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Traveling wave mode analysis of coherence collapse regime
semiconductor laser with optical feedback

Mindaugas Radziunas, Deborah M. Kane

Abstract

A highly developed traveling wave model for a semiconductor laser system supports sophis-
ticated mode analysis of the coherence collapse regime in semiconductor lasers with delayed
optical feedback. The concept of instantaneous optical modes is used. Time-frequency represen-
tations of chaotic trajectories are constructed and interpreted from synthesizing the calculated
optical modes with their corresponding steady states, analysis of the mode driving and coupling
sources, and field expansion into modal components. The results support detailed physical inter-
pretation of the optical and radiofrequency spectra in the coherence collapse regime.

1 Introduction

The system of a semiconductor laser (SL) with delayed optical feedback (DOF) from the external
cavity (EC, see Fig. 1) has been researched extensively since the mid-1980s and was the subject of
multiple reviews and monographs [1, 2, 3]. This system is an excellent example of nonlinear dynamics
in general and nonlinear laser dynamics in particular. It was found that relatively small feedback from
long ECs can cause chaotic operation of the SL. The chaotic laser emission has been researched
for various applications, such as secure communication, random number generation, and reservoir
computing [1, 2, 3, 4, 5]. Typically, these applications require chaotic emission with the radio frequency
(rf) bandwidth reaching several to tens of GHz.
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Figure 1: Schematic of a SLDOF, consisting of the SL and the EC.

Most theoretical studies of SLDOF systems are based on the Lang-Kobayashi (LK) model [6], a system
of delay differential equations (DDEs) that assumes a single-mode operation of the SL, relies on the
mean-field approximation and models the impact of DOF by the (in general-complex) feedback rate
η. For Fabry-Perot (FP) lasers, η = 1−|r0|2

r0τ0
κeiϕ, where τ0 = 2lng/c is the field roundtrip time in the

SL and r0 is its complex amplitude reflectance at the front facet z = 0 (l: SL length, c: speed of light
in vacuum, ng: group velocity factor in the SL). κ is the fraction of the emitted optical field amplitude
that is reinjected, and ϕ is the frequency-independent field phase shift within the EC. ϕ plays a crucial
role when considering millimeter length ECs [7, 8]. It can be neglected for long delays τ = 2L/c
(L: effective length of the EC) used in most experimental free space propagation SLDOF systems.
Despite the simplicity, the LK model and its further developments predict much of the experimentally
observed complex behavior [9, 10]. In particular, the coherence collapse (CC) [11], which is the sudden
feedback-induced transition from single-frequency operation to a chaotic output, and low-frequency
fluctuation (LFF), a phenomenon that modulates the chaotic state. In many cases, the underlying
dynamics in the SLDOF could be understood from calculations and analysis of the steady states in
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the LK- and related DDE systems. In SLDOF systems with moderate and large τ , the number of these
steady states, best known as the external cavity modes (ECMs), can be huge, and most, if not all of
them, are unstable. Stable and unstable manifolds of many of these ECMs play a decisive role in the
chaotic attractor, see, e.g., Refs. [12, 13, 14, 15], where the role of ECMs in defining the CC and LFFs
was revealed.

However, the LK model has its drawbacks. It ignores the presence of multiple longitudinal modes
(resonances) in the solitary laser, is restricted to low feedback levels, and is not suited for modeling
SLDOF systems with small or vanishing front facet reflectance r0 of the FP SL. In contrast, the traveling
wave (TW) model [16, 17], which is a system of partial differential equations (PDEs) in time and one
spatial direction along the SL and EC, extends to arbitrarily high optical feedback levels and naturally
accounts for spatial distributions of fields and carriers, field reflections at the SL facets, and multiple
longitudinal modes of a solitary SL. In the present work, we calculate and analyze the steady states
and instantaneous optical modes of the TW model [7, 16, 18] for the SLDOF operating in the CC
regime. It is shown that mode analysis can provide information comparable to that obtained when
analyzing the ECMs of the LK model [15]. This applies even with the TW model extensions which are
outside the scope of the LK model (e.g., accounting for spatial distributions of fields and carriers within
the SL), or when using model parameters where the LK model is not trustworthy. The field expansion
into optical modes provides a correct time-frequency domain representation of the field transients and
allows analyzing the formation of simultaneously operating large-amplitude modes or mode clusters.
These are responsible for specific mode-beating oscillations visible in the rf spectrum. In contrast to
previously analyzed short SL devices [7, 18], where only a few or a few tens of instantaneous modes
were of importance, now we trace the evolution of more than a thousand modes, many of which
contribute to the chaotic dynamics of the SLDOF.

2 Model

2.1 Traveling wave model

The TW model is based on equations for the complex, slowly varying counter-propagating optical fields
E+(z, t) and E−(z, t) in the FP laser (z ∈ [−l, 0]):(

ng

c
∂t ± ∂z

)
E±(z, t) = −i

[
β(z, t)− iD

]
E±(z, t) + F±sp,{

Fe(t) =
√

1− |r0|2E+(0, t)− r∗0Fi(t)
E−(0, t) =

√
1− |r0|2Fi(t) + r0E

+(0, t)
,

Fi(t) = κeiϕFe(t− τ), E+(−l, t) = −r∗−lE−(−l, t).

(1)

Here, F±sp represent Langevin noise sources, Fe and Fi are the EC-side SL-emitted and reinjected
optical fields, respectively. r−l is the field amplitude reflectance at the rear SL facet, z = −l. By nor-
malization, |E(z, t))|2 = |E+|2 + |E−|2 is the local photon density.D is a linear operator describing
Lorentzian-shaped material gain dispersion [16]

DE± = ḡ
2
(E± − p±),

λ2
0

2πc
d
dt
p± = γ̄

2
(E± − p±)− iλ̄p±, (2)

where ḡ, γ̄, and λ̄ represent the height, full width at half maximum, and detuning of the material gain
peak from the central wavelength λ0, respectively. p+(z, t) and p−(z, t) are the complex polarization
functions. β(z, t) is the z-dependent complex field propagation factor,

β(z, t) = igT−α0

2
− αHg

′(N(z,t)−Ntr)
2

, gT = g′(N(z,t)−Ntr)
1+εP (z,t)

, (3)
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which depends on the carrier density N and, through the total gain function gT , photon density P .
α0, g′, Ntr, ε, and αH are field losses, differential gain, transparency carrier density, nonlinear gain
compression, and linewidth enhancement factor, respectively. Evolution of N is defined by the rate
equation [16],

d
dt
N(z, t) = I

qV
+

U ′F
qV Rs

(〈N〉 −N)− N
τN

− c
ng
<
∑

ν=±E
ν∗ ·
(
gT (N,P )− 2D

)
Eν ,

(4)

where P (z, t) = |E(z, t)|2, 〈 〉 denotes the spatial average over the SL, q is the electron charge,
while parameters V , τN , I , Rs, and U ′F are the volume of the active region, carrier lifetime, injection
current, series resistance, and derivative of the Fermi level separation, respectively. In our calculations
presented along this paper, if not stated differently, we use λ0 = 830 nm, τ = 4.5 ns, ϕ = 0,
l = 300µm, r0 = (0.05)1/2, r−l = (0.95)1/2, ng = 3.7, g′ = 1.036 · 10−20 m2, Ntr = 1024 m−3,
α0 = 60 cm−1, V = 300µm×5µm×0.1µm, τN = 2 ns, λ̄ = 0 nm, γ̄ = 30 nm, ḡ = 100 cm−1,
Rs = 1 Ω, U ′F = 3.5 · 10−26 Vm3, I = 55 mA (about 2.2 times the threshold current Ith ≈ 25 mA),
κ = 0.1, αH = 3.5, and ε = 3 · 10−23 m3. All these parameters (except for the Lorentzian dispersion
width, which is halved in the present paper) were used in Ref. [19]. Most of them were translated from
Ref. [20]. They are estimates which connect with a commercial SL for which there is comprehensive
experimental data [21, 22].

2.2 Example

The TW model with the parameter set introduced above was used to simulate changes in the SLDOF
dynamics with a step-wise increase of the feedback factor κ ∈ [0, 0.32]. For each fixed κ, we cal-
culated 1.5µs-long transients, evaluated the dynamical states using the last 1µs of these transients,
and increased κ by 0.001 afterward. Fig. 2 represents these parameter continuation simulations. The
spectral mappings in panels (a) and (b) show the power of the rf and optical spectra as functions of κ
in [0, 53] GHz rf- and [−0.16, 0.35] nm relative wavelength domains. These (time-averaged) spectra
were obtained by applying the discrete fast Fourier transform (DFFT) to the time traces of the emitted
field intensity |Fe(t)|2 and its complex amplitude Fe(t), respectively. Due to the vast number of field
values in the discrete time trace, optical spectra were estimated in 32 non-overlapping time subinter-
vals covering the whole 1µs time range and averaged afterward. The considered rf domain in panel
(a) represents an experimentally accessible part of the entire rf spectrum; the spectral peaks at about
135 GHz (corresponding to the solitary SL resonance separation) and further harmonics for a few se-
lected κ are shown in panel (c) (note the logarithmic scale of the abscissa-axis there). The wavelength
range of panel (b) comprises two central solitary SL resonances; an extended representation of the
optical spectra involving six SL resonances separated by about 0.31 nm, at several values of κ is
given in panel (d). Panels (a) and (b) show several well-known regimes of the SLDOF system [9, 10].
In region A at κ . 0.01, the device operation is determined by the solitary SL, whereas the feedback
is just a small perturbation. The broad rf spectra and broadened peaks of optical spectra around each
SL resonance characterize the chaotic CC regime (region B). To the left- and right from κ ≈ 0.07,
we can also distinguish the regimes without and with strong LFFs (regions B′ and B′′), the latter
represented by the high-intensity spectral peak at the bottom of the panel (a). Since we simulated well
above the threshold operating laser, I/Ith ≈ 2.2, the initial evidence of LFFs is observed at already
enhanced feedback values, which is consistent with [23]. In contrast to the widely investigated LFFs
in SLs operating close to the lasing threshold, the simulated LFF events in this work do not exhibit
well-distinguishable emission intensity drops (which can be measured in experiments). Instead, they
can be recognized by a sudden rise in 〈N〉 to levels typical for solitary SL lasing and operation at
these levels for a time interval of approximately τ . The frequency of LFFs decays with the increase of
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Figure 2: Rf (a) and optical spectrum (b) mappings for increased κ, color-coded on a dB scale. (c), (d):
spectra for κ = 0 (black), 0.05 (red), 0.15 (green), and 0.25 (magenta) in extended rf- and wavelength
ranges. Dotted horizontal lines: background levels (20 dB in (c) and -50 dB in (d)) of each spectrum.
Note different frequency scalings in upper and lower parts of (a).

κ, such that these LFF events can remain undetected for κ & 0.18 and limited transient lengths. For
κ & 0.24, region D, we have a relatively regular (sometimes-transient) regime with low intensity of
the rf spectra, small-amplitude fluctuations ofN , and operation of a single or only a few optical modes
red-shifted by about 0.1 nm from one or several solitary SL resonances. κ-induced switching between
the small- and moderate-intensity rf spectra here are mainly related to transitions between the steady
states with almost the same threshold densities. Finally, intermediate region C contains spectra similar
to those typical for regions B” and D. The observed switchings between different spectra can be due to
insufficiently long transients or bistability reported in Ref. [15]. The rf and optical spectra of typical rep-
resentatives of regimes A, B’, B”, and D are shown in panels (c) and (d). The spectra are up-shifted,
and horizontal dotted lines indicate the same background level of the corresponding spectrum. For
κ = 0 (black) and κ = 0.25 (magenta), we have regular steady-state regimes (the rf intensity is
low, and peaks of optical spectra are narrow). For κ = 0.05 (red) and κ = 0.15 (green), we have
the CC without and with LFF. The rf spectra, panel (c), have enhanced intensity over several tens
of GHz and a high LFF component at about 0.01 GHz when κ = 0.15. At the same time, the opti-
cal spectra around each SL resonance are broadened, see panel (d). By analyzing well-pronounced
spectral peaks, we recognize the solitary FP SL induced ∆λFP ≈ 0.31 nm separated resonances
in (b), (d) and corresponding ∆νFP ≈ 135 GHz beat frequencies and higher harmonics in (c). The
horizontal high-intensity stripes in (a), spaced by ∆νEC = 1/τ ≈ 0.22 GHz, represent the mixing of
the EC roundtrip (or ECM separation) induced beat frequency in the nonlinear model for the SLDOF.
The undamped relaxation oscillations (ROs), which are mainly due to the nonlinear interaction of fast
optical fields and slow carriers, are represented by high-intensity values of the rf spectra at νRO ≈ 4-
to-5 GHz in (a) and by the corresponding spectral peak separation close to the solitary SL resonances
at the onset of the CC in (b). νRO, which can be efficiently changed by tuning the bias current I , also
depends on other model parameters, including the feedback factor κ. Other prominent peaks of the rf
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spectra in (a) and corresponding optical spectra in (b) can hardly be explained without performing a
more detailed analysis of the optical modes of the TW model, which is the main topic of the present
paper.

2.3 Mode analysis

Besides the numerical integration of the TW model equations and the study of the calculated tran-
sients, we can perform a nontrivial analysis of model equations and calculated states based on the
instantaneous optical modes, pairs [Θ(z),Ω] of complex vector-function Θ =

(
Θ+

Θ−

)
and frequency

Ω, both depending on the instant distribution β(z, t′) [7]. To find these modes at any fixed β(z), we
substitute the Ansatz Ψ(z, t) =

(
E+

E−

)
= eiΩjtΘj(z) into Eq. (1) and resolve the resulting spectral

problem. Real and imaginary parts of Ωj , <Ωj and =Ωj , are optical frequency (relative to the central
frequency ω0 = 2πc

λ0
) and damping of the mode, respectively. The condition =Ωj = 0, together with

the balance of the carrier rate equation within the SL, is used to find the steady states [18] of the TW
model defined in the spatially extended compound cavity consisting of the SL and EC. These steady
states, also referred to as compound cavity modes (CCMs), typically can be well represented by the
optical frequency ωs and the threshold carrier density Ns (or its spatial average 〈Ns〉) [16, 18]. They
are TW model analogs of the ECMs of the LK model. The state with the smallest threshold Ns is
known as a maximal gain mode (MGM) in the LK and TW models.

Next, we can decompose calculated function Ψ(z, t) into a series of mode functions calculated for
actual β(z, t) [7],

Ψ(z, t) =
∑

j fj(t)Θj(z; β(z, t)), fj(t) =
(Θ†j ,Ψ(z,t))

(Θ†j ,Θj)
,

(ξ, ζ) = ng

∫ 0

−l ξ
∗T (z)ζ(z)dz +

∫ L
0
ξ∗T (z)ζ(z)dz.

(5)

After scaling the modes such that Θ+
j (0+; β) = 1 (0+: EC edge at the front SL facet), complex

mode amplitudes fj(t) show mode contributions to SL emission at the EC side, Fe(t) =
∑

j fj(t).
(·, ·) brackets in (5) denote a scalar product of complex vector functions, accounting for different field
velocities in the SL and EC. For reconstruction of {Θj} and Ψ in the EC, we explore field equations
in (1) for z ∈ [0, L], assuming ng = 1, Fsp = D = 0, and constant βEC, e−i2βECL = κeiϕ, which
models uniformly along the EC distributed attenuation and phase shift and assumes a perfect field
reflection at the mirror of the EC. Modes are not orthogonal in the sense of the scalar product. To find
fj(t) in Eq. (5), we construct the adjoint spectral problem [7, 8], define adjoint modes [Θ†j(z),Ω∗j ]

1,

and explore the orthogonality relation (Θ†k,Θl) = 0 when Ωk 6= Ωl. Besides providing valuable
information on the contribution of different modes to calculated emission, the mode expansion (5)
can also be used to approximate field equations (1) with a system of ODEs for mode amplitudes.
Namely, by substituting Eq. (5) into Eq. (1) and accounting for (slow) changes of β, we can derive the
system [7, 8]

d
dt
fk(t) = iΩkfk −

∑
lKk,l(β)fl + ζ

(k)
sp ,

Kk,l =
(Θ†k,

d
dt

Θl)

(Θ†k,Θk)
, ζ

(k)
sp =

(Θ†k,Fsp)

(Θ†k,Θk)
,

(6)

which can explain the evolution and coupling of different mode amplitudes. These equations show that
steady-states with vanishing |df

dt
| and dΘ

dt
(thus, Kk,l) should have =Ω = 0. On the other hand, when

β is changing in time, each fk, even with =Ωk > 0, can be excited not only by the noise term ζ
(k)
sp but

also by (typically small) coupling to other modes with nonvanishing fl. Following Ref. [8], one can show

1Θ†
j(z) can be easily constructed by exchanging and complex conjugating the first and second components of Θj(z).
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that the complex mode coupling terms in Eq. (6) are proportional to dN
dt

(which is small since carriers
are slow) and inversely proportional to the mode separation Ωk −Ωl [8], such that the direct coupling
of distant modes is small. Notably, the mode couplingKk,l and the self-couplingKk,k in the dynamical

state still can be significant since they are also proportional to Petermann’s factor
√
Kz = (Θk,Θk)

|(Θ†k,Θk)|
[24], which turns to infinity at the mode degeneracy [25] (also known as the exceptional point, EP
[26]), where (Θ†k,Θk) → 0.2 Thus, the evolution of mode amplitudes in the vicinity of the EP is
defined not only by Ω but also by the significant coupling to the neighboring modes. Depending on
the phase of complex coupling and self-coupling coefficients and the phase difference of the involved
mode amplitudes, the mode coupling terms can significantly contribute to the growth or decay of mode
amplitudes: see, e.g., Ref. [7], where our mode analysis revealed a crucial role of the mode with ever
positive =Ω in defining the shape of the dispersive-Q-switching pulses in multisection SLs.

3 Modes in the simplified model

For a simplified TW model with a spatially averaged carrier rate equation (i.e., N ≡ 〈N〉), neglected
gain compression (ε = 0) and dispersion (D = 0), the factor β = β(N) is a complex number, and
the mode-defining equation for the SLDOF reads as

G(N,Ω)+1
G(N,Ω)+|r0|2 = −κei(ϕ−Ωτ)

r0
, G def

= r∗−lr0e
−i(2β(N)l+Ωτ0). (7)

When κ = 0, the condition G(NFP, ωFP) = −1 following from Eq. (7) defines resonances (threshold
density and real optical frequency) of the solitary SL. Eq. (7) is a single complex equation relating real
number N and complex Ω, i.e., determines multiple mode branches in 3-dimensional (<Ω/=Ω/N )
space. Eq. (7) can be used for finding threshold densityNs and real frequency ωs of the CCMs (having
=Ω = 0) or searching branches of N -dependent complex mode frequencies Ω(N).

3.1 Compound cavity modes

For the CCM-location problem (=Ω = 0, s.t. Ω = ω is real), an elimination of the feedback phase ϕ
from Eq. (7) implies

∆ω = αHg
′l

τ0
∆N ± 1

2
W (∆N), where

∆ω = <∆Ω
def
= Ω− ωFP, ∆N

def
= N −NFP,

W (∆N) = 2
τ0

arccos cosh(g′l∆N)−κ2 cosh(g′l∆N−ln |r0|2)
1−κ2 .

(8)

This relation defines ϕ-parametrized CCM branches in a (real) frequency- and carrier density offset
(∆ω/∆N ) domain, see Fig. 3. These branches are analogs of the ECM ellipses in the LK model.
∆ω = αHg

′l
τ0

∆N defines the diagonal of the branch, and W (∆N) is its width at fixed ∆N . In
contrast to the LK model, the TW model defines CCM branches in the neighborhood of all solitary SL
resonances, empty bullets in Fig. 3(a). For small κ, closed CCM loops are in nearly perfect agreement
with the corresponding ever-regular ECM ellipses of the LK model. With the increasing κ, these loops

2The concept of mode degeneracy, i.e., the parameter space singularities where two modes have the same eigenvalue,
was introduced in Ref. [25] in the context of self-pulsating multisection SLs. It was shown later, see, e.g., [7, 27] and
references therein, that this EP plays a crucial role in defining various dynamical states of multisection lasers. Finding the
EP in more advanced models for SLDOF and its role in determining the dynamics, particularly properties of the coherence
collapse state, requires more detailed analysis and will be discussed elsewhere.
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asymmetrically grow until the neighboring loops collide at κ = |r0| and ∆N →∞ and form a single
curve, bypassing from below all solitary SL resonances afterward. To determine CCMs on the fixed-
κ branches, one has to find points corresponding to the predefined value of ϕ. For the considered
SLDOF, the CCMs are densely packed on each such curve. For example, each thick red loop in
Fig. 3(a) and (b), calculated for κ = 0.1, accommodates about 640 CCMs almost equally spaced by
the cavity roundtrip frequency (τ + τ0)−1.

Figure 3: Modes of the simplified TW model with ε = D = 0, N = 〈N〉 in frequency/carrier density
offset domain. (a): CCMs for several fixed κ and arbitrary ϕ. Empty bullets: solitary SL resonances.
(b): Same representation close to one of these resonances for κ = 0.1 (red curve). Black triangle
and box: CCM (0,∆N ′) and MGM. Vertical dashed lines: <∆Ωj of three selected modes. Shading:
(negative) damping=Ωj(N) of all modes. Inset: traces of a few complex Ω(N) with growingN (from
black to yellow) near the EP (empty rhomb).

All but one CCM (ωs, Ns) on the lower part of closed loops [“node”, or “mode” in the LK system]
surrounding the FP resonances has a dual CCM (ω?s , N

?
s ) [“saddle” or “antimode”] with ω?s ≈ ωs

and N?
s > Ns on the upper part of the same loop. The CCM pair can merge (or be generated) in

a saddle-node bifurcation close to vertical borders of each curve. CCM pairs are defined by a single
mode, which has =Ω = 0 and fulfills Eq. (7) at two different values of N . The mode-antimode pair
separation, N?

s −Ns, can be approximated by the CCM curve height H(∆ωs) at the corresponding
frequency offset ∆ωs. When defined, it is a function of model parameters, and it increases with an
increase of κ. In contrast to the LK model, it becomes undefined when κ significantly exceeds |r0|;
see, e.g., the mustard (κ = 0.5) curve in Fig. 3(a), where dual “antimodes” do not exist.

When a stable single-mode lasing of the SLDOF is possible, it is determined by or is close to the MGM
having the smallest possible ∆Ns. Since the CCM separation of the considered SLDOF is small, the
MGM’s position is well approximated by the lower border of the corresponding CCM curve, see black
box in Fig. 3(b), where W (∆N) = 0 and, thus,

∆NMGM = τ0∆ωMGM

αHg′l
, ∆ωMGM = −αH

τ0
ln
(1+κ/|r0|

1+κ|r0|

)
. (9)

Knowledge of ∆ωMGM helps to understand and estimate the chaotic operation bandwidth and predict
shifts of the dominating peaks in the optical spectrum with the change of κ. The carrier offset ∆N ′ of
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M. Radziunas, D. M. Kane 8

another important CCM located just below the solitary SL resonance, as indicated by the black triangle
at (0,∆N ′) in Fig. 3(b), can be determined by solving

αHg
′l

τ0
∆N ′ + 1

2
W (∆N ′) = 0. (10)

The half-width of the CCM branch, 1
2
W (∆N ′), will be used later to explain the positions of prominent

peaks in the rf spectrum.

In the LK model, all formulas presented above admit analytic expressions, which are in perfect agree-
ment with the TW model-induced formulas when optical feedback is small.

3.2 Mode amplification and damping

In a dynamic state, such as the CC, one expects contributions from several modes due to the fluctu-
ation of N . The modes with (<Ω, N) inside the CCM loop corresponding to the applied κ or above
the continuous curve, if κ ≥ |r0|, have negative damping, =Ω < 0. The presence of CCMs within a
specific frequency range is directly related to the existence of the modes capable of achieving negative
=Ω and being amplified when N exceeds the mode threshold Ns. However, only a few such modes
can typically be accessed and amplified. If the time-varying ∆N does not exceed the level of, e.g.,
∆N ′, see horizontal thin dotted line in Fig. 3(b), only the modes with <∆Ω ∈ [∆ωMGM, 0] near the
analyzed solitary SL resonance can attain negative =Ω. Due to typically small mode coupling factors
Kk,l in Eq. (6), the noise factor ζ(k)

sp is the only gain source for all remaining modes.

Colored shading inside the CCM loop in Fig. 3(b) calculated for κ = 0.1 represents the negative
damping of modes at the corresponding value of N = NFP + ∆N . Each mode can reach its own
smallest (largest negative)=Ω when its (<Ω, N) is located on the diagonal line of the loop. The over-
all largest negative =Ω is reached close to the solitary SL resonance; see dark red-to-black shading
around the empty black bullet in Fig. 3(b). When increasing N , real frequencies <Ω(N) of all but one
mode near each SL resonance show only moderate changes, which do not exceed the CCM separa-
tion frequency; see the two leftmost vertical dashed lines in Fig. 3(b) representing two selected mode
branches Ω(N). The mode branch with <∆Ω/2π ≈ −10 GHz can have both positive and negative
=Ω(N) and determines two CCMs (=Ω(N) = 0) at the crossings with the red loop. The branch
with <∆Ω/2π ≈ −30 GHz is outside of this loop and has only positive =Ω. The exceptional mode
(dashed line with<∆Ω ≈ 0) determines a single CCM and also shows only small frequency changes
and a moderate decrease of=Ω for negative ∆N . However, once ∆N exceeds some critical positive
value (which is about 5 · 1021 m−3 in our case), the path of the mode turns right and follows the di-
agonal of the CCM loop. At the same time, =∆Ω of this exceptional mode continues decreasing: see
brown-to-black dash within the red-shaded area close to the SL resonance in Fig. 3(b). Since =∆Ω
enters the argument of the exponential function, the numerical continuation of the path of the mode
could be performed only up to =∆Ω ≈ −10/ns.

Branches of a few modes with the largest negative =Ω close to the SL resonance are presented in
the inset of Fig. 3(b). Different colors represent the changing value of ∆N used for mode calculations.
The minimal=Ω (turning points of mode branches) and the largest<Ω-shifts of all but the exceptional
mode are achieved at (<∆Ω,∆N) belonging to the diagonal of the CCM loop. The exceptional mode,
however, bypasses close in the parameter space located EP [25, 26], see black rhomb in the inset, and
exhibits a further nearly linear with ∆N decrease of =Ω and increase of <Ω. The positions (<Ω, N)
and =Ω of the EP also depend on the feedback factor κ and other model parameters. For example,
comparing to the values presented in Fig. 3(b) and its inset, =Ω of the close-to-the-EP-modes and
=ΩEP of the EP itself can reach larger negative values with increased κ. On the other hand, =ΩEP
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Mode analysis of coherence collapse regime semiconductor laser with optical feedback 9

vanishes when κ ≈ 3.86 · 10−4. For the location of the EP in the above-discussed simplified TW
model, i.e. finding of (NEP,ΩEP), and the specific value of one of the model parameters, e.g., ϕEP,
one has to resolve Eq. (7) together with an additional complex equation

E(N,Ω)
def
= 1 + τ

τ0

(G(N,Ω)+|r0|2)(G(N,Ω)+1)
(1−|r0|2)G(N,Ω)

= 0. (11)

In the example of Fig. 3, the value of ϕEP was different from ϕ = 0 used in the mode branch calcula-
tions. Thus, a fine-tuning of ϕ, which implies smooth shifts of (almost all) CCMs and mode branches
[7, 16, 18], will also cause the situation where two mode branches in the inset of Fig. 3(b) hit the
EP at N = NEP and exchange their tails for N > NEP with a further tuning of ϕ. Notably, since
(Θ†,Θ) ∝ E(N,Ω), the factors Kk,k and Kk,l in Eq. (6) and

√
Kz of the k-th mode, being inversely

proportional to (Θ†k,Θk), can become very large near the EP.

4 Modes in the general TW model

In Fig. 3 and the discussion above, we explored the simplest version of the TW model. If gain dis-
persion is nonvanishing, D 6= 0, Eqs. (7) and (8) are more involved, and finding the CCM branches
in Fig. 3 requires exploration of numerical continuation procedures. The main difference in the mode
landscape is the up-shift of the CCM curves toward higher N with the increasing distance from the
gain peak frequency. However, simple relations (8) used for finding the CCMs in the simplified TW
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Figure 4: Modes with =Ω ≈ 0 detected during simulations of the general TW model (dots) and CCM
loops (dashed) in the simplified TW model, see also Fig. 3, in frequency/spatially averaged carrier
density domain. (a): αH = 3.5 and ε = 0 (magenta), 3 · 10−24 m3 (red), 3 · 10−23 m3 (light blue), and
3 · 10−22 m3 (mustard). Black framed bullets: solitary SL resonances. (b): ε = 3 · 10−24 m3 (red) and
3 · 10−23 m3 (light blue), whereas αH = 0, 2, and 5, as indicated in the corresponding loops.

model do not work when assuming spatially distributed N(z) and, thus, β(z). The methods for locat-
ing the steady states are much more involved, requiring finding the steady-in-time spatially distributed
functionNs(z) instead of a simple constantNs [18]. The algorithms of Ref. [18] were used to calculate
the steady states of the solitary SL; see black-framed bullets in Fig. 4(a).
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Fortunately, the complexity of mode calculations using the provided spatially distributed β is nearly
the same as in the constant β case. Thus, besides drawing analytically available CCM curves of the
simplified TW model, dashed curves in Fig. 4, we can also collect positions in the ω/〈N〉 plane where
=Ω of the corresponding calculated mode vanishes or is very close to zero. The distributions β(z)
used in mode calculations were collected from 100 ns-long transient simulations of the general TW
model, using about 25 ps steps before recalculating the modes. For a better approximation of the CCM
curve, simulations of the states with large amplitude variations of 〈N〉 (a LFF state, for example) are
preferable. We have found that once the gain compression is neglected, ε = 0, previously calculated
CCM curves perfectly agree with the recorded zero-=Ω positions: c.f. dashed loop and magenta dots
in Fig. 4(a). The dots do not cover the upper part of the dashed loop since the corresponding values
of 〈N〉 are not reached during the simulations. An introduction of only small gain compression, ε =
3·10−24 m3 (red dots in Fig. 4), implies only a slightly increased scatter and a small up-shift of the zero-
=Ω positions along the diagonal of the CCM loop. Since the solitary SL resonance is up-shifted along
the loop’s diagonal as well, our theoretical estimates (8), (9) still can provide decent approximations
of corresponding quantities in general TW model even for a ten-fold higher gain compression, ε = 3 ·
10−23 m3 (light blue dots in Fig. 4), which is a standard value in our simulations. These approximations,
however, are violated for large gain compression, ε = 3 · 10−22 m3 (mustard dots in Fig. 4(a)). The
scatter of dots is huge; the original dashed loop no longer confines the dots; the shifts of the dots and
the solitary SL resonance deviate from the loop’s diagonal.

In the presence of the nonvanishing ε, the shift of the solitary SL resonance and the zero-=Ω positions
towards higher carrier densities is imposed by the approximate relation

2=〈βs〉 ≈ gT (〈Ns〉, ε〈|E|2〉)− α ⇒
〈Ns〉 ≈ Ntr + 2=〈βs〉+α

g′
(1 + ε〈|E|2〉), (12)

where =〈βs〉 is the (spatially-averaged) value of =β needed for achieving the mode’s threshold (i.e.,
vanishing of =Ω) independently of the spatially averaged photon density 〈|E|2〉 or the applied value
of ε. Thus, an increase of ε〈|E|2〉 implies the growth of the averaged threshold density 〈Ns〉, which
is depicted on the ordinate axis of Fig. 4. An increase of 〈Ns〉 and the nonvanishing αH imply a
corresponding angular frequency shift along the diagonal. For large ε, a perfect along-diagonal shift is
violated since our model (3) assumes that <β is independent of ε. Zero-=Ω positions represented by
dots in Fig. 4 were calculated by exploring the CC and, when possible, the LFF states, where 〈|E|2〉
shows significant fluctuations. Due to Eq. (12), we also got corresponding fluctuations of zero-=Ω-
defining 〈N〉, which are best visible for high values of ε.

Finally, Fig. 4(b) shows similar zero-=Ω calculations performed using small and moderate gain com-
pression ε and different values of αH. In all these cases, the red dots, calculated for ε = 3 · 10−24 m3,
are nicely located along the theoretical CCM loops, whereas the light blue dots obtained for ε =
3 · 10−23 m3 show dislocations, discussed in panel (a) of this figure. In contrast to the αH = 3.5 case,
the repetition rate of the LFF events for αH = 5 is higher, and the optical frequency band determined
by all excited modes is about (5/3.5) times larger than those presented in panel (a). A different situ-
ation was observed for small αH. For αH = 2, we still could get a chaotically fluctuating CC regime,
but without the evidence of the LFF, high 〈N〉, and, thus, without the involvement of modes with large
frequency offsets. Finally, a few dots depicted in Fig. 4(b) in the case of αH = 0 represent only a few
modes involving transients towards the steady state at the MGM.
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5 Field expansion into optical modes

Let us now discuss the dynamically changing contributions of different modes to optical fields dur-
ing the CC regime. For this reason, we analyzed the contributions of 1200 instantaneous modes
[Θk(z),Ωk] during the above-mentioned 100-ns long transient simulations of the general TW model
with κ = 0.1, αH = 3.5, and other parameters defined in Section 2. Calculated modes could
fully cover the angular frequency range around the central solitary SL resonance. The field function
Ψ(z, t0), propagation factor β(z, t0), corresponding eigenfunctions Θk(z), and Eq. (5) were used to
find the mode amplitudes fk(t0) at the sequence of about 25 ps separated time instants t0.

For the standard case of ε = 3 · 10−23 m3 (light blue dots in Fig. 4(a)), the results of our simula-
tions for approximately one period of LFFs are summarized in Fig. 5. This figure reveals dynamics
and mutual dependencies of (spatially averaged) carrier density 〈N(t)〉 and intensities |fj|2, angular
frequency <Ωj , and damping −2=Ωj of multiple modes and explains the origins of different mode
beating frequencies that can be expected in the rf spectrum of much longer transients. To enable easy
estimation of optical frequency separations, instead of the relative angular frequencies <Ω or ω, we
depict relative frequencies ν = <Ω/2π of the modes or ω/2π of the CCMs on the axes of the figure.

Figure 5: Mode analysis of the CC regime. (a): Color-coded intensities |fj|2 of all modes in the given
spectral range during the 47 ns transient. (b): Corresponding (black) and low-pass filtered (red) time
trace of 〈N〉. (c): Same as (a) with color-coding of time instants. Black dots: up-shifted time-averaged
optical spectrum. (d): (ν, 〈N〉) of the modes when |f(t)|2 > −10 dB [shown by red to black color in
panel (a)]. Same color coding as in (c). Blue dots, black dashes, thick empty bullet, and green dots:
the zero-=Ω positions, the CCM curve, the solitary SL resonance, as in Fig. 4, and

√
Kz > 100,

respectively. Dashed lines: νMGM, NMGM (green), and νFP, NFP (magenta).

Sharing the same abscissa axis, panels (a) and (b) of Fig. 5 show the time evolution of different
mode intensities (see the color coding) and the carrier density. The white-to-black color in Fig. 5(a)
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represents intensities of different modes at given frequencies and time instants in the vicinity of one
of several solitary SL resonances. All modes with substantial (red-to-black) intensity are confined
within the frequency band, limited from below by νMGM, represented by the horizontal green dashed
line. The upper limit of this band is just above νFP (dashed magenta), i.e., approximately at the fre-
quencies where we could detect the EP and the exceptional mode in the simplified TW model; see
Fig. 3(b) and the inset there. At t ≈ 2 ns, ν ≈ 52 GHz modes could quickly reach high-intensity
levels, whereas νMGM-surrounding modes become damped. During the remaining time, the modes
with smaller ν were gradually enhanced, whereas all but a single 52 GHz mode were quickly damped.
We can recognize well-pronounced modes (or mode clusters) at about ν = 52 and 41.5 GHz, which
could preserve significant intensities during prolonged time intervals and, thus, imply a signature of
∆ν ′HW ≈ 10.5 GHz mode beating frequency in the rf spectrum. The existence of further multiple
well-amplified modes at ν ≈ 32 GHz for t ∈ [20, 35] ns and the interaction of these modes with still
active 41.5 GHz-modes further enhance ∆ν ′HW contributions to the rf spectrum.

The black curve in panel (b) shows the corresponding evolution of the spatially averaged carrier den-
sity, mainly fluctuating between NMGM and NFP, represented by dashed horizontal lines. A close
inspection and an additionally performed low-pass filtering of 〈N(t)〉 [red curve in panel (b)] reveal
that at the first part of the presented transient, carriers mainly evolve along several steps with an ap-
proximate length of τ = 4.5 ns, where they oscillate with ∆νRO ≈ 4 GHz frequency, which is a bit
smaller than ∼ 5 GHz RO frequency of the solitary SL, see black spectra in Fig. 2(c). In Fig. 5(a),
the signature of ∆νRO-oscillations is represented by excited 56- and, especially, 48 GHz-modes for
t ∈ [2, 15] ns, and by accordingly separated further high intensity modes or mode clusters (e.g., 37
and 41 GHz or 27 and 31 GHz modes) during nonvanishing time intervals. By comparing panels (a)
and (b), one can recognize that the amplification or damping of one or another new group of modes
in (a) correlates with the beginning and the end of these steps. In the second part of the trajectory,
where the steps of 〈N(t)〉 can not be recognized anymore, multiple modes in the wide frequency
band close to the MGM are excited. Simultaneous action of still not fully damped 52 GHz-mode and
already excited MGM at t ≈ 20 ns is responsible for the ∆νMGM-signature in the rf spectrum.

Fig. 5(d) again gives us the frequency-carrier density representation of the calculated trajectory. The
dashed curve, blue dots, and empty bullet were already explained when discussing Fig. 4(a). The
remaining small dots show positions (frequency ν(t) and carrier density 〈N(t)〉) of the modes which,
at the related (color-coded) time instants, had large intensities |f(t)|2 [corresponding to a red-to-
black color in panel (a)]. Most of the modes further apart from the MGM could get large intensities
only when (ν, 〈N〉) were located along the diagonal of the dashed (or blue-dot framed) loop where
mode damping =Ω reaches the highest negative values for the given 〈N〉; see also discussion of
Fig. 3(b). During the prolonged stay of 〈N(t)〉 at the upper step at about NFP [panel (b)], several
modes with ν just slightly exceeding νFP [panel (a)] had the largest possible amplification, i.e., the
smallest possible =Ω [see the discussion of the red shaded region of Fig. 3(b)]. Notably, due to
significant values of the

√
Kz factor3, which exceeded 100 at the green-dot indicated positions, the

enhanced coupling of neighboring modes also contributed to the intensity exchange between the
modes. After the descent of 〈N(t)〉 to the second step at about Ñ ′ = 2.05 · 1024 m−3, new modes
at ν ≈ 41.5 GHz corresponding to the smallest available =Ω(Ñ ′) at the CCM-loop’s diagonal are
significantly amplified. Previously dominating exceptional mode and its neighbors at this new value
of Ñ ′ still have =Ω ≈ 0, i.e., (νEP, Ñ

′) is approximately at zero-=Ω points, blue dots in Fig. 5(d).
Thus, ωFP-surrounding modes can preserve their intensity and produce ∆ν ′HW-GHz beating with the
newly amplified modes. Ñ ′ and (νEP, Ñ

′), after accounting for nonlinear gain compression induced
up-shift of the zero-=Ω positions, can be nicely approximated by the simplified TW model-defined

3Typical values of
√
Kz for N ≈ NMGM were between 1 and 3.

DOI 10.20347/WIAS.PREPRINT.3117 Berlin 2024



Mode analysis of coherence collapse regime semiconductor laser with optical feedback 13

N ′ = NFP + ∆N ′ (satisfying the second equation in (10)) and (0,∆N ′) CCM, empty triangle in
Fig. 3(b). Therefore, the above-discussed beating can be approximated by the half-width of the CCM
curve at ∆N ′, ∆ν ′HW ≈ W (∆N ′)/4π. The subsequent reduction of 〈N(t)〉 implies damping of the
exceptional mode and its neighbors but, similarly as before, preserves the intensity of 41.5 GHz-range
modes. At the end of the calculated transient (like at its beginning), only the modes at the lower part
of the CCM loop have visible contributions.

Finally, panel (c) gives another optical-spectra-like presentation of the calculated transient. Like in
panel (d), different colors of the dots represent time instants at which the mode intensities have been
estimated. Panel (c) shows that the largest intensities achieved by the exceptional mode and its neigh-
bors around ν = 52 GHz were almost three orders higher than those at ν = 41.5 GHz or around the
MGM. However, these large intensities could be sustained only during the tiny time intervals since,
due to the high Kz factor and the significant coupling between the modes at high-N levels, the mode
intensity was transferred to the neighboring modes; see scattered dots with high |f |2 values to the
left and, especially right from νEP. Notably, the time-averaged optical spectrum obtained using the
DFFT (see the discussion of Fig. 2(d)), black dots in Fig. 5(c), can satisfactorily represent the intensi-
ties |fk|2 of the most important modes, even though information about the huge instant peak values
of the exceptional mode or the time subintervals where several modes or mode clusters have large
amplitudes and are interacting, is lost. CCM separation in this representation is determined by ap-
proximately seven discrete angular frequency steps, which allows for resolving the averaged power of
each individual mode and induces ∆νEC -periodic modulation of the spectral envelope.

Figure 6: Mode analysis of the CC regime for ε = 3 · 1024 m3 and κ = 0.15. All panels and notations
as in Fig. 5.

Fig. 6 provides a similar representation of the simulations performed for κ = 0.15 and low gain
compression, ε = 3 · 10−24 m3. The considered 71 ns long transient here now represents a less
regular separation between two LFF events. The decimation of the gain compression ε causes the
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reduction of the RO damping, which implies increased amplitude fluctuation and the absence of the
well-pronounced step-like descent of 〈N(t)〉 from the high NFP values down to NMGM, cf. panel (b)
of Figs. 5 and 6. The reduced damping and increased fluctuation of 〈N(t)〉 prevent the formation of
durable high-intensity mode clusters with ∆ν ′HW(κ)-mode frequency separation in Fig. 6(a), such that
a reduction of the rf spectral peaks at ∆ν ′HW(κ) and their enhancement at ∆νRO can be expected.
The trajectory spends less time in the neighborhood of the solitary SL resonance and the EP during
the LFF event, such that the contribution of the exceptional mode and its neighbors to time-averaged
optical spectra is also reduced: cf. black dots in panel (c) of Figs. 5 and 6 close to the vertical dashed
magenta lines. On the other hand, like in Fig. 5(d), the modes reach their largest intensities along the
diagonal of the CCM curve or in the vicinity of the MGM, see Fig. 6(d).

In general, the presented mode analysis of the calculated transients in the LFF regime reminds the
corresponding transitions reported in the LK model [12, 13, 14, 15], where the fast departure of the
trajectory from the MGM surrounding and its slow return back was explained by the action of the un-
stable manifold of the saddle-type ECM, and the finite time τ spent by the trajectory in the vicinity of
multiple node-type ECMs. In contrast, the mode analysis above only indirectly relies on the multiple
CCM positions but considers changing contributions of the instantaneous mode amplitudes evolving
according to Eq. (6). Our analysis has enabled us to identify modes capable of getting the largest am-
plification at certain quasi-steady levels of 〈N〉. In particular, the exceptional mode, which can reach
the overall largest amplification rate, but also is responsible for sharing its power with the neighboring
modes. Our mode analysis also provides a comprehensive time-frequency domain representation of
the dynamic states of the SLDOF.

6 Discussion

In the examples of Section 5, we analyzed the dynamics of 1200 modes around a single solitary SL
resonance during a 100 ns transient with about 25 ps time steps. Such mode analysis can quickly
become too demanding of computational resources when consideration of µs-range transients, more
extensive spectral ranges, and study of different parameters is required. For example, the above-
performed analysis has required a Gigabyte of computer memory, more than 2-hour calculations, and
an additional preselection of the initial time moment since the trajectory was reaching high values
of 〈N〉 ≈ NFP approximately once or twice in each 100 ns. This time range preselection is even
more critical when the separation between the LFF events, which are the main reason for obtaining
broadband rf spectrum, reaches several hundreds of nanoseconds at high κ. For comparison, a single
1µs transient calculation can be done in about one minute without performing mode analysis. Thus,
to characterize the dynamics of SLDOF systems when performing parameter scans, we still rely on
direct numerical integration of model equations as we did when drawing Fig. 2, and use the mode
analysis discussed above to better understand these simulations.

Let us again discuss the simulated spectral maps of Fig. 2 using information from the mode analysis.
First, we apply a sliding averaging of the rf spectra using ∆νEC-long windows. This filtering allows us
to remove the periodically reappearing resonance peaks separated by ∆νEC from the spectral map
of Fig. 2(a) for the purpose of showing the envelope of the rf spectrum. The resulting filtered maps for
ε = 3·10−23 m3 and 3·10−24 m3 are shown in Figs. 7(a) and (c), respectively. Panels (b) and (d) show
the corresponding mapping of the optical spectra in the neighborhood of a single central solitary SL
resonance wavelength ∆λFP, represented by the horizontal dash-dotted line. Solid and dashed white
lines in these diagrams are κ-dependent frequency and wavelength offsets ∆νMGM = |∆ωMGM/2π|,
λ2

0∆νMGM/c and ∆ν ′HW, λ2
0∆ν ′HW/c. In the moderate gain compression case, ε = 3 · 10−23 m3,
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Figure 7: Mappings of the filtered rf (upper panels) and optical spectrum close to one of the solitary
SL resonances (lower panels) for increased κ, color-coded on a dB scale, see also Fig. 2. ε =
3 · 10−23 m3 in (a), (b) and 3 · 10−24 m3 in (c), (d), respectively. Solid, dashed, and dotted lines:
∆νMGM(κ), ∆ν ′HW(κ), and ∆νRO in (a) and (c), or corresponding wavelength shifts from ∆λFP (dash-
dotted line) in (b) and (d).

these lines can properly indicate the enhanced spectral peaks in the optical spectra, panel (b), and
in the rf spectra, panel (a), for κ & 0.1. When ε = 3 · 10−24 m3, the MGM offsets (solid lines) can
be used to define the main lasing wavelengths, panel (d), and approximate spectral bandwidth of the
CC, panel (c). ∆ν ′HW-defined estimates (dashed lines), however, totally fail to indicate distinguishable
peaks in the spectral maps, which is due to the damping’s reduction and is in agreement with the mode
analysis presented in Fig. 6. In contrast, the RO-induced spectral peaks, dotted horizontal lines, are
much more pronounced now, cf. panels (d) and (b) of Fig. 7. Since the gain compression in both cases
was moderate or small, the compression-induced shift of the solitary SL resonance is also small (cf.
dash-dotted lines in Figs. 7 (b) and (d)), and the theoretical CCM loops decently approximate the zero-
damping positions (cf. light blue and red dots in Fig. 4). The comparison of panels (a) and (c) reveals
that enhanced ε is preferable when looking for the MGM-defined steady states at high κ (see spectra
of such stabilized case at κ = 0.25 in Fig. 2(c) and (d)). On the other hand, small ε is preferable when
the CC regime with broad and more uniform rf spectra at moderate and high κ values is required. The
results here-in connect well with prior experimental data [21, 22].

7 Conclusions

In conclusion, we analyzed the CC regime of the SLDOF system using the TW model and the anal-
ysis of instantaneous optical modes. We demonstrated how the mode analysis, in combination with
direct simulations of the model equations, allowed us i) to get a comprehensive time-frequency char-
acterization of the calculated chaotic transients, ii) analyze the relations between the carrier density
dynamics and the amplification or damping of modes, iii) to identify simultaneously acting prominent
modes or mode clusters responsible for the most pronounced mode beat frequencies in the emission’s
intensity, and iv) to find preferable changes in the model parameters desired for enhancing or reducing
the feedback range suited for achieving the CC and the LFFs or increasing the CC rf band at fixed
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feedback. We demonstrated that essential characteristics of the SLDOF, such as the rf bandwidth of
the CC regime and key frequencies that show peaks in the rf power as seen in experimental systems
can be accurately determined by fast calculations based on the analysis of the modes and the steady
states in the simplified TW model. Further work on the boundaries of the LFF regions will be reported
elsewhere. We have also found a correlation between the location of the exceptional point and the
corresponding exceptional mode in the vicinity of each solitary SL resonance with the upper optical
frequency bound in the CC regime. Further exploration of the exception point can lead to a better
understanding of the complex dynamics in SLDOF and improve device designs suited for generating
broad-band chaos, in particular.
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