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Two-norm discrepancy and convergence of the stochastic
gradient method with application to shape optimization

Marc Dambrine, Caroline Geiersbach, Helmut Harbrecht

Abstract

The present article is dedicated to proving convergence of the stochastic gradient method
in case of random shape optimization problems. To that end, we consider Bernoulli’s exterior
free boundary problem with a random interior boundary. We recast this problem into a shape
optimization problem by means of the minimization of the expected Dirichlet energy. By restricting
ourselves to the class of convex, sufficiently smooth domains of bounded curvature, the shape
optimization problem becomes strongly convex with respect to an appropriate norm. Since this
norm is weaker than the differentiability norm, we are confronted with the so-called two-norm
discrepancy, a well-known phenomenon from optimal control. We therefore need to adapt the
convergence theory of the stochastic gradient method to this specific setting correspondingly.
The theoretical findings are supported and validated by numerical experiments.

1 Introduction

Shape optimization under uncertainty is a topic of growing interest, see for example [1, 2, 11, 13, 15,
39] and the references therein. The most common approach is the minimization of the expectation of
the shape functional. In specific cases, this problem can be reformulated as a deterministic one, see
e.g. [17, 19]. However, this is not possible in general, which makes the shape optimization algorithm
quite costly. One popular approach for the minimization of the expectation is offered by the stochastic
gradient method, which originated in [41] and has been used in recent years in the optimal control
of partial differential equations involving uncertain inputs or parameters; see, e.g., [27, 38]. In the
present article, we intend to verify the convergence of this method in case of Bernoulli’s exterior free
boundary problem in case of a random interior boundary . Bernoulli’s exterior free boundary problem
is an overdetermined boundary value problem for the Laplacian, where one has an inclusion with
Dirichlet boundary condition and an exterior, free boundary with Dirichlet and Neumann boundary
condition. This free boundary problem becomes random when we assume that the interior boundary
is random.

The aforementioned random free boundary problem has already been considered in several articles in
different settings by some of the authors of this article. Bernoulli’s free boundary problem can be seen
as a “fruit fly” of shape optimization, see [18, 20, 34]. In particular, much is known about existence and
regularity of the solution to the free boundary problem in the deterministic setting, see e.g. [3, 7, 22, 36,
44] for some of such results. If we restrict ourselves, for example, to starlike domains and the interior
boundary Σ1 lies within the boundary Σ2, then the solution Γ1 of the free boundary problem for Σ1 lies
within the solution Γ2 for Σ2. This important monotonicity property helps to ensure well-posedness in
case of randomness.

The mathematical formulation of Bernoulli’s free boundary problem with a random interior boundary is
given in Section 2. We choose the Dirichlet boundary value problem as the state equation and reformu-
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M. Dambrine, C. Geiersbach, H. Harbrecht 2

late the problem under consideration as a shape optimization problem for the state’s Dirichlet energy.
That way, a variational formulation of the desired Neumann boundary condition at the free boundary
is derived. We then intend to minimize the mean of the energy functional. Although the problem under
consideration is well-posed in the deterministic case (see e.g. [22, 23]), the present random shape
optimization problem is not, in general. This fact is motivated in Section 3 by an analytical example
with circular boundaries. Indeed, the random interior boundary has to lie almost surely within some
sufficiently narrow concentric annulus to ensure that the sought free boundary does not intersect this
annulus, which would imply a degenerated situation. For the sake of simplicity, we will consider circular
annuli throughout the rest of this article.

Section 4 is then concerned with shape calculus in the case of the deterministic free boundary prob-
lem. We provide the shape gradient and shape Hessian of the energy functional under consideration
for general boundaries. Then, we study the convexity of the shape optimization problem under con-
sideration. We are able to prove H1/2-convexity for all convex exterior boundaries that are sufficiently
smooth, lie in a fixed annulus, and have a uniformly bounded curvature. This is the one of the main
results of our article and the key to verifying convergence of the iterates of stochastic gradient method.
Additionally, to the best of our knowledge, global convexity has never been derived in shape optimiza-
tion for a specific problem before.

In Section 5, we prove convergence of the stochastic gradient method in a novel setting, namely,
one involving the so-called two-norm discrepancy. The two-norm discrepancy is a well-known phe-
nomenon in optimal control and may occur in the infinite-dimensional setting since not all norms are
equivalent; see in particular [12, 37]. We note that, for shape optimization, convergence of approxi-
mation (deterministic) solutions with the two-norm discrepancy was already established in [23]. There,
second-order sufficient conditions were used to ensure stability around a local optimum. Since we
have in fact strong convexity for the free boundary problem, we are able to prove convergence to the
unique minimum, even in the presence of uncertainty. This is a stronger result than can be expected
in a typical shape optimization problem under uncertainty; we note that convergence of the stochastic
gradient method was shown in the context of Riemannian manifolds in [31]. Due to the (geodesic) non-
convexity of the unconstrained problem studied there, one can at most expect that the corresponding
Riemannian gradient vanishes in the limit. The main difficulty in the analysis here is that the con-
vexity for the energy functional is with respect to a weaker space than the one to which the exterior
boundaries belong. We provide a complete proof of convergence of iterates to the unique solution with
respect to the weaker norm in the almost sure sense. We explain why the typical convergence rates in
expectation cannot be derived in the function space setting due to the two-norm discrepancy. On the
other hand, the discretized sequence will yield the expected rates for strongly convex functions.

Numerical experiments are presented in Section 6 in order to validate the theoretical findings. For a
random starlike interior boundary, we compute the solution of the present random version of Bernoulli’s
free boundary problem. We observe very fast convergence towards the correct shape of the sought
free boundary, which is a huge improvement over previously studied methods such as the use of sam-
pling methods to compute the expected shape functional and its gradient or the direct computation of
an appropriate expectation of the free boundary. In all, we observe a rate of convergence with respect
to necessary optimality condition that is inverse proportional to the square root of the number of itera-
tions. The rate of convergence with respect to the objective function values is inverse proportional to
the number of iterations, as predicted by the theory.

Throughout this article, forD ⊂ R2 being a sufficiently smooth domain, we denote the space of square
integrable functions by L2(D). For a nonnegative real number s ≥ 0, the associated Sobolev spaces
are labelled by Hs(D) ⊂ L2(D). Especially, there holds H0(D) = L2(D). Moreover, when s ≥
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Convergence of stochastic gradient method 3

Figure 1: The geometrical setup: The annular domain D with the given interior boundary Σ and the
free exterior boundary Γ.

1/2, the respective Sobolev spaces on the boundary ∂D are defined as the traces Hs−1/2(∂D) :=
γ(Hs(D)) of the Sobolev spaces Hs(D). The set of k-times differentiable functions is denoted by
Ck and Ck,α denotes the set of functions in Ck whose k-th order partial derivatives are additionally
α-Hölder continuous.

2 Problem setting

Let (Ω,F ,P) be a complete probability space. In this article, we consider Bernoulli’s free boundary
problem when the interior boundary is random. The precise meaning of the random boundary will be
specified later on. Given an event ω ∈ Ω, we are thus looking for an annular domain D = D(ω) ⊂
R2 with interior boundary Σ = Σ(ω) and unknown deterministic exterior boundary Γ such that the
function u = u(ω) ∈ H1

(
D(ω)

)
satisfies the following Dirichlet boundary value problem for the

Laplacian
∆u = 0 in D(ω),

u = 1 on Σ(ω),

u = 0 on Γ,

(1)

with the additional flux condition

− ∂u
∂n

= λ on Γ, (2)

where λ > 0 is a given constant. Here and in the following, n = n(ω) denotes the exterior unit
normal to D(ω). Note that the geometrical setup is illustrated in Figure 1.

Bernoulli’s free boundary problem arises in many applications, for example in ideal fluid dynamics, opti-
mal design, electrochemistry, or electrostatics. Generally speaking, Bernoulli’s free boundary problem
is an overdetermined partial differential problem since, for fixed boundaries Σ(ω) and Γ, the unknown
harmonic function u = u(ω) has to vanish at the outer boundary and also to satisfy a flux condition
(2). However, it becomes solvable when the free boundary Γ is also considered as an unknown. We
refer the reader to e.g. [3, 24, 25] and the references therein for further details.

For any fixed realization Σ(ω) of the interior boundary, where ω ∈ Ω, it is well-known that a variational
formulation for the sought boundary Γ such that the overdetermined (deterministic) boundary value
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M. Dambrine, C. Geiersbach, H. Harbrecht 4

problem (1) and (2) admits a solution is given by

minimize
Γ⊂R2

J(Γ,Σ(ω)) =

∫
D(ω)

‖∇u(ω)‖2
2 + λ2 dx =

∫
Σ(ω)

∂u

∂n
ds+ λ2|D(ω)|. (3)

where the state u = u(ω) is the solution to (1). Uniqueness and existence of solutions to this free
boundary problem follows from the seminal work [3].

The free boundary defined as the minimizer of the shape optimization problem (3) depends on the
particular random event ω ∈ Ω. Therefore, in order to get a deterministic free boundary Γ while
accounting for all possibilities of Σ(·), we shall consider the minimization (with respect to the boundary
Γ) of the expected functional

minimize
Γ⊂R2

E[J(Γ,Σ(·))] =

∫
Ω

∫
D(ω)

‖∇u(ω)‖2
2 + λ2 dx dP(ω) (4)

with the state u = u(ω) given by (1). Note that this is a free boundary problem, where the underlying
domain D is random. Although the pointwise solution (3) is well-defined, this does not necessarily
hold true for (4). We motivate this fact in the next section.

3 Analytical computations in the case of concentric annuli

Calculations can be performed analytically if the interior boundary Σ is a circle around the origin with
radius rΣ. Then, due to symmetry, the free boundary Γ will also be a circle around the origin with
unknown radius rΓ.

Using polar coordinates and making the ansatz u(r, θ) = y(r), we find ∆u(r, θ) = y′′(r)+y′(r)/r.
Hence, the solution with respect to the prescribed Dirichlet boundary condition of (1) in the case of
dimension two is given by

y(r) =
log
(
r
rΓ

)
log
(
rΣ
rΓ

) .
The desired Neumann boundary condition at the free boundary rΓ yields the equation

−y′
(
rΓ

)
=

1

rΓ log
(
rΓ
rΣ

) = λ,

which can be solved by means of Lambert’s W -function:

rΓ = F (rΣ) :=
1

λW
(

1
λrΣ

) .
Let us recall that Lambert’s W -function is the inverse of x 7→ xex. It is a non-decreasing function on
(0,+∞) which, however, provides a non-analytic expression.

Since the Neumann data of u on the interior free boundary rΣ are given by

−y′
(
rΣ

)
=
∂u

∂n

∣∣∣
Σ

=
1

rΣ log
(
rΓ
rΣ

) ,
we conclude

J(rΓ, rΣ) =
2π

log
(
rΓ
rΣ

) + πλ2(r2
Γ − r2

Σ),
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Convergence of stochastic gradient method 5

compare (3). One readily verifies that this functional has indeed the unique minimizer rΓ = F (rΣ).

Let us next consider the case where rΣ switches randomly between rΣ,1 and rΣ,2 with the probability
P(rΣ = rΣ,1) = p and P(rΣ = rΣ,2) = 1 − p, where p ∈ [0, 1]. If we choose rΣ,2 such that it
satisfies rΣ,2 > F (rΣ,1), then we obviously obtain the inequality chain

0 < rΣ,1 < F (rΣ,1) < rΣ,2 < F (rΣ,2) <∞. (5)

The expected functional reads

E[J(rΓ, rΣ(·))] =
2πp

log
(
rΓ
rΣ,1

) +
2π(1− p)
log
(
rΓ
rΣ,2

) + πλ2
(
r2

Γ − pr2
Σ,1 − (1− p)r2

Σ,2

)
.

Its unique minimizer is rΓ = F (rΣ,1) if p = 1 while it is rΓ = F (rΣ,2) if p = 0. In view of (5),
this means that rΓ has to cross rΣ,2 during the transition from p = 0 to p = 1. However, this is
impossible since then the domain D(ω) is not well-defined anymore as rΣ(ω) < rΓ is violated.
Therefore, it is required to impose an inequality constraints to the sought boundary rΓ, demanding
that rΓ ≥ δ + rΣ(ω) for P-almost all ω ∈ Ω (“almost surely”) and some δ > 0.

The above observations motivate the assumption that Σ(ω) lies inside some annulus such that

B(0, rΣ) ⊂ Σ(ω) ⊂ B(0, rΣ) almost surely. (6)

Thus, it follows from [7, 44] that the resulting free exterior boundary Γ = Γ(ω) satisfies

B(0, rΓ) ⊂ Γ(ω) ⊂ B(0, rΓ) almost surely,

provided that the interior domain surrounded by Σ(ω) is starlike. In order to ensure well-posedness in
our subsequent analysis, we restrict ourselves to starlike interior boundaries satisfying (6), where rΣ

and rΣ are such that rΣ ≤ rΓ.

4 Properties of the objective with respect to shape variations

We shall now focus on the particular case where the free boundary Γ is the boundary of a convex
domain. Indeed, it is known that the solution to Bernoulli’s free boundary problem is starlike if the
interior boundary is; see [44]. If the interior boundary is even convex, then the exterior one is also
convex [36]. However, the exterior boundary can also be convex although the interior is not.

Our main result in this section is the convexity of the objective with respect to an appropriate norm.
Of course, since shape spaces are not linear, convexity has to be understood in terms of a param-
eterization of the boundary Γ. Among the many ways to parameterize such a curve, we discuss the
case of the parameterization with respect to a point, then with the support function. Since they do not
recover exactly the same geometric perturbations, the respective second-order derivative has different
properties.

4.1 Shape sensitivity analysis

We first consider general geometries and perturbations and we compute the first and second order
shape derivatives of the objective around a given boundary Γ for general perturbations. To this end,
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we choose the interior boundary Σ arbitrary but fixed and suppress its explicit dependence in the
objective J . Throughout this section, the outer boundary Γ is always such that it encloses the interior
boundary Σ to ensure that the annular domain D in between is well-defined.

We first study the dependence with respect to the outer boundary Γ and consider sufficiently regular
deformation fields V that are defined in the neighborhood of the exterior boundary Γ. As we need reg-
ularity on the shapes, let us assume for convenience that Γ is of class C2 and that the deformation field
V has the same regularity. While the first-order derivative of the shape functional under consideration
has already been calculated and used many times in the literature, the second-order derivative has
only been studied at a critical point for stability analyses (see [22], for example). Here, we will study
its expression for domains D where the gradient does not vanish. For a comprehensive introduction
to shape calculus, we refer the reader to [21, 35, 43].

Lemma 1. Let the boundaries Γ and Σ be of class C2. Then, the first- and second-order shape
derivatives for of the objective are given by

DJ(Γ)[V ] =

∫
Γ

V n

[
λ2 −

(
∂u

∂n

)2
]

ds (7)

and

D2J(Γ)[V ,V ] =

∫
Γ

∂u′

∂n
u′ +Hλ2V 2

n +

(
∂u

∂n

)2

V · ∇τV n ds, (8)

where we used the abbreviationV n = V ·n and where∇τ denotes the surface gradient with respect
to the boundary Γ.

Proof. By usual arguments given in e.g. [21, 35, 43], the solution u of (1) has the following first- and
second-order derivatives u′ and u′′ that are characterized by differentiating the boundary condition on
the boundary Γ:

∆u′ = 0 in D,

u′ = 0 on Σ,

u′ = − ∂u
∂n
V n on Γ,

and

∆u′′ = 0 in D,

u′′ = 0 on Σ,

u′′ = −
[
∂u′

∂n
+∇u · n′

]
V n −

∂u

∂n
V · n′

= −∂u
′

∂n
V n +

∂u

∂n
V · ∇τ (V n) on Γ,

where we used that n′ = −∇τ (V n), hence∇u · n′ = 0. Therefore, we immediately arrive at

DJ(Γ)[V ] =

∫
Γ

V n

[
λ2 −

(
∂u

∂n

)2
]

ds
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Convergence of stochastic gradient method 7

and

D2J(Γ)[V ,V ] =

∫
Γ

u′′
∂u

∂n
+Hλ2V 2

n ds

=

∫
Γ

(
−∂u

′

∂n
V n +

∂u

∂n
V · ∇τ (V n)

)
∂u

∂n
+Hλ2V 2

n ds

=

∫
Γ

∂u′

∂n

(
− ∂u
∂n
V n

)
+Hλ2V 2

n +

(
∂u

∂n

)2

V · ∇τ (V n) ds

=

∫
Γ

∂u′

∂n
u′ +Hλ2V 2

n ds+

∫
Γ

(
∂u

∂n

)2

V · ∇τV n ds.

4.2 On the sign of the shape Hessian

In order to the study the sign of the shape Hessian, we split it into two terms

D2J(Γ)[V ,V ] = I1(V ) + I2(V ),

where we set

I1(V ) =

∫
Γ

∂u′

∂n
u′ +Hλ2V 2

n ds and I2(V ) =

∫
Γ

(
∂u

∂n

)2

V · ∇τV n ds.

Notice that the term V · ∇τV n appears in the former expressions as expected by the structure
theorems of second order shape derivatives (see [35, Theorem 5-9-2, page 220] and [16, Theorem 2-
1]) since we are not at the optimum and because we do not restrict ourselves to normal perturbations.
According to the structure of the shape Hessian, the first term I1 is a quadratic form inV n. The second
term I2 is a remainder of the shape gradient. It is bilinear in V but also involves tangential derivatives.
Consequently, finding the sign of the shape Hessian requires studying the two terms separately.

4.2.1 On the sign of I1

Recall the we assume that Γ is the boundary of a convex set. Hence, its curvature H is nonnegative
and we obtain after integration by parts

I1(V ) =

∫
Γ

∂u′

∂n
u′ +Hλ2V 2

n ds ≥
∫

Γ

∂u′

∂n
u′ ds =

∫
D

‖∇u′‖2
2 dx > 0,

i.e., the integral I1 is clearly positive. Since u′ = 0 on the component Σ of the boundary of D, we
then get by Poincaré’s inequality and the trace theorem that

I1(V ) =

∫
D

‖∇u′‖2
2 dx ≥ CP (D)‖u′‖2

H1/2(Γ), (9)

where CP (D) is the Poincaré constant of the domain D with homogeneous boundary condition on
Σ. Abbreviating ∂nu = (∂u)/(∂n), an immediate first lower bound is thus

I1(V ) ≥ CP (D)‖u′‖2
L2(Γ) = CP (D)‖(∂nu)V n‖2

L2(Γ) ≥ CP (D)(inf
Γ
∂nu)2‖V n‖2

L2(Γ).

Here, we have used the strong maximum principle to ensure that infΓ ∂nu > 0.

In fact, we can have a more precise lower bound in the Sobolev norm H1/2(Γ). To that end, we use
the following lemma to estimate the Sobolev norm of the product u′ = −(∂nu)V n from below.
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Lemma 2. If f ∈ H1/2(Γ) and g ∈ H1/2+ε(Γ), then there exists some C > 0 such that

‖fg‖H1/2(Γ) ≤ C‖f‖H1/2(Γ) ‖g‖H1/2+ε(Γ). (10)

If there exists some a > 0 such that g ≥ a on Γ, then there exists some C > 0 such that

‖f‖H1/2(Γ) ≤ C‖fg‖H1/2(Γ) ‖1/g‖H1/2+ε(Γ). (11)

Proof. The key ingredient is the following product estimate in Sobolev spaces taken from [6, Lemma
7-2]: If F ∈ H1(D) and G ∈ H1+ε(D) for some ε > 0, then the product satisfies FG ∈ H1(D)
and we have

‖FG‖H1(D) ≤ C‖F‖H1(D)‖G‖H1+ε(D). (12)

We now translate this estimate to the trace space on the boundary Γ. To this end, set f ∈ H1/2(Γ)
and g ∈ H1/2+ε(Γ). Let F and G be harmonic extensions of f and g to D so that by Dirichlet’s
principle ‖f‖H1/2(Γ) = ‖F‖H1(D) and ‖g‖H1/2+ε(Γ) = ‖G‖H1+ε(D), respectively. Then, in view of
(12), we first get

‖FG‖H1(D) ≤ C‖F‖H1(D) ‖G‖H1+ε(D) = C‖f‖H1/2(Γ) ‖g‖H1+ε(Γ),

and then by the definition of the trace norm

‖fg‖H1/2(Γ) = inf
φ∈H1(D)
φ=fg on Γ

‖φ‖H1(D) ≤ ‖FG‖H1(D) ≤ C‖f‖H1/2(Γ) ‖g‖H1/2+ε(Γ).

Assume now that g satisfies the additional property that there exists some a > 0 such that g ≥ a on
Γ. Consider the function Ia defined on (0,+∞) → R by Ia(t) = 1/a if t ≤ a and by Ia(t) = 1/t
otherwise. Obviously, this is a bounded Lipschitz function. We notice that 1/g = Ia ◦g and hence 1/g
belongs to H1/2+ε(Γ). As a consequence, since f = (fg) (1/g), we obtain by the product estimate
(10) that

‖f‖H1/2(Γ) ≤ C‖fg‖H1/2(Γ) ‖1/g‖H1/2+ε(Γ).

With the help of this lemma, we obtain the following result.

Lemma 3. There exists a constant C > 0 depending on Γ such that

I1(V ) ≥ C‖V n‖2
H1/2(Γ).

Proof. Under our regularity assumptions on the boundaries Σ and Γ, we can apply (11) for f = V n

and g = ∂nu so that u′ = −fg. The lower bound on g comes from the strong maximum principle
and the compactness of Γ. Hence, we have

‖V n‖H1/2(Γ) ≤ C‖V n∂nu‖H1/2(Γ) ‖1/(∂nu)‖H1/2+ε(Γ).

The claim then follows from (9).
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4.2.2 On the sign of I2

The sign of the second term

I2(V ) =

∫
Γ

(
∂u

∂n

)2

V · ∇τV n ds

is less clear since it has the sign of the purely geometric term V · ∇τV n. Indeed, the sign of that
term and hence of I2 depends on the specific class of perturbations under consideration.

The natural parameterization of convex domains is the one using support functions. We restrict our-
selves to perturbations of a convex domain that preserve convexity. We then check that in this situation
I2 takes only nonnegative values.

Recently, shape calculus for convex domains based on the Minkowski sum and therefore on support
functions was developed in [9, 10]). For our purposes, however, it suffices to use simpler tools. To this
end, let us recall the definition of the support function and its main properties. Convex sets K ⊂ Rd

are parameterized by their support function hK defined on Rd by

hK(x) = sup{x · y | y ∈ K}.

The monotonicity property K1 ⊂ K2 ⇒ hK1 ≤ hK2 is clear from this definition. In particular, for
nonnegative real numbers a < b, we have

B(0, a) ⊂ K ⊂ B(0, b)⇒ a ≤ hK ≤ b.

The support function of a convex set is homogeneous of degree one and hence can be restricted to
the unit sphere Sd−1 without loss of generality. To simplify notation, we are still abusively calling this
restriction hK .

Let us introduce the parameterization mapping Υ defined over the set Kd of convex domains in Rd by

Υ : Kd → C0(Sd−1), K 7→ hK .

A crucial property is the isometric connection between the Hausdorff distance and the L∞-norm on
C0(Sd−1,R): for all K1, K2 ∈ Kd,

dH(K1, K2) = ‖hK1 − hK2‖L∞(Sd−1). (13)

Reconstructing a convex set from a support function can be performed using the envelope operator

E : C1(Sd−1,R)→ C1(Sd−1,Rd), h 7→ E [h],

defined for all x ∈ Sd−1 by
E [h](x) = h(x)x+∇τh(x).

This operator allows to reconstruct a convex set whose restricted support is h. Notice that this point
has been investigated in the works of Antunes and Bogosel [4, 8].

In the planar case, one gets simply a periodic function h : [0, 2π] → R and a parameterization of a
set whose support function h is

E [h] : θ 7→ h(θ)er(θ) + h′(θ)eθ(θ).

DOI 10.20347/WIAS.PREPRINT.3121 Berlin 2024



M. Dambrine, C. Geiersbach, H. Harbrecht 10

Here and in the following, er(θ) = (cos θ, sin θ) denotes the radial direction and eθ(θ) := er(θ)
′ =

(− sin θ, cos θ) ⊥ er. Thus, we get

E [h]′(θ) = h′(θ)er(θ) + h(θ)eθ(θ) + h′′(θ)eθ(θ)− h′(θ)er(θ)
=
(
h(θ) + h′′(θ)

)
eθ(θ).

(14)

Therefore, the unit tangent vector τ at E [h](θ) is eθ(θ) and the unit outward normal vector n is then
er(θ). A perturbation q of the support function generates the support function h+ tq for |t| sufficiently
small and thus the parameterization

E [h+ q](θ) = (h+ tq)(θ)er(θ) + (h+ tq)′(θ)eθ(θ).

Therefore, the deformation field is

V =
d

dt
E [h+ tq] = qer + q′eθ

and we conclude V n = q. Notice that this expression also makes sense in the neighborhood of the
curve Γ. We can next compute directly the gradient and observe that it is tangent to the curve

∇V n =
q′√

h2 + (h′)2
eθ = ∇τV n,

which implies

V · ∇τV n =
(q′)2√
h2 + (h′)2

≥ 0.

Since h > 0 (indeed, we need a disk in the inner domain here that is uniformly greater than zero), we
have herewith shown that I2[q] ≥ 0.

Remark 4. Under radial deformations of convex domains, I2 has no sign. In the case of starlike
domains, the outer boundary Γ can be parameterized by γer, where γ : [0, 2π]→ (0,+∞) denotes
the radial function and er = (cos θ, sin θ) is the radial direction. Then, the unit tangent vector τ and
the unit outward normal vector n are given by the formulae

τ =
1√

γ2 + (γ′)2
(γ′er + γeθ) and n =

1√
γ2 + (γ′)2

(γer − γ′eθ) .

Thus, the normal component of any boundary deformation field of the type V = ϕer is

V n = V · n =
γϕ√

γ2 + (γ′)2
.

Hence, we find

∇(V · n) =
1

γ

(
γϕ√

γ2 + (γ′)2

)′
eθ

and thus

∇τ (V · n) =
1

γ2 + (γ′)2

(
γϕ√

γ2 + (γ′)2

)′
(γ′er + γeθ) .
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Convergence of stochastic gradient method 11

Consequently, the term V · ∇τV n is given by

V · ∇τ (V · n) =
γ′ϕ

γ2 + (γ′)2

(
γϕ√

γ2 + (γ′)2

)′

=
(γ′ϕ)2(

γ2 + (γ′)2
)3/2

+
(γ2)′

2
√
γ2 + (γ′)2

(
ϕ2

γ2 + (γ′)2

)′
.

Obviously, this previous expression has no sign since ϕ is arbitrary.

4.2.3 Restricting the objective to a class of domains to get a strongly convex one

The previous investigation of the shape Hessian motivates the study of the free boundary problem
under consideration in the class of convex domains, parameterized by means of the support function.
To this end, we identify the boundary Γ with its support function and set J (h) = J

(
E [h]

)
. In view of

the above results and translating them in terms of support function (see [9, 10]), we have proven that

DJ (h)[q] =

∫
Γ

q(θn)

[
λ2 −

(
∂u

∂n

)2
]

ds

while for the shape Hessian one gets

D2J (h)[q] ≥ C(h)‖q(θn)‖2
H1/2(Γ) (15)

by combining the estimates on I1 and I2. Herein, θn is the angle θ ∈ [0, 2π] that is imposed by the
normal vector, i.e.,n = (cos θn, sin θn). This is a convexity result but a weak one. Its main weakness
is its non-uniformity with respect to the design variable. Moreover, it is not formulated in a differentiation
norm.

4.3 Uniform lower bounds of the Hessian

We shall next study when there exists a uniform bound that is independent of Γ. To that end, we pro-
ceed with the following strategy. First, we introduce a parameterization of the family of domains under
consideration by restricting ourselves to starlike boundaries Σ and Γ. The boundary value problem is
first transported to a fixed annulus, resulting in a family of parameterized problems on that annulus. The
local inversion theorem is employed to demonstrate the regularity of the map associating the bound-
aries to the solution of the parameterized boundary value problem. Subsequently, the boundaries are
restricted to a compact context for the parameterization, allowing us to obtain uniform bounds.

In that spirit, for given positive numbers α ∈ (0, 1/2), 0 < rΓ < rΓ < MΓ, we consider the class SΓ

of periodic functions defined on [0, 2π] by

SΓ = {h ∈ C3,2α
per | ∀θ ∈ [0, 2π], rΓ ≤ h(θ) ≤ rΓ, (h+h′′)(θ) ≥ 0, and ‖h‖C3,2α ≤MΓ}. (16)

This is a compact subset of C3,α
per that parameterizes through the support function the class

KΓ = {K ⊂ R2 | ∃h ∈ SΓ, Γ = ∂K = E [h]}, (17)

of convex subsets of R2 with a C2,2α
per boundary between the two concentric circles of radii rΓ and

rΓ, respectively. Note that the sets SΓ and KΓ are convex and closed, respectively, as for any pair of
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M. Dambrine, C. Geiersbach, H. Harbrecht 12

functions h1, h2 ∈ SΓ, the convex combination λh1 + (1−λ)h2 is also a member of the class SΓ for
all λ ∈ (0, 1).

With this notation at hand, we are now in the position to state the main result of this section.

Proposition 5. Given positive numbers α ∈ (0, 1/2), 0 < rΓ < rΓ < MΓ, there exists a positive
number C depending on rΓ, rΓ, and MΓ such that for all h ∈ SΓ,

D2J (h)[q] ≥ C‖q(θn)‖2
H1/2(Γ). (18)

To prove Proposition 5, we check the uniform behavior of each constant in the successive inequalities
we used. These are

� the Poincaré inequality in (9). The uniform bound follows from the geometric bounds of Γ.

� the product inequality (12). The uniform bound follows from the existence of uniform (with re-
spect to D ∈ KΓ) extension operators for the Sobolev spaces H1(D) and H1+ε(D) to the
whole H1(R2) and H1+ε(R2), induced by the upper bound for ‖h‖C3,2α .

� the equivalence between the trace norm and the intrinsic Sobolev norm for fractional Sobolev
spaces on a boundary for the upper bound of 1/g by composition. Gagliardo has shown in [26]
that the two different norms on H1/2 are equivalent if the domains are uniformly Lipschitz.

� finally, the lower bound for the normal derivative ∂nu.

The latter item is less standard, hence we shall elaborate on it. The main difficulty we face here is to
get a uniform lower bound of the normal derivative. Clearly, it is nonnegative thanks to the maximum
principle. Nevertheless, by its own, this argument cannot provide a uniform lower bound. We need an
additional ingredient: continuity and compactness with respect to the inner and outer boundaries.

We transform the boundary value problem with variable boundaries to a boundary value problem with
fixed boundary but variable coefficients. The boundaries Σ and Γ are parameterized by σ(θ)er and
γ(θ)er, respectively. Here,

σ : [0, 2π]→ [rΣ, rΣ], γ : [0, 2π]→ [rΓ, rΓ] (19)

denote the associated radial functions of the interior and exterior boundaries and er =
(

cos(θ), sin(θ)
)

is the radial vector. Consider the annulus } with bounds rΣ < rΓ. Then, the map

Φ : }→ Ω, (r, θ) 7→
[
r − rΣ

rΓ − rΣ

γ(θ) +
rΓ − r
rΓ − rΣ

σ(θ)

]
er

maps the annulus } one-to-one to the annular domain Ω described by the boundaries Σ and Γ.

Lemma 6. The singular values of the Jacobian Φ′(r, θ) are uniformly bounded from above and below
for all (r, θ) from the annulus} provided that the parameterizations γ and σ satisfy (19) with uniformly
bounded derivatives.

Proof. We shall compute the Jacobian of the map Φ. With eθ =
(
− sin(θ), cos(θ)

)
, we find

Φ′(r, θ) =
∂Φ(r, θ)

∂r
e>r +

1

r

∂Φ(r, θ)

∂θ
e>θ

=
1

rΓ − rΣ

[γ(θ)− σ(θ)]ere
>
r +

1

r

[
r − rΣ

rΓ − rΣ

γ′(θ) +
rΓ − r
rΓ − rΣ

σ′(θ)

]
ere
>
θ

+
1

r

[
r − rΣ

rΓ − rΣ

γ(θ) +
rΓ − r
rΓ − rΣ

σ(θ)

]
eθe

>
θ .
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Convergence of stochastic gradient method 13

The Jacobian Φ′(r, θ) is hence triangular with diagonal entries

a(r, θ) :=
γ(θ)− σ(θ)

rΓ − rΣ

, b(r, θ) :=
1

r

[
r − rΣ

rΓ − rΣ

γ(θ) +
rΓ − r
rΓ − rΣ

σ(θ)

]
.

and the off-diagonal entry

c(r, θ) :=
1

r

[
r − rΣ

rΓ − rΣ

γ′(θ) +
rΓ − r
rΓ − rΣ

σ′(θ)

]
.

In view of
rΣ < rΣ ≤ r ≤ rΓ < rΓ

and
0 < rΓ − rΣ ≤ γ(θ)− σ(θ) ≤ rΓ − rΣ <∞

for all (r, θ) from the annulus }, the diagonal entries a(r, θ) and b(r, θ) are uniformly bounded from
above and below for all annular domains Ω with starlike boundaries such that (19) holds. In addition,
the modulus |c(r, θ)| of the off-diagonal entry is uniformly bounded from above if γ′(θ) and σ′(θ) are.
Straightforward calculation verifies that consequently the singular values of the Jacobian Φ′(r, θ) are
uniformly bounded from above and below.

The boundary value problem (1) posed on Ω can be transformed to a boundary value problem in }
by using the map Φ. There holds

div(A∇u) = 0 in },

u = 1 on ‖x‖2 = rΓ,

u = 0 on ‖x‖2 = rΣ,

(20)

with the diffusion matrix A is given by

A(r, θ) =
(
Φ′(r, θ)

)−1(
Φ′(r, θ)

)−>
det
(
Φ′(r, θ)

)
.

Therefore, the diffusion matrix A depends on the parameterizations γ and σ of the inner and outer
boundaries and on their first order derivatives. If both γ and σ are in the Hölder class C2,α for some
given α ∈ (0, 1), then the diffusion matrix A is C1,α-smooth.

By the assumption h ∈ SΓ, there exists a positive real number M > 0 such that the diffusion matrix
distribution belongs to the subset KM of C1,α(R2×2

sym) given by

KM =

{
A ∈ C1,α(R2×2

sym) with
1

M
‖ξ‖2

2 ≤ Aξ · ξ ≤M‖ξ‖2
2 and ‖DA‖∞ ≤M

}
.

Using standard arguments (local inverse theorem and a priori Hölder bounds up to the boundary, see
[32, Theorem 6-6, page 98], the solution map A 7→ vA of the boundary value problem (20) is smooth
and in particular continuous on the subset KM of C1,α(R2×2

sym). The Neumann boundary data of the
transformed solution are computed by A∇u ·n. In view of the uniform bounds on the singular values
of Φ′, we conclude the L∞(0, 2π)-bound

0 < c ≤ ∂nu(θ) ≤ C <∞

for the Neumann derivative at the boundary Γ.
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4.4 Different interior boundaries

So far, we have shown uniform bounds of the shape Hessian in the case of a fixed interior boundary
Σ. In particular, all the constants in these bounds depend on this specific Σ. However, compactness
arguments similar to those used for Γ also apply to Σ. Hence, if we assume that Σ is starlike with
periodic C2,2α-smooth parameterization σ(θ)er such that rΣ ≤ σ(θ) ≤ rΣ for all θ ∈ [0, 2π] and
‖σ‖C2,2α ≤ MΣ, then the uniform bounds still hold. In other words, we shall consider parameteriza-
tions from the set

SΣ := {σ ∈ C2,2α
per | ∀θ ∈ [0, 2π], rΣ ≤ σ(θ) ≤ rΣ and ‖σ‖C2,2α ≤MΣ}.

It can easily be shown that this set is also convex and closed. It is then sufficient to repeat the argu-
ment from the previous subsection (transporting the state equation from D onto } and using explicit
formulas as a function of the parameterization of the interior boundary) to show that the state and then
the objective are continuous with respect to the interior boundary, and that the coercivity constant of
the shape Hessian with respect to the support function of the outer boundary can be chosen to be
uniform with respect to the interior boundary.

Consequently, the functional J defined on KΓ × SΣ by

J (h, σ) =

∫
D

‖∇u‖2
2 + λ2 dx,

where the boundary of D has two connected components, the interior one being parameterized by
the distance σ to the origin and the outer one through the support function h. This functional J is
continuous and there exists a constant cE > 0 such that for all σ ∈ SΣ and all h ∈ KΓ one has the
estimate

D2
h,hJ (h, σ)[q, q] ≥ cE‖q‖2

H1/2 ∀q ∈ H1/2
per ([0, 2π]). (21)

To conclude this section, we define the random boundary Σ as the image by the polar parameterization
of a vector-valued random variable σ ∈ L∞(Ω,SΣ), where the latter set is comprised of (strongly) P-
measurable functions σ from Ω to the closed and convex setSΣ and satisfying ess supω∈Ω‖σ(ω)‖C2,2α <
∞ for all σ ∈ SΣ. The continuity of the map J on KΓ × SΣ implies the measurability of the map
ω 7→ J (h, σ(ω)).

5 On the stochastic gradient method with two-norm discrepancy

In this section, we prove convergence of the projected stochastic gradient method for an abstract
setting involving the two-norm discrepancy. This classical method dating back to Robbins and Monro
[41] involves randomly sampling the otherwise intractable gradient and has been well-investigated in
the literature. For the function space setting without this discrepancy, the stochastic gradient method
and its variants have already been analyzed; see [5, 14, 33, 45] and more recent contributions in
the context of PDE-constrained optimization under uncertainty [27, 28, 29, 30, 38]. The setting we
present in section 5.1 is adapted from [23], where convergence of a deterministic Ritz–Galerkin-type
method was proven. We show that this framework fits the free boundary problem investigated in the
previous sections, where it was established that the energy functional is coercive in a weaker space
than where it is continuous. In section 5.2, we present the method, which involves a modification of
the typical projected stochastic gradient iteration whereby a stochastic gradient is computed on the
weaker space and a projection is performed onto the stronger space. We provide a complete proof of
almost sure convergence of iterates to the unique solution with respect to the weaker norm.
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Convergence of stochastic gradient method 15

5.1 Abstract setting

In this section, we summarize our numerical approach to solving the free boundary problem (1)–(2).
Let X ⊂ H be two Hilbert spaces, which are dense in L2, endowed with the inner products (·, ·)X
and (·, ·)H , respectively, and corresponding norms ‖·‖X and ‖·‖H . The respective dual spaces are
denoted by X∗ and H∗, which yields the Gelfand chain X ⊂ H ⊂ L2 ⊂ H∗ ⊂ X∗. A ball centered
at r in a spaceX ′ is denoted byBX′

δ (r) = {h ∈ X ′ | ‖h−r‖X′ < δ}. We assume thatX ⊂ H with
continuous embedding and that Xad ⊂ X is a bounded, closed, convex, and nonempty admissible
set.

Let (Ω,F ,P) be a complete probability space and ξ : Ω → Ξ be a random function mapping to a
(real) complete separable metric space Ξ. Now, consider the problem

minimize
h∈Xad

{j(h) = E[J (h, ξ)]}, (22)

where we assume that j : O ⊂ X → R is twice continuously differentiable on an open setO ⊃ Xad.
A point h∗ is said to be a local solution of (22) in X ′ if j(h∗) ≤ j(h) for all h ∈ Xad ∩ BX′

δ (h∗) for
some δ > 0. A necessary condition for h∗ ∈ Xad to be a local solution (in X) to (22) is given by the
variational inequality

Dj(h∗)[h− h∗] ≥ 0 ∀h ∈ Xad. (23)

In the event that j is convex on Xad, this condition is also sufficient and h∗ is even a global solution.
Notice that since H is the weaker space, any local solution of (22) in H is also a local solution in
X ; i.e., local solutions in H also satisfy the condition (23). Our strategy of handling the two-norm
discrepancy will be to show that our method converges in H to a local solution.

In our application, it is only possible to show continuity and coercivity of D2j on the weaker space H .
In the abstract setting, this translates to the following assumption, which is motivated by [23].

Assumption 7. The functional j : O → R is twice continuously differentiable. We assume that for
every h ∈ Xad, the second derivative D2j(h) ∈ L(X,X∗) extends continuously to a bilinear form
on H ×H , i.e., there exists CS > 0 such that

|D2j(h)[q1, q2]| ≤ CS‖q1‖H‖q2‖H ∀q1, q2 ∈ H. (24)

Additionally, we assume that for there exists cE > 0 such that the following strong coercivity condition
is satisfied for every h ∈ Xad:

D2j(h)[q, q] ≥ cE‖q‖2
H ∀q ∈ H. (25)

We note that this assumption does not require that the objective j extends continuously from X to
H , as this is not satisfied by our problem. Twice continuous differentiability of j provides Lipschitz
continuity of the corresponding gradient with respect to the (X∗, X)-duality. We note that since the
second derivative is continuously extendable to a bilinear form on H ×H , we have Lipschitizianity of
Dj on the weaker space, as was shown in [23].

The inequality (25) implies strong convexity with respect to H . Indeed, a Taylor expansion around any
point h′ ∈ Xad gives

j(h′ + q) = j(h′) +Dj(h′)[q] + 1
2
D2j(η)[q, q]

with η being a point on the segment between h′ and h′ + q. Therefore,

j(h′ + q)− j(h′) ≥ Dj(h′)[q] +
cE
2
‖q‖2

H (26)
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provided that h′ + q ∈ Xad. If h′ = h∗ is a (local) optimum, we have using (23) that

j(h)− j(h∗) ≥ cE
2
‖h− h∗‖2

H ∀h ∈ Xad. (27)

In particular, h∗ is a strict minimizer in X since j(h) > j(h∗) for h 6= h∗. Since the coercivity space
H differs from the stronger space X over which j is continuous, we cannot expect to have strong
convexity with respect to the stronger space. On the other hand, it is possible in certain cases to show
that a strict minimizer h∗ in X is also one with respect to the weaker topology; see [12].

The free boundary problem We shall now look in more detail at how the free boundary problem fits
into this framework. The space H is the fractional Sobolev space H1/2

per ([0, 2π]), the energy space of
the shape Hessian. The smaller space X is the Sobolev space H4

per([0, 2π]), since it is continuously
embedded into C3,2α

per ([0, 2π]) for all α ∈ (0, 1/4) by the Sobolev embedding theorem. The set Xad

is

Xad = {h ∈ X | ∀θ ∈ [0, 2π] : rΓ ≤ h(θ) ≤ rΓ, (h+ h′′)(θ) ≥ 0, and ‖h‖X ≤MΓ}.

Concerning Assumption 7, we recall that the inner boundary is modeled as random with ξ = σ. The
objective is therefore

j(h) = E[J (h, σ(·)].
The continuity estimate (24) is obvious by (8) as KΓ × SΣ is a compact set, see also [22]. For (25),
we have from (21) that

D2J (h, σ(·))[q, q] ≥ cE‖q‖2
H ∀q ∈ H a.s. (28)

Using the fact that ess supω∈Ω‖σ(ω)‖C2,2α < ∞, it is straightforward to argue that D2j(h) =
E[D2J (h, σ(·))]. Applying the expectation on both sides of (28) yields (25).

5.2 Stochastic gradient method

Let πXad : X → Xad be a projection onto the set Xad, defined by

πXad(h) = arg min
w∈Xad

‖h− w‖X ,

which is well-defined and single-valued since Xad ⊂ X is assumed to be nonempty, closed, and
convex. We assume that it is possible to compute an approximation of the gradient in the form of a
stochastic gradient G : X × Ξ → X , which is defined as the (parameterized) Riesz representative
of the mapping DJ (·, ξ̂) : X → X∗, i.e., we have for every ξ̂ ∈ Ξ that

(G(h, ξ̂), q)X = 〈DJ (h, ξ̂), q〉X∗,X ∀(h, q) ∈ Xad ×X. (29)

We use the notation ∇j for the gradient of j in X , i.e., (∇j(h), q)X = 〈Dj(h), q〉X∗,X , where
h, q ∈ X . The projected stochastic gradient method relies on a recursion of the form

hn+1 := πXad(hn − tnG(hn, ξn)), (30)

where h1 ∈ Xad and ξn is randomly sampled from the law P◦ξ−1 independently of previous samples
ξ1, . . . , ξn−1. We require that the step sizes given in (30) satisfy the Robbins–Monro rule from the
original paper [41] on stochastic approximation:

tn ≥ 0,
∞∑
n=1

tn =∞,
∞∑
n=1

t2n <∞. (31)
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Convergence of stochastic gradient method 17

We will show that the recursion (30) with the step sizes (31) converges using similar arguments to
those used in [27]. Note that the convergence result there applies to problems formulated over a
single Hilbert space (without the two-norm discrepancy) and so cannot be immediately used for our
setting. Here, we also work with assumptions that are verifiable for our application. For completeness,
therefore, we provide a proof.

First, we recall some concepts that will be of use in the proof. A filtration is a sequence {Fn} of
sub-σ-algebras of F such that F1 ⊂ F2 ⊂ · · · ⊂ F . Given a Banach space Y , we define a
discrete Y -valued stochastic process as a collection of Y -valued random variables indexed by n,
in other words, the set {βn | Ω → Y | n ∈ N}. The stochastic process is said to be adapted
to a filtration {Fn} if and only if βn is Fn-measurable for all n. Suppose B(Y ) denotes the set of
Borel sets of Y . The natural filtration is the filtration generated by the sequence {βn} and is given
by Fn = σ({β1, . . . , βn}) = {β−1

i (B) | B ∈ B(Y ), i = 1, . . . , n}. If for an event F ∈ F
we have that P(F ) = 1, we say F occurs almost surely (a.s.). For an integrable random variable
β : Ω→ R, the conditional expectation is denoted by E[β|Fn], which is itself a random variable that
is Fn-measurable and which satisfies

∫
A
E[β|Fn](ω) dP(ω) =

∫
A
β(ω) dP(ω) for all A ∈ Fn.

To demonstrate convergence, we will apply the following lemma.

Lemma 8 (Robbins–Siegmund [42]). Assume that {Fn} is a filtration and vn, an, bn, cn nonnegative
random variables adapted to {Fn}. If

E[vn+1|Fn] ≤ vn(1 + an) + bn − cn a.s.

and
∑∞

n=1 an <∞,
∑∞

n=1 bn <∞ a.s., then with probability one, {vn} is convergent and
∑∞

n=1 cn <
∞.

We will also need the following result.

Proposition 9 ([27]). Let {τn} be a nonnegative deterministic sequence and {βn} a nonnegative
random sequence in R adapted to {Fn}. Assume that

∑∞
n=1 τn = ∞ and E[

∑∞
n=1 τnβn] < ∞.

Moreover assume that βn − E[βn+1|Fn] ≤ γτn a.s. for all n and some γ > 0. Then

βn converges to 0 a.s.

To ensure convergence of (30), we make the following assumptions, which is a slight modification of
those used in [27, Theorem 3.6]. Since in our application,Xad is bounded, we can reasonably impose
a uniform bound on the second moment term in Assumption 10 (iii) instead of the growth condition
used in [27].

Assumption 10. Let {Fn} be an increasing sequence of σ-algebras. For each n, there exist bn, wn
with

bn = E[G(hn, ξn)|Fn]−∇j(hn), wn = G(hn, ξn)− E[G(hn, ξn)|Fn],

which satisfy the following assumptions:
(i) hn and bn areFn-measurable; (ii) forKn := ess supω∈Ω‖bn(ω)‖X we have that

∑∞
n=1 tnKn <∞

and supnKn <∞; (iii) there exists M ≥ 0 such that E[‖G(h, ξ)‖2
X ] ≤M for all r ∈ Xad.

The sequence bn is a bias term that can be neglected if the stochastic gradient can be computed
exactly for ξn. The following result follows using similar arguments to those made in[27, Theorem
3.6]. The main difference is that strong convergence occurs with respect to the weaker norm H , even
though the iterates belong to X . Here, some arguments are simplified since we assume that Xad is
bounded.
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Theorem 11. Suppose that Assumption 7 and Assumption 10 hold. If the sequence of step sizes
satisfy (31), then for iterates defined by the recursion (30), we have

1 {j(hn)} converges a.s. and limn→∞ j(hn) = j(h∗),

2 {hn} almost surely converges weakly in X to h∗, and

3 {hn} almost surely converges strongly in H to h∗.

Proof. Recall that since j is strongly convex with respect to H , a unique minimum h∗ ∈ Xad exists.
We note that πXad(h

∗) = h∗. Now, with gn := G(hn, ξn), we use the nonexpansivity of the projection
to obtain

‖hn+1 − h∗‖2
X = ‖πXad(hn − tngn)− πXad(h∗)‖2

X

≤ ‖hn − tngn − h∗‖2
X

= ‖hn − h∗‖2
X−2tn(gn, hn − h∗)X + t2n‖gn‖2

X .

(32)

Due to (strong) convexity and the fact that hn, h∗ ∈ Xad, we have

j(h∗)− j(hn) ≥ Dj(hn)[h∗ − hn] +
cE
2
‖h∗ − hn‖2

H ≥ Dj(hn)[h∗ − hn]

so that−(j(hn)− j(h∗)) ≥ −Dj(hn)[hn− h∗] = −(∇j(hn), hn− h∗)X . Moreover, optimality of
h∗ gives (23). Taking the conditional expectation on both sides of (32) and applying Cauchy–Schwarz
for the bias term, we have

E[‖hn+1 − h∗‖2
X |Fn] ≤ ‖hn − h∗‖2

X−2tn(∇j(hn) + bn, hn − h∗)X + t2nE[‖gn‖2
X |Fn]

≤ (1 + 2tnKn)‖hn − h∗‖2
X−2tn(j(hn)− j(h∗)) + t2nM.

(33)

Lemma 8 implies that {‖hn − h∗‖X} is a.s. convergent and
∑∞

n=1 tn(j(hn) − j(h∗)) < ∞ a.s.,
from which we can conclude that lim infn→∞ j(hn) = j(h∗) with probability one. To show that in fact
limn→∞ j(hn) = j(h∗), can use a simpler argument than in [27, Theorem 3.6] since we assumed
Xad to be bounded. Indeed, applying expectation (33) and again using Lemma 8, we obtain that∑∞

n=1 tnE[j(hn)− j(h∗)] <∞ surely. Convexity of j implies that

j(hn)− j(hn+1) ≤ (∇j(hn), hn − hn+1)X

≤ ‖∇j(hn)‖X‖hn − hn+1‖X
= ‖∇j(hn)‖X‖πXad(hn)− πXad(hn − tngn)‖X
≤ ‖∇j(hn)‖X‖tngn‖X .

Since Xad is bounded, so is {hn}, and so there exists a M̃ > 0 such that ‖∇j(hn)‖X ≤ M̃ for all
n. After applying the conditional expectation, we have that

j(hn)− E[j(hn+1)|Fn] ≤ tnM̃E[‖gn‖X |Fn].

From Jensen’s inequality, we see that

(E[‖gn‖X |Fn])2 ≤ E[‖gn‖2
X |Fn] ≤M,

from which we can conclude that j(hn)−E[j(hn+1)|Fn] ≤ tnM̃M. Now, we can apply Proposition 9
to conclude that limn→∞ j(hn) = j(h∗) = 0, which was the first claim.
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For the second claim, we observe an arbitrary trajectory of the random sequence {hn}. Since {‖hn−
h∗‖2

X} is convergent, it is also bounded. In particular, there exists a weak accumulation point h̄ ∈
Xad of the sequence {hn}. Let {hnk} be a subsequence such that hnk ⇀X h̄. By weak lower
semicontinuity of j (which follows from the continuity and convexity of j in X), we have

j(h̄) ≤ lim
k→∞

j(hnk) = j(h∗),

where equality follows by the first part of this proof. Since h∗ is the (unique) minimizer, it follows that
j(h∗) = j(h̄), from which we can conclude that h∗ = h̄. The accumulation point being unique gives
in fact hn ⇀X h∗ with probability one.

The third claim follows now directly from (27), namely that ‖hn − h∗‖2
H → 0 a.s. as n→∞.

5.3 Discussion

The above result is stronger than it may seem at first glance. While j is strongly convex with respect
to H , it is only convex with respect to X . On the other hand, the H-strong convexity makes j strictly
convex in X , from which we can conclude that a unique solution exists. We proved that, at least
with respect to the weaker norm H , we can expect (almost sure) strong convergence of method to
this unique minimizer. We note that the dimension of the underlying random vector ξ appears to be
immaterial in the original result from [27, Theorem 3.6].

Theorem 11 provides the argument for almost sure convergence of the projected stochastic gradient
method. It is natural to ask whether convergence rates (in the mean square) can be derived as in [30].
Interestingly, because of the two-norm discrepancy, one cannot obtain the expected convergence rates
for strongly convex problems. Let us investigate this further.

Note that strong convexity (26) of j implies

Dj(hn)[hn − h∗]−Dj(h∗)[hn − h∗] ≥ cE‖hn − h∗‖2
H (34)

for all n. Picking up from the estimate in (32), we write

E[‖hn+1 − h∗‖2
X |Fn]

≤ ‖hn − h∗‖2
X−2tn(E[gn|Fn], hn − h∗)X + t2nE[‖gn‖2

X |Fn]

≤ ‖hn − h∗‖2
X−2tn(∇j(hn) + bn, hn − h∗)X + t2nE[‖gn‖2

X |Fn]

≤ ‖hn − h∗‖2
X−2tn(∇j(hn)−∇j(h∗) + bn, hn − h∗)X + t2nE[‖gn‖2

X |Fn]

≤ (1 + 2tnKn)‖hn − h∗‖2
X−2tncE‖hn − h∗‖2

H+2tnKn + t2nM.

Due to the mixture of norms in the final line, we fail to produce the recursion necessary to prove the
usual rate for strongly convex functions. If we tried to do the above computations, but in the H norm,
we would fail because

(∇j(hn), hn − h∗)H 6= Dj(hn)[hn − h∗],
and∇j(hn) is the Riesz representative with respect to X , not H .

On the other hand, in the numerical section, we will observe convergence rates that fit the theory for
strongly convex functions. Once discretized, the underlying spaces are finite-dimensional, where all
norms are equivalent. In the finite-dimensional case with norm ‖·‖, if step sizes are chosen such that
tn = θ/n with θ > 1/(2cE), we can expect in the unbiased case (see [40]):

E[‖hn − h∗‖] ≤
√
ρ

n
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with ρ = max{‖h1 − h∗‖2, θ2M(2cEθ − 1)−1}. Moreover, if h∗ satisfies ∇j(h∗) = 0 (i.e., h∗

is an interior point of j in finite dimensions), CS-Lipschitz continuity of j gives the following rate of
convergence for function values:

E[j(hn)− j(h∗)] ≤ CSρ

2n
.

We note that in the case where ∇j(h∗) = 0, CS-Lipschitz continuity of ∇j allows us to obtain a
convergence rate of the expected norm of the gradient, since by Lipschitz continuity of∇j,

E[‖∇j(hn)‖] ≤ CSE[‖hn − h∗‖] ≤ CS

√
ρ

n+ ν
. (35)

The convergence rate (35) will indeed be observed in the numerical simulation, even though we cannot
show this in the appropriate function space.

As a final comment, we remark that the assumptions made on measurability in Assumption 10 are not
too strong, as shown in the following lemma from [29]. We recall our assumption that the image space
Ξ of the random vector ξ is a complete separable metric space.

Lemma 12. Suppose X is also assumed to be separable and {Fn} is the natural filtration generated
by the stochastic process {ξn}. Suppose G : X × Ξ → X and ∇j : X → X are continuous with
respect to the X norm in Xad × Ξ and Xad, respectively. Then hn, defined by the recursion (30), as
well as the functions bn and wn respectively, are adapted to Fn for all n.

6 Numerical results

For our numerical setting, we assume that both, the interior and the exterior boundary, are starlike and
use polar coordinates to parameterize them. The associated exterior radial function is represented by
the finite Fourier series

rΓ(θ) = a0,Γ +
N∑
`=1

a−`,Γ sin(`θ) + a`,Γ cos(`θ), θ ∈ [0, 2π], (36)

and likewise the interior one by

rΣ(θ, ω)− rΣ(θ) = ξ0(ω) +
N∑
`=1

ξ−`(ω) sin(`θ) + ξ`(ω) cos(`θ), θ ∈ [0, 2π].

Here, rΣ(θ) is chosen as the radial function which describes the ellipse with semi-axes 0.4 and 0.2,
while the random variables ξ`(ω) ∈ U([−0.5, 0.5]) are uniformly distributed and independent. We
thus have E[rΣ(θ)] = rΣ(θ).

For our numerical experiments, we employ 17 degrees of freedom in (36), which corresponds to N =
8. Due to the use of finite dimensional Fourier series, both boundaries are always C∞-smooth and
of bounded curvature provided that the radial functions are uniformly bounded from above and below.
Especially, the Riesz projection (29) of the discretized gradient is just the identity as the gradient is
a member of X . Also the realization of the projection of the exterior boundaries onto the class of
convex boundaries becomes obsolete as the exterior boundary is always convex during the runs of
the stochastic gradient method.
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Figure 2: The initial (circular) exterior boundary (top left), the exterior boundary after 10 iterations (top
right) after 20 iterations (bottom left), and at after 1000 iterations (bottom right). The interior boundaries
represent different random samples.

The H1/2-energy norm of the shape gradient is realized by applying an appropriate scaling of its
Fourier coefficients. The initial guess for the exterior boundary is a circle of radius 0.75, which is
centered in the origin (compare Figure 2 top left). It was not neceessary to impose constraints on
the parameterization of the outer boundary, as it is of bounded curvature since the radial function
consists only of a few terms. Moreover, we never observed difficulties in the numerical simulations
which is in line with the observations made in [22] that the optimization problem under consideration
is convex in the present setting despite of the non-convex boundaries. Note that all the details of the
implementation, which is based on a boundary element method, can be found therein, too.

We apply K steps of the stochastic gradient method for different numbers of K , where the step size
tk is in any case chosen in accordance with tk = 1

400k
. The factor 1

400
is found to be necessary

in order to avoid degeneration of the underlying domains during the course of iteration. We observe
quite a fast convergence of stochastic gradient method towards the final ellipse-like outer boundary.
After already 10 iterations, we get the result found in the top right plot of Figure 2, while after 20
iterations we get we get the result found in the bottom left plot of Figure 2. The boundary computed
after K = 10 000 iterations is found in the bottom right plot of Figure 2. The interior boundaries seen
in Figure 2 represent different draws of the random interior boundary.

In Figure 3, we plot the error between the mean energy functional and its minimizer as well as the
norm of the respective shape gradient for the K-th iterate versus the number K of iterations of the
stochastic gradient method. Both expectations are computed by a quasi-Monte Carlo method using
1000 samples. Moreover, each particular data point reflects the mean of three runs of the stochastic
gradient method.
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Figure 3: Convergence of the stochastic gradient method with respect to the number K of samples.
The values of the cost functional are seen on the left, the norm of the gradient is seen on the right. We
observe the rate of convergence K−1 for the cost functional and K−1/2 for the gradient, indicated by
the dotted black lines.

One can read from the right plot in Figure 3 that the norm of the initial mean gradient is approximately
70, while after K = 10 000 iterations the norm of the mean gradient lies between 0.010 and 0.020,
depending on the specific run. The cost functional converges towards the value Emin ≈ 31.856,
which has been computed by usingK = 20 000 samples in the stochastic gradient method, compare
the left plot in Figure 3. We observe the rate K−1 of convergence for the cost functional while it is
K−1/2 for the norm of the gradient. These rates are indicated by the dotted lines in Figure 3. Indeed,
the rate of convergence seems to be a bit faster for the first few samples in the beginning.

7 Conclusion

In the present article, we developed the convergence theory of the stochastic gradient method in
case of a problem which exhibits the two-norm discrepency. The two-norm discrepency is a well-
known phenomenon in the optimal control of partial differential equations. We considered exemplarily
Bernoulli’s free boundary problem with a random interior boundary which can be seen as a fruit fly of a
shape optimization problem under uncertainty. We have proven the strong convexity of the underlying
shape optimization problem with respect to the H1/2-norm, being weaker than the C3,2α-regularity
required to ensure differentiability. Numerical results validate our theoretical findings.
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