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Bounded functional calculus for divergence form operators with
dynamical boundary conditions

Tim Böhnlein, Moritz Egert, Joachim Rehberg

Abstract

We consider divergence form operators with complex coefficients on an open subset of Eu-
clidean space. Boundary conditions in the corresponding parabolic problem are dynamical, that
is, the time derivative appears on the boundary. As a matter of fact, the elliptic operator and its
semigroup act simultaneously in the interior and on the boundary. We show that the elliptic oper-
ator has a bounded H∞-calculus in Lp if the coefficients satisfy a p-adapted ellipticity condition.
A major challenge in the proof is that different parts of the spatial domain of the operator have
different dimensions. Our strategy relies on extending a contractivity criterion due to Nittka and a
non-linear heat flow method recently popularized by Carbonaro–Dragičević to our setting.

1 Introduction

This paper is dedicated to elliptic operators in divergence form along with their associated parabolic
problems, which are commonly encountered in science. These scenarios frequently pose challenges
due to discontinuous coefficient functions and singular objects on the right-hand side, which reside
on sets with Hausdorff dimension smaller than the spatial dimension. It is widely recognized, e.g. in
the theory of electricity (see the monograph of the Nobel prize winner I. Tamm [62, Chap. 1.4]) that
(spatial) jumps in the coefficient function are intimately connected to the presence of surface densities
on the right-hand side.

1.1 The parabolic equation

First, let us give a formal description of the linear parabolic problem with dynamical boundary condi-
tions that we have in mind. An excellent exposition for the derivation of such equations in sciences can
be found in [42]. In dimension d ≥ 2 we let O ⊆ Rd be open, D ⊆ ∂O, Σ ⊆ O \D, T ∈ (0,∞]
and consider the system

∂tu− div(A∇u) = f |O\Σ in (0, T )× (O \ Σ),

∂tu+ ν · A∇u = f |Σ∩∂O on (0, T )× (Σ ∩ ∂O),

∂tu+ νΣ∩O · A∇u = f |Σ∩O on (0, T )× (Σ ∩O), (1.1)

u = 0 on (0, T )×D,
ν · A∇u = 0 on (0, T )× ∂O \ (D ∪ Σ),

u(0) = u0 in O ∪ Σ.

Here, A is a uniformly strongly elliptic coefficient function with complex, bounded and measurable
entries, that is,

λ(A) := essinf
x∈O

min
|ξ|=1

Re(A(x)ξ · ξ) > 0 & Λ(A) := esssup
x∈O

|A(x)| <∞, (1.2)

DOI 10.20347/WIAS.PREPRINT.3115 Berlin 2024



T. Böhnlein, M. Egert, J. Rehberg 2

the vector ν is the outer unit normal, νΣ∩O denotes a ‘jump’ in the normal derivative on Σ ∩ O, and
f, u0 are functions defined onO∪Σ. Hence, the underlying set for the dynamics is O∪Σ, where the
‘volume’ O is equipped with the d-dimensional Lebesgue measure, but the ‘surface’ Σ is a Lebesgue
null set and carries a different Radon measure m. In science, Σ would typically be a Lipschitz surface
with (d − 1)-dimensional Hausdorff measure, but our mathematical treatment allows it to be as wild
as the von Koch snowflake with its natural measure of fractal dimension, or of Hausdorff co-dimension
larger than 1.

1.2 The variational setting

Following [4, 31, 38, 54], we model (1.1) as an abstract Cauchy problem

u′(t) + L Au(t) = f(t) (t ∈ (0, T )),

u(0) = u0,

in the natural L2-space L2 := L2(O ∪Σ, dx⊕ dm) that takes the two dynamical parts into account.
This can efficiently be done by an extension of the form method due to Arendt–ter Elst [3], see Sec-
tion 3 for details. In this construction, L A is associated with the usual sesquilinear form for divergence
form operators,

a : V × V → C, a(u, v) :=

∫
O

A∇u · ∇v dx, (1.3)

where V = W1,2
D (O) is a Sobolev space that models the homogeneous Dirichlet condition on D in

the fourth line of (1.1). However, V is not considered as a subspace of L2(O) but of L2 through the
identification operator j(u) = u|O ⊕ Tr(u) in order to account for the dynamics on Σ, compare with
[38, Sec. 1]. To this end, we need minimal geometric assumptions that we describe next.

Assumption 1.1. Throughout the entire paper, d ≥ 2 and:

(i) The set O ⊆ Rd is open and non-empty.

(ii) The Dirichlet part D ⊆ ∂O is closed and possibly empty.

(iii) The dynamical part Σ ⊆ O \D is a non-empty Borel set with Lebesgue measure zero.

(iv) The trace to Σ, defined for u ∈ V ∩ C(O) by pointwise restriction

Tr(u) := u|Σ,

extends by density to a bounded linear operator from V into L2(Σ, dm), where m is a Radon
measure on Σ.

Remark 1.2. We denote the extension of the trace map in Assumption 1.1 (iv) by the same symbol.
As usual, a Radon measure is a Borel measure that is finite on (relative) compact sets, outer regular
on Borel sets, and inner regular on (relative) open sets.

We refer to Section 2 for explicit examples that we have in mind, including fractal sets Σ, but it is
conceptually much simpler to stick to the more general assumption above.

1.3 Main results

Abstract theory of sectorial forms tells us that L A generates a holomorphic contraction semigroup in
L2. Thus, L A has a bounded H∞-calculus in L2 and notably exhibits maximal parabolic regularity,
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Functional calculus and dynamical boundary conditions 3

serving as a powerful tool for handling nonlinear versions of (1.1) via fixed-point methods, and even
stochastic maximal regularity [64].

The primary focus of this work is to elaborate whether these properties extend to Lp := Lp(O ∪
Σ, dx ⊕ dm) for p 6= 2. For operators with real coefficients this problem and related ones are
extensively investigated in the full Lebesgue scale, see e.g. [31, 38, 43, 49]. Their techniques do not
carry over to the complex case, which, to the best of our knowledge, has been an open problem. We
settle the question in our main result:

Theorem 1.3. Let p ∈ (1,∞) and suppose thatA is p-elliptic. The semigroup (e−tL
A

)t≥0 extends to
an analytic contraction semigroup on Lp of angle θp ∈ (0, π/2) defined in (1.5) and its generator L A

p

has a bounded H∞-calculus of angle π/2− θp. In particular, L A
p has maximal parabolic regularity.

Above, p-ellipticity refers to an algebraic condition on the coefficients that originates from Cialdea–
Maz’ya [24]:

∆p(A) := essinf
x∈O

min
|ξ|=1

Re
(
A(x)ξ · (ξ + (1− 2/p)ξ)

)
> 0. (1.4)

This notion was introduced by Carbonaro–Dragičević [18] and independently by Dindoš–Pipher [29].
It bridges between uniform strong ellipticity for complex matrices (p = 2) and real matrices (p =∞),
compare with Section 4.1. Every uniformly strongly ellipticA is p-elliptic in a range of p’s that depends
on λ(A),Λ(A) [34, Cor. 3]. Therefore, Theorem 1.3 always applies in an A-dependent range of p’s.
The angle above is

θp := sup
{
θ ∈ [0, π/2) : e±iθ A is p-elliptic

}
(1.5)

and we address the problem of finding lower bounds for θp in terms of the ‘data’ of A in Sec-
tion 8.

Compared to many Lp-extrapolation results related to elliptic operators [5, 9, 13, 14, 16, 34, 36, 60],
there is no clear dimensional scaling on the spatial domain of our operators due to the presence
of Σ. This seems to forbid any use of (generalized) kernel estimates on objects related to L A. In
proving Theorem 1.3, we had to watch out for methods that predominantly work on the level of the
sesquilinear form a in (1.3) and not on the associated operator L A, because the former one does
not involve Σ. We found a suitable approach in the non-linear heat flow technique of Carbonaro–
Dragičević [17, 18, 19, 20, 21]. Largely inspired by their results, we first prove a bilinear embedding
in Section 5:

Theorem 1.4. Let p ∈ (1,∞) and A,B be p-elliptic. Then there is a constant C > 0 that depends
only on p, λ(A,B), Λ(A,B) and ∆p(A,B) such that∫ ∞

0

∫
O

∣∣∇(e−tL
A

f)|O
∣∣ · ∣∣∇(e−tL

B

g)|O
∣∣ dx dt ≤ C‖f‖p‖g‖p′ (f, g ∈ Lp ∩ Lp′).

Here, p′ = p/(p−1) denotes the Hölder conjugate of p and

λ(A,B) := λ(A) ∧ λ(B), Λ(A,B) := Λ(A) ∨ Λ(B) & ∆p(A,B) := ∆p(A) ∧∆p(B)

are common (p-)ellipticty constants for A and B. Theorem 1.4 implies Theorem 1.3 by standard
quadratic estimates due to Cowling–Dust–McIntosh–Yagi [27], see Section 6. However, this isn’t the
whole story, as the boundedness of the semigroup in Lp is needed in the proof of Theorem 1.4. We will
address this prerequisite beforehand in Section 4 by providing a generalization of Nittka’s invariance
criterion [54] tailored to our needs.
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In both, the bilinear embedding and Nittka’s criterion, the main novelty is the presence of the identifica-
tion operator j. It poses new technical challenges that we resolve in this work. We make essential use
of the particular choice of j, or more precisely, that it is injective and that j as well as j−1 commute
with certain non-linear maps.

1.4 Discussion of the Lp-setting

Let us provide further motivation for considering the elliptic/parabolic operators in the particular spaces
Lp.

In the realm of mathematical semiconductor modeling, a widely studied model is the Van Roosbroeck
system [52, 59, 53]. This system comprises a set of nonlinear drift-diffusion equations with surface
charge densities on the right-hand sides. Mathematically, they are understood as measures concen-
trated on surfaces. In an advanced writing of the system [41], dynamical boundary conditions emerge
on parts of the boundary. Solving the system numerically is a nontrivial task and the only known suc-
cessful algorithm, due to Scharfetter–Gummel, bases on two essentials. First, if the system is studied
in some function space, then its dual has to contain indicator functions of subsets, such as boxes
or tetrahedra, as ‘test functions’. This is true in Lp and false in the more general distribution spaces
used e.g. in [53]. Second, once having tested the system with indicator functions on a partition of
subdomains, a point balance across all subdomains needs to be established. Usually, this conversion
involves transforming local volume integrals into surface integrals utilizing Gauß’ theorem [26]. While
this method is effective when the flux’s divergence is a measure, it fails when it is only a distribu-
tion.

However, already when dealing with semilinear parabolic equations, a standard approach to handling
right-hand sides R that depend nonlinearly on the solution, is based on the fact that R is (locally)
Lipschitz continuous with respect to the solution. This holds when the solution space is equipped with
the topology of an interpolation space between the underlying Banach space and the domain of the
elliptic operator [57, Chap. 6]. For parabolic equations onO it typically suffices to know that domains of
fractional powers of the linear elliptic operator embed into L∞ in order to catch the nonlinearities [39]
but in the case of the Lp spaces involving two different measures, a pointwise uniform control is
needed.

We address this issue in Section 7, where for large p we establish embeddings of fractional power
domains of L A

p into spaces of Hölder continuous functions on O ∪ Σ in various settings. These
embeddings generalize results in [30, 31, 38, 47, 50] for parabolic equations on O and open the door
for proving Hölder regularity for solutions of the parabolic equations simultaneously in space and time,
which can be very useful in applications, see e.g. [12, 22] and references therein. The proof relies on
delicate yet known mapping properties of the sesquilinear form (1.3), which are independent of the
dynamical boundary conditions, and a ‘transference formula’ for the inverse of L A, which might be of
independent interest.

1.5 Notation

We write B(x, r) ⊆ Rd for the open ball with center x ∈ Rd and radius r > 0 and denote inner
products by 〈· , ·〉 if the context is clear. The (almost everywhere) restriction of functions u to a subset
F is indicated by u|F .
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2 Geometry

This section contains prerequisites on function spaces and a unified treatment of Sobolev traces,
leading to a variety of geometric configurations that match with our background assumption (Assump-
tion 1.1).

Definition 2.1. Let C∞c (Rd \ D) be the space of all C-valued, smooth and compactly supported
functions on Rd whose support avoids D. For F ⊆ Rd we define

C∞D (F ) := C∞c (Rd \D)|F .

Definition 2.2. Let p ∈ [1,∞). We denote by W1,p
D (O) the closure of C∞D (O) with respect to the

norm ‖ · ‖1,p := (‖ · ‖pp + ‖∇ · ‖pp)
1/p and abbreviate V := W1,2

D (O). Furthermore, we write

W−1,p
D (O) := (W1,p′

D (O))∗, the space of bounded anti-linear functionals on W1,p′

D (O).

By uniform continuity, all functions in C∞D (O) extend continuously toO. Hence, V ∩C(O) is dense in
V and Assumption 1.1 (iv) makes sense. Note that we use W1,2

∅ (O) when the Dirichlet part is empty,
which should be thought of as a regularized version of the usual Sobolev space W1,2(O) that contains
enough functions with a well-defined trace, compare with [56, Chap. 4] and [2, 4, 58].

2.1 The identification map j

To define dynamical boundary conditions rigorously via the form method, we use an embedding of V
into an L2-space on O ∪ Σ. Below, m is the Radon measure from Assumption 1.1 (iv).

Definition 2.3. Let p ∈ [1,∞]. We denote by Lp(O) = Lp(O, dx) the usual Lebesgue space of
p-integrable functions, put dµ = dx⊕ dm and write

Lp := Lp(O ∪ Σ, dµ) := Lp(O)⊕ Lp(Σ).

We refer to this space as the Lp-space over the hybrid measure space (O ∪ Σ, dµ). The identifi-
cation operator is given by

j : V → L2, j(u) := u|O ⊕ Tr(u).

The terminology ‘hybrid’ highlights the fact that parts of such functions ‘live’ on the volume (O, dx),
whereas another part ‘lives’ on the typically lower dimensional set (Σ, dm). We could have also used
O \ Σ for the volume part in order to have ‘restrictions’ to two disjoint sets. However, there’s no
confusion here as Σ is assumed to be a Lebesgue null set according to Assumption 1.1 (iii).

Lemma 2.4. The space C∞D (Σ) is dense in L2(Σ). In particular, j(V ) is dense in L2.

Proof. Density of C∞D (Σ) in L2(Σ) follows by combining three density results. First, by dominated
convergence, L2(Σ)-functions with support in a compact set Σ′ ⊆ Σ with dist(Σ′, D) > 0 are
dense in L2(Σ). Second, Σ′ carries the Radon measurem|Σ′ , so C(Σ′) is dense in L2(Σ′, dm), see
for instance [65, Thm. 19.38]. Third, Σ′ keeps a positive distance to D, so the restrictions C∞D (Σ′)
form a unital ∗-algebra that separates the points of C(Σ′) and the Stone–Weierstrass theorem yields
that C∞D (Σ′) is ‖ · ‖∞-dense in C(Σ′).

In order to see that the above implies that j has dense range in L2, we suppose that u ∈ j(V )⊥.
Then, we have

0 = 〈u|O, v|O〉+ 〈u|Σ, v|Σ〉 (v ∈ j(V ) ⊆ L2).

DOI 10.20347/WIAS.PREPRINT.3115 Berlin 2024
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The second term on the right vanishes if v ∈ C∞c (O) vanishes on Σ∩O. Since Σ is a Lebesgue null
set, such functions are dense in L2(O) and we conclude that u|O = 0. Now, we can use the density
result from the first part to conclude u|Σ = 0 and thus u = 0. �

For the Lp-theory, we shall need to commute j and its inverse with certain non-linear maps. While
this is clear for j−1, because applying j−1 means restricting functions in j(V ) from O ∪ Σ to O, the
argument for j is more involved.

Lemma 2.5. Let k, l ∈ N, Φ: Ck → Cl be Lipschitz continuous with Φ(0) = 0 and let
U := (ui)ki=1 ∈ V k. Then Φ(U) ∈ V l and

(j(Φ(U)1), . . . , j(Φ(U)l)) = Φ(j(u1), . . . , j(uk)).

Proof. We follow the argument in [34, Lem. 4]. Let (Un)n = ((uin)ki=1)n ⊆ C∞D (O)k be such
that Un → U in V k as n → ∞. Since Φ is Lipschitz continuous with Φ(0) = 0, it follows that
(Φ(Un))n ⊆ V l is bounded. Hence, we find some v ∈ V l such that Φ(Un)→ v weakly in V l along a
subsequence. On the other hand, Φ(Un)→ Φ(U) in L2(O)l and we conclude that Φ(U) = v ∈ V l.
This proves the first assertion.

To show the second one, we use the first part and that j : V → L2 is continuous to conclude that
(j(Φ(Un)1), . . . , j(Φ(Un)l))→ (j(Φ(U)1), . . . , j(Φ(U)l)) weakly in (L2)l along a subsequence.
Since all Φ(Un)i are continuous onO, the map Tr acts as an honest pointwise restriction and we can
commute

(j(Φ(Un)1), . . . , j(Φ(Un)l)) = Φ(j(u1
n), . . . , j(ukn)).

The right-hand side tends to Φ(j(u1), . . . , j(uk)) in L2 and the proof is complete. �

2.2 Lebesgue points and traces

For a globally defined function f ∈ L1
loc(Rd), we recall that x ∈ Rd is a Lebesgue point of f if there

exists z ∈ C such that

lim
r→0
−
∫
B(x,r)

|f(y)− z| dy = 0,

compare with [1, Sec. 6.2]. In this case, we also have

z = lim
r→0
−
∫
B(x,r)

f(y) dy.

Lebesgue points allow us to assign pointwise values to equivalence classes of functions, sometimes
called ‘precise’ or ‘refined’ representative.

Definition 2.6. Let f ∈ L1
loc(Rd) and F ⊆ Rd. The global trace of f to F is defined as

Trglob,F (f)(x) := lim
r→0
−
∫
B(x,r)

f(y) dy,

for all x ∈ F for which the limit exists.

If the set F happens to be a subset ofO, we can also define a trace for functions that are only defined
on O as follows.
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Definition 2.7. Let f be integrable on bounded subsets of O and F ⊆ O. The interior trace of f to
F is defined as

Trint,F (f)(x) := lim
r→0
−
∫
O∩B(x,r)

f(y) dy,

for all x ∈ F for which the limit exists.

Whether global and interior traces exist in a suitable sense has been investigated extensively [4,
35, 51, 58, 61]. Here, our focus lies on making ‘soft’ assumptions on V that are commonly used in
heat kernel theory on domains [56, Sec. 6.3] rather than relying on geometric measure theory. By an
extension of a function f onO we mean a function E(f) on Rd with the property that (E(f))|O = f .
An extension operator E: V → W1,2(Rd) is a linear operator such that E(u) is an extension of u
for every u ∈ V .

Definition 2.8. We say that V has the

(i) embedding property if there is some θ ∈ [0, 1) and a constant CE ≥ 0 such that

‖u‖q ≤ CE‖u‖1−θ
1,2 ‖u‖θ2 (u ∈ V ),

where q ∈ (2,∞] is defined by 1/q = 1/2− (1−θ)/d.

(ii) extension property if there is a bounded extension operator E: V →W1,2(Rd), which should
satisfy the additional L2-bound ‖E(u)‖2 ≤ CE‖u‖2 for some CE > 0 and all u ∈ V if we
work in dimension d = 2.

Remark 2.9. In Section 2.4 we come back to the extension property in concrete settings. The exten-
sion property implies the embedding property. Indeed, if d ≥ 3, then we can take q = 2d/(d−2) and
θ = 0, and use the commutative diagram

W1,2(Rd) Lq(Rd)

V Lq(O)

⊆

|OE

⊆

(2.1)

where the first line is the Sobolev embedding on Rd. If d = 2, then we can take any θ ∈ (0, 1)
and transfer the respective Gagliardo–Nirenberg inequality from Rd to O in the same manner. This is
where the additional L2-bound for E is needed.

The embedding property ensures thatO is thick enough in points away fromD. Indeed, the next result
is a generalization of [46, Thm. 1], see also [8]. Unlike the original result, it also applies in the critical
case d = 2 without any connectivity assumption onO, compare with the proof of [46, Lem. 13].

Proposition 2.10. If V has the embedding property, then there is C > 0 depending only on d, θ and
CE such that

Crd ≤ |O ∩B(x, r)|

for all x ∈ O \D and r ∈ (0, 1 ∧ dist(x,D)).

Proof. We fix x and r. As in [46], we consider a ‘halving radius’ r̂ ∈ (0, r) such that

|O ∩B(x, r̂)| = 1

2
|O ∩B(x, r)|.
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We fix ϕ ∈ C∞c (Rd) such that 1B(x,r̂) ≤ ϕ ≤ 1B(x,r) and ‖∇ϕ‖∞ ≤ c/(r−r̂) with a dimensional
constant c ≥ 1. Then ϕ|O ∈ V with estimates

‖ϕ‖2 ≤ |O ∩B(x, r)|
1
2 ,

‖ϕ‖1,2 ≤ 2c(r − r̂)−1|O ∩B(x, r)|
1
2 ,

‖ϕ‖q ≥
(1

2
|O ∩B(x, r)|

) 1
2
− (1−θ)

d
,

where for the Sobolev norm we have used that r − r̂ ≤ 1. We plug this bound into the embedding
property in order to obtain

r − r̂ ≤ 2c(2
1/qCE)

1
(1−θ) |O ∩B(x, r)|

1
d .

Now, we iterate: r1 := r and rn+1 := r̂n. Since |O ∩ B(x, rn)| = 2−n|O ∩ B(x, r)| tends to 0 as
n→∞, we find rn → 0. A telescoping series yields the claim

r =
∞∑
n=1

(rn − rn+1)

≤ 2c(2
1/qCE)

1
(1−θ)

∞∑
n=1

|O ∩B(x, rn)|
1
d

= 2c(2
1/qCE)

1
(1−θ)

( ∞∑
n=1

2−
n
d

)
|O ∩B(x, r)|

1
d

=
2c(21/qCE)

1
(1−θ)

21/d − 1
|O ∩B(x, r)|

1
d . �

With the previous result at hand, we can prove that our various notions of traces coincide on Σ.

Corollary 2.11. Suppose that V has the embedding property. Let f be integrable on bounded subsets
of O and let u ∈ V ∩ C(O).

(i) If E(f) ∈ L1
loc(Rd) is any extension of f , then at every Lebesgue point x ∈ Σ of E(f) we

have
Trglob,Σ(E(f))(x) = Trint,Σ(f)(x).

(ii) For every x ∈ Σ we have
Tr(u)(x) = Trint,Σ(u)(x).

Proof of (i). We set z := Trglob,Σ(E(f))(x). For r ∈ (0, 1 ∧ dist(x,D)) we obtain from Proposi-
tion 2.10 that∣∣∣∣−∫

O∩B(x,r)

f dy − z
∣∣∣∣ ≤ −∫

O∩B(x,r)

|f(y)− z| dy ≤ |B(0, 1)|
C

−
∫
B(x,r)

|E(f)(y)− z| dy.

The right-hand side converges to 0 as r → 0 since x is a Lebesgue point of E(f). Hence, Trint,Σ(f)(x)
exists and equals z.

Proof of (ii). This follows since u is continuous at x. �
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2.3 Continuity of the trace

In order to get a continuous trace map into L2(Σ) as required in Assumption 1.1, we need to guarantee
that Sobolev functions have sufficiently many Lebesgue points on Σ and that the so-obtained trace
is controlled in norm. For this part only, we switch to a more concrete setup inspired by Jonsson–
Wallin [51].

We work with the Hausdorff measureH` of dimension ` ∈ (d−2, d) on Rd. Readers can refer to [65,
Chap. 7] for background. In particular, sets with finiteH`-measure are Lebesgue null, and if F ⊆ Rd

is a Borel set with H`(F ) < ∞, then the restriction of H` to F is a Radon measure. The restriction
on the dimension stems from a fundamental result in potential theory [1, Thm. 6.2.1 & Thm. 5.1.13]:
every u ∈W1,2(Rd) has Lebesgue pointsH`-almost everywhere.

Definition 2.12. Let ` ∈ (d− 2, d) and F ⊆ Rd be a Borel set. We call F an

� upper `-set if there is a constant C > 0 such that

H`(F ∩B(x, r)) ≤ Cr` (x ∈ F, r ∈ (0, 1]).

� `-set if there are constants C, c > 0 such that

cr` ≤ H`(F ∩B(x, r)) ≤ Cr` (x ∈ F, r ∈ (0, 1]).

If Σ is an upper `-set, then we take m = H`|Σ as the measure on Σ. Here is the main result of the
section:

Theorem 2.13. Assume that V has the extension property (with extension operator E) and that Σ is
an upper `-set for some ` ∈ (d− 2, d). Then

Trglob,Σ(E(u)) = Trint,Σ(u) = Tr(u) (u ∈ V )

and all three linear operators are bounded from V into L2(Σ). Furthermore, if Σ is bounded, then they
are compact.

Proof. Since E(u) has Lebesgue points H`-a.e. on Rd, we conclude from Corollary 2.11 (i) that
Trglob,Σ(E(u)) = Trint,Σ(u) holds H`-a.e. on Rd. Since ` > d − 2, we obtain from [51, Chap. VI,
Thm. 1 & Rem. 1] that Trglob,Σ : W1,2(Rd) → L2(Σ) is bounded. Hence, also Trglob,Σ ◦E: V →
L2(Σ) is bounded. If in addition u ∈ C(O), then by Corollary 2.11 (ii) we have Tr(u) = Trint,Σ(u)
and we have already seen that the interior trace is bounded and everywhere defined on V . Thus,
Trint,Σ is the continuous extension of Tr to V .

It remains to prove that Trglob,Σ ◦E is compact if Σ is bounded. To this end, we fix an open ball
B ⊇ Σ and a function η ∈ C∞c (B) with η = 1 on Σ, so that TrΣ ◦E = TrΣ ◦(ηE). The key point is
that [51, Chap. VI, Thm. 1] even gives continuity of Trglob,Σ : B2,2

1−ε(Rd) → L2(Σ) on Besov spaces
for sufficiently small ε > 0. Similar to (2.1), TrΣ ◦E factorizes through the embedding W1,2

∂B(B) ⊆
B2,2

1−ε(Rd), which is compact [7, Cor. 2.96]. �

Corollary 2.14. In the setting of Theorem 2.13 suppose that O is bounded. Then j : V → L2 is
compact.

Proof. We already know that Tr: V → L2(Σ) is compact. It remains to see that the inclusion V ⊆
L2(O) is compact. But this follows by taking an open ball B ⊇ O and a function η ∈ C∞c (B) with
η = 1 on O and factorizing the inclusion through the same compact embedding as before. �
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x

y

Oc

O

D D

Σ ∩O

Σ ∩ ∂O

Figure 1: A geometric constellation in R2 that matches with Corollary 2.15 and hence satisfies As-
sumption 1.1. The set Σ ∩ ∂O is a part of the von Koch snowflake, which is an upper `-set for
` = log3(4) > 1, see [40, Sec. 2.3], and we take m = H` on this dynamical boundary part. A proof
of local uniformity of O near ∂O \ D can be found in [44, Prop. 6.30]. The proof of Theorem 2.13
shows that Σ could be the union of multiple disjoint upper `-sets with different values of ` and we can
add a jump condition over the line segment Σ ∩O, which is a 1-set.

.

2.4 Concrete geometric setups

The extension property for V holds if O is a Lipschitz domain near ∂O \D or more generally, if O
is locally uniform near ∂O \D, see [10, 11] for details. Theorem 2.13 implies the following concrete
version of Assumption 1.1. In Figure 1 we illustrate a geometric configuration that goes far beyond the
Lipschitz class.

Corollary 2.15. Suppose that D is closed, Σ is an upper `-set for some ` ∈ (d − 2, d) and O is
locally uniform near ∂O \D. Then Assumption 1.1 is satisfied.

We close this section by extrapolating Theorem 2.13 to an admissible range of Lp-spaces in the
geometric setting from above. This will be important for regularity theory, see Section 7.

Theorem 2.16. Let ` ∈ (d−2, d), assume thatO is locally uniform near ∂O \D, Σ is an upper `-set
and let E be the extension operator from [11]. Then the following hold true for all p ∈ ((d− `)∨ 1, d)
and q ∈ [p, `p/(d−p)):

(i) We have
Trglob,Σ(Eu) = Trint,Σ(u) = Tr(u) (u ∈W1,p

D (O) ∩ V )

and all three operators admit bounded extensions from W1,p
D (O) into Lq(Σ).

(ii) If Σ is bounded, then the operators in (i) are compact.

(iii) If O is bounded, then j has a compact extension from W1,p
D (O) into Lq.

Proof. We follow the proof of Theorem 2.13 and explain all necessary modifications.

Proof of (i). Let s := 1 − (d/p − d/q) ∈ (0, 1]. Our choice of p and q implies that 1 − d/p = s − d/q
and s > (d−`)/q. By [11, Thm. 1.2], [7, Prop. 2.71] and [51, Chap. VI, Thm. 1 & Rem. 1], we have the
chain of continuous operators

W1,p
D (O)

E−→W1,p(Rd) ⊆ Bq,q
s (Rd)

Trglob,Σ−→ Lq(Σ).
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Thus, Trglob,Σ ◦E: W1,p
D (O)→ Lq(Σ) is bounded.

Proof of (ii). We only need to observe that [51, Chap. VI, Thm. 1] also gives continuity of
Trglob,Σ : Bq,q

s−ε(Rd) → Lq(Σ) for sufficiently small ε > 0. Using [7, Cor. 2.96], we conclude that
TrΣ ◦E factorizes through the compact embedding W1,p

∂B(B) ⊆ Bq,q
s−ε(Rd).

Proof of (iii). This is the same argument as in the proof of Corollary 2.14 with (V,L2(O)) replaced
by (W1,p

D (O),Lq(O)). �

3 L2-theory

This section contains all relevant definitions and proofs for p = 2.

3.1 The extended form method

Let A : O → Cd×d be uniformly strongly elliptic as in (1.2). We consider the bounded sesquilinear
form

a : V × V → C, a(u, v) :=

∫
O

A∇u · ∇v dx,

as in (1.3). Ellipticity implies that a is j-elliptic in the sense of [3], because

Re a(u, u) + λ‖j(u)‖2
2 ≥ λ‖u‖2

V (u ∈ V ).

Moreover, a is sectorial and

0 ≤ ω(A) := esssup
x∈O

sup
|ξ|=1

| arg(A(x)ξ · ξ)| ≤ arccos
( λ(A)

Λ(A)

)
< π

2
,

see also [37]. The associated operator in L2 is defined as follows. We say u ∈ dom(L A) if and only
if there are L Au ∈ L2 and w ∈ V such that j(w) = u and

〈L Au, j(v)〉 = a(w, v) (v ∈ V ).

Note that L Au is unique since j has dense range by Lemma 2.4. Abstract theory of sectorial forms [3,
Thm. 2.1 (ii)] implies that −L A generates a strongly continuous semigroup (e−tL

A
)t≥0 that extends

to an analytic contraction semigroup of angle π/2 − ω(A). Hence, e−zL
A

is defined for z ∈ Sµ with
µ ∈ [0, π/2− ω(A)), where we use the notation

Sµ := {z ∈ C \ {0} : | arg(z)| < µ} & S0 := (0,∞)

for sectors in the complex plane. Let us also remark that L A admits compact resolvents if j : V → L2

is compact [3, Lem. 2.7]. This happens in the setting of Theorem 2.13 when O is bounded, compare
with Corollary 2.14.

3.2 A formula for L A

The ‘Lax–Milgram’ operator associated with the form a is defined as

L : V → V ∗, 〈Lu | v〉 = a(u, v) (u, v ∈ V ).

Just as a, this operator is independent of the boundary dynamics and it is natural to ask for a formula
relating L A and L. If L is invertible, then j and its adjoint provide the link between L−1 and (L A)−1

as in the following lemma. It has nothing to do with the concrete choices of a, V and j, and is valid in
the general j-elliptic framework of [3].
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Lemma 3.1. Suppose that L is invertible. Then, so is L A and

(L A)−1 = jL−1j∗.

Proof. To prove that L A is injective, we let u ∈ dom(L A) with L Au = 0. Then u = j(w) for
some w ∈ V and

0 = a(w, v) = 〈Lw | v〉 (v ∈ V ).

Hence, Lw = 0 and as L is injective, we conclude that w = 0. Consequently, u = j(w) = 0.

As for surjectivity, we take any f ∈ L2. Since L is surjective, we find w ∈ V such that Lw = j∗(f),
that is

〈f, j(v)〉 = 〈j∗(f) | v〉 = 〈Lw | v〉 = a(w, v) (v ∈ V ).

This means that j(w) ∈ dom(L A) with L Aj(w) = f . In total, L A is invertible with inverse
(L A)−1f = j(w) = jL−1j∗f . �

Remark 3.2. By standard form theory, L is invertible if a is coercive, that is, if there is C > 0 such
that

Re a(u, u) ≥ C‖u‖2
V (u ∈ V ),

or, equivalently, if V admits the global Poincaré inequality ‖u‖2 ≤ C‖∇u‖2 for some C > 0 and all
u ∈ V . IfO is a bounded domain and V has the extension property, then Poincaré’s inequality always
holds unless V = W1,2

∅ (O) models good Neumann boundary conditions [34, Lem. 6].

Lemma 3.1 allows us to transfer mapping properties from the ‘non-dynamical’ operator L−1 to the
‘dynamical operator’ (L A)−1. We shall give a striking application in Section 7. Let us stress that for
the functional calculus of L A no such simple transference can be used (and hence the results in this
paper are non-trivial). Indeed, already for resolvents we do not have the formula

(t+ L A)−1 = j(t+ L)−1j∗ (t > 0),

because the form corresponding to the left-hand side is a(·, ·) + t〈j(·), j(·)〉L2 and not just a(·, ·) +
t〈·, ·〉L2(O).

3.3 The bilinear embedding for p = 2

We find it instructive to give an elementary proof of Theorem 1.4 in the case p = 2 first. We fix
f, g ∈ L2 and for t > 0 we abbreviate

fAt := e−tL
A

f & gBt := e−tL
B

g.

We consider the power function

Q(ζ, η) := |ζ|2 + |η|2 (ζ, η ∈ C)

and define the corresponding heat flow as

E (t) :=

∫
O∪Σ

Q(fAt , g
B
t ) dµ = ‖fAt ‖2

2 + ‖gBt ‖2
2.

Since (e−tL
A

)t≥0 and (e−tL
B

)t≥0 are bounded analytic C0-semigroups in L2, we obtain E ∈
C[0,∞) ∩ C1(0,∞) and

−E ′(t) = 2 Re

∫
O∪Σ

L AfAt · fAt + L BgBt · gBt dµ.
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Analyticity of the semigroups also entails that fAt ∈ dom(L A) and gBt ∈ dom(L B). In particular,
fAt , g

B
t ∈ j(V ) with fAt = j(fAt |O) and gBt = j(gBt |O). Hence, ellipticity and the elementary

inequality 2XY ≤ X2 + Y 2 yield the lower bound

−E ′(t) = 2 Re

∫
O

A∇(fAt |O) · ∇(fAt |O) +B∇(gBt |O) · ∇(gBt |O) dx

≥ 2λ(A,B)

∫
O

∣∣∇(fAt |O)
∣∣2 +

∣∣∇(gBt |O)
∣∣2 dx

≥ 4λ(A,B)

∫
O

∣∣∇(fAt |O)
∣∣ · ∣∣∇(gBt |O)

∣∣ dx.
Integration in t ∈ [0, T ] leads us to the estimate

4λ(A,B)

∫ T

0

∫
O

∣∣∇(fAt |O)
∣∣ · ∣∣∇(gBt |O)

∣∣ dx dt ≤ E (0)− E (T ) ≤ E (0).

Sending T →∞, we obtain

4λ(A,B)

∫ ∞
0

∫
O

∣∣∇(fAt |O)
∣∣ · ∣∣∇(gBt |O)

∣∣ dx dt ≤ E (0) = ‖f‖2
2 + ‖g‖2

2.

Finally, we replace the pair (f, g) by (sf, s−1g) for s > 0 and optimize in s to deduce the bilinear
estimate

4λ(A,B)

∫ ∞
0

∫
O

∣∣∇(fAt |O)
∣∣ · ∣∣∇(gBt |O)

∣∣ dx dt ≤ 2‖f‖2‖g‖2.

The main obstacle in generalizing this argument to p 6= 2 lies in finding the correct p-adapted version
of Q and getting p-adapted estimates of the semigroups from above and below. Here, the p-ellipticity
assumption on A and B plays a key role.

4 p-ellipticity and Lp-contractivity of the semigroup

4.1 Facts about p-ellipticity

Let us recall that A is elliptic with parameters λ(A),Λ(A) as in (1.2) and that it is p-elliptic if (1.4)
holds true. The following elementary properties will be useful throughout this work, see [18, Sec. 1.2
& Sec. 5.3].

Lemma 4.1. The following hold true.

(i) ∆2(A) = λ(A).

(ii) ∆p(A
∗) ≥ ∆p(A)(p/p′ ∧ p′/p).

(iii) ∆p(A) = ∆p′(A).

(iv) A is real-valued if and only if ∆p(A) > 0 for all p ∈ (1,∞).

(v) The map p 7→ ∆p(A) is decreasing and Lipschitz continuous on [2,∞).

(vi) The map θ 7→ ∆p(e
iθ A) is continuous on (−π/2, π/2).
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4.2 Nittka’s invariance criterion for j-elliptic forms

We denote by Pq the projection from L2 onto

Bq := {u ∈ Lq ∩ L2 : ‖u‖q ≤ 1}.

It is convex and closed by Fatou’s lemma. The following invariance criterion of closed and convex sets
is due to Ouhabaz [55]. It continuous to hold in the j-elliptic setting [3, Prop. 2.9 (i),(ii)], see also [54,
Rem. 4.2]. For our injective j, it takes the following, simpler form.

Proposition 4.2. Let q ∈ [1,∞]. The following assertions are equivalent.

(i) The semigroup (e−tL
A

)t≥0 is Lq-contractive, that is

‖ e−tL
A

f‖q ≤ ‖f‖q (t ≥ 0, f ∈ Lq ∩ L2).

(ii) The set j(V ) is invariant under Pq and Re a(j−1(Pqu), j−1(u− Pqu)) ≥ 0 for all u ∈ j(V ).

First, we use Proposition 4.2 to get the invariance of j(V ) under Pq for all q ∈ [1,∞] by complex
interpolation and the fact that (e−tL

A
)t≥0 is L∞-contractive when A = I is the identity. To this end,

we need the precise form of j.

Lemma 4.3. The semigroup (e−tL
I
)t≥0 is L∞-contractive. In particular, j(V ) is invariant under Pq

for all q ∈ [1,∞].

Proof. As explained above, we only need the L∞-contractivity. The projection from L2 onto B∞ is
given by

P∞u = (|u| ∧ 1) sgn(u) =: Φ(u),

where sgn(z) := z/|z|1{|z|6=0} and Φ(z) := (|z| ∧ 1) sgn(z) is Lipschitz continuous with Φ(0) = 0.
Hence, Lemma 2.5 asserts that j(V ) is invariant under P∞. Let u ∈ j(V ). Since j−1 is the pointwise
restriction to O, we deduce

j−1(P∞u) = Φ(u|O) & j−1(u− P∞u) = u|O − Φ(u|O).

Let w := u|O. Since A = I , we obtain

Re a(j−1(P∞u), j−1(u− P∞u)) = Re

∫
O

∇Φ(w) · (∇w −∇Φ(w)) dx.

By [56, Prop. 4.11], the weak gradient of Φ(w) is given by

∇Φ(w) = i
Im(sgn(w)∇(w))

|w|
sgn(w)1{|w|>1} + 1{|w|≤1}∇w

=: iΨ(w)1{|w|>1} + 1{|w|≤1}∇w.

Inserting this identity, we obtain

Re a(j−1(P∞u), j−1(u− P∞u)) = Re

∫
{|w|>1}

iΨ(w) · (∇w − iΨ(w)) dx

=

∫
{|w|>1}

| Im(sgn(w)∇w)|2

|w|
− |Ψ(w)|2 dx

=

∫
{|w|>1}

|Ψ(w)|2|w| − |Ψ(w)|2 dx ≥ 0.

Proposition 4.2 yields the claim. �
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One of Nittka’s contributions in [54] is an equivalent formulation of Proposition 4.2 (ii) that is more
practical in applications. He observed the following fact.

Lemma 4.4 ([54, Prop. 2.4 & Lem. 3.1]). Let q ∈ [2,∞) and f ∈ L2. There are unique u ∈ Bq and
t ≥ 0 such that f = u+ t|u|q−2u. Moreover, u = Pqf .

Armed with this result, we obtain the following version of Nittka’s invariance criterion [54, Thm. 4.1] for
our specific setting of V and j.

Proposition 4.5. Let q ∈ [2,∞). The following assertions are equivalent.

(i) The semigroup (e−tL
A

)t≥0 is Lq-contractive.

(ii) We have Re a(u|O, (|u|q−2u)|O) ≥ 0 for all u ∈ j(V ) with |u|q−2u ∈ j(V ).

Proof. First, we assume that (ii) is valid. To show part (ii) of Proposition 4.2, we fix f ∈ j(V ).
Lemma 4.3 yields u := Pqf ∈ j(V ). By Lemma 4.4 we find t ≥ 0 such that f = u + t|u|q−2u.
Hence, f − u = t|u|q−2u ∈ j(V ) and

Re a(j−1(Pqf), j−1(f − Pqf)) = tRe a(u|O, (|u|q−2u)|O) ≥ 0.

Now, we assume that Proposition 4.2 (ii) holds true. Let u ∈ j(V ) with |u|q−2u ∈ j(V ). We note that
u ∈ Lq. If u = 0 there is nothing to prove. So we assume that u 6= 0 and put α := ‖u‖−1

q > 0. Then
f := αu+ |u|q−2u ∈ j(V ) and Lemma 4.4 implies that Pqf = αu. Consequently,

Re a(u|O, (|u|q−2u)|O) = α−1 Re a(j−1(Pqf), j−1(f − Pqf)) ≥ 0. �

Corollary 4.6. Let p ∈ (1,∞) and A be p-elliptic. Then (e−tL
A

)t≥0 is Lp-contractive.

Proof. By duality and items (ii) and (iii) of Lemma 4.1 we can assume that p ≥ 2. In view of Proposi-
tion 4.5 we have to show for all u ∈ j(V ) with |u|p−2u ∈ j(V ) that

Re a(w, |w|p−2w) ≥ 0,

where w := u|O. Since w, |w|p−2w ∈ V , this is the crucial estimate that follows from p-ellipticity of
A, see for instance [34, Cor. 12]. �

4.3 Generators in Lp

Let us prove the first assertion of Theorem 1.3, namely that (e−tL
A

)t≥0 extrapolates to an analytic
C0-semigroup of contractions in Lp.

Proof of Theorem 1.3, part 1. Lemma 4.1 (vi) yields θp > 0 and part (v) of the same lemma implies
π/2 − θp ≥ π/2 − θ2 ≥ ω(A). Let θ ∈ (−θp, θp). Since e−t eiθ LA

= e−tL
eiθA

for all t ≥ 0,
Corollary 4.6 entails

‖ e−zL
A

f‖p ≤ ‖f‖p (z ∈ Sθp ∪ {0}, f ∈ Lp ∩ L2).

By density, each e−zL
A

extends to a contractive linear operator Tp(z) on Lp. In view of Lemma 4.1 (v),
the interval of exponents p, in which this conclusion holds, is open. Hence, we conclude by [56,
Prop. 3.12] that Tp := (Tp(z))z∈Sθp∪{0} defines an analytic C0-semigroup of contractions in Lp. �
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The above result gives rise to a proper notion of an Lp-realization of L A.

Definition 4.7. Let −L A
p be the generator of the semigroup Tp. We call L A

p the Lp-realization of
L A.

Letting L A|Lp be the part of L A in Lp, that is

L A|Lp := L A ∩ (Lp × Lp),

we have the following, more concrete description for the Lp-realization.

Lemma 4.8 ([32, Lem. 3.1]). Let p ∈ (1,∞) and A be p-elliptic. The operator L A
p is the closure of

L A|Lp in Lp. In particular, if p ∈ (2,∞) and µ is bounded, then L A
p = L A|Lp .

Clearly, L A
p is sectorial of angle at most π/2 − θp in Lp. For convenience of the reader, we collect

elementary properties of L A
p .

Lemma 4.9. Let p ∈ (1,∞) and A be p-elliptic.

(i) We have (z −L A
p )−1f = (z −L A)−1f for all z ∈ C \ Sπ/2−θp and f ∈ Lp ∩ L2.

(ii) We have L A
p u = L Au for all u ∈ dom(L A

p ) ∩ dom(L A).

(iii) If L A is injective, then so is L A
p .

(iv) If a is coercive, then L A
p is invertible and (i) holds for z = 0.

Proof. Parts (i) and (ii) are already in [32, Lem. 3.1]. Let us prove (iii). For any f ∈ Lp ∩ L2 we
have limt→∞ Tp(t)f = limt→∞ T2(t)f = 0 strongly in L2. Since Tp is uniformly bounded on Lp
and Lp ∩ L2 is dense in Lp, the same convergence holds weakly in Lp for every f ∈ Lp. Now, if
f ∈ ker(L A

p ), then Tp(t)f = f for all t > 0 and f = 0 follows.

To prove (iv), we note that the coercivity of a implies that T2 is exponentially stable. Since A is p-
elliptic, we can combine Lemma 4.1 (v) and part 1 of Theorem 1.3 to find q ∈ (1,∞) such that p lies
between 2 and q, and Tq is contractive. By complex interpolation, Tp is exponentially stable. Hence,
L A
p is invertible and consistency of the inverse on Lp∩L2 follows from consistency of the semigroups

by taking the Laplace transform at λ = 0. �

5 Bilinear embedding

In this section, we prove the bilinear embedding, Theorem 1.4, for p 6= 2. By symmetry of the as-
sumptions we suppose from now on that p > 2 and that A is p-elliptic. We fix t > 0, f, g ∈ Lp ∩ Lp′

and let Q : C× C→ [0,∞) be a continuously (real) differentiable function. We are interested in the
monotonicity behaviour of the adapted heat flow

E (t) :=

∫
O∪Σ

Q(fAt , g
B
t ) dµ.

The fundamental theorem of calculus yields

−
∫ ∞

0

E ′(t) dt ≤ E (0) =

∫
O∪Σ

Q(f, g) dµ,

and as in Section 3.3 we need an upper bound for Q and a uniform lower bound for −E ′(t). The
difficulty is to find the correct Q. As in [18, 19], we use the ingenious Nazarov–Treil Bellmann function
and we refer to these references for historical background.

DOI 10.20347/WIAS.PREPRINT.3115 Berlin 2024



Functional calculus and dynamical boundary conditions 17

Definition 5.1. Let δ ∈ (0, 1] and ζ, η ∈ C. The Nazarov–Treil Bellmann function is defined as

Q(ζ, η) := |ζ|p + |η|p′ + δ

{
|ζ|2|η|2−p′ , (|ζ|p ≤ |η|p′),
2
p
|ζ|p + (1− 2

p
)|η|p′ , (|ζ|p ≥ |η|p′).

Here, δ is a degree of freedom that will be chosen small at a later point. We note that

Q(ζ, η) ≤ 2(|ζ|p + |η|p′) (ζ, η ∈ C), (5.1)

and for p = 2 we recover (up to a multiplicative constant) the energy from Section 3.3. We write

∂z =
1

2
(∂x − i∂y)

for the (Wirtinger) derivative with respect to the complex variable z = x+iy. Since for any q ∈ (1,∞)
the power function z 7→ |z|q is continuously differentiable with derivative

∂z|z|q = ∂z(z · z)
q
2 =

q

2
(z · z)

q
2
−1∂z(z · z) =

q

2
|z|q−2z,

the very definition of Q implies that Q ∈ C1(C2). As a matter of fact, we need to re-tell some of
the results found by Carbonaro–Dragičević in [18, 19]. To simplify the exposition, we shall follow their
outline in [20].

The first part of Theorem 1.3 implies that (e−tL
A

)t≥0 and (e−tL
B

)t≥0 are bounded analytic semi-
groups in Lp and Lp′ , respectively. Hence, E ∈ C[0,∞) ∩ C1(0,∞) with derivative

−E ′(t) = 2 Re

∫
O∪Σ

L AfAt · (∂ζQ)(fAt , g
B
t ) + L BgBt · (∂ηQ)(fAt , g

B
t ) dµ

= 2 Re

∫
O∪Σ

L Aj(fAt |O) · (∂ζQ)(j(fAt |O), j(gBt |O))

+ L Bj(gBt |O) · (∂ηQ)(j(fAt |O), j(gBt |O)) dµ,

(5.2)

see [19, App. C, Prop. C1]. We would like to use the definition of L A and L B to get rid of the hybrid
measure space, but this is not immediately possible, because (∂ζQ, ∂ηQ) lacks in regularity and,
among other things, we cannot use Lemma 2.5 to commute (∂ζQ, ∂ηQ) with j. A similar issue has
also occurred in [19] when transforming the heat flow method from Rd [18] to arbitrary open sets. It has
been resolved by approximatingQ with smooth functionsRn,ν and we will see that the approximations
also fit into the setting of Lemma 2.5. To this end, we need:

� a radial function ϕ ∈ C∞c (R4) such that 0 ≤ ϕ ≤ 1B(0,1) and
∫
R4 ϕ dx = 1,

� a non-negative and radial function ψ ∈ C∞c (R4) with ψ = 1 on B(0, 3) and ψ = 0 on
B(0, 4)c.

For n ∈ N, ν ∈ (0, 1] and ω ∈ R4 we set

ϕν(ω) := ν−4ϕ(ω/ν) & ψn(ω) := ψ(ω/n).

We identify C2 explicitly with R4 via

W2 : C2 → R4, W2(z1, z2) := (Re(z1), Im(z1),Re(z2), Im(z2))

and define the convolution of Q with ϕν at z ∈ C2 by

(Q ∗ ϕν)(z) :=

∫
R4

Q(z −W−1
2 (ω))ϕν(ω) dω.
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Definition 5.2. Let n ∈ N and ν ∈ (0, 1]. We define Rn,ν := ψn(Q ∗ ϕν) + Pn,ν .

Here, Pn,ν is a cleverly chosen correction term that makes the generalized Hessian of Rn,ν (A,B)-
convex, see Definition 5.4 below. Its precise form is not needed and we refer to [19, Sec. 5.2]. Let us
collect useful properties of Rn,ν . We write D = (∂ζ , ∂η) and denote by D2Rn,ν the Hessian of Rn,ν

in the variables ζ and η.

Lemma 5.3 ([19, Lem. 14 & Thm. 16]). Let n ∈ N and ν ∈ (0, 1]. Then Rn,ν ∈ C∞(C2) has the
following additional properties:

(Q1) We have D2Rn,ν ∈ L∞(C2;C2×2).

(Q2) We have (DRn,ν)(0) = 0.

(Q3) We have

lim
n→∞

((DRn,ν)(z), (D2Rn,ν)(z)) = ((D(Q ∗ ϕν))(z), (D2(Q ∗ ϕν))(z))

(z ∈ C2)

lim
ν→0

lim
n→∞

((DRn,ν)(z), (D2Rn,ν)(z)) = ((DQ)(z), (D2Q)(z)) (a.e. z ∈ C2).

(Q4) We have |(DRn,ν)(z)|+ |D(Q ∗ϕν)(z)| ≤ C(|z|p−1 + |z|p′−1) for some C = C(δ, p) > 0
and all z ∈ C2.

Let us continue in (5.2). Using (Q3), (Q4) and the boundedness of the semigroup on Lp and Lp′ (part
1 of Theorem 1.3), we can apply dominated convergence twice and get

−1

2
E ′(t) = lim

ν→0
lim
n→∞

Re

(∫
O∪Σ

L Aj(fAt |O) · (∂ζRn,ν)(j(f
A
t |O), j(gBt |O))

+ L Bj(gBt |O) · (∂ηRn,ν)(j(f
A
t |O), j(gBt |O)) dµ

)
.

Owing to (Q1) and (Q2),DRn,ν falls into the scope of Lemma 2.5. Thus, we can commute j as desired
and obtain

−1

2
E ′(t) = lim

ν→0
lim
n→∞

∫
O

Re
(
A∇(fAt |O) · ∇(∂ζRn,ν)(f

A
t |O, gBt |O)

)
+ Re

(
B∇(gBt |O) · ∇(∂ηRn,ν)(f

A
t |O, gBt |O)

)
dx.

(5.3)

At this point, j has disappeared and we are exactly in the setting of [19].

Let us focus on the first term in the integral. By the chain rule, applying ∇ to ∂ζRn,ν at the point
(z1, z2) := (fAt |O, gBt |O) ∈ C2 produces second-order derivatives of Rn,ν that are multiplied with
the gradient pair (X1, X2) := (∇(fAt |O),∇(gBt |O)) ∈ (Cd)2 and we obtain (∂2

ζRn,ν)(z1, z2)X1 +
(∂η∂ζRn,ν)(z1, z2)X2. Thus, the first term in the integral is

Re
(
AX1 · (∂2

ζRn,ν)(z1, z2)X1 + AX1 · (∂η∂ζRn,ν)(z1, z2)X2

)
and we have a similar formula for the second one. Their sum is the following object forF = Rn,ν .

Definition 5.4. Let F : C2 → R be twice (real) differentiable, x ∈ O, z1, z2 ∈ C and X1, X2 ∈ Cd.
We define the generalized Hessian of F with respect to A and B as

H
(A(x),B(x))
F [(z1, z2); (X1, X2)] := Re

([
A(x)X1

B(x)X2

]
· (D2F )(z1, z2)

[
X1

X2

])
,

DOI 10.20347/WIAS.PREPRINT.3115 Berlin 2024



Functional calculus and dynamical boundary conditions 19

where we identify each entry of the Hessian (D2F )(z1, z2) ∈ C2×2 with a multiplication operator in
Cd.

In this terminology, (5.3) becomes

−1

2
E ′(t) = lim

ν→0
lim
n→∞

∫
O

H
(A,B)
Rn,ν

[
(fAt |O, gBt |O); (∇(fAt |O),∇(gBt |O))

]
dx. (5.4)

The beautiful insight of Carbonaro–Dragičević in [18] was to establish the link between p-ellipticity
of A and B and pointwise lower bounds for certain generalized Hessians, which they call (A,B)-
convexity.

Proposition 5.5 ([18, Cor. 5.5] & [19, Thm. 16]). Let ν ∈ (0, 1]. There is some δ ∈ (0, 1), depending
only on λ(A,B), Λ(A,B) and ∆p(A,B), such that for almost every x ∈ O, all z1, z2 ∈ C and
every X1, X2 ∈ Cd we have:

(i) The generalized Hessian of Rn,ν is non-negative.

(ii) The generalized Hessian of Q ∗ ϕν satisfies the explicit lower bound

H
(A(x),B(x))
Q∗ϕν [(z1, z2); (X1, X2)] ≥ ∆p(A,B)

5
· λ(A,B)

Λ(A,B)
|X1||X2|.

Since the generalized Hessian of Rn,ν is non-negative almost everywhere, we can use (Q3) and
Fatou’s lemma in (5.4) in order to obtain

−1

2
E ′(t) ≥ lim inf

ν→0

∫
O

H
(A,B)
Q∗ϕν

[
(fAt |O, gBt |O); (∇(fAt |O),∇(gBt |O))

]
dx

≥ ∆p(A,B)

5
· λ(A,B)

Λ(A,B)

∫
O

|∇(fAt |O)||∇(gBt |O)| dx.

Now, integration with respect to t ∈ [0, T ] gives

∆p(A,B)

5
· λ(A,B)

Λ(A,B)

∫ T

0

∫
O

∣∣∇(fAt |O)
∣∣ · ∣∣∇(gBt |O)

∣∣ dx dt ≤ E (0)− E (T ) ≤ E (0)

and from (5.1) and letting T →∞ we obtain

∆p(A,B)

5
· λ(A,B)

Λ(A,B)

∫ ∞
0

∫
O

∣∣∇(fAt |O)
∣∣ · ∣∣∇(gBt |O)

∣∣ dx dt ≤ 2
(
‖f‖pp + ‖g‖p

′

p′

)
.

Finally, we replace (f, g) by (sf, s−1g) for s > 0 and optimize in s to conclude the proof of
Theorem 1.4.

6 Bounded H∞-calculus in Lp and maximal regularity

In this section, we complete the proof of Theorem 1.3. We assume thatA is p-elliptic. Let us introduce
the relevant terminology, while referring to [28, 45] for background on functional calculus and maximal
parabolic regularity.

Definition 6.1. Let ω ∈ (0, π]. The Dunford–Riesz class H∞
0 (Sω) consists of all holomorphic

functions ϕ : Sω → C with |ϕ(z)| ≤ C(|z|s ∧ |z|−s) for some C, s > 0 and all z ∈ Sω.
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Given π/2 − θp < ν < ω < π and ϕ ∈ H∞0 (Sω), we define ϕ(L A
p ) ∈ L(Lp) via the Cauchy

integral

ϕ(L A
p ) :=

1

2πi

∫
∂Sν

ϕ(z)(z −L A
p )−1 dz,

where the boundary is positively oriented around the spectrum. We note that Lemma 4.9 yields

ϕ(L A
p )f = ϕ(L A)f (f ∈ Lp ∩ L2). (6.1)

Definition 6.2. We say that L A
p admits a bounded H∞-calculus of angle π/2− θp if for all ω ∈

(π/2− θp, π) there is some C > 0 such that

‖ϕ(L A
p )‖L(Lp) ≤ C‖ϕ‖L∞(Sω) (ϕ ∈ H∞0 (Sω)). (6.2)

To prove the second assertion of Theorem 1.3, we follow [19] and first prove the following weak
quadratic estimates in the spirit of [27]. Since Lp ∩ Lp′ ⊆ L2, we can avoid Lp-realizations at this
stage.

Proposition 6.3. Let p ∈ (1,∞), A be p-elliptic and θ ∈ (−θp, θp). Then there exists C > 0 such
that we have∫ ∞

0

∣∣〈t eiθ L A e−t eiθ LA

f, g
〉∣∣ dt

t
≤ C‖f‖p‖g‖p′ (f, g ∈ Lp ∩ Lp′).

Proof. We abbreviateA(θ) := eiθ A. Thanks to Lemma 4.1 (ii), we can apply Theorem 1.4 to the pair
(A(θ), A(θ)∗) and get∫ ∞

0

∣∣〈tL A(θ) e−2tLA(θ)

f, g
〉∣∣ dt

t
=

∫ ∞
0

∣∣〈L A(θ)f
A(θ)
t , g

A(θ)∗

t

〉∣∣ dt
=

∫ ∞
0

∣∣∣∣∫
O

A(θ)∇(f
A(θ)
t )|O · ∇(g

A(θ)∗

t )|O dx

∣∣∣∣ dt

≤ Λ(A)

∫ ∞
0

∫
O

∣∣∇(f
A(θ)
t )|O

∣∣ · ∣∣∇(g
A(θ)∗

t )|O
∣∣ dx dt

≤ CΛ(A)‖f‖p‖g‖p′ . �

Proof of Theorem 1.3, part 2. We fix ω ∈ (π/2− θp, π). A classical theorem on quadratic estimates
[27, Thm. 4.6 & Ex. 4.8] states that the estimate in Proposition 6.3 implies that there is C > 0 such
that

‖ϕ(L A)f‖p ≤ C‖ϕ‖L∞(Sω)‖f‖p (ϕ ∈ H∞0 (Sω), f ∈ Lp ∩ Lp′).

Indeed, we apply the results in [27] to the dual pair (Lp ∩ L2,Lp′ ∩ L2). They require that L A has
dense range only for the convergence lemma [27, p.69]. If ϕ ∈ H∞0 (Sω), then the latter holds without
this extra assumption. By (6.1) and density, we obtain (6.2). �

Finally, we establish maximal regularity for L A
p .

Definition 6.4. Let T ∈ (0,∞). We say that L A
p has maximal parabolic regularity if for some

q ∈ (1,∞) (or equivalently all q ∈ (1,∞)) and all f ∈ Lq(0, T ;Lp) the mild solution

u : [0, T )→ Lp, u(t) =

∫ t

0

e−(t−s)LA
p f(s) ds
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to the abstract Cauchy problem

u′(t) + L A
p u(t) = f(t) (t ∈ (0, T )),

u(0) = 0,

is (Fréchet-)differentiable a.e., takes its values in dom(L A
p ) a.e. and u′,L A

p u belong to Lq(0, T ;Lp).

Proof of Theorem 1.3, part 3. This is just the Dore–Venni theorem [45, Cor. 9.3.12] applied to the
invertible operator 1 + L A

p . Indeed, the property of maximal regularity is invariant under shifting the
operator and 1+L A

p has a bounded H∞-calculus of angle π/2−θp. Therefore, 1+L A
p has bounded

imaginary powers [45, p.88]. �

7 Elliptic regularity for dynamical boundary conditions

In this section, we illustrate how to prove Hölder estimates for elements in the domain of (fractional
powers of) L A

p for large p. In order to avoid further technicalities, we work in the concrete geometric
setting of Section 2.4 and more specifically assume the following.

Assumption 7.1. Throughout this section, we suppose that

(i) O is a bounded domain and V 6= W1,2
∅ (O).

(ii) O is locally uniform near ∂O \D and there is ` ∈ (d− 2, d) such that D is an `-set and Σ is
an upper `-set.

Boundedness of O implies that W−1,q
D (O) ⊆ V ∗ and Lp ⊆ L2 for all p, q ∈ [2,∞). By Remark 3.2,

the Lax–Milgram operator L : V → V ∗ is invertible. Hence, Lemma 3.1 implies that also L A is
invertible. Moreover, Theorem 2.16 yields that j∗ : Lp →W−1,q

D (O) is bounded provided that

q ∈ [2, ((d− `) ∨ 1)′) & p ∈ (( `q′

d−q′ )
′, q] ∩ [2, q]. (7.1)

Definition 7.2. Let µ ∈ (0, 1]. The Hölder space Cµ(O) consists of all bounded and µ-Hölder
continuous functions on O with norm

‖u‖Cµ(O) := ‖u‖L∞(O) + sup
x,y∈O,x 6=y

|u(x)− u(y)|
|x− y|µ

.

The subspace Cµ
D(O) consists of all functions in Cµ(O) whose unique continuous extension to O

vanishes in D.

Our first result concerns global Hölder regularity to a variational problem with dynamical boundary
conditions.

Theorem 7.3. Let µ ∈ (0, 1] and p, q as in (7.1). If L−1 : W−1,q
D (O)→ Cµ(O) is bounded, then for

every f ∈ Lp the unique solution u to the variational problem L Au = f belongs to Cµ
D(O).

Proof. The assumption joint with Lemma 3.1 and Theorem 2.16 entail that

u := (L A)−1f = jL−1j∗f ∈ Cµ(O) ∩ dom(L A).

Since D is an `-set for some ` ∈ (d− 2, d), we can use [15, Lem. 4.8 & App. B] to conclude that the
continuous extension of u to O vanishes in D. �
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Remark 7.4. The assumption on L−1 in Theorem 7.3 is known in a variety of settings, compare with
[6, 9, 33, 48]. Interestingly, these references rely on results from harmonic analysis, such as Hölderian
Gaussian estimates and the solution of the Kato problem in the ‘non-dynamical setting’ [10, 15] and
we do not know whether these results themselves also hold in our ‘dynamical setting’.

Theorem 7.3 is the starting point for investigating operator theoretic regularity, that is, embeddings
of domains of Lp-realizations into Hölder spaces. The following result is new even for small complex
perturbations of real coefficients, so for p-elliptic A with very large p.

Corollary 7.5. Let µ ∈ (0, 1], p, q as in (7.1) and let A be p-elliptic. If L−1 : W−1,q
D (O)→ Cµ(O) is

bounded, then dom(L A
p ) ⊆ Cµ

D(O) with continuous inclusion.

Proof. Since O is bounded, L A
p is the part of L A in Lp, compare with Lemma 4.8. Hence, if u ∈

dom(L A
p ), then u = (L A)−1f = jL−1j∗f with f := L A

p u ∈ Lp. The claim follows from
Theorem 7.3 and continuity of the respective linear operators. �

As pointed out in the introduction, applications to semilinear equations [31] require similar embedding
results already for domains of fractional powers (L A

p )σ with σ ∈ (0, 1). Fractional powers are defined
by functional calculus, see e.g. [45, Chap. 3], and all relevant knowledge appears in the proof below.
The same goes with interpolation theory and we refer to [63] for background information.

Theorem 7.6. Let µ ∈ (0, 1], p, q as in (7.1) and A be p-elliptic. If L−1 : W−1,q
D (O) → Cµ(O) is

bounded, then
dom((L A

p )σ) ⊆ Cκµ
D (O)

for all κ ∈ (0, 1) and σ ∈ (1
2
∨ ((1− κ) d

pµ+d
+ κ), 1].

For the proof, we modify an argument in [48, Sec. 3]. We also need a new interpolation inequality and
a compatibility property for domains of fractional powers, the proofs of which we postpone until the
end of the section.

Lemma 7.7. Let p ∈ [1,∞], µ ∈ (0, 1] and θ := d/(pµ+d). Then there is C > 0 depending on d, p
and geometry such that

‖u‖L∞(O) ≤ C‖u‖1−θ
Lp(O)‖u‖

θ
Cµ(O) (u ∈ Lp(O) ∩ Cµ

D(O)).

In addition, we have for all µ ∈ (0, 1] and θ ∈ [0, 1] that

‖u‖Cθµ(O) ≤ 3‖u‖1−θ
L∞(O)‖u‖

θ
Cµ(O) (u ∈ Cµ(O)).

Lemma 7.8. If σ > 1/2, then dom((L A)σ) ⊆ j(V ).

Proof of Theorem 7.6. We obtain from [63, Thm. 1.15.2] that

dom((L A
p )σ) ⊆ (Lp, dom(L A

p ))σ,∞.

Since σ > (1− κ) d
pµ+d

+ κ, [63, Thm. 1.3.3 (b) & (e)] entails

⊆ (Lp, dom(L A
p ))(1−κ) d

pµ+d
+κ,1.

By the reiteration theorem [63, Thm. 1.10.2] the latter coincides with

= ((Lp, dom(L A
p )) d

pµ+d
,1, dom(L A

p ))κ,1.
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Now, we apply the bounded operator |O on both sides and conclude

dom((L A
p )σ)|O = ((Lp(O), dom(L A

p )|O) d
pµ+d

,1, dom(L A
p )|O)κ,1

⊆ ((Lp(O),Cµ
D(O)) d

pµ+d
,1,C

µ
D(O))κ,1,

where the second step is just Corollary 7.5. In the language of [63, Lem. 1.10.1 (a)], the first statement
of Lemma 7.7 means that L∞(O) is of class J(d/(pµ+d)) between Lp(O) and Cµ

D(O) and hence
contains (Lp(O),Cµ

D(O))d/(pµ+d),1 with continuous inclusion. A similar reformulation applies to the
second statement of the lemma. We deduce

dom((L A
p )σ)|O ⊆ (L∞(O),Cµ

D(O))κ,1 ⊆ Cκµ
D (O).

Now, let u ∈ dom((L A
p )σ). We already know that u|O ∈ Cκµ

D (O). Let ũ ∈ Cκµ
D (O) be its

unique continuous extension. We have dom((L A
p )σ) ⊆ dom((L A)σ), see [45, Prop. 2.6.5 b)],

and therefore Lemma 7.8 yields u ∈ j(V ). We conclude that u|Σ = Tr(u|O) = ũ|Σ and hence
u = ũ ∈ Cκµ

D (O). �

Proof of Lemma 7.7. The second assertion has been proven in [48, Lem. 3.5]. Let us turn to the first
part. To this end, we fix δ ∈ (0, 1] as in the definition of a locally uniform domain near ∂O \ D, see
[10, Def. 2.3]. If ‖u‖Lp(O) ≥ ( δ

2
)d/θp‖u‖Cµ(O), then we simply estimate

‖u‖L∞(O) = ‖u‖1−θ
L∞(O)‖u‖

θ
L∞(O) ≤ (2

δ
)
d(1−θ)
θp ‖u‖1−θ

Lp(O)‖u‖
θ
Cµ(O).

Hence, we assume from now on that ‖u‖Lp(O) < ( δ
2
)d/θp‖u‖Cµ(O) and set

r := (‖u‖Lp(O)‖u‖−1
Cµ(O))

θp
d ∈ (0, δ

2
).

Let x ∈ O. We consider two cases.

(1)B(x, r)∩D 6= ∅∅∅. We fix xD ∈ B(x, r) ∩D. Since u vanishes in D we get

|u(x)| = |u(x)− u(xD)| ≤ rµ‖u‖Cµ(O) ≤ ‖u‖1−θ
Lp(O)‖u‖

θ
Cµ(O).

(2) B(x, r) ∩D = ∅∅∅. Then B(x, r) ⊆ O or B(x, r) ∩ (∂O \ D) 6= ∅ and we obtain for all
y ∈ O ∩B(x, r) that

|u(x)| ≤ |u(x)− u(y)|+ |u(y)| ≤ rµ‖u‖Cµ(O) + |u(y)|.

We average the latter with respect to y ∈ O ∩B(x, r) and use Hölder’s inequality, which leads us to

|u(x)| ≤ rµ‖u‖Cµ(O) + |O ∩B(x, r)|−
1
p‖u‖Lp(O).

If B(x, r) ⊆ O, then |O ∩ B(x, r)| = |B(0, 1)|rd. In the other case, dist(x, ∂O \ D) ≤ r <
(δ/2 ∧ 1). It follows from [10, Prop. 2.9] that there is C > 0 depending on d and geometry such that
|O ∩B(x, r)| ≥ Crd. We conclude that

‖u‖L∞(O) ≤ (1 + C−
1
p )‖u‖1−θ

Lp(O)‖u‖
θ
Cµ(O). �
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Proof of Lemma 7.8. By [45, Prop. 3.1.9 a)] we have dom((L A)σ) = dom((1 + L A)σ). Since
1 + L A is invertible, so are its fractional powers [45, Prop. 3.1.1 e)]. We let u ∈ dom((1 + L A)σ)
and put f := (1 + L A)σu. We have the following formula [45, Cor. 3.3.6]:

u = (1 + L A)−σf =
1

Γ(σ)

∫ ∞
0

tσ e−t fAt
dt

t
=

1

Γ(σ)

∫ ∞
0

tσ e−t j((fAt )|O)
dt

t
,

where in the last step we have used that fAt ∈ dom(L A) ⊆ j(V ). Since j : V → L2 is bounded,
the assertion follows once we have checked that∫ ∞

0

tσ e−t(fAt )|O
dt

t

converges absolutely in V . Due to the exponential decay and the assumption σ > 1/2, it suffices to
show that there is C > 0 such that ‖fAt |O‖V ≤ Ct−1/2 for all t > 0. In order to see this, we use the
coercivity of a and the Cauchy–Schwarz inequality and get

C‖fAt |O‖2
V ≤ Re a(fAt |O, fAt |O) = Re〈L AfAt , f

A
t 〉2 ≤ ‖L AfAt ‖2‖fAt ‖2.

Since (e−tL
A

)t≥0 is a bounded analytic semigroup in L2, the right-hand side is bounded from above
by Ct−1‖f‖2

2. This completes the proof. �

8 Explicit angle

We close this paper by elaborating a quantitative lower bound for θp, depending on p and the data
Λ(A), λ(A) and ω(A). Under additional symmetry assumptions on A, results of this type already
exist, see Remark 8.3. For p ∈ (1,∞) we set

σp :=
|p− 2|

2
√
p− 1

and note that σp = σp′ . We will use the fact that (quantitative) smallness of ‖ Im(A)‖∞ implies
p-ellipticity of A.

Lemma 8.1 ([36, Lem. 2.16]). Let p ∈ (2,∞) and assume that σp‖ Im(A)‖∞ < λ(A). Then A is
p-elliptic.

Hence, our goal is to find the largest possible θ such that e±iθ A satisfies this smallness assumption.
The method cannot be optimal, because the same sesquilinear form amay be represented by a variety
of matrices A with different size of ‖ Im(A)‖∞, see [24, Ex. 1]. On the other hand, it does not require
any symmetry for A.

Proposition 8.2. Let p ∈ (1,∞) and assume that σp‖ Im(A)‖∞ < λ(A). Then

tan(θp) ≥
λ(A)− σp‖ Im(A)‖∞

λ(A) tan(ω(A)) + σp‖Re(A)‖∞
.

Proof. By symmetry and Lemma 4.1 (iii) we can assume p > 2. We fix θ ∈ (0, π/2 − ω(A)). We
need to prove ∆p(e

±iθ A) > 0 provided that

tan(θ) <
λ(A)− σp‖ Im(A)‖∞

λ(A) tan(ω(A)) + σp‖Re(A)‖∞
. (8.1)
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Lemma 8.1 says that ∆p(e
iθ A) > 0 if

σp‖ Im(eiθ A)‖∞ < λ(eiθ A).

We have the rough estimate

‖ Im(eiθ A)‖ = ‖ sin(θ) Re(A) + cos(θ) Im(A)‖∞ ≤ sin(θ)‖Re(A)‖∞ + cos(θ)‖ Im(A)‖∞

and, by rotating the set {z ∈ C : | arg(z)| ≤ ω(A) & Re(z) ≥ λ} and finding the point with smallest
real part, we get

λ(eiθ A) ≥ λ(A)
cos(ω(A) + θ)

cos(ω(A))
= λ(A)

(
cos(θ)− sin(θ) tan(ω(A))

)
.

So, a sufficient criterion for ∆p(e
iθ A) > 0 is

σp
(

sin(θ)‖Re(A)‖∞ + cos(θ)‖ Im(A)‖∞
)
< λ(A)

(
cos(θ)− sin(θ) tan(ω(A))

)
.

We divide both sides by cos(θ) > 0 and rearrange terms to get

tan(θ)
(
λ(A) tan(ω(A)) + σp‖Re(A)‖∞

)
< λ(A)− σp‖ Im(A)‖∞,

which is equivalent to (8.1).

Since the right-hand side in (8.1) stays the same when replacing A by A∗, the restriction on θ in (8.1)
also implies ∆p(e

iθ A∗) > 0 and hence ∆p(e
−iθ A) > 0, see Lemma 4.1 (ii). This completes the

proof. �

Remark 8.3. The following results are known from the literature.

(i) For real-valued A, [23, Thm. 3.4] gives an upper bound for the angle of the numerical range of
L A
p . This leads to the better bound

tan(θp) ≥
1√

σ2
p + p2

4(p−1)
tan(ω(A))2

.

The proof uses the fact that the coefficients are real and there is no simple adaptation in the
complex case.

(ii) Cialdea and Maz’ya characterize in [25, Thm. 9] the optimal angle of the Lp-dissipativity under
Dirichlet boundary conditions by an implicit formula. For symmetric A (that is A = At in their
terminology) the expression simplifies, see [25, Thm. 1].

(iii) If Im(A) is symmetric and |1 − 2/p| < cos(ω(A)), Do found in [32, Thm. 1.1] a lower bound
for θp in terms of ω(A) and p:

θp ≥ arccos(|1− 2/p|)− ω(A) (Re(A) symmetric),

tan(θp) ≥
1− tan(ω(A))σp

p−
√
p−1√
p−1

tan(ω(A)) + σp
(Re(A) not symmetric).

This bound does not recover the bound in (i) when A is real.
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