∇φk
j

〉
dx =

∑
i∈Ik

V

uk
i

∫
κh

〈
∇φk

i ,∇φk
j

〉
dx =

Ä
Ak

yu
k
i

ä
j
.

Lemma B.3 and Lemma B.4 yield

QkAyu
<k = Ak

yũ
k and

QkAyu
>k = ūk|Ik

V
,

respectively. The claim follows with (3.2).

With this, we can define an SSC using only levelwise actions and with restrictions and prolongations
between two consecutive levels as depicted in the Levelwise Local Multigrid Algorithm (LLMG) in
Algorithm 2. It consists of residual corrections and smoothing steps in each subspace RIk

V separately,
starting with the finest level L, successively including coarser levels, and subsequently updating finer
levels until each level has been updated twice. After each update, the auxiliary variables ū, ũ are
updated. Since the definition in (3.4) of ūk contains information only of uℓ for ℓ > k, i.e. information
of finer levels, and ũk in (3.3) only depends on uℓ for ℓ < k, i.e. information of coarser levels, the
update of one uk leads to a change of ūℓ for ℓ < k and a change of ũℓ for ℓ > k. Therefore, when
smoothing on a coarser level in the subsequent step, ūk−1 needs to be updated. When smoothing on
a finer level in the subsequent step, the update has to be done for ũk+1.

Algorithm 2: Levelwise Local Multigrid Algorithm LLMG(u, f ,y)

1 Calculate ū, ũ as in (3.4), (3.3) ▷ calculate auxiliary vectors
2 for k = L, . . . 1 do
3 uk ← uk + ωk

y(f
k − [Ak

y(u
k + ũk) + ūk|Ik

V
]) ▷ smoothing on one level

4 if k > 1 then

5 ūk−1 ← P ⊺
k−1(ū

k + Ak
y

⊺
uk) ▷ update auxiliary vector ū fine to coarse

6 end
7 end
8 for k = 1, . . . , L do
9 uk ← uk + ωk

y(f
k − [Ak

y(u
k + ũk) + ūk|Ik

V
]) ▷ smoothing on one level

10 if k < L then

11 ũk+1 ← Pk

Ä
ũk + uk

ä
▷ update auxiliary vector ũ coarse to fine

12 end
13 end

With Theorem 3.1, the LLMG is a standard SSC algorithm (see Algorithm 3) and convergence can be
derived from known results.

Theorem 3.2 (Convergence of the LLMG). Assume that there exist constants c,C > 0 such that
c ≤ miny∈Γ λmin(Ay) and C ≥ maxy∈Γ λmax(Ay). Let u be the solution of Ayu = f and 0 <

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 13

ωk
y = ω ≤ C−1 . There exists a constant c > 0 such that for cL := cL

1+cL
, ε > 0 and m ∈ N with

m ≥ log(ε−1)/ log(c−1
L) it holds true that

∥u− LLMGm(0, f ,y)∥Ay
≤ ε ∥u∥Ay

,

where LLMGm denotes the application of the algorithm m times.

Proof. For a fixed y ∈ Γ the LLMG is equivalent to the local multigrid algorithm (LMG Algorithm 4)
with Theorem 3.1 and therefore has the same convergence rate. We use the XZ-identity in Lemma B.1
shown in [8, Theorem 4] and a result similar to the Richardson smoothing contraction shown in [4,
Lemma 4.3] in Lemma B.2 to deduce the convergence of the LMG in the appendix (see Theorem B.1
and Appendix B.2), showing that there exists a constant C > 0 such that for cL = CL

1+CL
it holds∥∥u− LLMGm(u0, f ,y)

∥∥
Ay
≤ cmL

∥∥u− u0
∥∥
Ay

.

Therefore, initializing with u0 = 0 and choosing m ≥ log(ε−1)/ log(c−1
L) confirms the claim.

Remark 3.1. Note that κ(·,y) > c for some c > 0 and all y ∈ Γ implies with the Poincaré inequality
that λmin(Ay) > C for some C > 0 and all y ∈ Γ. Furthermore, κ(·,y) < c for some c > 0 and
all y ∈ Γ implies that λmax(Ay) < C for some C > 0 and all y ∈ Γ.

4 Convolutional neural networks (CNN) for finite element dis-
cretizations

CNNs are a specific neural network architecture tailored to tasks involving image data such as image
classification and segmentation. Inspired by [20], they were first implemented with a backpropaga-
tion algorithm in [31] for image recognition. Applying the action of a CNN to an image involves the
application of local kernels to a hierarchy of scaled representations of the input. This locality makes
the architecture particularly suitable with partial differential equations, where local properties and in-
teractions have to be resolved to obtain highly accurate representations. To incorporate interactions
on a larger scale with respect to the image domain, compression and decompression of the input
images can be implemented with CNNs through strided and transpose strided convolutions, leading
the popular CNN architecture U-Nets [37]. This architecture is heavily exploited in this work.

4.1 Data decomposition

In the analysis of the implemented CNN architecture, images with different resolutions are used as the
representation of the solutions of the parametric PDE. This is possible since FEM discretizations of
functions determined by coefficient vectors are used on different grid levels, similar to the decomposi-
tion in [27]. Additionally, the discontinuous error estimator2 defined on the triangles of the considered
meshes are represented with images of different scales.

2Note that the solution is assumed as a conforming P1 function and the estimator is a DG0 function, i.e. defined by a
scalar value per mesh element.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 14

= + +

η c1 c2 c3

Figure 4.1: A piecewise constant discontinuous functions η =
∑

T∈T ηTχT can be decomposed into
a coarse grid piecewise constant function and a fine grid piecewise constant corrections.

Continuous functions Any vh ∈ Vh can be decomposed into its components on vℓ ∈ V ℓ by vh =∑L
ℓ=1 v

ℓ as described in Section 3. The functions vℓ on each level can be represented by coefficient
images on the whole uniformly refined grids. If IkV is a small subset of IkU , i.e. in case of very local
refinements in the AFEM, these images are sparse. The complete decomposition of vh ∈ Vh as
depicted in Figure 3.1 reads

vh =
L∑

ℓ=1

vℓ =
L∑

ℓ=1

∑
i∈Iℓ

V

vℓ
iφ

ℓ
i .

Definition 4.1 (Coefficient images). For w ∈ RIk
V the coefficient image wimg ∈ RIk

U is defined for
i ∈ IkU by

(wimg)i :=

®
wi, if i ∈ IkV
0, otherwise

,

where the indices are two dimensional image indices i = (i1, i2).

In the same manner as the continuous functions, the piecewise constant functions can be decom-
posed into corrections on uniformly refined meshes as depicted in Figure 4.1, namely

η =
L∑

ℓ=1

ηℓ =
L∑

ℓ=1

n∑
i=1

mℓ∑
j=1

ηℓ
(i,j)φ̃

ℓ
i,j, (4.1)

where n is the number of images needed for the representation. It depends on the structure of
the mesh (n = 1 in the continuous case due to nodal representation) and mℓ, ℓ = 1, . . . , L
the number of pixels of each image. Here, φ̃ℓ

(i,j) denotes the characteristic function on the trian-

gle (i, j) ∈ [n] × [mℓ] on discretization level ℓ ∈ [L] for the indexation of the triangles according
to (4.1). In Figure 4.2 each (continuous) correction is represented with n = 8 sparse images. Piece-
wise constant (discontinuous) functions on meshes as depicted in Figure 1.2 can be represented with
n = 2 images, e.g. by one image containing the values of the upper triangle in the upper right square
of each node and the other image containing the lower triangle in the same square as illustrated in
Figure 5.1.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 15

:

Figure 4.2: Each piecewise constant function for the meshes depicted in Figure 4.1 can be repre-
sented with 8 images. Every other node in each direction is surrounded by 8 triangles. Each image
corresponds to one of the triangles for every such node.

4.2 Submanifold sparse CNN

Different types of convolutions are considered in this work. The vanilla convolution ∗ sweeps a kernel
over the input, the 2-strided convolution ∗2s applies the kernel on every other pixel of the input images,
approximately halving the size of the input images. Moreover, the 2-transpose strided convolution ∗2st

sweeps the kernel over a dilated image with added zeros between every two pixels, doubling the input
image size and the submanifold sparse convolution ∗sp as used in [24, 23] applies the kernel only to
nonzero pixels of the input image and sets the remaining entries to zero. The different convolutions
are visualized in Figure C.1, see also [13, 14].

Every step of the successive subspace correction algorithm Algorithm 2 and the error estimator (2.5)
can be represented with a CNN by incorporating these different convolutions. When additionally in-
cluding a marking function as culling mask, the whole adaptive scheme Algorithm 1 can be approxi-
mated by the derived CNNs on sparse images.

5 Expressivity results

For the analysis in this work, the used activation function has to satisfy the following assumption.

Assumption 5.1 (Activation function). Let σ ∈ L∞
loc such that there exists x0 ∈ R, where σ is three

times continuously differentiable in a neighborhood and σ′′(x0) ̸= 0.

These properties are fulfilled for a number of classical activation functions such as softplus, sigmoids
and the exponential linear unit. In the following subsections, the individual parts of the AFEM (Algo-
rithm 1) are approximated individually. The estimations are then collected for the overall convergence
result. To illustrate our constructions, the meshes depicted in Figure 1.2 are considered.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 16

5.1 NN approximation of the multigrid solver

To approximate the solution on a fixed grid in each step of the AFEM, the "Levelwise Local Multigrid
Algorithm"LLMG (Algorithm 2) is employed. Its main ingredient is the smoothing on each (locally
refined) subspace. For one smoothing step, the crucial part is the approximation of the action of
the parametric operator Ayu with a CNN. The analysis is similar to [27, Theorem 6]. However, the
local corrections impose several technical additions, for which some auxiliary vectors defined in the
algorithm are introduced. We are then able to show the following complexity bound.

Theorem 5.2. Assume that there exist constants c,C > 0 such that c ≤ miny∈Γ λmin(Ay) and
C ≥ maxy∈Γ λmax(Ay). There exists a positive constant C > 0 such that for every ε,M > 0 there

exists a CNN Ψ : R2×IL
U → R×L

k=1 Ik
V such that

1
∥∥∥Ψ(κy img, fimg)− LLMGm(0, f ,y))

∥∥∥
Ay

≤ ε for all κ(·,y), f ∈ UL

2 number of weights bounded by M(Ψ) ≤ CLm.

The proof can be found in Appendix D.1. Combining this result with Theorem 3.2 leads to the following
corollary, stating that the solution of the Darcy problem (2.2) on a an adaptively refined mesh can be
approximated arbitrarily well by a CNN with a prescribed bound for the number of parameters.

Corollary 5.1. Let u be the solution of Ayu = f . Choose m ≥ log(ε−1)/ log(c−1
L) with chosen as

in Theorem 3.2. Then there exists a constant C > 0 such that for any ε > 0 there exists a CNN Ψ :
R2×IL

U → R×L
k=1 Ik

V with the number of parameters bounded by M(Ψ) ≤ CL log(ε−1)/ log(c−1
L)

such that ∥∥∥Ψ(κy img, fimg)− u
∥∥∥
Ay

≤
∥∥∥Ψ(κy img, fimg)− LLMGm(0, f ,y)

∥∥∥
Ay

+ ∥LLMGm(0, f ,y)− u∥Ay

≤ ε(1 + ∥u∥Ay
).

5.2 Estimator approximation

A central novelty of this work is the CNN representation of the a posteriori error estimator η subject
to uh as used in the AFEM, see Section 2.2. For the analysis of the approximation, the two parts of
the estimator (the jump term and strong residual) are considered separately. The analysis is carried
out for a reference triangle in TV,k from a triangulation V k.

Definition 5.1 (Strong residual & jump images). Let T 1
k,i and T 2

k,i be the triangles in the top right

quadrant of node i ∈ IkU as depicted in Figure 5.1 and let k ∈ [L]. Define r2k,T q , j2k,T q ∈ RIk
U for

q = 1, 2 by

(r2k,T q)i := h2
T q
k,i
∥f +∇ · (κh(·,y)∇uh)∥2L2(T

q
k,i)

as the strong residual image and

(j2k,T q)i := hT q
k,i
∥[[κh(·,y)∇uh]]∥2L2(∂T

q
k,i)

as the jump image.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 17

Figure 5.1: On each level k ∈ [L] at each node i ∈ IkU we define the mesh elements T 1
k,i and T 2

k,i

as the triangles in the upper right quadrant.

Then the a posteriori error estimator in a triangle T q
k,i ∈ TV,k can be written as

η2T q
k,i

=
(
r2k,T q

)
i
+
(
j2k,T q

)
i
.

Definition 5.2 (Uniform prolongation and weighted restriction). Extending the definition of the prolon-
gation and weighted restriction from the subspaces Vk to Uk, the uniform prolongation is defined as
PU,k : RIk

U → RIk+1
U such that φk

i =
∑

j∈Ik+1
U

(PU,k)j,iφ
k+1
j for all i ∈ IkU . The transpose P ⊺

U,k is
called uniform weighted restriction.

Note that this is the prolongation as defined in [27, Defnition 2].

Theorem 5.3 (Estimator approximation). Let η2k,M
k ∈ R2×Ik

U be defined for k = 1, . . . , L, q ∈
{1, 2} and i ∈ IkU by (η2k)[q]i := η2

T q
k,i

. Moreover, let Mk[q]i := 1, if T q
k,i ∈ T k

V and zero otherwise.

There exists a constant C > 0 such that for every ε,M > 0 there exists a CNN Ψ : R×L
ℓ=1 3×Iℓ

U →
R×L

ℓ=1 Iℓ
U such that

1
∥∥∥M ℓ ⊙Ψ(×L

k=1
uk

img × κk
y img
× fkimg)[ℓ]− η2ℓ

∥∥∥
ℓ∞
≤ ε holds for all ℓ = 1, . . . , L and

2 the number of parameters is bounded by M(Ψ) ≤ CL.

Proof. For the finest level L and q = 1, 2 let the estimator images r2L,T q , j2L,T q ∈ RIL
U be defined as

in Definition 5.1. To represent the solution on the finest level let uP1
img := u1

img and uPk
img := PU,ku

Pk−1

img +

uk
img according to Definition 3.1 for k = 1, . . . , L. Then, with [27, Remark 19] uPk

img can be calculated
with a CNN and uPL contains the coefficients of the nodal interpolation of the function uh ∈ V defined
by×L

k=1
uk in UL.

Now the estimator can be approximated on every level by approximating the residual and jump images
in the fines level and combining them correctly. In Theorem D.4 we show that there exists a CNN
architecture such that for every ε,M > 0 and q = 1, 2 there exists a CNN Ψ with∥∥Ψ(uPL , fL,κL

y)[q]− (r2L,T q , j2L,T q)
∥∥
∞ ≤ ε.

Observe that for triangles Tk ∈ Tk it holds that hTk
= h0/2

k = 2h0/2
k+1 = 2hTk+1

. Furthermore,
each triangle on level k is equal to the union of four triangles on level k + 1

T q
k,i =

⋃
q̃∈{1,2}

⋃
j∈Ik+1

U s.t.

T q̃
k+1,j⊂T q

k,i

T q̃
k+1,j.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 18

This yields for i ∈ IkU and for triangles as in Figure 5.1

(r2k,T q)i = h2
T q ∥f +∇ · (κh(·,y)∇uh)∥2L2(T

q
k,i)

= 22
∑

q̃∈{1,2}

∑
j∈Ik+1

U s.t.

T q̃
k+1,j⊂T q

k,i

h2
Tk+1
∥f +∇ · (κh(·,y)∇uh)∥2L2(T

q̃
k+1,j)

= 4
∑

q̃∈{1,2}

∑
j∈Ik+1

U s.t.

T q̃
k+1,j⊂T q

k,i

(r2k+1,T q̃)j.

This can be implemented with one CNN layer with a sparse kernel and stride 2 for each level. Since
the jump term is zero on edges in the fine discretization, which have not been used to solve for uh,
jumps over edges of some triangle T q̃

k+1,j on level k+1 inside a triangle T q
k,i on level k can be added

up to yield the jumps only over edges on the coarser level. This yields

(j2k,T q)i = hTk
∥[[κh(·,y)∇uh]]∥2L2(∂T q

k,i)
= 2

∑
q̃∈{1,2}

∑
j∈Ik+1

U s.t.

T q̃
k+1,j⊂T q

k,i

hTk+1
∥[[κh(·,y)∇uh]]∥2L2(∂T q̃

k+1,j)

= 2
∑

q̃∈{1,2}

∑
j∈Ik+1

U s.t.

T q̃
k+1,j⊂T q

k,i

(j2k+1,T q̃)j.

This can also be realized by one CNN layer with a sparse kernel and a stride of 2 for each level. Since
adding the strong residual image and jump image yields the error estimator for triangles T q

k,i ∈ TV,k,
multiplying with a mask setting all other output entries to zero yields the claim.

5.3 AFEM approximation

Combining the approximation of the multigrid solver and the error estimator with a marker based on
the estimator leads to an approximation of the whole AFEM algorithm. For the formulation of our
main theorem, the following coefficient-to-function map is needed.

Definition 5.3. Let C : RI1
U×···×IL

U → H1
0 be the function that maps the finite element coefficients to

the corresponding function in H1
0 by

C(u) :=
L∑

k=1

∑
i∈Ik

U

uk
iφ

k
i .

Our main result then gives an upper bound on the number of parameters needed by the constructed
networks architecture to approximate the solution of the Darcy problem as well as the result of the
AFEM algorithm. In summary, the derived bound depends linearly on the number of refinement
levels as well as linearly on the number of steps of the AFEM and logarithmically on the inverse of
the desired accuracy.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 19

Theorem 5.4 (Approximate AFEM). Assume there exist c,C > 0 such that c ≤ κ(x,y) ≤ C for
all x ∈ D and y ∈ Γ. Let ε > 0 and K,L ∈ N be the number of AFEM iterations and maximal
refinements of each triangle, respectively. Consider a threshold marking strategy. Then there exists a
CNN Ψ such that M(Ψ) ≲ LK log(ε−1)/ log(c−1

L) with cL := cL
1+cL

, c > 0 and for any y ∈ Γ

∥u(·,y)− C(Ψ(κy, f))∥H1(D) ≤ ∥u(·,y)− C(AFEM(V1, K))∥H1(D) + ε.

The proof of this theorem can be found in Appendix D.3. The complete architecture is depicted in Fig-
ure 5.2. Here, the solver in each step is approximated by U-Nets encoded by green arrows outputting
approximations of the solution in a multigrid discretization (green boxes) as described in Theorem 5.2.
The estimator (orange) is approximated based on the approximate solutions with networks as con-
structed in Theorem 5.3 and the refinement masks (purple boxes) are derived from the estimator and
used in the next solver. Here, the space was refined uniformly in the first step leading to masks, which
are 1 everywhere. In the second step the space was refined locally leading to a 0/1-mask on the
finest level. Adding all continuous functions corresponding to the images in the green boxes as in
(3.1) leads to the full approximate solution.

Remark 5.1. Global marking strategies such as Dörfler marking cannot be implemented directly in a
CNN due to its local action in a neighbourhood. However, such a marking can in principle be imple-
mented outside the CNN based on the estimator prediction of the CNN. As an alternative, the marking
strategy could be learned by a separate NN based on the locally adapted training data. This marking
NN could then be combined with the proposed CNN. Recent research in this direction can e.g. be
found in [22, 40, 45, 19, 18].

6 Numerical experiments

This section is concerned with the practical performance of the proposed architecture. Here, we
present preliminary proof of concept results. The architecture should be tested for more steps of the
adaptive solver and different expansions of the parameter field. The numerical tests are implemented
for a parametric stationary diffusion problem with parametric coefficient defined by

κ(·,y) := 0.1 + y1χD1 + y2χD2 .

For this “cookie problem”, we assume that y ∼ U([0, 1]2), D1, D2 are disks of radius r = 0.15 and
centers at (0.75, 0.25) and (0.75, 0.75), respectively. The architecture is implemented for K = 3
steps of the AFEM. For each step a solver was approximated with 3, 2, 1 U-Nets. The overall num-
ber of trainable parameters is 2 441 516. In Figure 6.1, the final network outputs are compared to a
reference solution (obtained by solving on twice uniformly refined meshes) as well as error estimators
and markers from the training data. It can be observed that solution and estimator are approximated
well with local errors magnitudes smaller than the actual values. Note that the marker based on the
error estimator as derived in the network differs from the marker used to generate the data. This in-
accuracy in the prediction of the marked elements leads to nonzero elements in the network output
in areas, which ideally should not be refined. In Figure 6.1 this leads to the local error in the upper
right corner in the solution approximation and to the difference in H1-error decays in the first row

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 20

κy

Solve on grid given by markers with masked U-Nets (Theorem 5.2)

E
rr

or
es

tim
at

or
w

ith
U

-N
et

s
(T

he
or

em
5.

3)

M
ar

k
fu

nc
tio

ns
on

ne
xt

le
ve

l

Step 1

Step 2

v

η

M

Figure 5.2: The derived CNN architecture is depicted for an approximation of three steps of the
AFEM. The CNN mapping starts with the nodal interpolation of the parameter field κy on the finest
level given as an input image. As in Algorithm 1, in every step the solution v of the system of linear
equations (Line 3, Line 9) is calculated (green arrows) and the solution is given in a multigrid de-
composition (3.1) (green boxes), compare Theorem 5.2. The approximation of the error estimator η
represented as in Theorem 5.3 is depicted in orange errors and its multigrid decomposition as in (4.1)
in orange boxes. The derived markers are encoded by 0/1-masks M visualized in the purple boxes.
The masks are then used in the network of the next iteration to enforce an action only on local parts
of the larger images to imitate a local mesh refinement. Note that one AFEM iteration corresponds
to one black dashed box.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 21

M MNN κ

uh uNN
h |uNN

h − uh|

η ηNN |ηNN − η|

Figure 6.1: True and network prediction solutions, estimators and markers are plotted for the third step
of the AFEM. From left to right, the first row shows the marking image on the third level, which was
used for training, the marking image, which the network deduced from the estimator of the the second
solution and the parameter field sample. The second row shows the Galerkin solution on the mesh
used for training, the second plot shows the network output, and the last images shows the difference
between the two. The last row shows the first the estimator of the third solution in the AFEM iteration,
the network approximation of the estimator and the difference between the two. It can be seen that
the pointwise distances are a magnitude smaller than the true values.

in Figures 6.2 and 6.3. In these figures, the graphs depict the H1 and L2 relative errors of the neural
network approximation and the solutions of the AFEM. In Figure 6.2, the errors are plotted over the
steps of the AFEM and in Figure 6.3 they are plotted against the degrees of freedom used in the
approximation and the AFEM. The graphs in the first rows show results for the fully adaptive CNNs,
choosing the markers based on the approximated estimators without using the mesh refinement used
in the FEniCS[1] FEM package, which was used for the data generation. This element is still inexact
and needs to be adjusted. The second rows show the results based on a CNN using masks known
from the data generation. Since the decays with known masks match the true error decay of the test
data, the main step to optimize is the mask generation.

In summary, for a local refinement with known masks, the relative H1 and L2 errors of the network
show the same decay as the true AFEM for three steps. For a fully adaptive CNN, the L2 errors
match the true errors while the H1 errors are larger, probably due to inexact masks, which will be a
topic of future investigations.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 22

H1 error decay over levels L2 error decay over levels
A

da
pt

iv
e

ne
ur

al
ne

tw
or

k
Fi

xe
d

lo
ca

lr
efi

ne
m

en
t

Figure 6.2: The average relative H1 and L2 errors are plotted against the number of steps of the
AFEM K = 1, 2, 3 together with the error range from the minimal to the maximal error in every
step.

H1 error decay over parameters L2 error decay over parameters

A
da

pt
iv

e
ne

ur
al

ne
tw

or
k

Fi
xe

d
lo

ca
lr

efi
ne

m
en

t

Figure 6.3: The average relative H1 and L2 errors are plotted against the number of parameters used
by the AFEM and the neural network.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 23

7 Outlook

In the paper, we derived an algorithm LLMG, which approximates the parametric diffusion PDE on
a fixed grid based on a multigrid decomposition of the solution and a successive subspace correction
algorithm. We showed that the derived algorithm can be approximated efficiently in the number of
parameters by a derived CNN architecture. Furthermore, we showed that an efficient and reliable
finite element error estimator can be approximated by a specific CNN construction. These results were
combined to show upper bounds for the number of parameters of CNNs approximating a complete
adaptive finite element scheme.

It is now interesting to put this architecture to use and explore the efficiency of the networks numer-
ically, mainly with respect to two aspects. First, the number of calculations on each level should be
reduced comparing to fully refined meshes [27] due to the submanifold sparse convolutions on sparse
tensors. Note that the sparsity of the tensors stems from the used multigrid decomposition of the data.
Second, the efficiency with respect to the number of samples needed for training should be explored,
considering that in each step corrections with decreasing influence on the whole solutions need to be
learned. This should lead to fewer training samples on fine grids and hence a more efficient training
and data generation process.

In addition, one might be interested in deriving convergence results for the proposed adaptive scheme
with the presented refinement and for different marking strategies. The direction of showing the CNN
approximation results for other meshes without hanging nodes might also be of interest.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 24

References

[1] M. S. Alnæ, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M. E. Rognes, and G. N. Wells. The fenics project version 1.5. Archive of Numerical Software,
3(100):9–23, 2015.

[2] K. Bhattacharya, B. Hosseini, N. Kovachki, and A. Stuart. Model reduction and neural networks
for parametric pdes. The SMAI journal of computational mathematics, 7, 05 2020.

[3] D. Braess. Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge
University Press, 2007.

[4] D. Braess and W. Hackbusch. A new convergence proof for the multigrid method including the
V-cycle. Siam Journal on Numerical Analysis - SIAM J NUMER ANAL, 20:967–975, 10 1983.

[5] A. Caboussat, M. Girardin, and M. Picasso. Error assessment of an adaptive finite ele-
ments—neural networks method for an elliptic parametric pde. Computer Methods in Applied
Mechanics and Engineering, 421:116784, 2024.

[6] A. Caboussat, M. Girardin, and M. Picasso. Error assessment of an adaptive finite ele-
ments—neural networks method for an elliptic parametric pde. Computer Methods in Applied
Mechanics and Engineering, 421:116784, 2024.

[7] C. Carstensen, M. Eigel, R. H. Hoppe, and C. Löbhard. A review of unified a posteriori finite
element error control. Numerical Mathematics: Theory, Methods and Applications, 5(4):509–
558, 2012.

[8] L. Chen. Deriving the x-z identity from auxiliary space method*. In Y. Huang, R. Kornhuber,
O. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering
XIX, pages 309–316, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[9] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks, 6(4):911–917, 1995.

[10] N. Dal Santo, S. Deparis, and L. Pegolotti. Data driven approximation of parametrized pdes by
reduced basis and neural networks. Journal of Computational Physics, 416:109550, 2020.

[11] L. Diening, C. Kreuzer, and R. Stevenson. Instance optimality of the adaptive maximum strategy.
Foundations of Computational Mathematics, 16(1):33–68, 2015.

[12] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM Journal on Numerical
Analysis, 33(3):1106–1124, 1996.

[13] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. ArXiv e-prints, mar
2016.

[14] V. Dumoulin and F. Visin. conv_arithmetic. https://github.com/vdumoulin/
conv_arithmetic, 2016.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic

CNNs can approximate AFEM 25

[15] M. Eigel, N. Farchmin, S. Heidenreich, and P. Trunschke. Adaptive nonintrusive reconstruc-
tion of solutions to high-dimensional parametric pdes. SIAM Journal on Scientific Computing,
45(2):A457–A479, 2023.

[16] M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander. Adaptive stochastic galerkin FEM. Computer
Methods in Applied Mechanics and Engineering, 270:247–269, Mar. 2014.

[17] M. Eigel, M. Marschall, M. Pfeffer, and R. Schneider. Adaptive stochastic galerkin fem for log-
normal coefficients in hierarchical tensor representations, 2020.

[18] M. Feischl and J. Bohn. Recurrent neural networks as optimal mesh refinement strategies. CRC
Preprint 2020/33, 2020.

[19] C. Foucart, A. Charous, and P. F. Lermusiaux. Deep reinforcement learning for adaptive mesh
refinement. Journal of Computational Physics, 491:112381, 2023.

[20] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36:193–202, 1980.

[21] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok. Numerical solution of the
parametric diffusion equation by deep neural networks. Journal of Scientific Computing, 88:22–
88, 2021.

[22] A. Gillette, B. Keith, and S. Petrides. Learning robust marking policies for adaptive mesh refine-
ment. SIAM Journal on Scientific Computing, 46(1):A264–A289, 2024.

[23] B. Graham, M. Engelcke, and L. van der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. CVPR, 2018.

[24] B. Graham and L. van der Maaten. Submanifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017.

[25] I. Gühring and M. Raslan. Approximation rates for neural networks with encodable weights in
smoothness spaces. Neural Networks, 134:107–130, 2021.

[26] W. Hackbusch. Multi-grid methods and applications, volume 4. Springer Science & Business
Media, 2013.

[27] C. Heiß, I. Gühring, and M. Eigel. Multilevel cnns for parametric pdes. Journal of Machine
Learning Research, 24(373):1–42, 2023.

[28] N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation and error bounds for fourier
neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021.

[29] G. Kytyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of deep neural
networks and parametric pdes. Constructive Approximation, 55:73–125, 2022.

[30] S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for DeepONets: a deep
learning framework in infinite dimensions. Transactions of Mathematics and Its Applications,
6(1):tnac001, 03 2022.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 26

[31] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Handwritten
digit recognition with a back-propagation network. In D. Touretzky, editor, Advances in Neural
Information Processing Systems, volume 2. Morgan-Kaufmann, 1989.

[32] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Fourier neural operator for parametric partial differential equations. In International Conference
on Learning Representations, 2021.

[33] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via deep-
onet based on the universal approximation theorem of operators. Nature Machine Intelligence,
3:218–229, 2021.

[34] K. O. Lye, S. Mishra, and R. Molinaro. A multi-level procedure for enhancing accuracy of machine
learning algorithms, 2020.

[35] C. Marcati and C. Schwab. Exponential convergence of deep operator networks for elliptic partial
differential equations. SIAM Journal on Numerical Analysis, 61(3):1513–1545, 2023.

[36] R. H. Nochetto, K. G. Siebert, and A. Veeser. Theory of adaptive finite element methods: An
introduction. In R. DeVore and A. Kunoth, editors, Multiscale, Nonlinear and Adaptive Approxi-
mation, pages 409–542, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[37] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015.
Springer International Publishing.

[38] J. E. Schütte and M. Eigel. Adaptive multilevel neural networks for parametric PDEs with error
estimation. In ICLR 2024 Workshop on AI4DifferentialEquations In Science, 2024.

[39] C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates
for generalized polynomial chaos expansions in UQ. Analysis and Applications, 17(01):19–55,
2019.

[40] T. Służalec, R. Grzeszczuk, S. Rojas, W. Dzwinel, and M. Paszyński. Quasi-optimal hp-finite
element refinements towards singularities via deep neural network prediction. Computers &
Mathematics with Applications, 142:157–174, 2023.

[41] A. L. Teckentrup, P. Jantsch, C. G. Webster, and M. Gunzburger. A multilevel stochastic collo-
cation method for partial differential equations with random input data. SIAM/ASA Journal on
Uncertainty Quantification, 3(1):1046–1074, 2015.

[42] R. Verfürth. A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford Uni-
versity Press, 04 2013.

[43] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial differ-
ential equations with physics-informed deeponets. Science Advances, 7(40):eabi8605, 2021.

[44] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,
34(4):581–613, 1992.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 27

[45] J. Yang, T. Dzanic, B. Petersen, J. Kudo, K. Mittal, V. Tomov, J.-S. Camier, T. Zhao, H. Zha,
T. Kolev, et al. Reinforcement learning for adaptive mesh refinement. In International Conference
on Artificial Intelligence and Statistics, pages 5997–6014. PMLR, 2023.

[46] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–
114, 2017.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 28

A Error Estimator Derivation

We consider the residual in variational form for error e := u − uh, where uh is the Bubnov-Galerkin
approximation of u on Vh and T is an (exact) triangulation of domain D. The residual based error
estimator is common knowledge in the FEM literature, cf. [3, 7, 42]. For the sake of a self-contained
presentation, we provide the derivation in what follows since it may help the comprehension of the
CNN approximation in this paper. It holds that

ay,h(e, v) = ay,h(u, v)− ay,h(uh, v) = f(v)− ay,h(uh, v) =

∫
D

fv − κh(·,y) ⟨∇uh,∇v⟩ dx

=
∑
T∈T

∫
T

fv − κh(·,y) ⟨∇uh,∇v⟩ dx.

Furthermore, let nT be the unit outward normal vector to ∂T for T ∈ T . Then, it holds that

ay,h(e, v) =
∑
T∈T

∫
T

fvdx+

∫
T

v∇ · (κh(·,y)∇uh)dx−
∫
∂T

vκh(·,y)
∂uh

∂nT
ds

=
∑
T∈T

∫
T

(f +∇ · (κh(·,y)∇uh))vdx+
∑
γ∈∂T

∫
γ

vκh(·,y)
Ä¨
∇u(1)

h , n(1)
γ

∂
+
¨
∇u(2)

h , n(2)
γ

∂ä
ds.

Here, n(1)
γ and n

(2)
γ are the unit outward normal vectors of the elements of the mesh containing γ

and∇u(1)
h ,∇u(2)

h are the gradients of uh on the elements. With the Galerkin projection vh of v on Vh

and the definition of the jump (2.4), with some C̃ > 0 one gets the estimate

ay,h(e, v) =
∑
T∈T

∫
T

(f +∇ · (κh(·,y)∇uh))(v − vh)dx+
∑
γ∈∂T

∫
γ

[[κ(·,y)∇uh · n̂]](v − vh)ds

≤
∑
T∈T
∥f +∇ · (κh(·,y)∇uh∥L2(T) ∥v − vh∥L2(T) +

∑
γ∈∂T

∥[[κh(·,y)∇uh]]∥L2(γ)
∥v − vh∥L2(γ)

≤ C̃ ∥v∥H1(Ω)

Ñ∑
T∈T

h2
T ∥f +∇ · (κh(·,y)∇uh)∥2L2(T) +

∑
γ∈∂T

hE ∥[[κh(·,y)∇uh]]∥2L2(γ)

é1/2

.

Setting v = e and with ∥v∥H1(Ω) ≤ C∥v∥ay,h we arrive at

∥e∥2ay,h
=

(∥e∥2ay,h
)2

∥e∥2ay,h

=
(ay,h(e, e))

2

∥e∥2ay,h

≤ 1

∥e∥2ay,h

C̃2C2∥e∥2ay,h

Ñ∑
T∈T

h2
T ∥f +∇ · (κh(·,y)∇uh)∥2L2(T) +

∑
γ∈∂T

hT ∥[[κh(·,y)∇uh]]∥2L2(γ)

é
≤ Ĉ

∑
T∈T

h2
T ∥f +∇ · (κh(·,y)∇uh)∥2L2(T) + hT ∥[[κh(·,y)∇uh]]∥2L2(∂T) ,

which proofs reliability of the estimator with some Ĉ > 0.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 29

B Proofs of convergence of the levelwise local multigrid algo-
rithm

The sequence of uniform meshes (Tk)Lk=1, the piecewise linear finite element function spaces over
the meshes Uk and the space Vh =

∑L
k=1 V

k are introduced in Section 3 with V k ⊆ Uk. Further-
more, recall that the operator Qk is defined as the ℓ2–projection of the coefficients of functions in Vh

onto the coefficients of V k. The action of Ay restricted to the coefficient spaces of V k is defined by
Ak

y.

B.1 Successive Subspace Correction

The successive subspace algorithm (SSC) approximates the solution u ∈ R
∑L

k=1 n
2
k to Ayu = f by

iteratively updating the solution on the individual subspaces Rn2
k for k = 1, . . . , L by the weighted

residual, see Algorithm 3.

Algorithm 3: Successive Subspace Correction SSC(w)

1 for k=1,. . . , L do
2 w← w + ωk

y(f
k −QkAyw)

3 end
4 return w

The error of the current approximation after each step of the algorithm denoting the update by wupdate

can be written as

wupdate − u = w + ωk
y(f

k −QkAyw)− u = (I − ωk
yQkAy)(w − u).

Define the operator Tk : R
∑L

ℓ=1 nℓ → Rn2
k by x 7→ ωk

yQkAyx, where Ak
y is the restriction of Ay

to V k. Let λmax(B) denote the largest eigenvalue of matrix B and ωk
y be the smoothing factor such

that

0 < ωk
y ≤ λmax(A

k
y)

−1. (B.1)

The error of the successive subspace correction algorithm then has the recursive form

u− SSC(w) = (I − TL)(I − TL−1) . . . (I − T0)(u−w).

To bound the error, the X-Z identity from [8] can be used.

Lemma B.1 ([8, Theorem 4]). Suppose that
∥∥I − ωk

yA
k
y

∥∥
Ak

y
< 1 for each k = 0, . . . , L. Then there

exists a c0 ≥ 0 such that

∥(I − TL)(I − TL−1) . . . (I − T1)∥2Ay
=

c0
1 + c0

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 30

with

c0 = sup
∥v∥Ay

=1

inf∑L
k=1 vi=v

L∑
k=1

∥∥∥∥∥ωk
y(QkAy

L∑
i=k

vi − ωk
y

−1
vk)

∥∥∥∥∥
2

R̄−1
k

,

where R̄k = (2I − ωk
yA

k
y)ω

k
y.

To ensure the condition in Lemma B.1, we consider the following result.

Lemma B.2 (similar to [4, Lemma 4.3]). Let k ∈ [L] and κ(·,y) > 0 everywhere. Then for any
w ∈ RIk

V it holds that ∥∥(I − ωk
yA

k
y)w

∥∥
Ak

y
< ∥w∥Ak

y
,

where 0 < ωk
y ≤ λmax(A

k
y)

−1.

Proof. Let Ωk = suppVk. First, assume some φ : Ωk → R with φ = 0 on ∂Ωk. If φ is not constant
zero this implies that there exists a point x0 ∈ Ωk and ε > 0 such that∇φ ̸= 0 on an ε neighborhood
of x0 denoted b Uε(x0). Then, due to κ(·,y) > 0 everywhere, we obtain that

ay,k(φ, φ) =

∫
Ωk

κ(·,y) ⟨∇φ,∇φ⟩ dx ≥
∫
Uε(x0)

κ(·,y) ⟨∇φ,∇φ⟩ dx > 0,

where we set ay,k = ay,h as in (2.1) for Vh = Vk. Therefore, for any w ∈ RIk
V we have that

w⊺Ak
yw = ay,k

Ñ∑
i∈Ik

V

wiϕi,
∑
i∈Ik

V

wiϕi

é
> 0

and hence Ak
y is positive definite. Let Nk := |IkV | and denote the eigenvalues and eigenvectors of

Ak
y by λi,v

i for i = 1, . . . , Nk with

Ak
yv

i = λiv
i such that

δi,j =
〈
vi,vj

〉
ℓ2

for all i, j = 1, . . . , Nk.

Furthermore, for w ∈ RNk , let

Jkw := (I − ωk
yA

k
y)w.

Then, with w =
∑Nk

i=1 civ
i

Jkw =

Nk∑
i=1

ci(I − ωk
yA

k
y)v

i =

Nk∑
i=1

ci(1− ωk
yλi)v

i.

Second,

|w|2 :=
Nk∑
i=1

λi(1− λiω
k
y)c

2
i

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 31

defines a semi-norm due to 0 < ωk
y ≤ λmax(A

k
y)

−1. Then, the following statements hold

|w|2 =
Nk∑

i,j=1

(1− λiω
k
y)λi

〈
vi,vj

〉
ℓ2
cicj =

〈
Nk∑
i=1

ci(1− λiω
k
y)v

i,

Nk∑
j=1

cjv
j

〉
Ak

y

= ⟨Jkw,w⟩Ak
y
,

∥w∥2Ak
y
=
〈
Ak

yw,w
〉
ℓ2
=

Nk∑
i,j=1

λicicj
〈
vi,vj

〉
ℓ2
=

Nk∑
i=1

c2iλi,

|w|2 =
Nk∑
i=1

λic
2
i −

Nk∑
i=1

λiω
k
yc

2
i <

Nk∑
i=1

λic
2
i = ∥w∥

2
Ak

y
.

The last inequality holds true for w ̸= 0 since Ak
y is positive definite and ωk

y > 0. Then, with the
Hölder inequality,

∥Jkw∥Ak
y
=

Nk∑
i=1

λi(ci(1− λiω
k
y))

2 =

Nk∑
i=1

(λ
1/3
i |ci|2/3)(λ

2/3
i |ci|4/3(1− λiω

k
y)

2)

≤

(
Nk∑
i=1

(λ
1/3
i |ci|2/3)3

)1/3(Nk∑
i=1

(λ
2/3
i |ci|4/3(1− λiω

k
y)

2)3/2

)2/3

=

(
Nk∑
i=1

λi|ci|2
)1/3(Nk∑

i=1

λi|ci|2(1− λiω
k
y)

3

)2/3

.

This yields the result by estimating

∥Jkw∥3Ak
y
=
Ä
∥Jkw∥2Ak

y

ä3/2
≤

(
Nk∑
i=1

λi|ci|2
)1/2(Nk∑

i=1

λi|ci|2(1− λiω
k
y)

3

)
= ∥w∥2Ak

y
|Jkw|

< ∥w∥2Ak
y
∥Jkw∥Ak

y

and dividing by ∥Jkw∥Ak
y
.

Theorem B.1. Assume that there exists a constant C > 0 such that λmax(A
k
y) ≤ λmax(Ay) ≤ C

for all y ∈ Γ and choose 0 < ωk ≤ C−1. Then, the error decays with

∥(I − TL)(I − TL−1) . . . (I − T1)∥2Ay
≤ c0

1 + c0

for some c0 ≤ λmax(Ay)

λmin(Ay)
L. Furthermore, if there exist constants c1, c2 > 0 such that c1 ≤ κ(·,y) ≤

c2 for all x ∈ D and y ∈ Γ (uniform boundedness) leads to a bound of the convergence rate c0 ≤ cL
independent of y for some c > 0.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 32

Proof. To apply Lemma B.1, we only need to verify that the smoothing on the subspaces yields a
contraction for each k = 1, . . . , L, i.e.

∥I − Tk∥Ak
y
< 1.

This is established in Lemma B.2. The constant in Lemma B.1

c0 = sup
∥v∥Ay

=1

inf∑L
k=1 Q

⊺
i vi=v

L∑
k=1

∥∥∥∥∥ωk
yQkAy

L∑
i=k

Q⊺
ivi − vk

∥∥∥∥∥
2

R̄−1
k

,

for R̄k = (2I − ωk
yA

k
y)ω

k
y has to be bounded by a constant independent of y. If ∥T∥ < 1 then

∥(I − T)−1∥ ≤ 1
1−∥T∥ . Therefore, T := ωk

2
Ak

y, (B.1) and ∥T∥ ≤ 1
2
λmax(A

k
y)

−1
∥∥Ak

y

∥∥ = 1
2
< 1

implies that

∥∥R̄−1
k

∥∥ =
∥∥(2ωk(I − T))−1

∥∥ ≤ λmax(A
k
y)

2

∥∥(I − T)−1
∥∥ ≤ λmax(A

k
y)

2

1

1− ∥T∥
= λmax(A

k
y).

For pk : V → Vk the Ay orthogonal projection onto Vk, it holds that QkAy = Ak
ypk. Therefore,

c0 ≤ sup
∥v∥Ay

=1

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

λmax(A
k
y)

∥∥∥∥∥ωkQkAy

L∑
i=k

Q⊺
i vi − vk

∥∥∥∥∥
2

= sup
∥v∥Ay

=1

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

λmax(A
k
y)

Ñ∥∥∥∥∥∥ωkQkAy

L∑
i=k+1

Q⊺
i vi + (ωkAk

y − I)vk

∥∥∥∥∥∥
é2

= sup
v ̸=0

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

λmax(A
k
y)

Ñ∥∥∥∥∥∥ωkQkAy

L∑
i=k+1

Q⊺
i

vi

∥v∥Ay

+ (ωkAk
y − I)

vk

∥v∥Ay

∥∥∥∥∥∥
é2

≤ sup
v ̸=0

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

λmax(A
k
y)

Ñ∥∥∥∥∥∥ωkQkAy

L∑
i=k+1

Q⊺
i vi

λmin(Ay)
1
2 ∥v∥

+
(ωkAk

y − I)vk

λmin(Ay)
1
2 ∥v∥

∥∥∥∥∥∥
é2

= λmin(Ay)
−1 sup

∥v∥2=1

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

λmax(A
k
y)

Ñ∥∥∥∥∥∥ωkQkAy

L∑
i=k+1

Q⊺
i vi + (ωkAk

y − I)vk

∥∥∥∥∥∥
é2

≤ λmin(Ay)
−1 sup

∥v∥2=1

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

λmax(A
k
y)

Ñ
ωk ∥QkAy∥

∥∥∥∥∥∥
L∑

i=k+1

Q⊺
i vi

∥∥∥∥∥∥+
∥∥∥ωkAk

y − I
∥∥∥ ∥vk∥

é2

≤ λmin(Ay)
−1 sup

∥v∥2=1

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

λmax(A
k
y)

Ñ
λmax(Ay)

λmax(Ay)

∥∥∥∥∥∥
L∑

i=k+1

Q⊺
i vi

∥∥∥∥∥∥+ (1− ωkλmin(A
k
y)
)
∥vk∥

é2

≤ λmax(Ay)

λmin(Ay)
sup

∥v∥2=1

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

Ñ∥∥∥∥∥∥ L∑
i=k+1

Q⊺
i vi

∥∥∥∥∥∥+ ∥vk∥

é2

≤ λmax(Ay)

λmin(Ay)
sup

∥v∥2=1

inf∑L
k=1 Q⊺

i vi=v

L∑
k=1

1

≤ λmax(Ay)

λmin(Ay)
L.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 33

This is derived by using that ∥v∥2Ay
≥ λmin(Ay) ∥v∥2, maxk λmax(A

k
y) ≥ λmin(Ay) and Qivi are

orthogonal with respect to the ℓ2 scalar product for i = 1, . . . , L. Therefore, the claim follows from
the assumption that λmin(Ay) and λmax(Ay) are uniformly bounded from below and above for all y,
respectively.

B.2 Local multigrid algorithm

Algorithm 4: Local Multigrid Algorithm LMG(u0)

1 u = u0

2 for k=L,. . . , 0 do
3 u = u+ ωk

y(fk −QkAyu)

4 end
5 for k=0,. . . , L do
6 u = u+ ωk

y(fk −QkAyu)

7 end
8 return u

Building on the analysis of the successive subspace correction algorithm in Appendix B.1, the error
of the Local Multigrid Algorithm 4 can be expressed similar to the successive subspace correction
algorithm as

u− LMG(u0) = (I − T0) . . . (I − TL−1)(I − TL)(I − TL)(I − TL−1) . . . (I − T0)(u− u0).

Since the order of the subspaces in Theorem B.1 are not specified, the same constant smoothing
factor ωk

y = ω can be chosen such that the same constant c0 > 0 satisfies

∥u− LMG(u0)∥2Ay
≤
Å

c0
1 + c0

ã2 ∥∥u− u0
∥∥2
Ay

.

B.3 Smoothing with multiple levels

For one smoothing step, the calculation of QkAyu is required. Since u is given as a levelwise dis-
cretization, we consider the evaluation of the multiplication on each level separately. Recall the auxil-
iary vectors ũk and ūk in (3.3) and (3.4). Using the decomposition u = u<k+Q⊺

ku
k+u>k facilitates

a levelwise calculation as described below.

B.3.1 Coarse grid smoothing

For QkAyu
<k we get the following result.

Lemma B.3. Let ũk be defined as in (3.3) by

ũ1 := 0, ũk := Pk−1

Ä
ũk−1 + uk−1

ä
DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 34

with uk
i ∈ RIk

V equal to uk
i for i ∈ IkV and zero otherwise. Then

QkAyu
<k = Ak

yũ
k.

Proof of Lemma B.3. Note that Q1Ayu
<1 = 0 = Ak

yũ
1. For k = 2, . . . , L we show that for x ∈

suppV k

k−1∑
ℓ=1

∑
i∈Iℓ

V

uℓ
iφ

ℓ
i(x)=

∑
i∈Ik

V

ũk
iφ

k
i (x).

The proof is by induction. For k = 1, both sides are equal to 0. Assuming the statement holds for k,
we get for k + 1 and x ∈ suppV k+1 ⊂ suppV k that

k∑
ℓ=1

∑
i∈Iℓ

V

uℓ
iφ

ℓ
i(x) =

k−1∑
ℓ=1

∑
i∈Iℓ

V

uℓ
iφ

ℓ
i(x) +

∑
i∈Ik

V

uk
iφ

k
i (x) =

∑
i∈Ik

V

ũk
iφ

k
i (x) +

∑
i∈Ik

V

uk
iφ

k
i (x)

=
∑
i∈Ik

V

(ũk
i + uk

i)φ
k
i (x) =

∑
j∈Ik+1

V

∑
i∈Ik

V

(ũk + uk)i(P
⊺
k)i,jφ

k+1
j (x)

=
∑

j∈Ik+1
V

(Pk(ũ
k + uk))jφ

k+1
j (x) =

∑
i∈Ik+1

V

ũk+1
i φk+1

i (x).

Then, for j ∈ IkV it holds that

(
QkAyu

<k
)
j
=

k−1∑
ℓ=1

∑
i∈Iℓ

V

uℓ
i

∫
κh(x,y)

〈
∇φℓ

i(x),∇φk
j (x)

〉
dx

=

∫
suppV k

κh(x,y)

∞
∇

k−1∑
ℓ=1

∑
i∈Iℓ

V

uℓ
iφ

ℓ
i(x),∇φk

j (x)

∫
dx

=

∫
κh(x,y)

±
∇
∑
i∈Ik

V

ũk
iφ

k
i (x),∇φk

j (x)

ª
dx

=
∑
i∈Ik

V

ũk
i

∫
κh(x,y)

〈
∇φk

i (x),∇φk
j (x)

〉
dx

= (Ak
yũ

k)j.

B.3.2 Fine grid smoothing

We now consider QkAyu
>k.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 35

Lemma B.4. Let ūk be defined as in (3.4) by

ūL := 0, ūk := P ⊺
k

Ä
ūk+1 + Ak+1

y

⊺
uk+1
ä
.

Then,

QkAyu
>k = ūk|Ik

V
.

Proof. We prove the statement again by induction. Note that for k = L, it holds that QkAyu
>L =

0 = ūL. Assuming that the statement holds for k + 1, i.e. for j ∈ Ik+1
V

(Qk+1Ayu
>k+1)j =

L∑
ℓ=k+2

∑
i∈Iℓ

V

uℓ
i

∫
κh(·,y)

〈
∇φℓ

i ,∇φk+1
j

〉
dx = ūk+1

j ,

we show that the statement also is true for k. In fact, for j ∈ IkV we deduce that

(QkAyu
>k)j =

L∑
ℓ=k+1

∑
i∈Iℓ

V

uℓ
i

∫
κh(·,y)

〈
∇φℓ

i ,∇φk
j

〉
dx

=
∑

m∈Ik+1
V

(P ⊺
k)jm

L∑
ℓ=k+1

∑
i∈Iℓ

V

uℓ
i

∫
κh(·,y)

〈
∇φℓ

i ,∇φk+1
m

〉
dx

=
∑

m∈Ik+1
V

(P ⊺
k)jm

Ñ∑
i∈Ik+1

V

uk+1
i ay,h(φ

k+1
i , φk+1

m) +
L∑

ℓ=k+2

∑
i∈Iℓ

V

uℓ
iay,h(φ

ℓ
i , φ

k+1
m)

é
=

∑
m∈Ik+1

V

(P ⊺
k)jm

ÄÄ
Ak+1

y

⊺
uk+1
ä
m
+ ūk+1

m)
ä

=
Ä
P ⊺
k

Ä
Ak+1

y

⊺
uk+1 + ūk+1

ää
j
= ūk

j .

C CNNs

Figure C.1 illustrates the different convolutions used in our architecture in Section 4.

D Proofs of CNN approximation theorems

Corollary D.1 (Multiplication approximation [27, Corollary 13]). Let σ satisfy Assumption 5.1. Let
W ∈ N be the input image size and B > 0 the range of the input values and ε ∈ (0, 1/2). Then
there exists a CNN Ψ with activation function σ, two-channel input and one channel output, spatial
dimension of the kernels 1, 2 layers and number of parameters at most 9 such that

∥Ψ(x,y)− x⊙ y∥L∞([−B,B]2×W×W) ≤ ε.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 36

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Vanilla convolution: Sweep the center of the kernel over the image multiplying with the image and adding the products.

∗

k11 k12 k13

k21 k22 k23

k31 k32 k33

=

∑
j∈U1

a22+jk22+j
∑

j∈U1
a23+jk22+j

∑
j∈U1

a32+jk22+j
∑

j∈U1
a33+jk22+j

Transpose 2 strided convolution: Dilate the image with the kernel.

a11 a12

a21 a22

∗2ts

k11 k12 k13

k21 k22 k23

k31 k32 k33

=

a11k11 a11k12 a11k13 0 0

a11k21 a11k22 a11k23 0 0

a11k21 a11k22 a11k23 0 0

0 0 0 0 0

0 0 0 0 0

+

0 0 a12k11 a12k12 a12k13

0 0 a12k21 a12k22 a12k23

0 0 a12k21 a12k22 a12k23

0 0 0 0 0

0 0 0 0 0

+ . . .

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

2 strided convolution: Apply the kernel to every other input pixel.

∗2s

k11 k12 k13

k21 k22 k23

k31 k32 k33

=

∑
j∈U1

a22+jk22+j
∑

j∈U1
a24+jk22+j

∑
j∈U1

a42+jk22+j
∑

j∈U1
a44+jk22+j

a11 0 0 0 0

0 a22 0 0 0

0 a32 a33 0 0

0 0 a43 0 0

0 0 0 0 0

Submanifold sparse convol

∗sp

ution: Apply the kernel only to nonzero elements keeping the shape of the vanilla convolution.

∗sp

k11 k12 k13

k21 k22 k23

k31 k32 k33

=

∑
j∈U1

a22+jk22+j 0 0

∑
j∈U1

a32+jk22+j
∑

j∈U1
a33+jk22+j 0

0
∑

j∈U1
a43+jk22+j 0

Figure C.1: Visualization of the vanilla, the 2 strided, the 2 transpose strided and the submanifold
sparse convolution, where U := {(i, j) : |i| ≤ W−1/2, |j| ≤ H−1/2}, where W and H denote the
uneven width and height of the kernel respectively.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 37

Lemma D.1 (Concatenation approximation [27, Lemma 20]). Let n, d1, . . . , dn+1 ∈ N, i ∈ [n] and
fi : Rdi → Rdi+1 be continuous and let F : Rd1 → Rdn+1 be the concatenation F := fn ◦ · · · ◦ f1.

Let M, ε > 0. Then there exists M̃, ε̃ > 0 such that
∥∥∥fi − f̃i

∥∥∥
L∞([−M̃,M̃]di)

≤ ε̃ for each i ∈ [n]

and some f̃i : Rdi → Rdi+1 implies∥∥∥F − f̃n ◦ · · · ◦ f̃1
∥∥∥
L∞([−M,M]d1)

≤ ε.

D.1 Solver approximation

Using the notation from [27, Definition 14], for κ ∈ H1
0 (D) k = 1, . . . , L, ℓ = 1, . . . , 6 and i ∈ IkU

define

Υ(κ, Tk, ℓ, i) :=
∫
T ℓ
i

κdx,

Υ(κ, Tk, ℓ) := (Υ(κ, Tk, ℓ, i))i∈Ik
U
,

Υ(κ, Tk) := (Υ(κ, Tk, ℓ))ℓ=1,...,6.

In [27, Theorem 16] it was shown that
(
Ak

yu
k
)

img
can be written as an application of a kernel to uk

img

and a multiplication with Υ(κh(·,y), Tk), where Ak
y only considers indices in IkV ×IkV . We generalize

the previous result to the application of Ak
y with indices in IkV ×IkV by the use of multiple channels of

in the following theorem.

Definition D.1 (Translation). Let m ∈ N be the number of basis functions with overlapping support,
i.e., for i the index of an inner node let m :=

∣∣{φk
j : supφ

k
i ∩ supφk

j ̸= ∅}
∣∣. For vk

img ∈ RIk
U , let

Tvk
img ∈ Rm×Ik

U be defined by

Tvk
img :=

î
T (1)vk

img, . . . , T
(m)vk

img

ó
,

where T (1), . . . , T (m) defines the translation such that for i ∈ IkU
(Tvk

img)i =
[
(vk

img)i+p1 , . . . , (v
k
img)i+pm

]
,

where i + p1, . . . , i + pm denote the indices of the basis functions with overlapping support and
p1, . . . , pm denote the directions with p1 = 0. Note that the directions p1, . . . , pm are constant for all
i due to the used uniformly refined meshes as depicted in the first row in Figure 1.2. Note that for the
depicted meshes, m = 7 holds true and is independent of k.

Based on the definition of the translated images, the following theorem can be formulated.

Theorem D.1. Let m ∈ N be as in Definition D.1. There exist kernels K(ℓ) ∈ R1×m×1×1, ℓ =
1, . . . , 6 such that for

F k : R(m+7)×Ik
V → RIk

V ,
Ä
vk

img, κ̄
(1), . . . , κ̄(6)

ä
7→

6∑
ℓ=1

κ̄(ℓ) ⊙ (vk
img ∗sp K(ℓ)),

for vk ∈ RIk
V , Mk = 1 ∈ RIk

V it holds that

F k
(
Mk

img ⊙ Tvk
img,Υ(κh(·,y), Tk)

)
=
Ä
Ak

y v
k
ä

img
.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 38

Figure D.1: This is a visualization of the translation Definition D.1. On the left the corresponding
function to some input image is plotted. Since the mesh is also plotted, it can be seen that each
nodal hat function has an overlapping support with nine other nodal hat functions including itself, i.e.
m = 9. The output of the translation is a stack of the other nine images plotted. Each image shows
the original image shifted in the direction of the nodal hat functions with overlapping support, but only
on the support of the input image. This can be interpreted as shifting the image and then multiplying
with a mask. Fixing one pixel index, the values of the pixel and all surrounding pixels are now saved
in the pixel index in different images instead.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 39

Note that since
Ä
Ak

y v
k
ä

img
is zero at every index i ∈ IkU\IkV , in contrast to the definition in [27] the

convolution here only needs to be applied to nodes i ∈ IkV since otherwise zero nodes would be
assigned nonzero values after one convolution. This submanifold sparse convolution is denoted by
∗sp here.

Proof. First, let i ∈ IkU\IkV . Since Ak
y : RIk

V → RIk
V only maps to indices in IkV , it holds that

(Ak
y v

k)imgi
= 0. Furthermore, for w := Mk

img ⊙ Tvk
img we have that wi = 0 and ∗sp only acts on

the indices IkV , leaving everything else at 0. Therefore,

(Ak
y v

k)imgi
= 0 =

6∑
ℓ=1

κ̄
(ℓ)
i · 0 =

6∑
ℓ=1

κ̄
(ℓ)
i (w ∗sp K(ℓ))i.

Second, for i ∈ IkV and j ∈ IkV as in [27, proof of Theorem 16] with Cijk :=
∫
Tk
i
⟨∇φi,∇φj⟩dx it

holds that

(Ak
y)ij =

∫
D
κh(·,y)⟨∇φi,∇φj⟩dx =

6∑
ℓ=1

∫
T ℓ
i

κh(·,y)⟨∇φi,∇φj⟩dx =

6∑
ℓ=1

Υ(κh(·,y), Tk, ℓ, i)Cijℓ.

Since Cijk = 0 if φk
i ∩ φk

j ̸= ∅, for the corrections p1, . . . , pm defined in Definition D.1 we get that

(Ak
yv

k)imgi
=
∑
j∈Ik

V

vk
j

6∑
ℓ=1

Υ(κh(·,y), Tk, ℓ, i)Cijℓ =
6∑

ℓ=1

Υ(κh(·,y), Tk, ℓ, i)
∑
j∈Ik

V

vk
jCijℓ

=

6∑
ℓ=1

Υ(κh(·,y), Tk, ℓ, i)
m∑
t=1

vk
i+ptCi,i+pt,ℓ =

6∑
ℓ=1

Υ(κh(·,y), Tk, ℓ, i)
m∑
t=1

wt,iCi,i+pt,ℓ.

Since Cijk only depends on the difference i− j, for each ℓ the inner sum can be expressed with the
same constant for every i ∈ IkV by the convolution with a m× 1× 1 kernel K(ℓ), i.e.,

(Ak
yv

k)i =
6∑

ℓ=1

Υ(κh(·,y), Tk, ℓ, i)
m∑
t=1

wt,iC1,1+pt,ℓ

=
6∑

ℓ=1

Υ(κh(·,y), Tk, ℓ, i)(w ∗sp K(ℓ))i = F k(w,Υ(κh(·,y), Tk)).

Consequently, for κk
h ∈ V k we have that

Υ(κk
h, Tk, ℓ, i) =

∑
{j:suppφk

j∩T ℓ
i ̸=∅}

κk
j

h2

3
.

Theorem D.2. For every ε,M > 0 there exists a CNN Ψ : R7×Ik
U → RIk

U of constant size consisting
of submanifold sparse convolutions such that

∥Ψ− F∥
L∞
Å
[−M,M]

7×Ik
U

ã ≤ ε,

where F (Mk
img ⊙ Tvk

img,Υ(κ, T)) = (Ak
y v

k)img.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 40

Proof. Exchanging the convolution with the submanifold sparse convolution ∗sp, the proof works sim-
ilarly to the proof of [27, Theorem 18] in three steps with the difference that the kernels have width 1
but m channels opposed to one channel and width 3. This is due to the fact that the input images are
one image translated in space in different directions m times to account for surrounding information
in each node i ∈ IkV in multiple channels instead of in the surrounding nodes j ∈ IkV close to i.
In this way, the sparse convolution ∗sp can act on i ∈ IkV without losing information. In the first step
there exists a one-layer CNN realizing the mappingÄ

w, κ̄(1), . . . , κ̄(6)
ä
7→
Ä
w ∗sp K(ℓ),κ(ℓ)

ä6
ℓ=1

.

The pointwise multiplication in the second step can be approximated by a CNN of constant size
arbitrarily well. Moreover, the addition of the channels in the third step can be realized by a one-layer
CNN with a 1 × 1 kernel as described in the proof of [27, Theorem 18]. Concatenating these CNNs
yields the claim.

In a similar way the following theorem can be proven.

Theorem D.3. Let m ∈ N be as in Definition D.1. There exist kernels K(ℓ) ∈ R1×m×1×1, ℓ =
1, . . . , 6 such that for

F k⊺ : R(m+7)×Ik
V → RIk

V ,
Ä
vk

img, κ̄
(1), . . . , κ̄(6)

ä
7→

6∑
ℓ=1

κ̄(ℓ) ⊙ (vk
img ∗sp K(ℓ))

for vk ∈ RIk
V , Mk = 1 ∈ RIk

V , it holds that

F k⊺
(
Mk

img ⊙ Tvk
img,Υ(κh(·,y), Tk)

)
= Mk ⊙ T

Ä
Ak

y

⊺
vk
ä

img
.

Furthermore, F k⊺ can be approximated arbitrarily well by a CNN with submanifold sparse convolu-
tions of constant size.

Remark D.1 (CNN for prolongation and weighted restriction). As noted in [27, Remark 19], the pro-
longation and weighted restriction can be represented by the application of a 2 strided convolution to
the whole image. We now argue that the kernel can also be applied to nonzero entries as in ∗sp and
still be able to represent the operators.

1 Weighted restriction: When applying the kernel only to every other entry, which is nonzero in
level k, i.e. IkV instead of every other entry in IkU , output values can be set to zero, which
would include values of entries between the entries used for the convolution. To account for
this error, the translation is applied to the image Tvk

img and the operations are applied to the
original image on all nonzero indices of the translation.

2 Prolongation: The prolongation can be represented as in [27, Remark 19], only acting on
nonzero entries of the input images and multiplied with a mask, which is 1 for entries in IkV
and 0 otherwise.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 41

Proof of Theorem 5.2. Let κy be the coefficient image of the interpolation of κh(·,y) in UL. The
proof works similarly to the proof of [27, Theorem 6]. We write the levelwise local multigrid Algorithm 2
LLMG :×L

k=1
R10×Ik

U →×L

k=1
RIk

U as the concatenation of functions, which can be represented
or arbitrarily approximated by CNNs. To simplify notation, denote the masked translations as in Defi-
nition D.1 by w̃k := Mk

img ⊙ T ũk
img and w̄k := Mk

img ⊙ T ūk
img, where the mask Mk := 1 ∈ RIk

V is
applied to every channel.

(i) Integrating the diffusion coefficient. Let K ∈ R1×6×3×3 be defined as in [27, Lemma 15(i)]
and define

fin : R2×IL
U → R7×IL

U ,

Å
κ
f

ã
7→
Å
κ ∗K

f

ã
.

Then fin([κy, f]) = [Υ(κh(·,y), TL), f].

(ii) Smoothing iteration (Line 3, Line 9 in Algorithm 2). For each level k = 1, . . . , L, define the
smoothing function

fk
sm :

k×
ℓ=1

R(4m+7)×Iℓ
U →

k×
ℓ=1

R(4m+7)×Iℓ
U

by its action on the level k input images in R(4m+7)×Ik
U with v, ṽ, v̄ ∈ Rm×Ik

U , f ∈ RIk
U , κ̄ ∈

R6×Ik
U 

v
ṽ
v̄
0
κ̄
f

 7→

v + ω(f − [F k(v + ṽ, κ̄) + v̄])

ṽ
v̄
0
κ̄
f

 .

Except for the operation on v, the other inputs are directly passed to the output. Then, for any
v ∈×k−1

ℓ=1
R(4m+7)×Iℓ

U Theorem D.1 and since w̃k
ℓi = 0 for φk

i+pℓ
/∈ V k,

fk
sm

Åï
Tuk

img, w̃
k, w̄k, 0,Υ(κh(·,y), Tk), f

v

òã
=

ñ
T (uk + ω(f − [Ak

y(u
k + ũk) + ūk|Ik

V
]))img, w̃

k, w̄k, 0,Υ(κh(·,y), Tk), f
v

ô
.

In Theorem D.2 it is shown that this operation can be approximated arbitrarily well by a CNN
using submanifold sparse convolutions ∗sp on level k.

(iii) Update of ū and restriction (Line 5 in Algorithm 2). We also define the update ūk and the
restriction to the coarser level

fk
upd, frest :

k×
ℓ=1

R(4m+7)×Iℓ
U →

k×
ℓ=1

R(4m+7)×Iℓ
U .

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 42

The update function fk
upd is defined by its action on the level k input images

v
ṽ
v̄
0
κ̄
f

 7→


v
ṽ
v̄

v̄ + F k⊺(v, κ̄)
κ̄
f

 ,

where again the other inputs are passed to the output as they are. Then, with Theorem D.3 it
holds that

fk
upd

Åï
uk

img, w̃
k, w̄k, 0, κ̄, f
v

òã
=

ñ
uk

img, w̃
k, w̄k,Mk

img ⊙ T (ūk + Ak
y

⊺
uk)img, κ̄, f

v

ô
.

The operation can be approximated by a CNN due to Theorem D.3. Furthermore, we define
the restriction frest by its action on the inputs on level k and k − 1 by

vk

ṽk

v̄k

zk

κ̄k

fk

×

vk−1

ṽk−1

v̄k−1

0
κ̄k−1

fk−1

 7→


vk−1

ṽk−1

P ⊺
k−1z

k

0
κ̄k−1

fk−1

 ,

where the weighted restriction P ⊺ is applied to every image in vk. The first to (k − 2)th in-

puts are passed to the output unaltered. Then, for any v, ṽ, v̄ ∈ Rm×Ik
U , f ∈ RIk−1

U , κ̄ ∈
R6×Ik−1

U , z ∈ R×k−2
ℓ=1 (4m+7)×Iℓ

U

(fk
rest ◦ fk

upd)

ÑTuk
img, w̃

k, w̄k, 0, κ̄k, fk

v, ṽ, v̄, 0, κ̄, f
z

é =

ï
v, ṽ, ūk−1

img , 0, κ̄, f
z

ò
.

Due to Remark D.1, fk
rest can be represented by a CNN.

(iv) Update ũ with coarse grid solution and prolongation (Line 11 in Algorithm 2). For the last
recursion step, define the prolongation to update the auxiliary vector ū

fk
prol :

k×
ℓ=1

R(4m+7)×Iℓ
U →

k×
ℓ=1

R(4m+7)×Iℓ
U

by its action on input functions from level k and k − 1
vk

ṽk

v̄k

zk

κ̄k

fk

×

vk−1

ṽk−1

v̄k−1

zk−1

κ̄k−1

fk−1

 7→


vk

Pk−1(ṽ
k−1 + vk−1)
v̄k

zk

κ̄k

fk

×

vk−1

ṽk−1

v̄k−1

zk−1

κ̄k−1

fk−1

 ,

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 43

where the prolongation is only applied to indices in Ik−1
V . For any (vk, ṽk, v̄k, zk, κ̄k, fk) ∈

R(4m+7)×Ik
U ,vk−1, zk−1 ∈ Rm×Ik−1

U , κ̄k−1 ∈ R6×Ik−1
U , fk−1 ∈ RIk−1

U and z ∈ R×k−2
ℓ=1 (4m+7)×Iℓ

U

it holds that

fk
prol

Ñ vk, ṽk, v̄k, zk, κ̄k, fk

vk−1, w̃k−1, w̄k−1, zk−1, κ̄k−1, fk−1

z

é =

 vk, ũk, v̄k, zk, κ̄k, fk

vk−1, w̃k−1, w̄k−1, zk−1, κ̄, f
z

 .

With Remark D.1 it can be seen that this operation can be represented by a CNN.

(v) Return solution. The last required function is the output function

fout :
k×

ℓ=1

R(4m+7)×Iℓ
U →

k×
ℓ=1

RIℓ
U

defined for each level k = 1, . . . , L by
vk

ṽk

v̄k

zk

κk

fk

 7→
(
vk
0

)
,

where vk
0 ∈ RIk

U denotes the first image of vk ∈ Rm×Ik
U . Then, for u ∈ R×L

k=1 Ik
V ,v ∈

R(2m+8)×Ik
U fout(×L

k=1
Tuk

img × vk) =×L

k=1
uk

img.

Eventually combining the algorithmic components described above, the LLMG for k levels can be
expressed as

LMGVk = fk
sm ◦ fk

prol ◦ (Idk, LMGk−1) ◦ fk
rest ◦ fk

upd ◦ fk
sm

LMGV1 = f 1
sm,

where Idk passes the the inputs on level k, . . . , L to the output andLLMGm = fout◦(⃝m
i=1LMGVL)◦

fin,res ◦ fin. Here,

fin,res(Υ(κy(·,y), TL), f) =
[
0, 0, 0, 0, κ̄k

]
.

Since every component can be approximated by a CNN with constant size, Lemma D.1 implies that
the whole algorithm can be approximated by a CNN with constant size.

D.2 Estimator approximation

The strong residual images and jump images can be approximated on any level by a CNN.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 44

Theorem D.4. For any k ∈ [L] and ε > 0 there exists a CNN Ψ such that for all κk
y img

, fkimg,u
k
img ∈

[−M,M]I
k
U ∥∥∥Ψ(uk

img,κ
k
y imgh

, fkimg)−
(
r2k,T q , j2k,T q

)
q=1,2

∥∥∥
∞
≤ ε,

where the strong residual images and jump images are defined as in Definition 5.1 with respect to the
input coefficients. For Ψ, there exist three fixed bias and kernel sizes with width and height at most 5.

Proof. We first note that for q = 1, 2 and each triangle T = T q
k,i as illustrated in Figure 5.1,

(r2k,T q)i = ∥fh +∇ · (κh∇uh)∥2L2(T)

= ∥fh∥2L2(T) + 2 ⟨fh,∇ · (κh∇uh)⟩L2(T) + ∥∇ · (κh∇uh)∥2L2(T) .

Here,

∥fh∥2L2(T) =
∑

m,n∈nodes(T)

fmfnemn for emn :=

∫
T

φmφndx,

⟨fh,∇ · (κh∇uh)⟩L2(T) =
∑

j∈nodes(T)

fjcj
∑

m,n∈nodes(T)

κmundmn for cj :=

∫
T

φjdx, dmn := ∇φm · ∇φn,

∥∇ · (κh∇uh)∥2L2(T q) =

Ñ ∑
m,n∈nodes(T)

κmundmn

é2 ∫
T

dx.

Note that cm, djm and
∫
T
dx are independent of the node i, i.e., dmn = dm−i,n−i, cj = cj−i,

emn = em−i,n−i. Furthermore,

(j2k,T q)i = ∥[[κh∇uh]]∥2L2(∂T (q)) =
∑

K∈edges(T)

∥κh∥2L2(K) [[uh]]
2
(K).

With triangle T̃K such that K ∈ edges(T̃K) for K ∈ edges(T),

∥κh∥2L2(K) =

√
2h

3

∑
j,m∈nodes(K)

κjκm,

([[uh]](K))
2 =

Ñ
1

h

∑
j∈nodes(T̃)∪nodes(T)

(−1)1−χK(j)uj

é2

.

Since shifting and addition can be represented by convolutional kernels, multiplication and squaring
can be approximated by the concatenation of a convolutional kernel, the application of the activation
function and another convolutional kernel, every operation can be represented or approximated by
a CNN. Since the addition and shifting always only includes nodes in the vicinity of the considered
node, the kernels have a small bounded width and height.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

CNNs can approximate AFEM 45

D.3 Adaptive FEM approximation

The solver and the estimator are combined with a marking strategy and a refinement implemented
with masks to arrive at a CNN approximation of the whole AFEM Algorithm 1.

Proof of Theorem 5.4. To show that Algorithm 1 can be approximated entirely, the required steps are
considered separately. Starting with V = U1 and u = 0, the algorithm consist of the following steps.

(i) Update u← u+ v.

By Corollary 5.1, the solution to Ayv = f − Ayu can be approximated up to any εsol by
a CNN Ψsol with input images κy img, (f − Ayu)img and number of parameters bounded by

M(Ψsol) ≲ L log(ε−1
sol)/ log(c

−1
L). Using Lemma D.1, for any εcor > 0 there exists a CNN

Ψcor with parameters bounded by M(Ψcor) ≲ L log(ε−1
cor)/ log(c

−1
L) such that∥∥∥∥∥Ψcor

Ç
L×

k=1

(uk
img, ũ

k
img, ū

k
img,Υ(κh, Tk), fk)

å
− (u+ v)

∥∥∥∥∥
∞

≤ εcor.

(ii) Local error estimator η2T .

The error estimator for the updated solution u can be approximated with Theorem 5.3. For any
εeta > 0 there exists a CNN Ψest with number of parameters bounded by M(Ψest) ≲ L such
that ∥∥∥∥∥Ψest

Ç
L×

k=1

(uk
img,κ

k
y img

, fkimg)

å
[ℓ]− η2ℓ

∥∥∥∥∥
∞

≤ εeta. (D.1)

(iii) Marking.

Different marking strategies can be considered. Here, a threshold marking strategy as in Defi-
nition 2.3 is used. The operator mapping estimator images to marker images inside a CNN is
defined by the mapping η2k ∈ R2×Ik

U 7→Mk ∈ {0, 1}2×Ik
U on each level k = 1, . . . , L, where

for q = 1, 2 Mk[q]i = 1 if η2k[q]i > δk and Mk[q]i = 0 otherwise for i ∈ IkU . Let the CNN
Ψmark be composed of a convolutional layer subtracting the threshold and approximation error
of the error estimator δk−εeta followed by the application of a heavyside activation function h0,1.
It then maps the approximated error estimator η̃2k to marker images Ψmark(η̃

2
k) ∈ {0, 1}2×Ik

U ,
such that the inequality

Mk ≤ Ψmark(η̃
2
k)

holds entrywise. This can be derived by considering that Mk[q]i = 1 implies η2k[q]i > δk and
η̃2k[q]i ≥ η2k[q]i − εeta holds with (D.1). This yields η̃2k[q]i − (δk − εeta) > 0 and therefore
Ψmark(η̃

2
k)[q]i = h0,1(η̃

2
k[q] − (δk − εeta)) = 1 for q = 1, 2 and i ∈ IkU for k = 1, . . . , L.

Therefore, all triangles marked with the threshold marking strategy with the true estimator of the
true solution are also marked by the CNN. As discussed in Remark 5.1, other global marking
strategies such as Dörfler marking could be implemented outside of the network. In each step
the chosen strategy has to incorporate the error in the estimator approximation. For instance,
in addition to the markings based on the selected strategy and the approximated estimator, one

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

J. E. Schütte, M. Eigel 46

could mark all triangles for which the approximated error estimator is larger than the lowest ap-
proximated estimator of the already marked triangles minus twice the estimated approximation
error.

(iv) Refinement.

The refinement is incorporated in the CNN using the marking masks Mk ∈ {0, 1}2×Ik
U on

each level, corresponding to piecewise constant functions discretized as in (4.1). These are
mapped to a mask Mk+1

V ∈ {0, 1}Ik+1
U corresponding to continuous piecewise linear functions

as in (3.1). To mimic the refinement, they should fulfill (Mk+1
V)i = 1 if suppφk+1

i ∩ T q
kj ̸= ∅

for some q = 1, 2, j ∈ IkU with Mk[q]j = 1 as described in Section 2.4.

This mapping can be constructed in two steps. First, Mk is mapped to some M̄k+1 ∈ RIk+1
U ,

which is > 0 on on the nodes corresponding to the required φk+1
i and zero otherwise. This can

be done by applying a transpose convolution with stride 2 and a kernel of size 2× 1× 3× 3.
Secondly, the heaviside function h0,1 can be applied entrywise to arrive at the desired 0/1-
masks Mk+1

V .

The derived function spaces satisfy Ṽ k ⊃ V k since the approximate marking covers the exact
marking based on the true error estimator of the true Galerkin solution on the current space.

We can now combine all above estimations for the components of the AFEM. Concatenating these
steps into one CNN as in Lemma D.1 leads to a CNN Ψ such that∥∥∥∥∥C

Ç
Ψ

Ç
L×

k=1

(uk
img, ũ

k
img, ū

k
img,Υ(κh, Tk), fk)

åå
− u

∥∥∥∥∥
H1

0

≤
∥∥∥∥∥C
Ç
Ψ

Ç
L×

k=1

(uk
img, ũ

k
img, ū

k
img,Υ(κh, Tk), fk)

åå
− C(uṼ)

∥∥∥∥∥
H1

0

+ ∥C(uṼ)− u∥H1
0

≤ εcor + ∥C(uV)− u∥H1
0

= εcor +
∥∥AFEM(U1, L)− u

∥∥
H1

0
,

where uW is defined as the coefficients of the Galerkin projection of u(·,y) onto W for some W ⊂
H1

0 , V is the space constructed by the AFEM after L ∈ N steps and Ṽ is the the space constructed
by the CNN after the same number of steps.

DOI 10.20347/WIAS.PREPRINT.3124 Berlin 2024

	Introduction
	Adaptive neural network approach
	Main contributions
	Structure of the paper

	Finite element discretization and notation
	Problem setting
	Error estimation
	Marking
	Mesh refinement
	Adaptive finite element method

	Solving on multiple grids
	Levelwise discretization

	Convolutional neural networks (CNN) for finite element discretizations
	Data decomposition
	Submanifold sparse CNN

	Expressivity results
	NN approximation of the multigrid solver
	Estimator approximation
	AFEM approximation

	Numerical experiments
	Outlook
	Error Estimator Derivation
	Proofs of convergence of the levelwise local multigrid algorithm
	Successive Subspace Correction
	Local multigrid algorithm
	Smoothing with multiple levels
	Coarse grid smoothing
	Fine grid smoothing

	CNNs
	Proofs of CNN approximation theorems
	Solver approximation
	Estimator approximation
	Adaptive FEM approximation

