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Proof of off-diagonal long-range order in a mean-field trapped Bose
gas via the Feynman–Kac formula

Tianyi Bai, Wolfgang König, Quirin Vogel

Abstract

We consider the non-interacting Bose gas of N bosons in dimension d ≥ 3 in a trap in a mean-field
setting with a vanishing factor aN in front of the kinetic energy. The choice aN = N−2/d is the semi-
classical setting and was analysed in great detail in a special, interacting case in [DS21]. Using a version
of the well-known Feynman–Kac representation and a further representation in terms of a Poisson point
process, we derive precise asymptotics for the reduced one-particle density matrix, implying off-diagonal
long-range order (ODLRO, a well-known criterion for Bose–Einstein condensation) for aN above a cer-
tain threshold and non-occurrence of ODLRO for aN below that threshold. In particular, we relate the
condensate and its total mass to the amount of particles in long loops in the Feynman–Kac formula, the
order parameter that Feynman suggested in [Fe53]. For aN � N−2/d, we prove that all loops have
the minimal length one, and for aN � N−2/d we prove 100 percent condensation and identify the
distribution of the long-loop lengths as the Poisson–Dirichlet distribution.

1 Introduction and main results

This work is a contribution to the condensation theory of the Bose gas. Our main objectives are the following.

� Derive new and physically relevant results on Bose condensation for a particular mean-field version,

� rigorously give evidence for the strong relation between the condensate and the long loops in the
famous Feynman–Kac representation of the gas,

� provide new, probabilistic proofs and use the language and toolbox of probability, in order to attract
also this community to this fascinating subject.

Since the vague suggestion of Feynman [Fe53] that the number of particles in long loops might be a relevant
order parameter for describing the famous phenomenon of Bose–Einstein condensation, the Bose gas be-
came popular also in the probability world as a mathematically interesting object to study. However, there are
not many probabilistic investigations yet with real physical relevance, but the tendencies often went to cre-
ations of new probabilistic models and new questions. Here we concentrate on physically relevant questions,
yet establishing and further pushing a probabilistic toolbox.

For the study of the condensation phase transition in the Bose gas, the most acknowledged, crucial object to
study is the reduced one-particle density matrix, and the most important goal here is to prove that it shows
off-diagonal long-range order (ODLRO), which is generally acknowledged as a signal of Bose–Einstein con-
densation (BEC). This is what we are going to do in this work for a particular version of the Bose gas.

In our recent work [KVZ23], we did this for the standard free (i.e., non-interacting) Bose gas in the thermody-
namic regime. The precise model that we consider here is a mean-field model in a fixed trap with a vanishing
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T. Bai, W. König, Q. Vogel 2

factor aN in front of the kinetic energy. For the particular value aN = N−2/d, we are in the semi-classical
setting, and this model is particularly interesting since it shows a condensation phase transition at a fixed
positive temperature. This has been shown in [DS21] in a special case and is under work in [BK24+] in more
generality (but, however, without proof of ODLRO). The present paper shows the existence and absence of
ODLRO for many other choices of aN . Furthermore, we also give a description of the condensate as the
total mass of particles in long loops in the Feynman–Kac formula, and an explicit identification of the limiting
distribution of the lengths of the long loops.

1.1 A mean-field Bose gas

We consider a canonical bosonic non-interacting system of N particles in a confining potential in Rd. The
corresponding Hamilton operator is given as

H(N)

a,w = −a
N∑
i=1

∆i +
N∑
i=1

w(xi), x1, . . . , xN ∈ Rd, (1.1)

the N -particle operator with kinetic energy given by a ∈ (0,∞) times the standard Laplace operator in
a confining (or trapping) potential w : Rd → [0,∞). The quantity 1/a is interpreted as the mass of the
particles. We are under the usual assumptions thatw is bounded from below and, for simplicity, is continuous
and explodes quickly enough to ∞ far out. Our precise assumptions are formulated at the beginning of
Section 1.3.

We are interested in bosons and introduce a symmetrisation, i.e., we project on the set of symmetric, i.e.,
permutation invariant, wave functions. Furthermore, we consider the particle system at positive temperature
1/β ∈ (0,∞). That is, we consider the following trace:

ZN(β, a, w) = Tr+

(
e−βH

(N)
a,w
)

= ZN(βa, 1, 1
a
w), (1.2)

where the index + denotes the symmetrisation, i.e., the application of the projection operator on the set of
all permutation invariant functions. The quantity ZN(β, a, w) is called the partition function of the system. In
this paper, we study a mean-field regime, where we do not introduce any N -dependence in w. Instead, we
pick the parameter a = aN depending on N . Indeed, we will assume that (aN)N∈N is bounded, and

χ = lim
N→∞

Na
d/2
N ∈ [0,∞] exists. (1.3)

We will investigate the limiting free energy,

fMF(β, χ) = − 1

β
lim
N→∞

1

N
logZN(β, aN , w), (1.4)

and the one-particle reduced density matrix γ(a)

N : Rd × Rd → [0,∞) of the state

Γ(a)

N =
1

ZN(β, aN , w)
e−βH

(N)
a,w ,

that is,

γ(a)

N (x, y) = N

∫
(Rd)N−1

Γ(a)

N

(
x, x2, . . . , xN , y, x2, . . . , xN

)
dx2 · · · dxN , x, y ∈ Rd , (1.5)
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ODLRO for a trapped Bose gas 3

where we used the symbol Γ(a)

N for both the operator and its kernel.

The principal L2(Rd)-eigenvalue of Γ(a)

N is defined as

σ(a)

N = sup
f∈L2(Rd) : ‖f‖2=1

〈f, γ(a)

N f〉. (1.6)

We say that the Bose gas exhibits off-diagonal long-range order (ODLRO) if σ(a)

N is of order N as N →∞.
The occurrence of ODLRO is generally acknowledged (see [LSSY05]) as a criterion for the occurrence of
Bose–Einstein condensation (BEC).

The case a = N−2/d is particularly interesting and is called the semi-classical limit setting, see [DS21] and
[BK24+]. On this scale, the famous condensation phase transition is observed at a critical value βc ∈ (0,∞)
of β. This has been first explored in [DS21] and has been explicitly worked out in the special case d = 3,
w(x) = ω|x|2 and under the assumption that the Hessian matrix of v satisfies a particular upper bound that
depends on ω. In this case, the condensation effect was proved to hold both on the level of a non-analyticity
of the limiting free energy and in terms of ODLRO at a particular value of β. [DS21] followed an approach that
is very common in mathematical physics, via an energy-entropy description and a transition to the Fourier
world, while [BK24+], like the present paper, applies the Feynman–Kac formula, a Poisson-point process
description and large-deviations techniques, to express and analyse a variational expression for the limiting
free energy.

The goal of the present paper is two-fold: (1) we handle also the two cases of sub- and super-semiclassical
regime (that is, aN � N−2/d and aN � N−2/d, respectively) and prove that ODLRO does not hold,
respectively does hold, and (2) we follow a probabilistic route that relies on the well-known Feynman–Kac
formula and a representation in terms of a Poisson point process, like in our recent paper [KVZ23]. However,
in this paper we handle only the non-interacting case and leave the general case to future work.

Let us remark that the special case aN = 1 has been considered already in [AK08], where the Feynman–
Kac formula and a combinatorial large-deviations principle was applied to find a variational formula for the
limiting free energy; they also provide evidence on 100 percent condensation, but this was not anymore
deepened.

1.2 Representation via a Poisson point process

It is the starting point of this paper that the partition function and density matrix can be written in terms of a
crucial Poisson point process (PPP). This process was introduced to the study of the Bose gas in [ACK11],
but was already used for the study of other phenomena in statistical mechanics (e.g., conformal invariance
in dimension two) in [LW04] under the name Brownian loop soup. Here we rely on the recent adaptation
in [KVZ23] and refer proofs to Appendix A there.

The canonical Brownian bridge measure from x ∈ Rd to y ∈ Rd with time horizon β ∈ (0,∞) is defined
by

ξ(β)

x,y(A) =
Px(B ∈ A;Bβ ∈ dy)

dy
, A ⊂ Cβ measurable, (1.7)

where Cβ denotes the set of all continuous functions [0, β] → Rd. Here, B = (Bt)t∈[0,β] is a Brownian
motion in Rd with generator ∆, starting from x under Px. We introduce an integrated and weighted version
on loops of Cβ ,

ξ(β,w)(df) = e−
∫ β
0 w(f(s)) ds

∫
Rd

dx ξ(β)

x,x(df) =

∫
Rd

dxEx
[
e−
∫ β
0 w(Bs) ds

1{B ∈ df}1{Bβ ∈ dx}
]
/dx.

(1.8)
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Now we introduce the Poisson process called the Brownian loop soup, the natural reference measure for the
Feynman–Kac representation of the Bose gas. We write P

(N)

β,w for the probability measure of a Poisson point
process (PPP) η =

∑
f δf with intensity measure

ν(N)

β,w(df) =
N∑
k=1

1

k
ξ(kβ,w)(df), f ∈

⋃
k∈N

Ckβ = Ĉβ. (1.9)

If f ∈ Ckβ is an element of η, we say it is a loop of length `(f) = k. Then Xk = #{f ∈ η : `(f) = k} is
the number of loops with length k. Then (Xk)k∈[N ] is a collection of independent Poisson-distributed random
variablesXk with parameter 1

k
ξ(βk,w)(Cβk). (We write [N ] for {1, . . . , N}.) We write N(η) =

∑
f∈η `(f) =∑

k∈[N ] kXk for the number of all particles in the process η.

The following is a variant of [KVZ23, Lem. 1.2 and Cor. 1.4].

Lemma 1.1 (PPP-representation of the reduced density matrix). For any a, β ∈ (0,∞) andN ∈ N and for
all x, y ∈ Rd,

γ(a)

N (x, y) =
N∑
r=1

ξ(βar,w/a)

x,y (Cβar)
P

(N)

βa,w/a(N = N − r)
P

(N)

βa,w/a(N = N)
. (1.10)

We refer to [KVZ23, Appendix A] for the proof of Lemma 1.1. Indeed, the proof consists of a series of re-
formulations of the symmetrized trace: first in terms of N Brownian bridges with time-interval [0, β] and a
symmetrization, then (using the Markov property, respectively the Chapman–Kolmogorov equations) in terms
of a collection of Brownian bridges with various lengths with total sum equal toN and equal initial and termi-
nal sites, and finally a translation into the language of Poisson point processes. The first two reformulations
are due to [G70], the last one to [ACK11].

The representation is the starting point of our analysis. It also gives a frame for the description of the mean-
field Bose gas that is explicitly built on an ensemble of loops, which we will be using as order parameters.

1.3 Our main results: Long loops and ODLRO in the mean-field Bose gas

Let us formulate our precise assumption on the trap potential w. For our purposes, it will be important to
control the behaviour of w at its minimum. We write {w = 0} for {x ∈ Rd : w(x) = 0}; similarly for
{w <∞} and other sets like that.

Assumption (W). We assume that w : Rd → [0,∞] is continuous in {w < ∞}, and there is a parameter
α ∈ (0,∞] together with a family of functions W,Wε : Rd → [0,∞], such that

� We define

Wε(x) =

{
ε−αw(xε) in the case α <∞,
ε−1w(x) in the case α =∞,

x ∈ Rd, ε ∈ (0, 1];

�
∫
Rd e−β infε∈(0,1]Wε(x) dx <∞ for any β ∈ (0,∞);

� for any f ∈ L1(Rd),
〈Wε, f〉 → 〈W, f〉 as ε ↓ 0;

� W is continuous in {W <∞} and satisfies inf W = 0;
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� W has a unique minimum at x = 0 if α <∞;

� W = 0 in a neighborhood of x = 0 if α =∞.

In particular, under Assumption (W), w ≥ 0 and w(x) = W1(x) ≥ infε∈(0,1]Wε(x) and lim|x|→∞w(x) =
∞ so fast that all negative moments

∫
Rd e−tw(x) dx are finite for t > 0. Hence the L2 operator −∆ + w

has a discrete spectrum with spectral gap, i.e. it has an L2-orthonormal basis (φ(w)

i )i∈N of eigenfunctions
with associated eigenvalues

0 < λ1(w) < λ2(w) ≤ λ3(w) ≤ . . . , (1.11)

and we take the sign of φ(w)

1 such that it is positive everywhere in {w < ∞}. See [BHL11, Theorem 4.72,
Theorem 4.125] for details. Same property holds for −∆ +W and −∆ +Wε.

We remark that α = ∞ implies W ∈ {0,∞}. One possible choice is w = W = ∞1Qc for a centered
box Q in the case α = ∞ or the harmonic trap potential w(x) = W (x) = |x|2 in the case α = 2.
Furthermore, in the case α < ∞, we have W (x) = |x|αW ( x

|x|) for x ∈ Rd; this includes the case

W (x) = c |x|α, in particular the case of a harmonic trap. Certainly, lots of generalisations of Assumption
(W) will admit our results, but would require more technical efforts and do not substantially increase the list
of interesting potentials. In particular,

∫
e−βjwdx is decreasing in j ∈ N and finite.

We fix β ∈ (0,∞) for the rest of the paper and do not everywhere reflect its dependence in the following. For
a realization η of the PPP with distribution P

(N)

βa,w/a, we consider the sequence L(η) = (Li)i∈N, defined as

the sequence of all the lengths `(f) with f ∈ η, ordered according to their size, and counted with multiplicity.
That is, Li is the number of particles in the i-th longest loop in the configuration.

Let us recall that the Poisson–Dirichlet distribution with parameters 0 and 1 (denoted PD1) is given as the
joint distribution of the random variables (Yn

∏n−1
k=1(1 − Yk))n∈N, where (Yn)n∈N is an i.i.d. sequence

uniformly distributed over [0, 1]. Note that the sum of the elements of a PD1-distributed sequence is equal to
one, i.e., this distribution is in fact a random partition. It is well-known in asymptotics for random permutations,
as the joint distribution of the lengths of all the cycles of a uniformly picked random permutation of 1, . . . , N ,
ordered according to their sizes and normalized by a factor 1/N , converges weakly to PD1.

An important quantity is

ρw =
∑
j∈N

Wj

(4πβj)d/2
∈ (0,∞], whereWj =

∫
Rd

dx e−βjw(x). (1.12)

Furthermore, we need to introduce the pressure

p(u) =
∞∑
j=1

eβuj

j

Wj

(4πβj)d/2
, u ∈ (−∞, 0]. (1.13)

Then p is analytic in (−∞, 0) and diverges in (0,∞) with p′(0) = βρw, where p′(0) is the left-derivative
at 0. For χ ∈ (0,∞), define uχ ∈ (−∞, 0) by p′(uχ) = χβ if χ < ρw and uχ = 0 for χ ≥ ρw. Then we
define the sequence

α(χ) = (α(χ)

j )j∈N, α(χ)

j =
eβuχj

χ

Wj

(4πβj)d/2
, j ∈ N. (1.14)

Then, in the limit χ ↓ 0; we have uχ → −∞; more precisely, uχ = 1+o(1)
β

log( (4πβ)d/2

W1
χ) and hence

α(χ)

j → δj,1. We extend the definition by taking α(0) = (1, 0, 0, . . . ), α(∞) = 0.
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Theorem 1.2 (Asymptotics of reduced density matrix and loop length distribution). Suppose that the trap
potential w satisfies Assumption (W) and that ρw <∞. Pick a bounded sequence (aN)N∈N in (0,∞] and

recall χ = limN→∞Na
d/2
N ∈ [0,∞] as in (1.3).

1 Supercritical case: χ > ρw. The following holds in the limit as N →∞:

1.1 In weak L2-sense,

γ
(aN )

N (x, y) = N
(

1− ρw
χ

)
φ

(w/aN )

1 (x)φ
(w/aN )

1 (y)(1 + o(1)), x, y ∈ Rd. (1.15)

1.2 The distribution of the loop lengths 1
N(1−ρw/χ)

(Li)i∈N under P(N)

βaN ,w/aN
(· | N = N) converges

to PD1.

1.3 The distribution of the sequence 1
N

(iXi)i∈N under P(N)

βaN ,w/aN
(· | N = N) converges in product

topology on `∞ towards α(χ).

1.4 The free energy defined in (1.4) is identified as

fMF(β, χ) = −p(0)

βχ
+ λ1(W )(1− ρw

χ
) limN→∞ aN .

2 Subcritical case: χ < ρw. The following holds in the limit as N →∞:

2.1 There is a c ∈ (0,∞) such that

γ
(aN )

N (x, y) = O
(
a
−d/2
N e−c|x−y|a

−1/2
N

)
, x, y ∈ Rd. (1.16)

2.2 Under P(N)

βa,w/a(· | N = N), the sequence 1
N

(iXi)i∈N converges weakly in `1-norm to α(χ).

2.3 The free energy defined in (1.4) is identified as

fMF(β, χ) =

{
−p(uχ)

βχ
+ uχ, if χ > 0,

−∞ if χ = 0.

The proofs of Theorem 1.2 (1)(a)–(c) and (2)(a)–(b) are in Section 3 and 4 respectively, and the identification
of the free energy is in Section 5. Our main proof methods are spectral-theoretic (as it concerns the term
ξx,y(βar) in (1.10)), combinatorial (for handling the two probability terms in (1.10)); their base is probabilistic,
since we will be relying on the useful independence properties of the PPP.

Let us draw consequences about the Bose–Einstein phase transition from Theorem 1.2. From (1.15) it quickly
follows that 1

N
σ

(aN )

N → 1 − ρw/χ > 0 (i.e., ODLRO holds), and from (1.16) it easily follows that σ(aN )

N ≤
O(1) (i.e., ODLRO does not hold):

Corollary 1.3 (Consequences for (non-)occurrence of ODLRO). Equation (1.15) implies ODLRO while Equa-
tion (1.16) implies its absence.

Proof. (1) In (1.6) we use φ(w/a)

1 for f and obtain

σ(a)

N ≥ 〈φ
(w/a)

1 , γ
(aN )

N φ(w/a)

1 〉 ≥ N

(
1− ρw

χ

) ∣∣∣∣φ(w/a)

1

∣∣∣∣2
2

= N

(
1− ρw

χ

)
. (1.17)

(2) To prove absence of ODLRO, we use Young’s convolution inequality to estimate

σ(a)

N = sup
f∈L2(Rd) : ‖f‖2=1

〈f, γ(a)

N f〉 ≤ O(a
−d/2
N )

∣∣∣∣∣∣e−c|·|a−1/2
N

∣∣∣∣∣∣
1

= O
(
a
−d/2
N a

d/2
N

)
= O(1) . (1.18)
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Remark 1.4 (Total mass in micro- and macroscopic loops) Theorem 1.2 implies that the total mass of
particles in microscopically long loops is ∼ N [min{1, ρw/χ}], while the total mass in macroscopically
long loops is ∼ N(1 − ρw/χ)+. This shows a phase transition in χ at χ = ρw between occurrence and
non-occurrence of particles in macroscopic loops. This is the famous Bose–Einstein condensation phase
transition. When putting χ = 1 (i.e., in the semi-classical regime), it can be found at β = βc, defined
by ρw(βc) = 1. Note that Theorem 1.2 implies that there is only o(N) particles in other loops, i.e., in
mesoscopically long loops.

Furthermore, for χ = 0 (i.e., aN = o(N−2/d)), we observe that only loops of length one contribute,
and the free energy is equal to −∞. For χ = ∞ (i.e., aN � N−2/d), we observe hundred percent
condensation, more precisely, hundred percent of particles are in macroscopic loops. This includes the
special case aN = 1, where [AK08] identified the free energy with other methods, but had no assertion
about loop lengths. ♦

Remark 1.5 (Spatial distribution of the condensate) The spatial density of the location of the condensate
is equal to x 7→ 1

N
γ(aN )(x, x). Note from Lemma 1.1 that this is the density of the location of the initial site

of the sample loop in the loop soup, weighted with the number of particles in that loop (since the weight of a
length-r loop starting from x is equal to 1

r
ξ(βar,w/a)
x,x ). This clarifies the suggestion by Feynman [Fe53] about

the loop weights as an order parameter for the condensate in the loop soup. According to Theorem 1.2(1)(a),
the spatial condensate density is asymptotically distributed with density equal to the total condensate mass
times (φ(w/a)

1 )2. According to Lemma 2.1 below, this density has a spatial rescaling with scaling parameter
a−α/(α+2) and rescaled shape equal to (φ(W )

1 )2. Hence, the condensate shrinks together to the origin in the
case α > 0 and is distributed like the square of the principal eigenfunction of−∆+∞1{W=∞} in the case
α = 0. ♦

Remark 1.6 (Finiteness of ρw) Under Assumption (W), (
∫

e−βjwdx)j∈N is bounded, and hence ρw is
finite at least in d ≥ 3.

In the special case that w =∞× 1Qc , where Q is the centred box of volume 1/ρ, then
∫

e−βjwdx = 1/ρ
and hence ρw = 1

ρ
(4πβ)−d/2ζ(d/2), where ζ denotes the Riemann zeta function. Here, ρw is finite only

in dimension d ≥ 3, and λ1(w) is equal to the Dirichlet zero eigenvalue of the Laplace operator in Q with
corresponding principal eigenfunction φ1. This is – up to scaling – equal to the situation in the free Bose
gas in the thermodynamic regime with Dirichlet boundary condition, see [KVZ23].

However, in the case of a harmonic trap, or, more generally in the case that w(x) ∼ D|x|2 for x → 0 for
some D > 0, then

∫
e−βjwdx ∼ (π/βjD)d/2, as one sees by a standard Gaussian approximation. In this

case, ρw is finite also in d = 2. It is no problem to construct examples of potentials w such that ρw < ∞
also in d = 1. ♦

1.4 Literature remarks

The study of quantum gases, in particular the Bose gas and its statistical mechanics and condensation,
is a huge fascinating subject that provides many challenging questions and involves a lot of mathematical
ansatzes and toolboxes, see [PS01,PS03] for extensive summaries.

Interacting quantum gases in various mean-field approximations were recently studied in a series of papers;
see the extensive summary [FKSS20a]. It contains a wealth of ansatzes and formulas, references and sum-
maries of recent results, mostly by the authors. The small-a regime (in our notation) is coupled in [FKSS20a]
with other rescalings (e.g., of the interaction strength), but is also considered for fixed number of particles
in a fixed box. Throughout this series of papers, the gas is assumed to be confined to a box with periodic
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T. Bai, W. König, Q. Vogel 8

boundary condition, and it is considered in the grand-canonical setting. The main ansatz, like in many investi-
gations in the mathematical physics community, is via the formalism of the second quantisation, i.e., in terms
of a formulation using annihilation and creation operators on the Fock space. In that series of works, also the
description in terms of Brownian bridges (called a path-integral approach there, as usual in the mathematical
physics community) is derived in a way that is alternative to the way that is chosen here (we rely on Ginibre’s
Feynman–Kac formula via the density of the operator eβ∆, the Brownian bridge measure), via a number of
presentations. This formula is used in [FKSS20a] for deriving the a ↓ 0 limit for fixed particle number and
fixed box; indeed, the partition sum converges towards the one of an interacting classical gas of N particles.
The regime that we consider in the present paper was not considered in [FKSS20a].

The semiclassical limit (i.e., the choice aN ∼ N−2/d) at positive temperature with an interaction scaled
by 1

N
, recently attracted some interest, both for fermions [LMT19, FLS18] and for bosons [DS21, BK24+].

[DS21] studied a special case of the regime that we investigate in this paper (however, with interaction!),
where aN ∼ N−2/d and d = 3 and the harmonic trap w(x) = ω|x|2 for some ω > 0 and a pair-
interaction potential v satisfying an upper bound of its Hessian matrix in terms of ω. They managed to prove,
among other things, the existence of a phase transition in β at some critical value ∈ (0,∞): above that
value, ODLRO holds and that the condensate concentrates asymptotically in one singe point, the origin, and
below that value, BEC does not occur. Their methods are very functional-analytic, start with the Fock-space
formulation and rely on reformulations in the Fourier world.

It is the goal of the present paper to re-prove and re-interpret such results on one hand in greater generality
with respect to the regimes of (aN)N∈N and the shape of the trap potential w, and on the other hand
to give probabilistic proofs that show the benefits of the Feynman–Kac representation by Ginibre and the
Poisson point process representation introduced in [ACK11] and turn the attention to the Brownian loop
soup as an object of its own interest. (The goal of [BK24+] is to do this also with interactions in greater
generality than [DS21].) Rigorous considerations of Brownian bridges as an order parameter for Bose gases
appeared in a few works yet, starting with phenomenological discussions in [U06] and discussions of the
relation between long loops and condensate in [Sü93, Sü02]. More recently in [FKSS20a] conceived the
rescaled interaction of the Brownian loops in d = 4 as a regularization as the intersection local time as a
possible ansatz for deriving φ4-theories. Furthermore, in [BKM24] interactions only within the same loop were
admitted in the gas and a related kind of condensation phase transition was proved in connection with the
famous self-avoiding walk problem. Finally, in our recent paper [KVZ23], where ODLRO was explicitly proved
via this route for the free Bose gas, a contribution that was apparently missing yet. In the case aN = 1, for
w =∞ outside a box Λ ⊂ Rd and continuous inside Λ, in [AK08, Theorem 1.6] it was shown that

lim
N→∞

1

N
logZN(β, 1, w) = βλ1(w).

The proof also starts from the well-known trace formula involving Brownian cycles, but uses a somewhat
sophisticated combinatorial approach, which appear unfeasible in the case aN ↓ 0. It is not difficult to
include interactions (of course, with a prefactor of 1

N
). Using a comparison to the analogous model with

one long Brownian path instead of an ensemble of many cycles, this result was interpreted in [AK08] as
the fact that the Bose gas behaves as if it would consist only of one long cycle. But there was no deeper
understanding provided in [AK08].

2 Preparations for the proofs

In this section, we prepare for all the forthcoming proofs by the following: In Section 2.1 we provide upper
bounds and asymptotics for the intensity measure and its total mass of the Poisson point process (PPP),
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and clarify some spectral scaling properties. In Section 2.2 we show that the particle number in the PPP
is with high probability close to its expectation; and we show the same for the number of particles in small
loops. In Section 2.3 we give precise asymptotics for the distribution of the number of particles in long loops,
which leads in Section 2.4 to a precise lower bound for the distribution of the total number of particles (the
denominator in (1.10)).

2.1 Functional analytic properties

In this section we provide bounds and precise asymptotics for the intensity measure and its total mass of the
crucial Poisson point process that we introduced in Section 1.2. We keep β ∈ (0,∞) fixed and are under
Assumption (W) for the potential w. Recall from (1.11) that the operator −∆ + w has eigenvalues 0 <
λ1(w) < λ2(w) ≤ λ3(w) ≤ . . . with a corresponding L2-orthonormal system (φ(w)

i )i∈N of eigenfunctions
such that φ(w)

1 is positive whenever w is finite.

Recall the Brownian bridge measure ξ(β)
x,y defined in (1.7), which is a regular Borel measure on Cβ with total

mass equal to the Gaussian density,

ξ(β)

x,y(Cβ) = gβ(x, y) =
Px(Bβ ∈ dy)

dy
= (4πβ)−d/2e−

1
4β
|x−y|2 . (2.1)

We refer the reader to Appendix A of [Sz98] for more details on Brownian bridge measures. Recall from
(1.8) its integrated and weighted version on loops and introduce its total mass

Wβ,w = ξ(β,w)(Cβ) =

∫
Rd

dx

∫
Cβ
ξ(β)

x,x(df) e−
∫ β
0 w(f(s)) ds. (2.2)

This is finite under Assumption (W), see for example [BHL11]. We write µ(f) for the integral of a function f
with respect to a measure µ. Recall that we write P(N)

β,w for the probability measure of a Poisson point process

(PPP) η =
∑

f δf with intensity measure ν(N)

β,w defined in (1.9). This intensity measure has total mass

ν(N)

β,w(Ĉβ) =
N∑
k=1

1

k
Wβk,w. (2.3)

A standard eigenvalue expansion (see for example [BHL11, Theorem 4.72]) gives that

ξ(β,w)

x,y (Cβ) = Ex
[
e−
∫ β
0 w(Bs) ds

1{Bβ ∈ dy}
]/

dy =
∑
i∈N

e−βλi(w)φ(w)

i (x)φ(w)

i (y), x, y ∈ Rd, (2.4)

and

Wβ,w =

∫
Rd
ξ(β,w)

x,x (Cβ) dx =
∑
i∈N

e−βλi(w). (2.5)

Driven by (1.2), now we replace β by βa and w by w/a. We need to know, as a ↓ 0, the asymptotics of
ξ(βa,w/a)
x,y (Cβ) and of

tj,a = Wβaj,w/a = Eβa,w/a[#{f ∈ η : `(f) = j}] =

∫
Rd
ξ(βaj,w/a)

x,x (Cβaj) dx

=

∫
Rd

Ex
[
e−

1
a

∫ βaj
0 w(Bs) ds

1{Bβaj ∈ dx}
]

dx
dx =

∑
i∈N

e−βajλi(w/a).

(2.6)

We first state rescaling properties of the spectrum of −∆ + w/a:
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Lemma 2.1 (Spectrum of−∆ + w
a

). Assume that w satisfies Assumption (W) with α <∞. Then, as a ↓ 0,
with ε = a1/(α+2),

aλi(
w
a

) ∼ aα/(2+α)λi(W ) for i ∈ {1, 2}, and φ(w/a)

1 (x) ∼ φ(W )

1 (xε−1)ε−d/2 in L2-sense. (2.7)

In particular, the spectral gap satisfies

a
[
λ2(w

a
)− λ1(w

a
)
]
∼ aα/(2+α)

[
λ2(W )− λ1(W )

]
, (2.8)

and the last bracket is positive.

Proof. Recall Wε(x) = ε−αw(xε) from Assumption (W) for ε ∈ (0, 1]. Then the spectra of −∆ + w
a

and
−∆ +Wε with ε = a1/(α+2) stand in a one-to-one correspondence with each other. Indeed, we easily see
that, for any i ∈ N, the i-th eigenvalue/eigenfunction pairs (λi(w/a), hi) and (λi(Wε), gε,i) satisfy

ε2λi(
w
a

) = λi(Wε) and gε,i(x) = εd/2hi(xε), x ∈ Rd. (2.9)

Now we show that limε↓0 λ1(Wε) = λ1(W ), which implies the first statement in (2.7). We use the Rayleigh–
Ritz principle, λ1(W ) = infg∈L2(Rd) : ‖g‖2=1〈(−∆ + W )g, g〉. Taking g as the normalized principal eigen-
function of −∆ +W , we get, in the limit ε ↓ 0,

λ1(Wε) ≤ 〈(−∆ +Wε)g, g〉 = −〈∆g, g〉+ 〈Wεg, g〉 → −〈∆g, g〉+ 〈Wg, g〉 = λ1(W ). (2.10)

For the other direction, let gε ∈ L2(Rd) be the normalized eigenfunction corresponding to λ1(Wε). Then
for every ε,

λ1(Wε) = 〈(−∆ +Wε)gε, gε〉 = ‖∇gε‖2
2 + 〈Wεgε, gε〉. (2.11)

Since gε,Wε ≥ 0, by (2.10), (‖∇gε‖2)ε∈(0,1] is bounded. Pick a sequence (εn)n∈N with limn→∞ εn = 0.
We deduce from [LL01, Theorem 2.18, Theorem 8.6] that there is some g0 ∈ L2(Rd) such that, along some
subsequence that we still denote (εn)n,

∇gεn → ∇g0, gεn → g0, weakly in L2; gεn1[−R,R]d → g01[−R,R]d strongly in L2 for any R > 0.
(2.12)

Since gεn is continuous for any n, we furthermore have that gεn converges almost everywhere to g0, [LL01,
Corollary 8.7]. By Fatou’s lemma and [LL01, Theorem 2.11] (lower semi-continuity of g 7→ ‖∇g‖2

2),

lim inf
n→∞

λ1(Wεn) = lim inf
n→∞

(‖∇gεn‖2
2 + 〈Wεngεn , gεn〉) ≥ ‖∇g0‖2

2 + 〈Wg0, g0〉. (2.13)

Moreover,

‖g0‖2 = lim
R→∞

‖g01[−R,R]d‖2 = lim
R→∞

lim
n→∞

‖gεn1[−R,R]d‖2 ≥ 1− lim
R→∞

lim
n→∞

‖gεn1Rd\[−R,R]d‖2. (2.14)

As R→∞, by (2.10) and (2.11),

‖gεn1Rd\[−R,R]d‖2
2 ≤

1

infRd\[−R,R]dWεn

∫
Wεng

2
εndx ≤ λ1(W )

infRd\[−R,R]dWεn

→ λ1(W )

infRd\[−R,R]dW
.

By Assumption (W), we know W (Rx) = RαW (x) and infRd\[−1,1]dW > 0, so

lim
R→∞

lim
n→∞

‖gεn1Rd\[−R,R]d‖2
2 ≤ lim

R→∞

λ1(W )

infRd\[−R,R]dW
= 0.
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Put this into (2.14), we deduce that

‖g0‖2 ≥ 1.

Hence, the right-hand side of (2.13) is not smaller than λ1(W ). Together with (2.10), this implies that
limε↓0 λ1(Wε) = λ1(W ), as announced.

A slight extension of the above proof also shows that εd/2φ(w/a)

1 (xε) converges uniformly on compacts
towards φ(W )

1 as ε→ 0. In the same way, we can also show that the same is true for the second eigenvalue,
based on the Rayleigh–Ritz formula λ2(W ) = infg∈L2(Rd) : ‖g‖2=1,g⊥φ1〈(−∆ +W )g, g〉, where we denote
the principal eigenfunction of −∆ +W by φ1.

Finally, by [BHL11, Theorem 4.72, Theorem 4.125], we have λ2(W ) > λ1(W ) > 0.

Lemma 2.2 (Asymptotics of tj,a). Assume that w satisfies Assumption (W). For α = ∞, read α/(α + 2)
as 1.

1 There is a C ∈ (0,∞) such that, for any j ∈ N and a ∈ (0,∞),

tj,a ≤ (4πβaj)−d/2
∫
Rd

e−βjw(x)dx ≤ Ca−d/2j−d/2−d/α . (2.15)

2 If a ∈ (0, 1] and j ∈ N, in the limit as jaα/(2+α) → 0 (and j →∞ for the second expression),

tj,a ∼ (4πβaj)−d/2
∫
Rd

e−βjw(x)dx ∼ (4πβaj1+2/α)−d/2
∫
Rd

e−βW (x) dx . (2.16)

3 There is a c ∈ (0,∞) such that, as jaα/(2+α) → ∞, for any two test functions f, g ∈ L2(Rd),
(possibly depending on a, but with bounded norms),∫
Rd

dx

∫
Rd

dy f(x)g(y)ξ(βja,w/a)

x,y (Cβja) = e−βjaλ1(w/a)〈f, φ(w/a)

1 〉 〈g, φ(w/a)

1 〉
(
1 + ε(jaα/(2+α))

)
,

(2.17)
provided that 〈f, φ(w/a)

1 〉 〈g, φ(w/a)

1 〉 6= 0, where the error term satisfies ε(k) = O(k−
d
2
α+2
α )e−ck as

k →∞. In particular,

tj,a = e−βjaλ1(w/a)
(
1 + ε(jaα/(2+α))

)
. (2.18)

Proof. The case α = ∞ and a ↓ 0 is basically identical with the situation in [KVZ23, Lemma 2.2], we
the case of W = ∞1(LU)c is handled with various kinds of boundary conditions (including Dirichlet zero
conditions), with U a centred box and L ∈ (0,∞) tending to ∞. An extension from a box U to the set
{W = 0} under Assumption (W) is clearly no problem. Use the Brownian scaling property to see that the
limit as a ↓ 0 with fixed W (instead of w/a; recall that W takes only values in {0,∞}) is equivalent to this
limit as L →∞. The replacement of W by Wε with Wε → W as ε ↓ 0 for a ↓ 0 is only a minor technical
point. The case where α = ∞ and a ∈ (0,∞) is fixed is even easier to prove; we leave the details to the
reader.

Hence, we assume that α ∈ (0,∞).

(1) Conditional on the Brownian motionB, apply Jensen’s inequality for the probability measure 1
βaj

∫ βaj
0

ds
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and the negative-exponential map, we get

tj,a = (4πβaj)−d/2
∫
Rd

dxEx
(

e−βj
1
βaj

∫ βaj
0 w(Bs) ds

∣∣∣Bβaj = x
)

≤ (4πβaj)−d/2
∫
Rd

dx
1

βaj

∫ βaj

0

dsEx
(

e−βjw(Bs)
∣∣∣Bβaj = x

)
=

∫
Rd

dy e−βjw(y) 1

βaj

∫ βaj

0

ds

∫
Rd

dx ps(x− y)pβaj−s(y − x)

=

∫
Rd

dy e−βjw(y) 1

βaj

∫ βaj

0

ds pβaj(0) = (4πβaj)−d/2
∫

e−βjw(x)dx,

(2.19)

where we used the Gaussian density pt with variance 2t and used their convolution property. Furthermore,
recalling Wε(x) = ε−αw(xε), we see, making a change of variables y = xj−1/α, that∫

e−βjwdx = j−d/α
∫
Rd

e−βjw(xj−1/α) dx = j−d/α
∫

e
−βW

j−1/αdx ≤ j−d/α
∫

e−β infε∈(0,1]Wεdx,

(2.20)
which is finite, according to Assumption (W).

(2) The upper bound follows from (1), in particular (2.20), which makes it possibly to carry out the limit as
j →∞ under the integral, by the virtue of the bounded convergence theorem.

We turn to the proof of the lower bound. We write ξ
(β)

x,y = ξ(β)
x,y/ξ

(β)
x,y(Cβ) for the normalized version of the

Brownian bridge measure. Pick a large M , then, by Jensen’s inequality, Brownian scaling, and a change of
variables y = xj1/α and r = sβaj,

(4πβaj)d/2tj,a ≥
∫
|x|<Mj−1/α

e−βjw(x) exp

(
−1

a

∫ βaj

0

ξ
(βaj)

0,0 [w(x+Bs)− w(x)] ds

)
dx

=

∫
|x|<Mj−1/α

e−βjw(x) exp
(
− β

∫ 1

0

dr ξ
(1)

(0,0)

(
Wj−1/α(y + j1/αBr

√
βaj)−Wj−1/α(y)

))
.

Observe that theBr-depending term in the argument ofWj−1/α vanishes, since j1/α
√
aj = (aα/(α+2)j)(α+2)/2α,

which vanishes, according to our assumption. Together with the fact that (Wε)ε converges on compact sets,
the integrand in the r-integral vanishes in this limit, uniformly in y on the integration area, and we have the
first result by taking M →∞. Finally, note that∫

e−βjw(x)dx = j−d/α
∫

e
−βW

j−1/α (y)
dy,

we have the second conclusion by taking j →∞.

(3) We rely on the eigenvalue expansion in (2.4) and use the small-a asymptotics of spectral gap from
Lemma 2.1, which allows us to replace the entire sum by the first summand only.

By Jensen’s inequality, we find that for every t > 0,∑
i∈N

e−tλi(w) ≤ 1

t

∫ t

0

ds

∫
Rd

dxEx
[
e−βw(Bs)1{Bt ∈ dx}

]
/dx

=
1

t

∫ t

0

ds

∫
Rd

dx

∫
Rd

dy gs(x, y)e−βw(y)gt−s(y, x)(4πβt)−d/2 ≤ Ct−d/2
∫
Rd

e−tw(x)dx ,

(2.21)
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where we used the convolution property of the Gaussian kernel gs(x, y) with variance 2s. This implies that
for any a ∈ (0, 1], j ∈ N and δ ∈ (0, 1),∑

i≥2

e−βajλi(w/a) ≤ e−βajλ2(w/a)(1−δ)
∑
i≥2

e−βajδλi(w/a)

≤ e−βajλ2(w/a)(1−δ)C(ajδ)−d/2
∫

e−βjδw

≤ e−βajλ2(w/a)(1−δ)Cδ
(
j aα/(α+2)

)− d
2
α+2
α ,

(2.22)

where Cδ depends only on β and δ, and the last step used also the second assertion in (1). Hence,

tj,a =
∑
i∈N

e−βajλi(w/a) ≤ e−βajλ1(w/a)
(

1 + eβajλ1(w/a)e−βajλ2(w/a)(1−δ)Cδ
(
j aα/(α+2)

)− d
2
α+2
α

)
.

Now, by (2.8), we can pick δ so small that, for some c > 0, the product of the two exponentials is not larger
than e−ca

α/(α+2)
in the limit that we consider. This implies (2.18).

The proof of (2.17) is based on the preceding and on the Cauchy–Schwarz inequality and Parseval’s identity
as follows:∑
i≥2

e−βajδλi(w/a)
∣∣〈f, φ(w/a)

i 〉 〈g, φ(w/a)

i 〉
∣∣ ≤ (∑

i∈N

〈f, φ(w/a)

i 〉2
)1/2(∑

i∈N

〈g, φ(w/a)

i 〉2
)1/2

= ‖f‖2 ‖g‖2.

This bound is also sufficient if f or g depend on a, but have norms that are bounded in a.

We can immediately draw a conclusion for the expected numbers of number of particles in the PPP. Recall
that N(η) is the number of particles in a PPP η, and the number ρw =

∑
j∈N(4πβj)−d/2

∫
e−βjwdx. Now,

in the case that limN→∞ aN = 0, we introduce the threshold

TN =
⌊
a
−α/(α+2)
N

(
log 1

aN

)1/2⌋
, N ∈ N, (2.23)

while we put TN = b(logN)1/2c in the case that (aN)N∈N is bounded, but does not vanish. Note that

1 � TN ≤ N
2
d

α
α+2

+o(1). Then N(short)(η) =
∑

k≤TN

∑
f∈η : `(f)=k `(f) denotes the number of particles

in loops of lengths ≤ TN in the PPP η, which we call the short loops. The other loops are called long, and
N(long)(η) =

∑N
k=1+TN

∑
f∈η : `(f)=k `(f) is the number of particles in long loops.

Corollary 2.3. As N →∞, E(N)

βaN ,w/aN
(N) ∼ ρwa

−d/2
N and E

(N)

βaN ,w/aN
(N(short)) ∼ ρwa

−d/2
N .

Proof. Note that E(N)

βa,w/a(N) =
∑N

j=1 tj,a. Now the lower bound is shown by restricting the sum to j ≤ M
for some M ∈ N, using the asymptotics of Lemma 2.2(2) and making M → ∞ afterwards. The upper
bound directly follows from Lemma 2.2(1). The same applies when cutting the k-sum at TN , since TN →
∞.

2.2 Concentration inequalities

Next, we prove a concentration inequality for the number of particles and for the number of particles in short
loops in the configuration of the PPP. We write [x]+ for the positive part of x ∈ R.

Proposition 2.4. Assume that (aN)N is a bounded sequence in (0,∞) and that w satisfies Assumption
(W). Then for any k ∈ (0,∞) (possibly depending on N ), in the limit as N →∞, the following holds.
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1 If κ < βλ1(W ), then

log P(N)

βaN ,w/aN

(∣∣N− E
(N)

βaN ,w/aN
[N]
∣∣ > k

)
≤ −κka

α
α+2

N + a
−[ d

2
− 2α
α+2

]++o(1)

N . (2.24)

2 For any κ > 0,

log P(N)

βaN ,w/aN

(∣∣N(short) − E
(N)

βaN ,w/aN
[N(short)]

∣∣ > k
)
≤ −κka

α
α+2

N + a
−[ d

2
− 2α
α+2

]++o(1)

N (2.25)

In particular, pick k = kN � a
−[ d

2
− 2α
α+2

]+− α
α+2

+o(1)

N , then the first terms on the right-hand sides
dominate, and we obtain a stretched-exponentially decay.

Proof. Recall that N =
∑N

j=1 jXj and N(short) =
∑TN

j=1 jXj , where X1, . . . , XN are independent Pois-

son random variables with parameters 1
j
tj,a, j ∈ [N ], where we recall the definition of tj,a from (2.6). In both

proofs, we are going to use the exponential Chebychev inequality. We are going to explicitly handle only the
upwards deviations (i.e., for N− E[N] instead of |N− E[N]|), since the case of the downwards deviations
is similar. The first term on the right stems from the application of Markov’s inequality, and the second term
from estimating the exponential expectation as follows.

(1) For any s ∈ (0,∞),

E
[
es(N−E[N])

]
= exp

(
N∑
j=1

1

j

(
esj − 1− sj

)
tj,a

)
. (2.26)

We now pick s = κa
α/(α+2)
N and estimate the right-hand side. For the sum on j ≥ TN , we have jaα/(α+2)

N →
∞ and therefore get from Lemma 2.2(3), with some C ∈ (0,∞) that does not depend on N ,∑
TN≤j≤N

1

j

(
esj − 1− sj

)
tj,a ≤ C

∑
j≥TN

1

j
esje−βjaNλ1(w/aN ) ≤ C

TN

∑
j≥TN

e−a
α/(α+2)
N j[βλ1(W )(1+o(1))−κ]

≤ Ca
α/(α+2)
N√
log 1

aN

e−cTNa
α/(α+2)
N

ca
α/(α+2)
N

≤ Ce−c log(1/aN )1/2 ,

(2.27)
since βλ1(W ) > κ. (If limN→∞ aN = 0 then it vanishes as N →∞.) The sum on small j is bounded as
follows. We use Lemma 2.2(1) and that ex − 1− x ≤ x2ex for any x ∈ (0,∞). Then we see that∑
j≤TN

1

j

(
esj − 1− sj

)
tj,a ≤ Ca

−d/2
N

∑
j≤TN

j−1−d/2s2j2esj ≤ Ca
2α/(α+2)−d/2
N eκTNa

α/(α+2)
N

∑
j≤TN

j1−d/2−d/α

≤ a
2α/(α+2)−d/2−o(1)
N ×

(
1 + T

2−d/2−d/α
N + log(TN)

)
,

(2.28)

where ao(1)
N is an estimate for eκTNa

α/(α+2)
N , and the bracket is a generous upper bound for the j-sum in the

three cases that 1 − d/2 − d/α is < −1, or = −1 or > −1. Now use that TN = a
−α/(α+2)+o(1)
N to see

that the right-hand side of (2.28) is equal to ao(1)
N if d

2
< 2α

α+2
and is equal to a2α/(α+2)−d/2+o(1)

N otherwise.

(2) The conclusion follows directly from the estimate of (2.28) in (1). Since we no longer need (2.27), there
is no restriction on κ.
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2.3 Particles in long loops

Recall that N(long) =
∑

TN<j≤N jXj is the number of particles in long loops in the PPP (recall (2.23)).
As in [KVZ23], we use now intricate combinatorial asymptotics to find sharp asymptotics for the asymp-
totic distribution of N(long). Write q : [0,∞) → [0,∞) for the density of the random variable with Laplace
transform

s 7→ exp

(∫ 1

0

(
e−sx

x
− 1

)
dx

)
. (2.29)

Note that q(x) = e−γ for x ∈ [0, 1], where γ ≈ 0.5772 is the Euler–Mascheroni constant. See [ABT03]
and Section 3.2 for more properties of p, in particular in connection with the Poisson–Dirichlet distribution.

Lemma 2.5. Suppose that w satisfies Assumption (W). For all sequences (sN)N∈N, (kN)N∈N in N such
that TN � sN ≤ kN ≤ N for any N , and that limN

kN
sN

exists,

P
(N)

βaN ,w/aN

(
sN∑

j=1+TN

jXj = kN

)
∼ q(kN/sN)

TN
e−βaNλ1(w/aN )kN , N →∞. (2.30)

In particular,

P
(N)

βaN ,w/aN
(N(long) = kN) ∼ e−γ

TN
e−βaNλ1(w/aN )kN , N →∞. (2.31)

Proof. The proof follows the same argument as [KVZ23, Proposition 2.7]. Let us first consider the case
aN → 0. We write P(N)

k for the set of sequences m = (mr)TN<r≤sN of positive integers such that∑
TN<r≤sN rmr = kN . Then

P
(N)

βaN ,w/aN

(
sN∑

j=TN+1

jXj = kN

)
= e

−
∑sN
j=TN+1

tj,aN
j

∑
m∈P(N)

k

∏
TN<r≤sN

tmrr,aN
rmrmr!

. (2.32)

We claim that e
−
∑sN
j=TN+1

tj,aN
j → 1 as N → ∞. Indeed, since aN → 0, we have ja

α/(α+2)
N >

TNa
α/(α+2)
N ∼

√
log 1

aN
→∞. Therefore by Lemma 2.2(3) and Lemma 2.1,∑

j>TN

tj,aN
j
∼
∑
j>TN

1

j
e−βλ1(w/aN )aN j ≤ 1

TN

1

1− e−βλ1(W )a
α/(α+2)
N (1 + o(1))

= O( 1

a
α/(α+2)
N TN

)→ 0.

(2.33)

For the remaining factor in (2.32), by Lemma 2.2(3), tr,aN = e−βλ1(w/aN )raN (1 + O(e−βcra
α/(2+α)
N )) for

r > TN →∞, hence, as in the proof of [KVZ23, Proposition 2.7], we obtain∑
m∈P(N)

k

∏
TN<r≤sN

tmrr,aN
rmrmr!

∼ e−βλ1(w/aN )aNk
∑

m∈P(N)
k

∏
TN<r≤sN

1

rmrmr!
(2.34)

= e−βλ1(w/aN )aNk+
∑
TN<r≤sN

1
rP

( ∑
TN<r≤sN

rYr = kN

)
, (2.35)

where the Yr ’s are independent Poisson random variables with parameter 1
r
. By [ABT03, Theorem 4.13]

(take θ = 1, b = TN � n = sN ≤ m = kN , y = 1),

P

( ∑
TN<r≤sN

rYr = kN

)
∼ q(kN/sN)

sN
.
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Therefore, we may conclude that

P
(N)

βaN ,w/aN
(N(long) = kN) ∼

∑
m∈P(N)

k

∏
TN<r≤sN

tmrr,aN
rmrmr!

∼ q(kN/sN)

TN
e−βλ1(w/aN )aNk. (2.36)

When (aN)N∈N is bounded, we are interested in

P
(N)

βaN ,w/aN

 ∑
√

logN<j≤sN

jXj = kN

 = e−
∑√

logN<j≤sN

tj,aN
j

∑
m∈P(

√
logN)

k

∏
√

logN<r≤sN

tmrr,aN
rmrmr!

, (2.37)

where we still have ∑
j>
√

logN

tj,a
j
∼

∑
j>
√

logN

1

j
e−βλ1(w/aN )aN j → 0,

and ∑
m∈P(

√
logN)

k

∏
√

logN<r≤sN

tmrr,aN
rmrmr!

∼ e−βλ1aNk+
∑√

logN<r≤k
1
r
q(kN/sN)

k
∼ q(kN/sN)√

logN
eβλ1(w/aN )aNkN .

2.4 Lower bound for the denominator

We suppose that Assumption (W) holds. On base of Lemma 2.5, we give now a sharp lower bound for the
denominator in (1.10).

Lemma 2.6. Assume that lim infN→∞Na
d/2
N > ρw, then there is a sequence (δN)N that vanishes as

N →∞ such that, for all large N ,

P
(N)

βaN ,w/aN
(N = N) ≥ e

−βaNλ1(w/aN )N
(

1−ρw/(Nad/2N )+δN

)
(1 + o(1)). (2.38)

Proof. Abbreviate P(N)

βaN ,w/aN
by P, analogously for the expectations, and aN by a. Recall thatN =

∑N
j=1 jXj

and that N(short) =
∑

j≤TN jXj , where the Xj are independent Poisson random variables under P with pa-

rameters 1
j
tj,a. We lower bound against the event that there is one large loop and otherwise only small ones

with about ρwa−d/2 particles:

P (N = N) ≥
∑

k∈N : |k−ρwa−d/2|≤δNN

P (XN−k = 1) P (Xj = 0 for all j ∈ {TN , . . . , N − 1} \ {N − k})

× P (N(short) = k) ,
(2.39)

where δN ∈ (0, 1) with 1� δN � 1/N is suitable (see below). For all k in that sum, we have

P
(
Xj = 0 for all j ∈ {TN , . . . , N − 1} \ {N − k}

)
≥ exp

(
−
∑
j≥TN

tj,a
j

)
= 1 + o(1) (2.40)

as we saw in the proof of Lemma 2.5. Furthermore, by Lemma 2.2(3),

P (XN−k = 1) = tN−k,ae
−tN−k,a ∼ e−βaλ1(w/a)(N−k) ≥ e−βaλ1(w/a)N(1−ρw/(Nad/2)+δN ) . (2.41)
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Recall from Corollary 2.3 that E [N(short)] ∼ ρwa
−2/d. Using Proposition 2.4 for k = δNN with δN picked

such that the first term on the right-hand side of (2.25) is the leading term, we get that∑
k∈N : |k−ρwa−d/2|≤δNN

P (N(short) = k) ≥ P
(
|N(short) − E[N(short)]| ≤ 1

2
δNN

)
→ 1, as N →∞.

This implies (2.38).

3 Proof of Theorem 1.2(1): super-critical regime

This section is under the assumption that χ = lim infN→∞Na
d/2
N > ρw and contains the proof of The-

orem 1.2(1), i.e., for the asymptotics (1.15) of the reduced one-particle density matrix in Section 3.1, for
the limiting distribution of the macroscopic loop lengths in terms of the Poisson–Dirichlet distribution in Sec-
tion 3.2 and for the convergence of the normalized PPP (i.e., the microscopic loop lengths) in Section 3.3.
(The proof of Theorem 1.2(1)(d) is deferred to Section 5.) As always, we are under Assumption (W) for the
trap potential w. Recall that ρw =

∑
k∈N(4πβk)−d/2

∫
e−βkwdx.

3.1 Proof of (1.15) in Theorem 1.2(1)

This proof is analogous to the proof of [KVZ23, Proposition 2.1]. We abbreviate aN by a and P
(N)

βa,w/a by P,

analogously for the expected value. Our starting point is the representation of γ(a)

N from Lemma 1.1, that is,

γ(a)

N (x, y) =
N∑
r=1

ξ(βar,w/a)

x,y (Cβar)
P(N = N − r)
P(N = N)

. (3.1)

We carry out the proof only for the case aN → 0 asN → and leave the second case to the reader. Fix some
small ε > 0. It is not hard to show that in (3.1), the two partial sums on r ≤ TN and on r > N(1− ρw

χ
− ε)

are negligible by using the estimate ξ(β,w)
x,y (Cβ) ≤ 1

(4πβ)d/2
e−|x−y|

2/(4β) and the lower bound for P(N = N)
from Lemma 2.6.

For the remaining, we decompose the number N of all particles into N = N(short) + N(long), which denote
the number of particles in loops of lengths ≤ TN = ba−α/(α+2)

N log( 1
aN

)1/2c respectively of lengths > TN ;
see (2.23). Then

P(N = N − r) =
∑
k

P(N(short) = k)P(N(long) = N − r − k). (3.2)

We observe from Corollary 2.3 that

lim sup
N→∞

E [N(short)]

N
= ρw lim sup

N→∞

1

Nad/2
=
ρw
χ
< 1,

in the case of Theorem 1.2(1). According to Proposition 2.4, the sum on k strongly concentrates around the
expectation

E(N(short)) ∼ ρwa
−d/2,

more precisely, to estimate (3.2), we can focus on k ∈ [ρwa
−d/2−εN, ρwa−d/2 +εN ]∩N for all sufficiently

large N .
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Furthermore, according to Lemma 2.5,

P(N(long) = N − r − k) ∼ e−γ

TN
e−βaλ1(w/a)(N−r−k), (3.3)

as long as r � N − k ≤ N − ρwa−d/2 − εN ∼ N(1 − ρw/χ − ε). Using (3.3) once more for N − k
instead of N − r − k, we see that

P(N(long) = N − r − k) ∼ P(N(long) = N − k)eβaλ1(w/a)r. (3.4)

Finally, from Lemma 2.2(3) we deduce that

ξ(βar,w/a)

x,y (Cβar) ∼ e−βarλ1(w/a)φ(w/a)

1 (x)φ(w/a)

1 (y) if raα/(α+2) →∞. (3.5)

Putting (3.2), (3.4) and (3.5) into (3.1), we have

γ(a)

N (x, y) ∼
N(1−ρw/χ−ε)∑

r=TN

e−βarλ1(w/a)φ(a)

1 (x)φ(a)

1 (y)eβaλ1(w/a)r

×
∑

k : |k−ρwa−d/2|≤εN P(N(short) = k)P(N(long) = N − k)

P(N = N)

∼
N(1−ρw/χ−ε)∑

r=TN

φ(a)

1 (x)φ(a)

1 (y)

= N
(

1− ρw
χ
− ε− TN

)
φ(a)

1 (x)φ(a)

1 (y)(1 + o(1)).

Now the conclusion follows by noticing TN = o(N) and taking ε ↓ 0.

3.2 Convergence to the Poisson–Dirichlet distribution

In this section, we prove Theorem 1.2(1)(b). Recall that L1 ≥ L2 ≥ L3 ≥ ... are the lengths appearing
in the loop soup. Recall the density q introduced before Lemma 2.5. Our main goal is then reduced to the
following:

Proposition 3.1. Suppose that χ ∈ (ρw,∞]. Then, for any m ∈ N and t1 > . . . > tm > 0 with∑m
i=1 ti < 1,

P
(N)

βaN ,w/aN

(
1

N(1−ρw/χ)

(
L1, . . . , Lm

)
∈ d(t1, . . . , tm)

∣∣∣N = N
)

=⇒ eγ

t1 · · · tm
q

(
1− (t1 + . . .+ tm)

tm

)
d(t1, . . . , tm). (3.6)

From this, the weak convergence of (N(1 − ρw/χ))−1(Li)i=1,...,m towards the first m-dimensional distri-
bution of the Poisson–Dirichlet distribution follows, according to the Portemanteau theorem. From Scheffé’s
theorem, see [ABT03, Corollary 5.11], the convergence of the entire sequence follows.

Proof. Abbreviate P = P
(N)

βaN ,w/aN
and a = aN . Fix j1 ≥ j2 ≥ . . . ≥ jm ∈ N that such that ji ∼

tiN(1 − ρw/χ), for all 1 ≤ i ≤ m. Then, for all large N , we even have that j1 > j2 > . . . > jm.
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Abbreviate A = {L1 = j1, . . . , Lm = jm}. Recall that N(long) denotes the number of particles in long
loops, i.e., in loops of length > TN defined in (2.23). Using the concentration result of Proposition 2.4 and
the lower bound in Lemma 2.6, we can decompose

P(A | N = N) =
∑

k∈N : | k
N
−(1−ρw/χ)|≤δN

P(A | N(long) = k)P(N(long) = k | N = N) + o(N−m),

where (δN)N is as in Lemma 2.6, i.e., it satisfies δN → 0. As in the proof of [KVZ23, Proposition 4.1], it
suffices to show that, for any k = kN in the sum above,

lim
N→∞

(N(1− ρw
χ

))mP(A | N(long) = kN) =
eγ

t1 · · · tm
q

(
1− (t1 + . . .+ tm)

tm

)
. (3.7)

Recall that Xl is equal to the number of loops of length l and that all the Xl are independent under P. We
then have that

P (A) =
N∏

l=jm

P (Xl = il) where il = #{k : jk = l} ∈ {0, 1} for all l. (3.8)

Similarly, for k ≥ J , where J =
∑m

i=1 ji,

P (A | N(long) = k) =
P
(∑jm−1

i=1+TN
iXi = k − J

)
P
(∑N

i=1+TN
iXi = k

) N∏
l=jm

P (Xl = il) . (3.9)

Note that il = 0 if l /∈ {j1, . . . , jm} and = 1 otherwise. Using the approximation tj,a ∼ e−βajλ1(w/a) → 0
(see Lemma 2.2(3)) for j ∈ {j1, . . . , jm}, we get that

N∏
l=jm

P (Xl = il) =
N∏

l=jm

e−tl,a
(tl,a)

il

il!lil
∼ exp

(
−β

N∑
l=jm

illaλ1(w/a)

)
N∏

l=jm

1

il!lil
= e−βaλ1(w/a)J

m∏
i=1

1

ji

∼ e−βaλ1(w/a)J
(
N(1− ρw

χ
)
)−m m∏

i=1

1

ti
.

(3.10)
Now pick k = kN ∼ N(1− ρw/χ), we obtain by Lemma 2.5

P

(
N∑

i=1+TN

jXj = kN

)
∼ e−γ

TN
e−βaλ1(w/a)kN , (3.11)

as well as (observe that (kN − J)/jm → (1− (t1 + · · ·+ tm))/tm as N →∞)

P

(
jm−1∑
i=TN

jXj = kN − J

)
=
q ((1− (t1 + · · ·+ tm))/tm)

TN
e−βaλ1(w/a)(kN−J) . (3.12)

Substituting the last three displays in (3.9) implies (3.7), and we finish the proof.

DOI 10.20347/WIAS.PREPRINT.3119 Berlin 2024



T. Bai, W. König, Q. Vogel 20

3.3 Proof of convergence of 1
N (iXi)i∈N

In this section, we prove Theorem 1.2(1)(c), i.e., the convergence of the distribution of the microscopic loop
lengths. Since we are considering the product topology, it suffices to consider just 1

N
iXi for one fixed i ∈ N.

Recall that uχ = 0. By Lemma 2.2(2), Xi is Poisson-distributed with parameter 1
i
ti,aN ∼ a

−d/2
N

1
i
χα(χ)

i ∼
N 1

i
α(χ)

i as N →∞. For any ε > 0,

P
(N)

βaN ,w/aN

(∣∣∣ 1

N
iXi − α(χ)

i

∣∣∣ > ε
∣∣∣N = N

)
) ≤ P

(N)

βaN ,w/aN

(∣∣∣ 1

N
iXi − α(χ)

i

∣∣∣ > ε
) 1

P
(N)

βaN ,w/aN
(N = N)

.

Observe that Xi is distributed as a sum of N independent Poisson-distributed random variables with pa-
rameter 1

i
α(χ)

i (1 + o(1)). Use a standard exponential concentration inequality based on Cramér’s theorem
from the theory of large deviations, we conclude that the first term on the right-hand side vanishes exponen-
tially small on the scale N . On the other side, we use the lower bound of Lemma 2.6 and the asymptotics
from Lemma 2.1 to see that the denominator vanishes exponentially fast on the scale NaNλ1(w/aN) �
Na

α/(α+2)
N � N . Hence, the right-hand side decays exponentially fast on the scale N .

4 Proof of Theorem 1.2(2): sub-critical regime

Abbreviate χN = Na
d/2
N . In this section we are under the assumption that χ = limN→∞ χN exists in

[0, ρw), and we prove Theorem 1.2(2)(a) and (b). (The proof of (c) is deferred to Section 5.)

Abbreviate a = aN and P = P
(N)

βa,w/a. Since

1

N
E [N] ∼ 1

N
ρwa

−2/d → ρw
χN

> 1 , (4.1)

the event {N = N} is a downwards deviation under P. We tilt the intensity measure of P with a small factor
by means of a chemical potential, which suppresses long loops, such that the expected number of particles
in the process is equal to N . For µ ∈ (−∞, 0), denote by P(N)

β,w,µ the probability measure for the PPP with
intensity measure

ν(N)

β,w,µ(df) =
N∑
k=1

eβµk

k
ξ(kβ,w)(df), on

⋃
k∈N

Cβk. (4.2)

Abbreviate Pµ = P
(N)

βa,w/a,µ. Under Pµ, the vector (Xj)j∈[N ] consists of independent Poisson-distributed

variables Xj with parameters 1
j
t(µ)j,a = 1

j
eβµajtj,a. Observe that

P(· | N = N) = Pµ(· | N = N), N ∈ N, µ ∈ (−∞, 0), (4.3)

since a simple change of measure shows that

P (N = m) = epa,N (µ)−pa,N (0)−βµamPµ (N = m) , m ∈ N, (4.4)

where we abbreviated

pa,N(µ) = ν(N)

βa,w/a,µ

( N⋃
j=1

Cβj
)

=
N∑
j=1

eβµaj

j
tj,a. (4.5)

Now we define µN ∈ (−∞, 0) by EµN [N] = N . Recall the pressure p from (1.12) and (1.13) and that
uχ ∈ (−∞, 0) is defined by p′(uχ) = βχ.
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Lemma 4.1.

lim
N→∞

µNaN =

{
uχ, if χ > 0,

−∞, if χ = 0,
.

In the case χ = 0, we have the more precise asymptotics µNaN ∼ 1
β

log
(
χN(4πβ)d/2W−1

1

)
+ o(1).

Proof. Note that

Eµ[N] =
N∑
j=1

eβµajtj,a.

Since this is equal to N for µ = µN , we see that (µNaN)N∈N is bounded away from zero. Indeed, if µNaN
would go to zero, then we would have, for any R ∈ N, using Lemma 2.2(2)

N ≥
R∑
j=1

eβµNaN jtj,a ≥ (1−o(1))
R∑
j=1

a−d/2(4πβj)−d/2
∫

e−βjwdx ∼ N

χ

R∑
j=1

(4πβj)−d/2
∫

e−βjwdx,

and the right-hand side is asymptotic to Nρw/χ in the limit N →∞, followed by R→∞, which produces
a contradiction with χ < ρw. Using Lemma 2.2(1) and (2) and the fact that d ≥ 3, we see that

1 =
1

N
EµN [N] ∼ 1

N
a
−d/2
N p(µNaN) ∼ 1

χ
p(µNaN), N →∞.

This concludes the proof for χ > 0, since the range of p contains (0, ρw].

In the case χ = 0, note that

p(u) = eβu(4πβ)−d/2W1 +O
(
e2βu

)
, u→ −∞. (4.6)

Hence,

µNaN ∼
1

β
log
(
χN(4πβ)d/2W−1

1

)
∼ 1

β
logχN , N →∞. (4.7)

Write N(j) = jXj for the total number of particles in loops of length j and N(≥j) =
∑∞

k=j kXk for the
number of all particles in loops of lengths ≥ j.

Lemma 4.2. 1 If χ > 0, we have that

VarµN [N] ∼ N

χ

p′′(uχ)

β2
, N →∞.

2 If χN → 0, there is a C ∈ (0,∞) such that for any R,N ∈ N with R ≤ N ,

EµN [N(1)] ∼ N,

EµN [N(≥R)] ≤ CNχR−1
N , (4.8)

VarµN [N(≥2)] ≤ CNχ
1
2
N . (4.9)

DOI 10.20347/WIAS.PREPRINT.3119 Berlin 2024



T. Bai, W. König, Q. Vogel 22

Proof. (1) Note that p′′(u)/β2 =
∑

j∈N eβuj(4πβj)−d/2Wj , since p′′ is continuous in (−∞, 0). Since

(µNaN)N∈N is bounded away from zero, we can use for any j ∈ [N ] the asymptotics tj,a ∼ (4πβ)−d/2WjN/χN
in the following sum:

VarµN [N] =
N∑
j=1

eβµNaN jjtj,aN ∼
N

χN

p′′(µNaN)

β2
∼ N

χ

p′′(uχ)

β2
. (4.10)

(2) By Lemma 2.2(2) and Lemma 4.1,

EµN [N(1)] = eβµNaN t1,aN ∼ eβµNaNa
−d/2
N ∼ N.

We use C ∈ (0,∞) to denote a generic constant that does not depend on a nor on N and may change its
value at each appearance. By Lemma 2.2(1) and Lemma 4.1 again,

EµN [N(≥R)] =
N∑
j=R

eβµNaN jtj,aN ≤ Ca
−d/2
N eβµNaNR

N∑
j=R

eβµNaN (j−R)j−d/2Wj

≤ C
N

χN
χ
R(1+o(1))
N

N∑
j=R

j−d/2Wj ≤ CNχ
(R−1)(1+o(1)
N .

Finally, Lemma 4.1 implies that

VarµN [N(≥2)] =
N∑
j=2

jeβµNaN jtj,aN ≤ Ca
−d/2
N

N∑
j=2

j1−d/2eβµNajWj

≤ Ca
−d/2
N e

3
2
βµNaN

N∑
j=1

j1−d/2e
1
2
βµNaN jWj ≤ CNe

1
2
βµNaN = CNχ

1
2
N .

(4.11)

Lemma 4.3. There isC ∈ (0,∞) such that, for anyN ∈ N and any r = rN ∈ N0 such that r ≤ O(
√
N),

C−1N−
1
2 ≤ PµN (N = N − r) ≤ CN−

1
2 . (4.12)

Proof. For the case χ > 0, this follows from the variance bound proven in Lemma 4.2. Indeed, N is the sum
of N -independent random variables with mean N and variance O(N), so the result follows from the local
central limit theorem. Below we consider χ = 0, which requires more approximations.

We first prove the lower bound. Let s(N) := 2
√
VarµN (N(≥2)). Recall that by Lemma 4.1, N(1) and N(≥2)

are independent and that N(1) has the Poisson distribution

PµN (N = k) = Poiα(k) :=
e−ααk

k!
, k ∈ N0,

where α := Eµ[N(1)] ∼ N , and Eµ[N(≥2)] = N − α. For r = O(
√
N), expand

PµN (N = N − r) =
∑
k∈Z−α

PµN (N(1) = α + k − r)PµN (N(≥2) = N − α− k)

=
∑
k∈Z−α

Poiα(α + k − r)PµN (N(≥2) = N − α− k)

≥ PµN
(
|N(≥2) − EµN [N(≥2)]| ≤ s(N)

)
min

|k|≤s(N),k∈Z−α
Poiα(α + k − r).

(4.13)
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Using Stirling’s formula in the form n! ≤ C(n
e
)n
√
n, we estimate for l = k − r

Poiα(α + l) = e−α
αα+l

(α + l)!
≥ Ce−αeα+l

( α

α + l

)α+l

(α + l)−1/2 ≥ Cele−
l
α

(α+l)N−1/2

≥ Ce−l
2/αN−1/2 ≥ CN−1/2,

since s(N) ≤ O(
√
N) by Lemma 4.2.

Finally, by Chebyshev’s inequality,

PµN
(
|N(≥2) − EµN [N(≥2)]| ≤ s(N)

)
≥ 1− VarµN (N(≥2))

s(N)2
=

3

4
, (4.14)

and the claimed lower bound for PµN (N = N − r) follows.

For the upper bound, simply notice that by (4.13),

PµN (N = N − r) =
∑
k∈Z−α

Poiα(α + k − r)PµN (N(≥2) = N − α− k)

≤ sup
k∈N

Poiα(k) = Poiα([α]) ≤ CN−1/2.

Proof of Theorem 1.2(2). Recall that we are in the case where χ = limN→∞Na
d/2
N ∈ [0, ρw). Recall that

µN ∈ (−∞, 0) is picked such that EµN [N] = N . By Lemma 1.1,

γ
(aN )

N (x, y) =
N∑
r=1

eβµNaNrξ(βaNr,w/aN )

x,y (CβaNr)
PµN (N = N − r)
PµN (N = N)

. (4.15)

We split the sum into the sums on r ≤
√
N , where we will use that the ξ-term is small for all distinct x, y,

and r >
√
N , where we will use that the exponential term is small. Using Lemma 4.3 for both the numerator

and the denominator and using the simple bound ξ(t,w)
x,y ≤ Ct−d/2e−|x−y|/4t, we obtain

∑
1≤r≤

√
N

eβµNaNrξ(βaNr,w/aN )

x,y (CβaNr)
PµN (N = N − r)
PµN (N = N)

≤ Ca
−d/2
N

∑
1≤r≤

√
N

r−d/2eβµNaNre−|x−y|
2/(4βaNr).

(4.16)
We use the comparison between geometric and arithmetic mean (a+b

2
≥
√
ab) to see that

e
1
2
βµare−|x−y|

2/(4βar) ≤ e−|x−y| (|µ|/2)1/2 .

Since µNaN → uχ < 0, respectively→ −∞ for χ = 0, we find a c ∈ (0,∞) such that |µN |/2 ≥ c2/aN
for all N . This implies that the sum on r ≤

√
N is not larger than the right-hand side of (1.16).

In the remaining sum, we can use Lemma 4.3 only for the denominator, but analogously we obtain in the
same way∑
√
N<r≤N

eβµNaNrξ(βaNr,w/aN )

x,y (CβaNr)
PµN (N = N − r)
PµN (N = N)

≤ Ca
−d/2
N

√
N

∑
√
N<r≤N

r−d/2e
1
2
βµaNre−|x−y| (|µN |/2)1/2

≤ Ca
−d/2
N

√
Ne

1
4
βµNaN

√
Ne−|x−y| (|µN |/2)1/2 ≤ o(a−d/2)e−|x−y| (|µN |/2)1/2 .
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Hence, this part is even smaller than the sum on r ≤
√
N , which finishes the proof of (1.16).

Now we prove the weak convergence of 1
N

(iXi)i∈N under P towards α = α(χ) defined in (1.14). First we
assume that χ > 0. Observe that α(χ)

j = limN→∞ EµN (jXj) for any j ∈ N. Hence, also using (4.3), we
see that, for any ε > 0 and all sufficiently large N ,

P
(∥∥ 1

N
(jXj)j∈N − α(χ)

∥∥
1
> ε

∣∣∣N = N
)

≤ PµN

( N∑
j=1

∣∣jXj − EµN [jXj]
∣∣ > ε

2
N
∣∣∣N = N

)
≤ C
√
N

1

(εN)2
VarµN

( N∑
j=1

jXj

)
≤ CN−3/2VarµN (N)

≤ CN−1/2,

where we used Lemma 4.3 and the Chebychev inequality in the second step and Lemma 4.2(1) in the final
step.

Now we show the same assertion for the case χ = 0 with α(0) = (1, 0, 0, . . . ). For this, we show that
N(1) = X1 dominates the remaining particle number N(≥2), in the sense of

PµN (N(≥2) > εN)� PµN (N = N), N →∞, ε > 0. (4.17)

This will imply that

PµN
(
N(1) ≥ N(1− ε)

∣∣N = N
)

= 1 + o(1) , (4.18)

i.e., almost all mass is in loops of length one, which implies the convergence of 1
N

(iXi)i∈N towards (1, 0, 0, . . . )
under PµN (·|N = N), and hence also under P(·|N = N), due to (4.3).

We prove now (4.17). Recall that we are in the case χN → 0. For every fixed ε > 0, by Chebyshev’s
inequality and (4.8) for R = 2, for large enough N ,

PµN (N(≥2) ≥ εN) ≤ VarµN (N(≥2))

(εN − EµN [N(≥2)])2 ≤
4

ε2N2
VarµN (N(≥2)) ≤ o( 1

N
), (4.19)

where the last step follows from (4.9). This together with Lemma 4.3 proves (4.17).

5 Identification of the free energy

In this section, we prove the identification of the free energy in Theorem 1.2(1)(d), respectively (2)(c).

Recall pa,N(µ) from (4.5). We abbreviate P = P
(N)

βaN ,w/aN
and Pµ = P

(N)

βaN ,w/aN ,µ
. For any N ∈ N and

µ ∈ (−∞, 0], we have from (4.4)

ZN(β, aN , w) = epaN ,N (0)P (N = N) = e−µβaNN+paN ,N (µ)Pµ (N = N) .

Assume first that χ > ρw. In this case, set µ = 0. We then have that by Lemma 2.6 that

P (N = N) = exp
(
−λ1(W )βa

α/(2+α)
N N

(
1− ρw

χ

)
(1 + o(1))

)
. (5.1)
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Hence, we get that

fMF(β, χ) = lim
N→∞

(
− paN ,N(0)

βN
+ λ1(W )a

α/(2+α)
N

(
1− ρw

χ

))
. (5.2)

Note that by the scaling, we have that

paN ,N(0) = a
−d/2
N p(0) ∼ N

χ
p(0) , (5.3)

and Theorem 1.2(1)(d) follows.

If χ < ρw, we choose µ = µN < 0 as in Lemma 4.1. Lemma 4.3 gives Pµ (N = N) � N−1/2. Hence, we
can neglect this term and obtain

fMF(β, χ) = lim
N→∞

(
− paN ,N(aNµN)

βN
+ µNaN

)
. (5.4)

In the case χ > 0, we again make the approximation pa,N(aNµN) ∼ N
χ
p(aNµN), which implies Theo-

rem 1.2(2)(c).

If χ = 0, we approximate to first order

pa,N(aNµN) ∼ N

χN

eβµNaN

(4πβ)d/2
W1 ∼ N , (5.5)

which implies, via Lemma 4.1 that fMF(β, 0) = limN→∞( 1
β

+ log(χN )
β2 ) = −∞.
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