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Linearization of finite-strain poro-visco-elasticity
with degenerate mobility

Willem J. M. van Oosterhout

Abstract

A quasistatic nonlinear model for finite-strain poro-visco-elasticity is considered in the La-
grangian frame using Kelvin-Voigt rheology. The model consists of a mechanical equation which
is coupled to a diffusion equation with a degenerate mobility. Having shown existence of weak
solutions in a previous work, the focus is first on showing boundedness of the concentration using
Moser iteration. Afterwards, it is assumed that the external loading is small, and it is rigorously
shown that solutions of the nonlinear, finite-strain system converge to solutions of the linear,
small-strain system.

1 Introduction

The theory of elasticity coupled to physical processes, such as diffusion, is a highly relevant topic,
both from the theoretical and the applied side. For a non-exhaustive list of applications, we refer to
e.g. [HZZS08, CA10, WLX+20, CSS22] for results related to polymeric gels, elastomeric materials,
biological tissue and solid-state batteries. For the mathematical analysis of both finite- and small-
strain models, we refer to e.g. [MRS18, MR20, BW21, BFK23, vOL24] for results related to elasto-
visco-plasticity, thermo-visco-elasticity and poro(-visco)-elasticity.

In the present paper, we are interested in poro-visco-elastic material models in the finite-strain setting,
which have been recently investigated concerning their analytical properties in [vOL24]. For a time
horizon T > 0 and Ω ⊂ Rd a bounded, open set giving the reference configuration, we look for
deformations χ : [0, T ] × Ω → Rd and concentrations c : [0, T ] × Ω → R+ satisfying the quasi-
static system of partial differential equations

−div
(
σel(∇χ, c) + σvi(∇χ,∇

.
χ, c)− div h(D2χ)

)
= f(t) in [0, T ]× Ω, (1.1a)

.
c − div

(
M(∇χ, c)∇µ

)
= 0 in [0, T ]× Ω. (1.1b)

Here, the total stress Σtot = σel+σvi−div h corresponds to a Kelvin-Voigt material, and consists of the
elastic stress σel(F, c) = ∂FΦ(F, c), derived from a free energy density Φ(∇χ, c), the viscous stress

σvi(F,
.
F , c) = ∂ .

F
ζ(F,

.
F , c), coming from a dissipation potential ζ(∇χ,∇ .

χ, c), and the higher-order
hyperstress h(G) = ∂GH (G), coming from a potential H (D2χ). The function f is a body force
density,M is the mobility tensor, and µ(F, c) = ∂cΦ(F, c) is the chemical potential.

We remark that the higher-order regularization in the form of the hyperstress h turns the material into
a second-grade non-simple material, a notion introduced by Toupin [Tou62], and used in e.g. [MR20],
[RT20]. Consequently, it is not necessary to put any convexity assumptions on the free energy density
Φ.

It is important to note that the evolution of the deformation is formulated in the reference configura-
tion, while diffusion processes are usually formulated in the actual configuration. Since our model is
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W.J.M. van Oosterhout 2

formulated completely in the reference configuration, the equation in (1.1b) is therefore a diffusion
equation pulled back to the reference confiuration. For example, the Lagrangian mobility tensorM is
the pull-back of the Eulerian mobility tensor M via

M(F, c) =
(CofF>)M(F, c/ detF )CofF

detF
for (F, c) ∈ GL+(d)× R+. (1.2)

In contrast to other works such as [Rou17], [RT20], [MR20], or [Rou21], we do not assume that the
mobility is uniformly positive definite, but instead allow for degenerate mobilitiesM(F, c) ∼ cm (some
m > 0). These mobilities are physically relevant since they model a higher species permeability when
the material opens up due to a species concentration increase, see [CA10] and Example 2.2.

In the previous work [vOL24], it was shown that under suitable assumptions, there always exist weak
solutions to the system (1.1) in the sense of Definition 2.3. The first result of this paper deals with the
regularity of these weak solutions. In particular, we show in Section 3 using Moser iteration that under
slightly stronger assumptions the concentration always stays bounded, which improves the result in
[vOL24].

In the second part of this paper, we assume that the external loading is small, e.g., for ε > 0 small,
we define f∗ by letting f =: εf∗. We then introduce the rescaled displacement uε := χε−id

ε
and

concentration variation ρε := cε−ceq

ε
, where ceq > 0 is some equilibrium concentration. After rescaling

the system (1.1) by 1
ε

and letting ε→ 0, we then formally obtain the linearized system

−div
(
Ce(u) + Kρ+ De(.u)

)
= f∗(t) in [0, T ]× Ω, (1.3a)

.
ρ− div

(
M(I, ceq)∇(K : e(u) + Lρ)

)
= 0 in [0, T ]× Ω. (1.3b)

Here, we denote by e(u) := 1
2
(∇u + ∇u>) the symmetric part of ∇u, and have introduced the

quantities C := ∂2
FFΦ(I, ceq), K := ∂2

FcΦ(I, ceq), L := ∂2
ccΦ(I, ceq), and D := ∂2.

F
.
F
ζ(I, 0, ceq).

It is important to note that the degeneracy of the mobilityM disappears in the limit passage as the
effective mobility M(I, ceq) is uniformly positive definite. For a physical derivation of these linearized
equations using balance laws and thermodynamic principles, we refer to e.g. [Ana15]. The main result
in this part of the paper is to show that this limit passage can be done in a rigorous way.

This result is not the first result dealing with the limit passage from finite-strain elasticity to small-strain
elasiticy. We refer e.g. to [MNP02] for the limit passage in static elasticity, [MS13] for elasto-plasticity,
[FK18] for visco-elasticity, and [BFK23, BFKM24] for thermo-visco-elasticity. The novelty in this work
is not in the limit passage in the mechanical equation, which is very similar to the limit passage in
[FK18], [BFK23] and [BFKM24]. The novelty, however, is in the limit passage of the diffusion equation,
where we have to deal with the degenerate mobility. For nondegenerate mobilities, we can test (1.1b)
with µ to obtain a L2([0, T ] × Ω)-bound for ∇µ, which can then be used to extract a converging
subsequence to pass to the limit. For a degenerate mobility, however, we only get a bound for the
fluxM∇µ. Again, we can extract a converging subsequence, but the difficulty is now to identify this
limit. Furthermore, it should be noted that the linear equations (1.3) are still fully coupled in the sense
that both equations depend on the variables u and ρ. This is in contrast to [BFK23] and [BFKM24],
where, depending on the range of a paramenter, one of the linear equations might only depend on
one variable, and be independent of the other.

The paper is structured as follows. In Section 2, we introduce the model and state the main results. In
Section 3, we prove the first main result, namely the better regularity for the concentration in the finite-
strain setting. Finally, in Section 4 we show the limit passage from the finite-strain poro-visco-elasticity
model in (1.1) to the small-strain poro-visco-elasticity model in (1.3).
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Linearization of finite-strain poro-visco-elasticity with degenerate mobility 3

2 Mathematical setting and main results

2.1 Notation

Our model is described in the Lagrangian setting in the reference configuration Ω ⊂ Rd. We assume
that Ω is an open, bounded domain with Lipschitz boundary, and that ∂Ω = ΓD ∪ ΓN (disjoint) such
that the Dirichlet part has positive surface measures

´
ΓD

1 dS > 0. We denote by Lp(Ω), Hk(Ω),

and W k,p(Ω) the usual Lebesgue and Sobolev spaces with the standard norms, and by L logL(Ω)
the space of functions c ∈ L1(Ω) for which ‖c log(c)‖L1(Ω) is finite.

We consider deformations χ on Ω that are fixed on the Dirichlet part ΓD, namely, we consider the
space

W 2,p
id (Ω;Rd) := {χ ∈ W 2,p(Ω;Rd) | χ|ΓD = id}.

Similarly, the (closed) subspace W k,p
0 (Ω) denotes the functions in W k,p(Ω) with zero trace on ΓD,

e.g.,
H1

0 (Ω;Rd) := {u ∈ H1(Ω;Rd) | u|ΓD = 0}.

Finally, we denote by “a · b”, “A : B”, and “G
...H” the scalar products between vectors a, b ∈ Rd,

matrices A,B ∈ Rd×d, and third-order tensors G,H ∈ Rd×d×d, respectively.

2.2 Finite-strain poro-visco-elasticity

To model finite-strain poro-visco-elasticity, we denote by χ the deformation of the material and by c
the concentration of some species. We then consider a free energy density Φ = Φ(∇χ, c), a higher-
order regularization H = H (D2χ), a dissipation potential ζ = ζ(∇χ,∇ .

χ, c), and a (Lagrangian)
mobility tensor M = M(∇χ, c). The free energy density Φ gives rise to the first Piola–Kirchhoff
stress σel and the chemical potential µ, the dissipation potential ζ to the viscous stress σvi via

σel(F, c) := ∂FΦ(F, c), µ(F, c) := ∂cΦ(F, c), and σvi(F,
.
F , c) := ∂ .

F
ζ(F,

.
F , c), (2.1)

and the potential H to the hyperstress h(G) := ∂GH (G), where we have used the placeholders

F for ∇χ,
.
F for ∇ .

χ, and G for D2χ. Following [vOL24], the model coupling the evolution of the
deformation χ and the concentration c is then given in the reference domain Ω by:

−div
(
σel(∇χ, c) + σvi(∇χ,∇

.
χ, c)− div h(D2χ)

)
= f(t), (2.2a)

.
c − div

(
M(∇χ, c)∇µ

)
= 0, (2.2b)

completed with the boundary conditions

χ = id on ΓD, (2.3a)(
σel(∇χ, c) + σvi(∇χ,∇

.
χ, c)

)
~n− divs(h(D2χ)~n) = g(t) on ΓN , (2.3b)

h(D2χ) : (~n⊗ ~n) = 0 on ∂Ω, (2.3c)

M(∇χ, c)∇µ · ~n+ κµ = κµext on ∂Ω, (2.3d)

where ~n denotes the unit normal vector on ∂Ω, and κ(x) ≥ 0 and µext(t, x) are a given perme-
ability and an external potential, respectively. Here, divs denotes the surface divergence, defined by
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W.J.M. van Oosterhout 4

divs(·) = tr(∇s(·)), i.e., the trace of the surface gradient ∇sv = (I − ~n ⊗ ~n)∇v = ∇v − ∂v
∂~n
~n.

Finally, we consider initial conditions

χ(0) = χ0, c(0) = c0 in Ω. (2.4)

To prove that the concentration c is bounded, we slightly strengthen the assumptions used in [vOL24],
see also Remark 2.1 below. Denote for R > 0 the set

FR := {F ∈ GL+(d) | |F | ≤ R, |F−1| ≤ R, and detF ≥ 1/R}.

(A1) The hyperstress potential is a convex, frame-indifferent C1 function H : Rd×d×d → R+

such that the hyperstress is given by h(G) = ∂GH (G) ∈ Rd×d×d. Moreover, there exist
p ∈ (d,∞) ∩ [3,∞) and constants CH,1, CH,2, CH,3 > 0 such that

CH,1|G|p ≤H (G) ≤ CH,2(1 + |G|p), |∂GH (G)| ≤ CH,3|G|p−1 for all G ∈ Rd×d×d.

(A2) The mobility tensorM : GL+(d)×R+ → Rd×d
sym is a continuous map. There exist an exponent

m > 0, and for all R > 0 there exist constants C0,M,R, C1,M,R > 0 such that

ξ · M(F, c)ξ ≥ C0,M,Rc
m|ξ|2 and |M(F, c)| ≤ C1,M,Rc

m

for all ξ ∈ Rd, F ∈ FR, c ∈ R+.
(2.5)

The admissible range of the exponent m > 0 depends on the growth properties of (the deriva-
tives of) Φ and is fixed in assumption (A3).

(A3) The free energy Φ : GL+(d) × R+ → R is bounded from below, continuous, and C2 on
GL+(d) × (0,∞), i.e., for strictly positive concentrations. It is frame indifferent, and satisfies
the following assumptions:

(i) For any c ∈ R+ there exists constants CΦ,0, CΦ,1 > 0 and q ≥ pd
p−d such that

Φ(F, c) ≥ CΦ,0|F |+
CΦ,0

(detF )q
− CΦ,1 for all F ∈ GL+(d).

(ii) There exist an exponent−1 < r <∞ such that r+m ≥ 0, and for allR > 0 constants
Ci := CΦ,i,R > 0 (1 ≤ i ≤ 2) and constants γi := γΦ,i,R ≥ 0 (1 ≤ i ≤ 2) such that

C1

c
+ γ1c

r ≤ ∂2
ccΦ(F, c) ≤ C3

c
+ γ2c

r for all c ∈ R+, F ∈ FR.

Concerning the constants γi, we distinguish two cases:

Case I: We assume γ1 = γ2 = 0, and also require 1 ≤ m ≤ 2− η for some η > 0.

Case II: We assume γ2 ≥ γ1 > 0. Additionally, we distinguish for this case:

� Case IIa: We require 0 < m ≤ 3 + r − η for some η > 0.

� Case IIb: We require 0 < m ≤ 2− η for some η > 0.

(iii) There exist an exponent α ≥ −1, and for all R > 0 a constant CΦ,5,R > 0 such that∣∣∂2
FcΦ(F, c)

∣∣ ≤ CΦ,5,Rc
α for all c ∈ R+, F ∈ FR

In Case I above, α is such that 0 ≤ m + α ≤ p−s
ps

, where 1 < s = md+2
md+1

< 2 and
0 ≤ m+ 2α.

In both Case IIa and Case IIb α is such that 0 ≤ m + α ≤ (2 + r)p−s
ps

, where 1 <

s = min{md+2(r+2)
md+r+2

, d(m+r+1)+2(r+2)
d(m+r+1)+r+2

} < 2. Furthermore, in Case IIa we require that
0 ≤ m+ 2α < m+ 1 + r, while in Case IIb we require that 0 ≤ m+ 2α < m+ 2 + 2r
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Linearization of finite-strain poro-visco-elasticity with degenerate mobility 5

(A4) For all R > 0 there exists a concentration cR ∈ R+ such that Φ(F, cR) <∞ and
|∂cΦ(F, cR)| <∞ for all F ∈ FR.

(A5) The dissipation potential ζ : Rd×d×Rd×d×R+ → R+ is such that ζ(F,
.
F , c) = ζ̂(C ,

.
C , c),

where C = F>F is the right Cauchy–Green tensor, and
.
C =

.
F>F + F>

.
F . Here, ζ̂ :

Rd×d
sym × Rd×d

sym × R+ → R+ is quadratic in the second variable, namely

ζ̂(C ,
.
C , c) =

1

2

.
C : D̃(C , c)

.
C .

We assume that there exist constants Cζ,1, Cζ,2 > 0 such that the quadratic form fulfills

Cζ,1|
.
C |2 ≤ ζ̂(C ,

.
C , c) ≤ Cζ,2|

.
C |2 for all c ∈ R+, F ∈ Rd×d.

(A6) The external forces satisfy f ∈ W 1,∞(0, T ;L2(Ω;Rd)), g ∈ W 1,∞(0, T ;L2(∂Ω;Rd)). We
set

〈`(t), χ〉 :=

ˆ
Ω

f(t) · χ dx+

ˆ
ΓN

g(t) · χ dS

such that ` ∈ W 1,∞(0, T ;H1(Ω;Rd)∗).

(A7) The permeability κ ∈ L∞(∂Ω) is nonnegative and strictly positive on a part of the boundary
∂Ω with positive surface measure, i.e.,

´
∂Ω
κ dS ≥ κ∗ > 0. We assume that the external

chemical potential is such that µext ∈ L∞(0, T ;L∞(∂Ω)).

(A8) The initial conditions satisfy χ0 ∈ W 2,p
id (Ω;Rd) with det∇χ0 ≥ a0 > 0 and c0 ∈ L∞(Ω)

with c0 ≥ 0 and are such that
´

Ω
Φ(∇χ0, c0) dx <∞.

Remark 2.1. (i) Compared to the assumptions in [vOL24], we have strengthened some assump-
tions. First, we have slightly decreased the upper bound of the admissable range of values
for m, see Assumption (A3)(ii). Second, we have increased the regularity of µext and c0 in
Assumption (A7) and (A8), respectively.

(ii) For the linearization of the equations, we will additionally assume that the external forces are
small, see (L6).

As main example satisfying these assumptions, we consider the Biot model with linear mobility.

Example 2.2 (Biot model and Fick/Darcy’s law). The Biot model [Bio41] (see also [RT20, Sect. 4])
with Boltzmann entropy is given by

Φ(F, c) = Φel(F ) +
1

2
MB(c− ceq − β(detF−1))2 + k

(
log
( c
ceq

)
− c+ ceq

)
,

for some suitable elastic energy Φel and constants MB, β, k, ceq > 0. In this case, the assumptions
for Case II are satisfied with α = 0 and r = 0. Defining the (Eulerian) flux as j = −M(F, c)∇µ,
and assuming the mobility is linear in c, namely M(F, c) = cM0 (i.e., m = 1), we then obtain

j = −kM0∇c− cM0∇p,

where p = MB(c − ceq − β(detF−1)) is the pressure. The first term corresponds to Fick’s law,
while the second is related to Darcy’s law.
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We recall the notion of weak solution as introduced in [vOL24].

Definition 2.3 (Weak solution finite-strain equations). Let 1 < s < 2 be as in (A3)(iii). We call a pair
(χ, c) a weak solution of the initial-boundary-value problem (2.2)–(2.4) ifχ ∈ L∞(0, T ;W 2,p

id (Ω;Rd)),.
χ ∈ L2(0, T ;H1(Ω;Rd)) and c ∈ L∞(0, T ;L logL(Ω)),

.
c ∈ Ls(0, T ;W 1,s(Ω)∗) with ∇cm2 ∈

L2(0, T ;L2(Ω)) (Case I). In Case II, we additionally require that c ∈ L∞(0, T ;L2+r(Ω)) and
∇cm+1+r

2 ,∇cm2 +1+r ∈ L2(0, T ;L2(Ω)). The pair (χ, c) satisfies the integral equations

ˆ T

0

ˆ
Ω

(
σel(∇χ, c) + σvi(∇χ,∇

.
χ, c)

)
: ∇φ+ h(D2χ)

... D2φ dx dt =

ˆ T

0

〈`(t), φ〉 dt (2.6a)

for all φ ∈ L2(0, T ;W 2,p
0 (Ω;Rd)), where 〈·, ·〉 denotes the duality pairing between W 2,p(Ω;Rd)∗

and W 2,p(Ω;Rd), and

ˆ T

0

〈.c, ψ〉 dt+

ˆ T

0

ˆ
Ω

M(∇χ, c)∇µ · ∇ψ dx dt+

ˆ T

0

ˆ
∂Ω

κ(µ− µext)ψ dS dt = 0 (2.6b)

for all ψ ∈ Ls
′
(0, T ;W 1,s′(Ω)), where 〈·, ·〉 denotes the duality pairing between W 1,s(Ω)∗ and

W 1,s′(Ω).

Furthermore, we require that µ ∈ ∂cΦ(∇χ, c) almost everywhere in Ω, and that µ ∈ L2([0, T ] ×
∂Ω).

It is important to note that ∇µ does not exist in the distributional sense in any Lebesgue space.
However, using the relation ∇µ = ∂2

FcΦD2χ + ∂2
ccΦ∇c and the bounds in (A2) and (A3), we see

that this relation gives a well-defined concept of weak solution. For example, to see that the second
integral of (2.6b) is finite, note that for F ∈ FR we have

M(∇χ, c)∇µ ∼ cm(cαD2χ+ c−1∇c+ γcr∇c) ∼ cm+αD2χ+ c
m
2 ∇c

m
2 + γcm+r∇c.

Using the conditions on the exponents in Assumption (A3) together with Hölder’s and the Gagliardo-
Nirenberg-Sobolev inequality, it then follows thatM(∇χ, c)∇µ ∈ Ls([0, T ]×Ω), and thus the weak
formulation is well-defined.

In [vOL24] it was shown that weak solutions exist cf. Definition 2.3, i.e, it was proven:

Theorem 2.4 ([vOL24, Thm. 2.7]). Suppose that the assumptions (A1)–(A8) hold. Then, the system
in (2.2)–(2.4) possesses at least one weak solutions in the sense of Definition 2.3.

As a first result, we now show that under the slightly strengthened assumptions, we can use Moser
iteration to improve the regularity of the concentration.

Theorem 2.5. Suppose that the assumptions (A1)–(A8) hold. Then, any weak solution (χ, c) of (2.2)–
(2.4) satisfies c ∈ L∞(0, T ;L∞(Ω)).

The proof of this result is postponed to Section 3.

2.3 Passage to small-strain poro-visco-elasticity

Next, we assume that the external forces are small, and introduce for sufficiently small ε > 0 the
rescaled forces f∗, g∗ and `∗ by f =: εf∗, g =: εg∗ and ` =: ε`∗, respectively. Furthermore,

DOI 10.20347/WIAS.PREPRINT.3123 Berlin 2024



Linearization of finite-strain poro-visco-elasticity with degenerate mobility 7

we define the rescaled displacement uε and concentration variation ρε by setting uε := χε−id
ε

and
ρε := cε−ceq

ε
for some equilibrium concentration ceq > 0. Similarly, the rescaled chemical potential µ∗,ε

is given by µ∗,ε := µε
ε

. The initial conditions u0 and ρ0 are then given as the limits of u0,ε = χ0,ε−id

ε

and ρ0,ε = c0,ε−ceq

ε
, respectively.

For simplicity, we restrict the analysis to κ ≡ 0, i.e., the flux satisfies a homogeneous Neumann
condition. We now rewrite the system (2.6) in terms of uε and ρε and divide both equation by ε, i.e.,
we now look at the problem
ˆ T

0

ˆ
Ω

(1

ε
σel

(
I + ε∇uε, ceq + ερε

)
+

1

ε
σvi

(
I + ε∇uε, ε∇

.
uε, ceq + ερε

))
: ∇φ dx dt

+

ˆ T

0

ˆ
Ω

1

ε
h(εD2uε)

... D2φ dx dt =

ˆ T

0

〈`∗(t), φ〉 dt (2.7a)

for φ ∈ L2(0, T ;W 2,p
0 (Ω;Rd)) andˆ T

0

〈.ρε, ψ〉 dt+

ˆ T

0

ˆ
Ω

M
(
I + ε∇uε, ceq + ερε

)
∇µ∗,ε · ∇ψ dx dt = 0 (2.7b)

for ψ ∈ Ls′(0, T ;W 1,s′(Ω)).

To pass to the limit ε→ 0 in this system, we now impose the following additional assumptions:

(L1) The boundary permeability κ satisfies κ ≡ 0.

(L2) There exists a constantC > 0 such that Φ(F, c) ≥ Cdist2(F, SO(d)) for allF ∈ GL+(d), c ∈
R+, and Φ(F, c) = 0 if and only if F ∈ SO(d) and c = ceq.

(L3) The free energy Φ is C3 in a neighbourhood of SO(d)× {ceq}, and the dissipation potential ζ
is C3 in a neighbourhood of SO(d)× {0} × {ceq}.

(L4) The material is stress-free when not deformed, i.e., σel(I, ceq) = ∂FΦ(I, ceq) = 0, and the
chemical potential is normalized in the sense that µ(I, ceq) = ∂cΦ(I, ceq) = 0.

(L5) The mobility tensorM is C1 and satisfies for all R > 0 for some constant CR > 0 the bounds

|DFM(F, c)| ≤ CRc
m, |DcM(F, c)| ≤ CRc

m−1 for all F ∈ FR, c ∈ R+.

(L6) The rescaled external forces satisfy f∗ ∈ W 1,∞(0, T ;L2(Ω;Rd)) and
g∗ ∈ W 1,∞(0, T ;L2(∂Ω;Rd)).

(L7) The initial conditions satisfy u0 ∈ W 2,p
0 (Ω;Rd) and ρ0 ∈ L∞(Ω).

Remark 2.6. We highlight that (L2) requires that the free energy Φ is always positive, i.e., Φ ≥ 0 for
all F ∈ GL+(d) and c ∈ R+.

Heuristical derivation of linearized equations

We now introduce the quantities C := ∂2
FFΦ(I, ceq), K := ∂2

FcΦ(I, ceq), L := ∂2
ccΦ(I, ceq), and

D := ∂2.
F

.
F
ζ(I, 0, ceq) = 4D̃. Formally, we now obtain by a Taylor expansion:

σel

(
I + ε∇uε, ceq + ερε

)
= ∂FΦ

(
I + ε∇uε, ceq + ερε

)
= ∂FΦ(I, ceq) + ε∂2

FFΦ(I, ceq)∇uε + ε∂2
FcΦ(I, ceq)ρε +O(ε2)

= ε(C∇uε + Kρε) +O(ε2),
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σvi

(
I + ε∇uε,∇

.
uε, ceq + ερε

)
= ∂ .

F
ζ
(
I + ε∇uε,∇

.
uε, ceq + ερε

)
= ∂ .

F
ζ(I, 0, ceq) + ε∂2.

FF
ζ(I, 0, ceq)∇uε + ε∂2.

F
.
F
ζ(I, 0, ceq)∇

.
uε

+ ε∂2.
Fc
ζ(I, 0, ceq)ρε +O(ε2)

= εD∇.
uε +O(ε2).

For the mobility tensor, recall that M is the pullback of the Eulerian mobility tensor M as given in
(1.2). Then,

M
(
I + ε∇uε, ceq + ερε

)
=

(Cof(I + ε∇uε)>)M(I + ε∇uε, ceq+ερε
det(I+ε∇uε))Cof(I + ε∇uε)

det(I + ε∇uε)
= M(I, ceq) +O(ε),

µ∗,ε = ∂cΦ(I + ε∇uε, ceq + ερε)

= ∂cΦ(I, ceq) + ε∂2
FcΦ(I, ceq) : ∇uε + ε∂2

ccΦ(I, ceq)ρε +O(ε2)

= ε(K : ∇uε + Lρε) +O(ε2).

Using these expansions, we can now take the limit ε→ 0 in (2.7), and obtain (formally) the linearized
equations

−div
(
Ce(u) + Kρ+ De(.u)

)
= f∗(t), (2.8a)

.
ρ− div

(
M(I, ceq)∇(K : e(u) + Lρ)

)
= 0, (2.8b)

where we denote by e(u) := 1
2
(∇u + (∇u)>) the symmetric part of ∇u, and define the linearized

chemical potential µ∗ by setting µ∗ := K : e(u) + Lρ. The fact that C, D, and K only act on
the symmetric part of ∇u and ∇ .

u follows from the frame-indifference of Φ and ζ , see Lemma 4.5.
Furthermore, C is positive definite, see Lemma 4.6.

The boundary and initial conditions now read as follows:

u = 0 on ΓD,
(
Ce(u) + Kρ+ De(.u)

)
~n = g∗(t) on ΓN , (2.9a)

M(I, ceq)∇µ∗ · ~n = 0 on ∂Ω, (2.9b)

u(0) = u0, ρ(0) = ρ0 in Ω. (2.10)

Statement of main result

We now introduce the notion of weak solution for the linearized system (2.8)–(2.10).

Definition 2.7 (Weak solution linearized equations). A triple (u, ρ, µ∗) is called a weak solution of the
problem (2.8)–(2.10) if u ∈ L∞(0, T ;H1(Ω;Rd)),

.
u ∈ L2(0, T ;H1(Ω;Rd)), ρ ∈ L∞(0, T ;L2(Ω)),.

ρ ∈ L2(0, T ;H1(Ω)∗), and µ∗ ∈ L2(0, T ;H1(Ω)) with µ∗ = Ke(u) + Lρ. Furthermore, the fol-
lowing integral equations are satisfied

ˆ T

0

ˆ
Ω

(Ce(u) + Kρ+ De(.u)) : ∇φ dx dt =

ˆ T

0

〈`∗(t), φ〉 dt (2.11a)
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Linearization of finite-strain poro-visco-elasticity with degenerate mobility 9

for all φ ∈ L2(0, T ;H1
0 (Ω;Rd)), where 〈·, ·〉 denotes the duality pairing between H1(Ω;Rd)∗ and

H1(Ω;Rd), and ˆ T

0

〈.ρ, ψ〉 dt+

ˆ T

0

ˆ
Ω

M(I, ceq)∇µ∗ · ∇ψ dx dt = 0 (2.11b)

for all ψ ∈ L2(0, T ;H1(Ω)), where 〈·, ·〉 denotes the duality pairing between H1(Ω)∗ and H1(Ω).

Example 2.8 (Linear Biot model). By setting χ = id + εu, c = ceq + ερ, and scaling the energy Φ
from Example 2.2 by 1

ε2
, we obtain by letting ε→ 0 the linear Biot model, with free energy

Φ(u, ρ) = Ce(u) : e(u) +
1

2
MB(ρ− βtre(u))2 +

k

2ceq
ρ2,

see also e.g. [KR19, Sect. 7.6.1] or [Ana15, Sect. 7.1]. Note that the degenerate mobility M(F, c) =
cM0 now reduces to the uniformly positive definite mobility M(I, ceq) = ceqM0.

We now arrive at the main result of the paper.

Theorem 2.9 (Passage from nonlinear to linear poro-visco-elasticity). Assume that Assumptions (L1)–
(L7) hold.

(i) Let (χε, cε) be a sequence of weak solutions of the nonlinear system (2.7). Then, for uε :=
χε−id
ε

, ρε := cε−ceq

ε
and µ∗,ε := µε

ε
we have that (up to subsequences)

uε
w∗−⇀ u in L∞(0, T ;H1(Ω;Rd)) ∩H1(0, T ;H1(Ω;Rd)),

ρε
w∗−⇀ ρ in L∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)∗),

M(∇χε, cε)∇µ∗,ε
w−⇀M(I, ceq)∇µ∗ in L2([0, T ]× Ω),

where (u, ρ) is a weak solution of the linearized system (2.8)–(2.10).

(ii) The weak solution (u, ρ) obtained in (i) is the unique weak solution of (2.8)–(2.10).

Remark 2.10. (i) Contrary to the finite-strain setting, in the small-strain setting we have that the
gradient of the (linearized) chemical potential∇µ∗ is in L2([0, T ]×Ω). In particular, note that
now∇ρ and D2u are not in any Lebesgue space. This uses the fact that M(I, ceq) is uniformly
positive definite.

(ii) Since ρ does not denote the concentration (which is always nonnegative), but rather the differ-
ence between the concentration c and the equilibrium concentration ceq, ρ can be both positive
and negative.

3 Improved regularity for finite-strain solutions

We prove that if (χ, c) is a weak solution of (2.2), then we have c ∈ L∞(0, T ;L∞(Ω)). The proof is
based on Moser iteration, see e.g. [Ali79].

Proof of Thm. 2.5. To show the bound ‖c‖L∞(0,T ;L∞(Ω)) ≤ C , we iterate over an exponent q. For
brevity, we write x . y if there exists a constant C > 0 such that x ≤ Cy. This constant is
independent of q, but might depend on d, m, etc.
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Step 1. Let q ≥ 3−m, then

‖c(t)‖qLq(Ω) − ‖c0‖qLq(Ω) =

ˆ t

0

d

ds

ˆ
Ω

c(s)q dx ds = q

ˆ t

0

ˆ
Ω

cq−1 .c dx ds

= −q(q−1)

ˆ t

0

ˆ
Ω

M(∇χ, c)cq−2∇c · ∇µ dx ds− q
ˆ t

0

ˆ
∂Ω

κ(µ− µext)c
q−1 dS ds.

Step 2. Using that∇µ = ∂2
FcΦD2χ+∂2

ccΦ∇c and the bounds on Φ andM in Assumption (A3) and
(A2), respectively, we then have

‖c(t)‖qLq(Ω) − ‖c0‖qLq(Ω)

. −q(q−1)

ˆ t

0

ˆ
Ω

M(∇χ, c)cq−3|∇c|2 dx ds

− γq(q−1)

ˆ t

0

ˆ
Ω

M(∇χ, c)cq−2+r|∇c|2 dx ds

+ q(q−1)

ˆ t

0

ˆ
Ω

M(∇χ, c)cq−2+α|∇c||D2χ| dx ds− q
ˆ t

0

ˆ
∂Ω

κ(µ− µext)c
q−1 dS ds

. −q(q−1)

ˆ t

0

ˆ
Ω

cq+m−3|∇c|2 dx ds

− γq(q−1)

ˆ t

0

ˆ
Ω

cq+m−2+r|∇c|2 dx ds

+ q(q−1)

ˆ t

0

ˆ
Ω

cq+m−2+α|∇c||D2χ| dx ds− q
ˆ t

0

ˆ
∂Ω

κ(µ− µext)c
q−1 dS ds

. − 4q(q−1)

(q+m−1)2

∥∥∇c q+m−1
2

∥∥2

L2([0,t]×Ω)
− γ1

4q(q−1)

(q+m+r)2

∥∥∇c q+m+r
2

∥∥2

L2([0,t]×Ω)

+ q(q−1)

ˆ t

0

ˆ
Ω

cq+m−2+α|∇c||D2χ| dx ds− q
ˆ t

0

ˆ
∂Ω

κ(µ− µext)c
q−1 dS ds

=: I1 + I2 + I3 + I4. (3.1)

The first two integrals I1 and I2 are negative and pose no problems. It remains to bound and/or
absorb the last two integrals I3 and I4. We distinguish the cases γ1 = γ2 = 0 and γ2 ≥ γ1 > 0 (see
Assumption (A3)(ii)). In particular, recall from Defintion 2.3 that for the case γ2 ≥ γ1 > 0 we have
slightly better regularity for the concentration c.

We first complete the proof for the case γ1 = γ2 = 0. Afterwards, we then show the modifications
necessary to deal with the case γ2 ≥ γ1 > 0.

Case I: γ1 = γ2 = 0.

Step 3. To estimate the third integral I3, we note that with Hölder’s inequality and the fact that
cq+m−2+α = c

q+m−3
2 c

q+m−1+2α
2 ,ˆ

Ω

cq+m−2+α|∇c||D2χ| dx . ‖D2χ‖Lp(Ω;Rd×d×d)

∥∥c q+m−3
2 |∇c|

∥∥
L2(Ω)

∥∥c q+m−1+2α
2

∥∥
L

2p
p−2 (Ω)

.

Thus, it follows thatˆ
Ω

cq+m−2+α|∇c||D2χ| dx . ‖D2χ‖Lp(Ω;Rd×d×d)

∥∥c q+m−3
2 |∇c|

∥∥
L2(Ω)

∥∥c q+m−1+2α
2

∥∥
L

2p
p−2 (Ω)

.
2

q+m−1

∥∥∇c q+m−1
2

∥∥
L2(Ω)

∥∥c q+m−1+2α
2

∥∥
L

2p
p−2 (Ω)

. (3.2)
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Next, we note that by Assumption (A3)(iii) −1 ≤ α < 0, which together with q ≥ 3−m implies that
1
2
≤ b1 := q+m−1+2α

q+m−1
< 1. Thus, we can use the embedding L

2p
p−2 (Ω) ↪→ Lb1

2p
p−2 (Ω) to estimate∥∥c q+m−1+2α

2

∥∥
L

2p
p−2 (Ω)

=
∥∥c q+m−1

2

∥∥b1
L
b1

2p
p−2 (Ω)

.
∥∥c q+m−1

2

∥∥b1
L

2p
p−2 (Ω)

.

In particular, since p > d we have 2p
p−2

< 2d
d−2

, and we can use the embeddingL
2d
d−2 (Ω) ↪→ L

2p
p−2 (Ω)

and the Gagliardo–Nirenberg–Sobolev inequality to further estimate the last term to obtain∥∥c q+m−1+2α
2

∥∥b1
L

2p
p−2 (Ω)

.
∥∥∇c q+m−1

2

∥∥b1
L2(Ω)

+
∥∥c q+m−1

2

∥∥b1
L1(Ω)

.

Combining this with (3.2), we thus obtain

q(q − 1)

ˆ
Ω

cq+m−2+α|∇c||D2χ| dx

.
2q(q − 1)

q+m−1

∥∥∇c q+m−1
2

∥∥1+b1

L2(Ω)
+

2q(q − 1)

q+m−1

∥∥∇c q+m−1
2

∥∥
L2(Ω)

∥∥c q+m−1
2

∥∥b1
L1(Ω)

.

Since b1 < 1, we can use Young’s inequality with ε to estimate
∥∥∇c q+m−1

2

∥∥1+b1

L2(Ω)
. ε

q

∥∥∇c q+m−1
2

∥∥2

L2(Ω)
+

C(ε)q
1+b1
1−b1 and

∥∥∇c q+m−1
2

∥∥
L2(Ω)

∥∥c q+m−1
2

∥∥b1
L1(Ω)

. ε
q

∥∥∇c q+m−1
2

∥∥2

L2(Ω)
+C(ε)q

∥∥c q+m−1
2

∥∥2b1

L1(Ω)
, and

thus

q(q − 1)

ˆ
Ω

cq+m−2+α|∇c||D2χ| dx . q
1+b1
1−b1 + ε

∥∥∇c q+m−1
2

∥∥2

L2(Ω)
+ q2

∥∥c q+m−1
2

∥∥2b1

L1(Ω)

. q
1+b1
1−b1 + q2 + ε

∥∥∇c q+m−1
2

∥∥2

L2(Ω)
+ q2

∥∥c∥∥q+m−1

L
q+m−1

2 (Ω)
.

Thus, we conclude that

I3 = q(q−1)

ˆ t

0

ˆ
Ω

cq+m−2+α|∇c||D2χ| dx ds

. q
1+b1
1−b1 + q2 + ε

∥∥∇c q+m−1
2

∥∥2

L2([0,t]×Ω)
+ q2

ˆ t

0

∥∥c∥∥q+m−1

L
q+m−1

2 (Ω)
ds.

Step 4. We estimate the boundary integral I4. To do this, we recall that p > d and thus the embedding

W 2,p(Ω) ↪→ C1,1− d
p (Ω) implies that ∇χ ∈ L∞(0, T ;L∞(∂Ω)). By Assumption (A3)(ii) we then

have

µ = ∂cΦ(∇χ, c)− ∂cΦ(I, c) + ∂cΦ(I, c)− ∂cΦ(I, ceq) + ∂cΦ(I, ceq)

& −cα|∇χ− I|+ log
c

ceq
+ ∂cΦ(I, ceq)

& log
c

ceq
− cα.

Using also that µext ∈ L∞(0, T ;L∞(∂Ω)) (see Assumption (A7)), we have

−
ˆ t

0

ˆ
∂Ω

κ(µ− µext)c
q−1 dS ds . −

ˆ t

0

ˆ
∂Ω

cq−1 log c dS ds+

ˆ t

0

ˆ
∂Ω

cq−1 dS ds+ 1.
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Since the function f(x) = −xq−1 log x + Cxq−1 is bounded from above for q > 1 and any C > 0,
it follows that

I4 = −q
ˆ t

0

ˆ
∂Ω

κ(µ− µext)c
q−1 dS ds . q.

Step 5. Combining everything, we thus have for b0 = m− 1:

‖c(t)‖qLq(Ω) . ‖c0‖qLq(Ω) + q2 sup
s∈[0,t]

∥∥c(s)∥∥q+b0
L
q+m−1

2 (Ω)
+ q

1+b1
1−b1 + q2 + q.

Now let qn := 2n(2−m) +m− 1 and define

an := ‖c0‖qnL∞(Ω) + sup
s∈[0,t]

‖c(s)‖qnLqn (Ω) + 1.

Then, since qn+m−1
2

= qn−1, it follows that for some constants C1, C2 > 0 we have

an ≤ C1(1 + Cn
2 )a

(qn+b0)/(qn−1)
n−1 . Thus, we have

an ≤ C1(1 + Cn
2 )(C1(1 + Cn−1

2 ))
qn+b0
qn−1 a

qn+b0
qn−1

qn−1+b0
qn−2

n−2

...

≤ C
1+

qn+b0
qn−1

+
qn+b0
qn−1

qn−1+b0
qn−2

+...+
qn+b0
qn−1

··· q1+b0
q0

1

× (1 + Cn
2 )(1 + Cn−1

2 )
qn+b0
qn−1 · · · (1 + C2)

qn+b0
qn−1

··· q2+b0
q1 a

qn+b0
qn−1

··· q1+b0
q0

0 ,

where q0 = 1. Now, we note that if 1 ≤ m ≤ 2 − η for some small η > 0, then η2i ≤ qi ≤ 2i + 1
and thus

n∏
i=j

qi + b0

qi−1

=
n∏
i=j

qi
qi−1

qi + b0

qi
≤

n∏
i=j

2
(

1 +
b0/η

2i

)
≤ 2n−j+1

∞∏
i=1

(
1 +

b0/η

2i

)
≤ C2n−j+1 ≤ Cqn−j+1.

In particular, we obtain

1 +
qn + b0

qn−1

+
qn + b0

qn−1

qn−1 + b0

qn−2

+ . . .+
qn + b0

qn−1

· · · q1 + b0

q0

≤ C

n∑
i=0

2i = C(2n+1 − 1) ≤ C2n ≤ Cqn,

and

n+(n−1)
qn + b0

qn−1

+. . .+(1)
qn + b0

qn−1

· · · q2 + b0

q1

≤ C

n∑
i=1

i2n−i = C(2n+1−2−n) ≤ C2n ≤ Cqn.

Thus, after repeated application of Young’s inequality, we arrive at

an ≤ C0

(
1 + (C1(1 + C2)a0)Cqn

)
,
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and thus for almost all t ∈ [0, T ]:

‖c(t)‖Lqn (Ω) ≤ Ca1/qn
n ≤ C

(
1+(C1(1+C2)a0)Cqn

)1/qn ≤ C
(
‖c0‖L∞(Ω)+ sup

s∈[0,t]

‖c(s)‖L1(Ω)+1
)C
.

Since m ≤ 2− η for some small η > 0 (see Assumption (A3)(ii)), we can then take the limit n→∞
and obtain

‖c(t)‖L∞(Ω) ≤ C
(
‖c0‖L∞(Ω) + sup

s∈[0,t]

‖c(s)‖L1(Ω) + 1
)C

a.e. t ∈ [0, T ].

Since we have the bound ‖c‖L∞(0,T ;L1(Ω)) ≤ C , this inequality implies the desired bound
‖c‖L∞(0,T ;L∞(Ω)) ≤ C .

Case II: γ2 ≥ γ1 > 0.

Step 6. This case is similar to Case I, but now we can start iterating from the bound ‖c‖L∞(0,T ;L2+r(Ω)) ≤
C .

Note that there are now two possibilities to absorb the integral I3: it is still possible to absorb it in I1,
but also in I2. We start by estimating the integral I3 as
ˆ t

0

ˆ
Ω

cq+m−2+α|∇c||D2χ| dx ds .
2

q+m+r

ˆ t

0

∥∥∇c q+m+r
2

∥∥
L2(Ω)

∥∥c q+m−2−r+2α
2

∥∥
L

2p
p−2 (Ω)

ds.

In Case IIa, we use that m+ 2α < m+ 1 + r and thus∥∥c q+m−2−r+2α
2

∥∥
L

2p
p−2 (Ω)

.
∥∥c q+m−1

2

∥∥b2
L

2p
p−2 (Ω)

,

where b2 := q+m−2−r+2α
q+m−1

< 1. Using the Gagliardo-Nirenberg-Sobolev inequality on the last term,
we continue in the same way as in Case I and find

q(q − 1)

ˆ t

0

ˆ
Ω

cq+m−2+α|∇c||D2χ| dx ds

. C(q) + ε
∥∥∇c q+m−1

2

∥∥2

L2([0,t]×Ω)
+ ε
∥∥∇c q+m+r

2

∥∥2

L2([0,t]×Ω)
+ q2

ˆ t

0

∥∥c∥∥q+m−1

L
q+m−1

2 (Ω)
ds

for some polynomial function C(q).

To estimate the boundary integral I4, we now note that by Assumption (A3)(ii) we have

µ & log
c

ceq
+ cr+1 − cr+1

eq − cα.

Thus,

−
ˆ t

0

ˆ
∂Ω

κ(µ− µext)c
q−1 dS ds . −

ˆ t

0

ˆ
∂Ω

cq−1 log c dS ds−
ˆ t

0

ˆ
∂Ω

cr+q dS ds

+

ˆ t

0

ˆ
∂Ω

cα+q−1 dS ds+

ˆ t

0

ˆ
∂Ω

cq−1 dS ds+ 1.

Note that the second integral is nonpositive, and that the third integral can be absorbed in the second
using Young’s inequality with ε. Using that the function f(x) = −xq−1 log x + Cxq−1 is bounded
from above for q > 1 and any C > 0, it then follows that

−
ˆ t

0

ˆ
∂Ω

κ(µ− µext)c
q−1 dS ds . 1.
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Combining everything, we thus arrive at

‖c(t)‖qLq(Ω) . ‖c0‖qLq(Ω) + q sup
s∈[0,t]

∥∥c(s)∥∥q+m−1

L
q+m−1

2 ([0,t]×Ω)
+ C(q).

Setting qn := 2n(3 + r−m) +m− 1, we then proceed as before, and finally take the limit n→∞
and find

‖c(t)‖L∞(Ω) ≤ C
(
‖c0‖L∞(Ω) + sup

s∈[0,t]

‖c(s)‖L2+r(Ω) + 1
)C ≤ C a.e. t ∈ [0, T ].

In Case IIb, we instead use that m+ 2α < m+ 2 + 2r to estimate the integral I3 as∥∥c q+m−2−r+2α
2

∥∥
L

2p
p−2 (Ω)

.
∥∥c q+m+r

2

∥∥b3
L

2p
p−2 (Ω)

,

where b3 := q+m−2−r+2α
q+m+r

< 1. Again, we can use the Gagliardo-Nirenberg-Sobolev inequality on the
last term and proceed as before, and we find

‖c(t)‖qLq(Ω) . ‖c0‖qLq(Ω) + q sup
s∈[0,t]

∥∥c(s)∥∥q+m+r

L
q+m+r

2 ([0,t]×Ω)
+ C(q).

Setting qn := 2n(2−m) +m+ r, we then eventually take the limit n→∞ and again find

‖c(t)‖L∞(Ω) ≤ C
(
‖c0‖L∞(Ω) + sup

s∈[0,t]

‖c(s)‖L2+r(Ω) + 1
)C ≤ C a.e. t ∈ [0, T ].

In both cases we obtain the desired bound ‖c‖L∞(0,T ;L∞(Ω)) ≤ C , completing the proof.

Remark 3.1 (Strictly positive lower bound for c). If we assume that
D2χ ∈ L∞(0, T ;L∞(Ω;Rd×d×d)) and that m − 1 + 2α ≥ 0 (which is only possible in Case II),
then we claim it is possible to find a strictly positive lower bound for c, i.e., there exists some c∗ > 0
such that c(t, x) ≥ c∗ for all (t, x) ∈ [0, T ] × Ω. Indeed, we can set w = −min{0, log c + K}
for sufficiently large K > 0. Testing (2.7b) with −qw

q−1
ε

cε
, and using Moser iteration to take the limit

q → ∞, we then obtain ‖w‖L∞(0,T ;L∞(Ω)) ≤ C , which implies the lower bound for c. Although the
condition on the exponents m− 1 + 2α ≥ 0 is not too restricting (e.g. the Biot model satisfies this for
linear mobility), the condition D2χ ∈ L∞(0, T ;L∞(Ω;Rd×d×d)) is in general too restrictive.

4 Limit passage to linearized poro-visco-elasticity

We start by proving an energy-dissipation inequality for the rescaled solutions (χε, cε), which is the
time-continuous version of the time-discrete energy-dissipation inequality shown in [vOL24, Lemma
3.4].

Define the scaled energy Eε and the dissipation potentialRε as

Eε(t, u, ρ) :=
1

ε2

ˆ
Ω

Φ
(
I + ε∇u, ceq + ερ

)
+ H (εD2u) dx− 1

ε
〈`ε(t), u〉, (4.1)

Rε(u,
.
u, ρ) :=

1

ε2

ˆ
Ω

ζ(I + ε∇u, ε∇.
u, ceq + ερ) dx, (4.2)
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Linearization of finite-strain poro-visco-elasticity with degenerate mobility 15

and the associated quadratic forms by

E0(t, u, ρ) :=

ˆ
Ω

1

2
Ce(u) : e(u) + ρK : e(u) +

1

2
Lρ2 dx− 〈`∗(t), u〉, (4.3)

R0(
.
u) :=

ˆ
Ω

1

2
De(.u) : e(

.
u) dx. (4.4)

Lemma 4.1 (Energy-dissipation inequality). Let (χε, cε) be a weak solution of (2.7) in the sense of
Definition 2.3. Then,

Eε(t, uε(t), ρε(t))+

ˆ t

0

ˆ
Ω

M(I+ε∇uε, ceq +ερε)∇µ∗,ε ·∇µ∗,ε dx ds+

ˆ t

0

Rε(uε,
.
uε, ρε) ds

≤ Eε(0, uε(0), ρε(0))−
ˆ t

0

〈
.̀
∗(t), uε〉 ds. (4.5)

Proof. Formally, we obtain the energy-dissipation inequality by testing (2.7a) with
.
χε and (2.7b) with

µε. However, µε is not a valid test function, see Definition 2.3. Instead, we can regularize the diffusion
equation by a term η(−∆)θµ, which was done in [vOL24]. Here, η denotes the regularization parame-
ter, and θ is an exponent chosen big enough so that Hθ(Ω) ↪→ L∞(Ω). Using this regularization, we
can now derive a time-discrete energy-dissipation inequality, which was done in [vOL24, Lemma 3.4].
We can then use lower semicontinuity arguments to obtain the time-continuous energy-dissipation
inequality (4.5). For example, to pass to the limit (η, τ) → 0 in the time-discrete, regularized term´ tk

0

´
Ω
M(∇χη,τ , cη,τ )∇µη,τ ·∇µη,τ dx ds, where a bar denotes the piecewise constant interpolant,

and τ is the time-step, we recall that µ = ∂cΦ(∇χ, c) and thus ∇µ = ∂2
FcΦ(∇χ, c)D2χ +

∂2
ccΦ(∇χ, c)∇c. We can then apply [FL07, Thm. 7.5] to the function F ((∇χ, c), (D2χ,∇cm2 )) =
M(∇χ, c)∇µ(∇χ, c)·∇µ(∇χ, c) and use the strong convergences of ∇χη,τ and cη,τ , and the
weak convergences of D2χη,τ and∇cη,τ , which were shown in [vOL24, Prop. 4.1], to pass to the limit
(η, τ)→ 0.

Before we state the a priori estimates, we recall the following rigidity lemma, taken from [FK18, Lemma
4.2]; see also the proof of [FJM02, Prop. 3.4].

Lemma 4.2 (Rigidity estimates). Let u ∈ W 2,p
0 (Ω;Rd) be such that Eε(t, u, ρ) ≤ C for all ρ ∈ R.

Then, there exists a C > 0 such that for a.e. t ∈ [0, T ]:

(i) ε‖∇u‖L2(Ω) ≤ C‖dist(I + ε∇u, SO(d))‖L2(Ω), and

(ii) ‖∇u‖L∞(Ω) ≤ Cε−1+ 2
p .

4.1 A priori estimates

We start by proving a priori estimates for the rescaled displacement uε.

Lemma 4.3 (A priori estimates, part 1). Let (χε, cε) be a weak solution of (2.7) in the sense of
Definition 2.3. Then, there exists a constant C > 0 (independent of ε) such that:

(i) Eε(t, uε, ρε) ≤ C for a.e. t ∈ [0, T ],
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(ii) ‖uε‖L∞(0,T ;H1(Ω;Rd)) ≤ C ,

(iii) ‖∇ .
uε‖L2([0,T ]×Ω) ≤ C ,

(iv) ‖D2uε‖L∞(0,T ;Lp(Ω)) ≤ Cε−1+ 2
p .

Proof. (i) From the energy-dissipation inequality (4.5) it follows that for

Λ = ‖
.
`∗‖L∞(0,T ;W 2,p(Ω;Rd)∗) we have

Eε(t, uε, ρε) ≤ C
(

1 +
Λ

ε2

ˆ t

0

‖χε‖W 2,p(Ω;Rd) dt
)
.

On the other hand, by coercivity of Φ (see Assumption (A3)(i)):

Eε(t, χε, cε) ≥
1

ε2

(
C1‖χε‖W 2,p(Ω;Rd)) + C2‖(det∇χε)−1‖qLq(Ω)) − C3

)
.

So, using Grönwall’s lemma, the bound follows.

(ii) Using the rigidity estimate ε‖∇uε‖L2(Ω;Rd×d) ≤ C‖dist(∇χε, SO(d)‖L2(Ω;Rd×d) from Lemma
4.2(i), Assumption (L2), and the boundedness of Eε it follows that

‖∇uε‖2
L∞(0,T ;L2(Ω;Rd×d)) ≤

1

ε2
sup
t∈[0,T ]

ˆ
Ω

dist2(∇χε, SO(d)) dx

≤ 1

ε2
sup
t∈[0,T ]

ˆ
Ω

Φ(∇χε, cε) dx ≤ C.

The bound ‖uε‖L∞(0,T ;H1(Ω;Rd)) ≤ C now follows from Poincaré’s inequality.

(iii) Since ∇χε ∈ FR for some R > 0, we can use the generalized Korn’s inequality as in [MR20,
Cor. 3.4] and Assumption (A5) to obtain

‖.uε‖2
L2(0,T ;H1(Ω)) =

1

ε2
‖ .χε‖2

L2(0,T ;H1(Ω)) =
1

ε2

ˆ T

0

‖ .χε(t)‖2
H1(Ω) dt

≤ C

ε2

ˆ T

0

ˆ
Ω

∣∣(∇χε)>∇ .
χε + (∇ .

χε)
>∇χε

∣∣2 dx dt

≤ C

ε2

ˆ T

0

ˆ
Ω

ζ̂
(
(∇χε)>∇χε, ((∇χε)>∇χε)

.
, cε
)

dx dt

=
C

ε2

ˆ T

0

ˆ
Ω

ζ(∇χε,∇
.
χε, cε) dx dt.

The bound now follows from the the energy-dissipation equality (4.5).

(iv) Again using the boundedness of Eε, we see that for a.e. t ∈ [0, T ]

‖D2χε‖pLp(Ω) ≤ C

ˆ
Ω

H (D2χε) dx ≤ Cε2.

Thus, it follows that ‖D2χε‖L∞(0,T ;Lp(Ω)) ≤ Cε
2
p .
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Linearization of finite-strain poro-visco-elasticity with degenerate mobility 17

We now prove a priori estimates for the concentration cε and the rescaled concentration variation ρε.

Lemma 4.4 (A priori estimates, part 2). Let (χε, cε) be a weak solution of (2.7) in the sense of
Definition 2.3. Then, there exists a constant C > 0 (independent of ε) such that:

(i) ‖cε‖L∞(0,T ;L∞(Ω)) ≤ C ,

(ii) ‖cε log( cε
ceq

)− cε + ceq‖L∞(0,T ;L1(Ω)) ≤ Cε2,

(iii) ‖ρε‖L∞(0,T ;L2(Ω)) ≤ C ,

(iv)
∥∥∇cm/2ε

∥∥
L2([0,T ]×Ω)

+ γ1

∥∥∇cm+1+r
2

ε

∥∥
L2([0,T ]×Ω)

+ γ1

∥∥∇cm2 +1+r
ε

∥∥
L2([0,T ]×Ω)

≤ Cε
2
p ,

(v) ‖M(∇χε, cε)∇µ∗,ε‖L2([0,T ]×Ω) ≤ C ,

(vi) ‖ .ρε‖L2(0,T ;H1(Ω)∗) ≤ C .

If, additionally, γ1 > 0 in Assumption (A3)(ii), then we also have that

(vii)
∥∥ 1
r+2

(cr+2
ε − cr+2

eq )− cr+1
eq (cε − ceq)

∥∥
L∞(0,T ;L1(Ω))

≤ Cε2.

Proof. (i) This is a direct consequence of Theorem 2.5.

(ii) This follows by integrating the lower bound ∂2
ccΦ &

1
c

from Assumption (A3)(ii) twice, using that
Φ(I, ceq) = 0, ∂cΦ(I, ceq) = 0, the uniform boundedness of Eε, and the
L∞(0, T ;L2(Ω;Rd×d))-bound for∇uε.

(iii) We use the L∞(0, T ;L∞(Ω))-bound for cε from (i) to find a K = K(‖cε‖L∞(0,T ;L∞(Ω))) > 0
such that cε log( cε

ceq
)− cε + ceq ≥ K(cε − ceq)

2. The bound now follows from (ii).

(iv) By the energy-dissipation inequality (4.5), we have

ˆ T

0

ˆ
Ω

M(∇χε, cε)∇µε · ∇µε dx dt ≤ Cε2.

Using that∇µε = ∂2
FcΦ(∇χε, cε)D2χε + ∂2

ccΦ(∇χε, cε)∇cε, we have

ˆ T

0

ˆ
Ω

M(∇χε, cε)∇µε · ∇µε dx dt

≥ C

ˆ T

0

ˆ
Ω

∂2
ccΦ(∇χε, cε)2M(∇χε, cε)|∇cε|2 dx dt

− C
ˆ T

0

ˆ
Ω

|M(∇χε, cε)|
∣∣∂2
FcΦ(∇χε, cε)D2χε

∣∣2 dx dt,

where we have used Young’s inequality to absorb the mixed term.

Next, we note that by Assumption (A2) and (A3)(ii)

ˆ T

0

ˆ
Ω

∂2
ccΦ(∇χε, cε)2M(∇χε, cε)|∇cε|2 dx dt

≥ C
(∥∥∇cm2ε ∥∥2

L2(0,T ;L2(Ω))
+ γ
∥∥∇cm+1+r

2
ε

∥∥2

L2(0,T ;L2(Ω))
+ γ
∥∥∇cm2 +1+r

ε

∥∥2

L2(0,T ;L2(Ω))

)
.
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Using the L∞(0, T ;L∞(Ω))-bound for cε from (i) and that m+ 2α ≥ 0 (Assumption (A3)(iii),
we now obtain

ˆ T

0

ˆ
Ω

|M(∇χε, cε)|
∣∣∂2
FcΦ(∇χε, cε)D2χε

∣∣2 dx dt

≤ C‖cε‖m+2α
L∞(0,T ;L∞(Ω))‖D

2χε‖2
L∞(0,T ;Lp(Ω)) ≤ Cε

4
p .

Combining everything, we have

Cε
4
p ≥
ˆ T

0

ˆ
Ω

M(∇χε, cε)∇µε · ∇µε dx dt

≥ C
(
‖∇c

m
2
ε ‖2

L2(0,T ;L2(Ω)) + γ‖∇c
m+1+r

2
ε ‖2

L2(0,T ;L2(Ω)) + γ‖∇c
m
2

+1+r
ε ‖2

L2(0,T ;L2(Ω))

)
,

from which (iv) follows.

(v) The energy-dissipation inequality (4.5) implies that ‖M(∇χε, cε)
1
2∇µ∗,ε‖L2([0,T ]×Ω) ≤ C .

Thus, using the L∞(0, T ;L∞(Ω))-bound for cε, it then follows that

‖M(∇χε, cε)∇µ∗,ε‖L2([0,T ]×Ω) ≤
∥∥cε∥∥m2L∞(0,T ;L∞(Ω))

‖M(∇χε, cε)
1
2∇µ∗,ε‖L2([0,T ]×Ω) ≤ C.

(vi) Testing (2.7b) with ψ ∈ L2(0, T ;W 1,s′(Ω)) we obtain

ˆ T

0

〈.ρε, ψ〉 dt ≤ C‖M(∇χε, cε)∇µ∗,ε‖L2([0,T ]×Ω)‖ψ‖L2(0,T ;H1(Ω)) ≤ C.

In fact, we see that
.
ρε ∈ L2(0, T ;H1(Ω)∗), and thus it suffices to take test functions ψ ∈

L2(0, T ;H1(Ω)).

(vii) This follows in the same way as (ii), but now using the lower bound ∂2
ccΦ & γ1c

r from Assump-
tion (A3)(ii). Indeed,

´ c
ceq
c̃r dc̃ = 1

r+1
(cr+1 − cr+1

eq ), and
´ c
ceq

(c̃r+1 − cr+1
eq ) dc̃ = 1

r+2
(cr+2 −

cr+2
eq )− cr+1

eq (c− ceq).

4.2 Limit passage ε→ 0

We are now ready to pass to the limit ε→ 0 in the system (2.7).

Proof of Thm. 2.9(i). Using the a priori estimates, we can extract converging subsequences (not rela-
beled) and limits (u, ρ) such that:

uε
w∗−⇀ u in L∞(0, T ;H1(Ω)),

∇.
uε

w−⇀ ∇.
u in L2([0, T ]× Ω),

ρε
w∗−⇀ ρ in L∞(0, T ;L2(Ω)),

.
ρε

w−⇀ .
ρ in L2(0, T ;H1(Ω)∗).
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Note that using the Aubin–Lions lemma we can extract a further subsequence (not relabeled) such
that

uε
s−→ u in C(0, T ;L2(Ω)).

Mechanical equation. We first pass to the limit ε → 0 in the mechanical equation (2.7a). Using As-
sumption (L3) and Taylor’s theorem, we find that for C := ∂2

FFΦ(I, ceq) and K := ∂2
FcΦ(I, ceq)

|∂FΦ(∇χε, cε)− εC∇uε − εKρε| ≤ Cε2(|∇uε|2 + |ρε|2). (4.6)

In particular, using the rigidity estimate in Lemma 4.2(ii) and the L∞(0, T ;L∞(Ω))-bound for cε, it
follows that ∣∣∣∣1ε∂FΦ(∇χε, cε)− C∇uε −Kρε

∣∣∣∣ ≤ C(|∇uε|+ |ρε|),

and thus 1
ε
∂FΦ(∇χε, cε)−C∇uε−Kρε is bounded inL∞(0, T ;L2(Ω)) and has a weak*-converging

subsequence. However, (4.6) also implies that∥∥∥∥1

ε
∂FΦ(∇χε, cε)− C∇uε −Kρε

∥∥∥∥
L∞(0,T ;L1(Ω))

= sup
t∈[0,T ]

ˆ
Ω

∣∣∣∣1ε∂FΦ(∇χε, cε)− C∇uε −Kρε
∣∣∣∣ dx

≤ Cε(‖∇uε‖2
L∞(0,T ;L2(Ω)) + ‖ρε‖2

L∞(0,T ;L2(Ω)))

≤ Cε→ 0,

and thus 1
ε
∂FΦ(∇χε, cε)−C∇uε−Kρε must weak*-converge to 0 in L∞(0, T ;L2(Ω)). Using the

weak*-convergence of uε inL∞(0, T ;H1(Ω)) and the weak*-convergence of ρε inL∞(0, T ;L2(Ω)),
we then conclude that

ˆ T

0

ˆ
Ω

1

ε
∂FΦ(∇χε) : ∇φ dx dt→

ˆ T

0

ˆ
Ω

(
C∇u+ Kρ

)
: ∇φ dx dt.

The limit passage in the viscous stress follows in a similar way, now using the weak convergence of
∇ .
uε in L2([0, T ] × Ω). Setting D := ∂2.

F
.
F
ζ(I, 0, ceq) (which is related to D̃ in Assumption (A5) by

D = 4D̃), it follows that

ˆ T

0

ˆ
Ω

1

ε
∂ .
F
ζ(∇χε,∇

.
χε, cε) : ∇φ dx dt→

ˆ T

0

ˆ
Ω

D∇.
u : ∇φ dx dt.

To show that the hyperstress vanishes as ε → 0, we note that Hölder’s inequality and the a priori
estimate for D2uε imply that

ˆ T

0

ˆ
Ω

1

ε
∂GH (D2χε)

...D2φ dx dt ≤ 1

ε

ˆ T

0

‖∂GH (D2χε)‖
L

p
p−1 (Ω)

‖D2φ‖Lp(Ω) dt

≤ C

ε

ˆ T

0

‖D2χε‖p−1
Lp(Ω)‖φ‖W 2,p(Ω) dt

≤ Cε−1+
2(p−1)
p

≤ Cε1− 2
p → 0.

This concludes the limit passage for the mechanical equation.
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Diffusion equation. We now pass to the limit in the diffusion equation (2.7b), i.e., in

ˆ T

0

〈.ρε, ψ〉 dt+

ˆ T

0

ˆ
Ω

M
(
I + ε∇uε, ceq + ερε

)
∇µ∗,ε · ∇ψ dx dt = 0.

The limit passage in the first integral follows directly from the weak convergence of ρε in
L2(0, T ;H1(Ω)∗). To pass to the limit in the second integral, we use Lemma 4.4(v) to find ξ ∈
L2([0, T ]× Ω) such that

M(∇χε, cε)∇µ∗,ε
w−⇀ ξ in L2([0, T ]× Ω).

We now identify the limit ξ. This is done in three steps.

Case I: γ1 = γ2 = 0:

Step 1. Using the bounds for Φ and the fact that ∂cΦ(I, ceq) = 0 (see Assumption (L4)), we see that

µε = ∂cΦ(∇χε, cε) = ∂cΦ(∇χε, cε)− ∂cΦ(I, cε) + ∂cΦ(I, cε)− ∂cΦ(I, ceq)

≤ C
(
cαε |∇χε − I|+ log

cε
ceq

)
.

Thus, using the L∞(0, T ;L∞(Ω;Rd×d)-bound for∇χε and Assumption (A2), we see that

‖M(∇χε, cε)µε‖2
L2([0,T ]×Ω) ≤ C

ˆ T

0

ˆ
Ω

c2m
ε

∣∣log
cε
ceq

∣∣2 dx dt+ Cε2

ˆ T

0

ˆ
Ω

c2(m+α)
ε |∇uε|2 dx dt

≤ C‖cε‖mL∞(0,T ;L∞(Ω))

ˆ T

0

ˆ
Ω

cmε
∣∣log

cε
ceq

∣∣2 dx dt

+ Cε2‖cε‖2(m+α)
L∞(0,T ;L∞(Ω))‖uε‖

2
L2(0,T ;H1(Ω))

≤ C‖cε − ceq‖2
L2([0,T ]×Ω) + Cε2 ≤ Cε2,

where we have used Lemma 5.1, i.e., that for m ≤ 2 − η there exists some C > 0 such that
cmε |log cε

ceq
|2 ≤ C|cε − ceq|2.

In particular, we see that 1
ε
M(∇χε, cε)µε has a weakly converging subsequence in L2([0, T ]×Ω).

We now define µ∗ as the weak limit

M(I, ceq)
−1M(∇χε, cε)

µε
ε

w−⇀ µ∗ in L2([0, T ]× Ω).

SinceM is C1, we can use Taylor’s theorem and µε = ∂cΦ(∇χε, cε) to find∣∣M(I, ceq)
−1M(∇χε, cε)

µε
ε
−K∇uε − Lρε

∣∣ ≤ Cε(|∇uε|2 + |ρε|2).

Using the L∞(0, T ;L2(Ω;Rd×d))-bound for ∇uε and the L∞(0, T ;L2(Ω))-bound for ρε, it then
follows that µ∗ = K∇u+ Lρ for a.e. (t, x) ∈ [0, T ]× Ω.

Step 2. Let 1 < s < min{ 2p
p+2

, p
p−1
} < 2. We will show that

M(∇χε, cε)∇µε
w−⇀M(I, ceq)∇µ∗ in Ls([0, T ]× Ω).

Then, uniqueness of weak limits implies that ξ = M(I, ceq)∇µ∗.
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We denote by D the derivative for which DM(∇χ, c) = DFM(∇χ, c)D2χ + DcM(∇χ, c)∇c.
Using the bounds in (L5), we then have

‖D(M(∇χε, cε))µε‖Ls([0,T ]×Ω) ≤ C
∥∥cmε |D2χε|µε

∥∥
Ls([0,T ]×Ω)

+ C
∥∥cm−1

ε |∇cε|µε
∥∥
Ls([0,T ]×Ω)

=: I1 + I2.

We estimate the first integral I1. Since s < 2p
p+2

, we use the embedding L
2p
p+2 (Ω) ↪→ Ls(Ω), Hölder’s

inequality, and the estimate ‖D2χε‖L∞(0,T ;Lp(Ω;Rd×d×d)) ≤ Cε
2
p from Lemma 4.3(iv) to obtain

I1 ≤ C
∥∥cmε |D2χε|µε

∥∥
L

2p
p+2 ([0,T ]×Ω)

≤ C‖D2χε‖L∞(0,T ;Lp(Ω;Rd×d×d))

∥∥cε∥∥m2L∞(0,T ;L∞(Ω))

∥∥cm2ε µε∥∥L2([0,T ]×Ω)

≤ Cε
2
p

∥∥cm2ε µε∥∥L2([0,T ]×Ω)
.

We again note that µε ≤ C
(
cαε |∇χε − I|+ log cε

ceq

)
, and proceed as in Step 1 to obtain

‖c
m
2
ε µε‖L2([0,T ]×Ω) ≤ Cε. In particular, we see that I1 ≤ Cε1+ 2

p .

To estimate the second integral I2, we note that 1 < s < p
p−1

< 2, and thus

I2 ≤ C
∥∥cm−1

ε |∇cε|µε
∥∥
L

p
p−1 ([0,T ]×Ω)

≤ C
∥∥∇cm2ε ∥∥L2([0,T ]×Ω)

∥∥cm2ε µε∥∥Lq([0,T ]×Ω)
,

where 2 < q < 2p
p−2

. We now note that

∥∥cm2ε µε∥∥Lq([0,T ]×Ω)
=
∥∥cm2ε µε∥∥1− 2

q

L∞(0,T ;L∞(Ω))

∥∥cm2ε µε∥∥ 2
q

L2([0,T ]×Ω) ≤ Cε
2
q ,

where the L∞(0, T ;L∞(Ω))-bound for c
m
2
ε µε follows from the L∞(0, T ;L∞(Ω))-bound for cε and

the L∞(0, T ;L∞(Ω;Rd×d)-bound for∇χε− I (see Lemma 4.2(ii)). In particular, using the estimate
in Lemma 4.4(iv), we obtain

I2 ≤ Cε
2
p

+ 2
q = Cεd,

where d = 2
p

+ 2
q
> 2

p
+ 2p−2

2p
= 1.

Combining everything, we thus see that for some d̃ > 1.

‖D(M(∇χε, cε))µε‖Ls([0,T ]×Ω) ≤ Cεd̃,

which implies that
1

ε
D(M(∇χε, cε))µε

s−→ 0 in Ls([0, T ]× Ω).

Step 3. Denote by D(Mµ) ∈ Rd×d×d the derivative defined by (D(Mµ))ijk = ∂k(Mijµ). The
product rule then implies that

D(M(∇χε, cε)µε) = D(M(∇χε, cε))µε +M(∇χε, cε)∇µε.

Using the estimate from Step 2 for the first term, and Lemma 4.4(v) for the second term, it then follows
that

‖M(∇χε, cε)µε‖Ls(0,T ;W 1,s(Ω;Rd×d)) ≤ Cε,

DOI 10.20347/WIAS.PREPRINT.3123 Berlin 2024



W.J.M. van Oosterhout 22

and thus 1
ε
M(∇χε, cε)µε has a weakly convergent subsequence in Ls(0, T ;W 1,s(Ω;Rd×d)). From

Step 1 we know that the L2([0, T ]× Ω)-limit is M(I, ceq)µ∗, and thus it follows that

1

ε
M(∇χε, cε)µε

w−⇀M(I, ceq)µ∗ in Ls(0, T ;W 1,s(Ω)).

Finally, we conclude that

1

ε
M(∇χε, cε)∇µε =

1

ε
D(M(∇χε, cε)µε)−

1

ε
D(M(∇χε, cε))µε

w−⇀M(I, ceq)∇µ∗ in Ls([0, T ]× Ω),

and thus ξ = M(I, ceq)∇µ∗. This concludes the limit passage in the diffusion equation (2.7b) for the
case that γ1 = γ2 = 0.

Case II: γ2 ≥ γ1 > 0: We now highlight the changes for the case that γ2 ≥ γ1 > 0. Now, we have
that

µε ≤ C
(
cαε |∇χε − I|+ log

cε
ceq

+ (cr+1
ε − cr+1

eq )
)
.

The third term, however, can be estimated using Lemma 5.2, i.e., there exists a constant C > 0 such
that

|cr+1
ε − cr+1

eq | ≤ C
(∣∣∣cr+2

ε − cr+2
eq

r + 2
− cr+1

eq (cε − ceq)
∣∣∣+ |cε − ceq|

)
.

The proof now follows in the same way as in Case I, additionally using the bound in Lemma 4.4(vii).

4.3 Properties of C, K and D

We now show some properties of the tensors C, K and D. In particular, we prove that these tensors
only act on the symmetric part of matrices, and that C is positive definite. For a matrix U ∈ Rd×d,
we denote by U sym := 1

2
(U + U>) the symmetric part of U , and by U anti := 1

2
(U − U>) the

antisymmetric part.

Lemma 4.5. Let U ∈ GL+(d). Then, the tensors C, K and D only act on the symmetric part of U ,
i.e., CU = CU sym, etc.

Proof. We modify the derivation leading up to [MS13, Eqn. (2.3)]. For example, to prove that CU anti =
0, note that for any λ ∈ R we have exp(λU anti) ∈ SO(d). So, letting ξ(λ) := ∂FΦ(exp(λU anti), ceq),
the frame indifference of Φ and ∂FΦ(I, ceq) = 0 imply that ξ ≡ 0. In particular, differentiating with
respect to λ and setting λ = 0 gives CU anti = 0. The proofs for the other tensors follow in a similar
way.

Lemma 4.6 (Positive definiteness of C). Let U ∈ GL+(d). Then, there exists a C > 0 such that
CU sym : U sym ≥ C|U sym|2.

Proof. We follow [MS13, Eqn. (2.4)-(2.5)]. Note that by Lemma 4.5, C only acts on U sym, i.e., CU =
CU sym.

By linearizing the distance function dist around the identity (see e.g. [FJM02, Eqn. 3.20]), we obtain

1

ε
dist(I + εU, SO(d)) = U sym + εO(|U |2).
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Next, using that Φ is C3 in a neighbourhood of I × ceq it follows that

1

ε2
Φ(I + εU, ceq) =

1

2
CU : U + εO(|U |3).

Using these two equalities and Assumption (L2), it follows that

C|U sym|2 ≤ lim
ε→0

C

ε2
dist2(I + εU, SO(d)) ≤ lim

ε→0

1

ε2
Φ(I + εU, ceq) =

1

2
CU sym : U sym,

completing the proof.

4.4 Uniqueness of small-strain solutions

It remains to show that the obtained weak solution (u, ρ) of the linearized problem (2.11) is the unique
weak solution. To do this, we start by proving that weak solutions of the linear system (2.8) satisfy an
energy-dissipation balance.

Lemma 4.7 (Energy-dissipation balance). Let (u, ρ) be a weak solution of the linearized problem
(2.11) in the sense of Definition 2.7. Then, the following energy balance is satisfied:

E0(t, u, ρ) + 2

ˆ t

0

R0(
.
u) ds+

ˆ t

0

ˆ
Ω

M(I, ceq)∇µ∗ · ∇µ∗ dx ds

= E0(0, u0, ρ0)−
ˆ t

0

〈
.̀
∗(s), u〉 ds, (4.7)

where E0 andR0 are the quadratic forms introduced in (4.3) and (4.4), i.e.,

E0(t, u, ρ) =

ˆ
Ω

1

2
Ce(u) : e(u) + ρK : e(u) +

1

2
Lρ2 dx− 〈`∗(t), u〉,

R0(
.
u) =

ˆ
Ω

1

2
De(.u) : e(

.
u) dx.

Proof. A direct calculation shows that

d

dt
E0(t, u, ρ) =

ˆ
Ω

Ce(u) : e(
.
u) + ρK : e(

.
u) dx+ 〈.ρ,Ke(u) + Lρ〉 − 〈

.̀
∗(t), u〉 − 〈`∗(t),

.
u〉.

Integrating from s = 0 to s = t and using that
.
u and µ∗ = K:e(u) + Lρ are valid test functions for

(2.11a) and (2.11b), respectively, the energy-dissipation balance (4.7) follows.

Using this energy-dissipation balance, we can now show that there exists at most one weak solution.

Proof of Thm. 2.9(ii). Suppose that there exist two weak solutions (u1, ρ1) and (u2, ρ2). Define u3 :=
u1 − u2, ρ3 := ρ1 − ρ2, then (u3, ρ3) is a solution of

ˆ T

0

ˆ
Ω

(Ce(u) + Kρ+ De(.u)) : ∇φ dx dt = 0,

ˆ T

0

〈.ρ, ψ〉 dt+

ˆ T

0

ˆ
Ω

M(I, ceq)∇µ∗(u, ρ) · ∇ψ dx dt = 0.

DOI 10.20347/WIAS.PREPRINT.3123 Berlin 2024



W.J.M. van Oosterhout 24

Thus, for

E (u, ρ) =

ˆ
Ω

1

2
Ce(u) : e(u) + Ke(u)ρ+

1

2
Lρ2 dx ≥ 0

it follows that for almost every t ∈ [0, T ]:

E (u3(t), ρ3(t))− E (u3(0), ρ3(0)) =

ˆ t

0

d

ds
E (u3(s), ρ3(s)) ds

= −
ˆ t

0

ˆ
Ω

De(.u3) : e(
.
u3) dx ds−

ˆ t

0

ˆ
Ω

M(I, ceq)|∇µ∗(u3, ρ3)|2 dx ds

≤ 0.

In particular, as E (u3(0), ρ3(0)) = E (0, 0) = 0 and E is nonnegative, it follows that E ≡ 0, i.e.,
u3 ≡ 0, ρ3 ≡ 0.

As a consequence of the energy inequality, we also note that solutions of the linearized system (2.8)
converge to an equilibrium state whenever t → ∞ (if solutions exist for all times t ≥ 0), and the
boundary data are chosen in a suitable way.

Corollary 4.8. Suppose that the external forces f∗ and g∗ are time-independent. Let (u, ρ) be a weak
solution of (2.11) in the sense of Definition 2.7 that exists for all times t ≥ 0. Then, (u, ρ) converges
to a solution (v, ξ) of the (static) system:

−div
(
Ce(v) + Kξ

)
= f∗ in Ω,

−div
(
M(I, ceq)∇ν∗

)
= 0 in Ω,

where ν∗ = K : e(v) + Lξ.

Proof. Define w(t) = u(t) − v, ζ(t) = ρ(t) − ξ, λ∗(t) = µ∗(t) − ν∗ then (w, ζ) satisfies the
system ˆ T

0

ˆ
Ω

(Ce(w) + Kζ + De( .
w)) : ∇φ dx dt = 0

ˆ T

0

〈
.
ζ, ψ〉 dt+

ˆ T

0

ˆ
Ω

M(I, ceq)∇λ∗(w, ζ) · ∇ψ dx dt = 0.

In particular, we see that for t2 > t1,

E (w(t2), ζ(t2))− E (w(t1), ζ(t1)) =

ˆ t2

t1

d

ds
E (w(s), ζ(s)) ds

= −
ˆ t2

t1

ˆ
Ω

De( .
w) : e(

.
w) dx ds−

ˆ t2

t1

ˆ
Ω

M(I, ceq)|∇λ∗(w, ζ)|2 dx ds

≤ 0.

Thus, E is decreasing with time, and since E is bounded from below by 0, we see that E (t) →
inft≥0 E (t) as t→∞. However, since E (0, 0) = 0, this infimum is attained, and we have E (t)→ 0
as t→∞. Thus, we have w(t)→ 0, ζ(t)→ 0 as t→∞.
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5 Appendix

Lemma 5.1. Let 0 < m ≤ 2− η for some η > 0, and ceq > 0. Then, there exists a C > 0 such that
for all x > 0,

xm
∣∣∣∣log

x

ceq

∣∣∣∣2 ≤ C|x− ceq|2 for any x > 0.

Proof. Note that limx→0 x
m|log x

ceq
|2 = 0, and thus the desired inequality holds for x in some small

interval (0, ε). To show that the inequality holds for all x > 0, we restrict to x ≥ ε and define
f(x) := x

m
2 log x

ceq
. Since f ′(x) = x

m
2
−1(m

2
log x

ceq
+ 1), it follows that C̃ := supx≥ε|f ′(x)| <∞.

In particular, since f is continuously differentiable on [ε,∞), it follows that f is Lipschitz continuous
in x = ceq with Lipschitz constant C̃ . As f(ceq) = 0, we thus obtain

x
m
2

∣∣∣∣log
x

ceq

∣∣∣∣ = |f(x)− f(ceq)| ≤ C̃|x− ceq|.

Squaring this inequality gives the desired bound.

Lemma 5.2. Let ceq > 0 and r > −1. Then, there exists a C > 0 such that for all x > 0,

|xr+1 − cr+1
eq | ≤ C

(∣∣∣xr+2 − cr+2
eq

r + 2
− cr+1

eq (x− ceq)
∣∣∣+ |x− ceq|

)
.

Proof. Using Young’s inequality with exponents r+1
r

and r + 1, it follows that

xr+1 − cr+1
eq = (r + 1)

ˆ x

ceq

yr dy ≤
ˆ x

ceq

ryr+1 + 1 dy = r
xr+2 − cr+2

eq

r + 2
+ (x− ceq)

= r
(xr+2 − cr+2

eq

r + 2
− cr+1

eq (x− ceq)
)

+ r(cr+1
eq + 1)(x− ceq).

The desired inequality now follows by taking the absolute value and using the triangle inequality.
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