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Second-order optimality conditions for the sparse optimal
control of nonviscous Cahn–Hilliard systems

Pierluigi Colli, Jürgen Sprekels

Abstract

In this paper we study the optimal control of an initial-boundary value problem for the classical
nonviscous Cahn–Hilliard system with zero Neumann boundary conditions. Phase field systems
of this type govern the evolution of diffusive phase transition processes with conserved order pa-
rameter. For such systems, optimal control problems have been studied in the past. We focus
here on the situation when the cost functional of the optimal control problem contains a sparsity-
enhancing nondifferentiable term like the L1-norm. For such cases, we establish first-order nec-
essary and second-order sufficient optimality conditions for locally optimal controls, where in the
approach to second-order sufficient conditions we employ a technique introduced by E. Casas,
C. Ryll and F. Tröltzsch in the paper [SIAM J. Control Optim. 53 (2015), 2168–2202]. The main
novelty of this paper is that this method, which has recently been successfully applied to systems
of viscous Cahn–Hilliard type, can be adapted also to the classical nonviscous case. Since in the
case without viscosity the solutions to the state and adjoint systems turn out to be considerably
less regular than in the viscous case, numerous additional technical difficulties have to be over-
come, and additional conditions have to be imposed. In particular, we have to restrict ourselves
to the case when the nonlinearity driving the phase separation is regular, while in the presence
of a viscosity term also nonlinearities of logarithmic type turn could be admitted. In addition, the
implicit function theorem, which was employed to establish the needed differentiability properties
of the control-to-state operator in the viscous case, does not apply in our situation and has to be
substituted by other arguments.

1 Introduction

Let Ω ⊂ R3 denote some bounded and connected open set with smooth boundary Γ = ∂Ω (a
compact hypersurface of class C2), unit outward normal n, and associated outward normal derivative
∂n. Moreover, let T > 0 denote some final time, and set

Qt := Ω× (0, t), Σt := Γ× (0, t), for t ∈ (0, T ], and Q := QT , Σ := ΣT .

We then study the following optimal control problem:

(CP) Minimize the cost functional

J(ϕ, u) :=
b1

2

∫∫
Q

|ϕ− ϕQ|2 +
b2

2

∫
Ω

|ϕ(T )− ϕΩ|2 +
b3

2

∫∫
Q

|u|2 + κG(u) ,

=: J(ϕ, u) + κG(u) (1.1)
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P. Colli, J. Sprekels 2

subject to the initial-boundary value system

〈∂tϕ, v〉 +

∫
Ω

∇µ · ∇v = 0 for all v ∈ H1(Ω) and a.e. in (0, T ), (1.2)

−∆ϕ+ f ′(ϕ) = µ+ w a.e. in Q, (1.3)

γ∂tw + w = u a.e. in Q, (1.4)

∂nϕ = 0 a.e. on Σ, (1.5)

ϕ(0) = ϕ0, w(0) = w0 a.e. in Ω, (1.6)

and to the control constraint

Uad = {u ∈ U : u(x, t) ≤ u(x, t) ≤ u(x, t) for a.a. (x, t) in Q}, (1.7)

where the control space is specified by

U = L2(0, T ;L2(Ω)). (1.8)

The given bounds u, u ∈ L∞(Q) satisfy u ≤ u almost everywhere in Q. Moreover, the targets
ϕQ, ϕΩ are given functions, b1 ≥ 0, b2 ≥ 0, b3 > 0 are constants, and κ > 0 is a constant repre-
senting the sparsity parameter. The sparsity-enhancing functional G : L2(Q) → R is nonnegative,
continuous and convex. Typically, G has a nondifferentiable form like, e.g.,

G(u) = ‖u‖L1(Q) =

∫∫
Q

|u| . (1.9)

The state equations (1.2)–(1.3) constitute a classical nonviscous Cahn–Hilliard system in which a
number of physical constants have been normalized to unity. Notice that (1.2) is just the weak form of
the partial differential equation ∂tϕ−∆µ = 0, where, throughout this paper, 〈 · , · 〉 denotes the dual
pairing between H1(Ω) and its dual H1(Ω)∗: actually, in (1.2) also the boundary condition ∂nµ = 0
is taken into account. The state variables ϕ and µ are monitored through the input variable w, which
is in turn determined by the action of the control u via the linear control equation (1.4). Equation (1.4)
models how the “forcing” w is generated by the external control u. We remark that (1.5) could be
replaced by much more general partial differential equations modeling the relation between an L2-
control u and a forcing w. In the system (1.2)–(1.6), ϕ plays the role of an order parameter, while µ
is the associated chemical potential. Moreover, γ is a given (uniformly) positive function defined on Ω,
and ϕ0 and w0 are given initial data. The nonlinearity f represents a smooth double-well potential
whose derivative defines the local part of the thermodynamic force driving the evolution of the system.
A typical form of f is

f(ϕ) =
1

4
(ϕ2 − 1)2. (1.10)

Starting with the seminal paper [26], there exists an abundant literature on the well-posedness and
asymptotic behavior of the nonviscous Cahn–Hilliard system with zero Neumann and with dynamic
boundary conditions that cannot be cited here. In spite of this large amount of related literature, we
have chosen to provide a detailed well-posedness analysis of the state system (1.2)–(1.6), both for
the readers’ convenience and the fact that the system (1.2)–(1.6) was apparently not studied before in
this particular form in which the control contributes to the chemical potential through the quantity w.

There are also contributions devoted to the optimal control of Cahn–Hilliard type systems in various
contexts. Without claiming to be exhaustive and complete, we mention now some related papers.
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Optimality conditions with sparsity for the Cahn–Hilliard system 3

First, let us refer to [17, 23, 38, 58, 59] and, in the framework of diffusive models of tumor growth,
to [9, 18–20, 24, 25, 28, 54]. Problems with dynamical boundary conditions were studied in [7, 8, 12–
16, 18, 33], and convective Cahn–Hilliard systems have been the subject of [14, 15, 33, 46, 56, 57].
In addition, quite a number of works have been dedicated to the study of cases in which the Cahn–
Hilliard system is coupled to other systems; in this connection, we quote Cahn–Hilliard–Navier–Stokes
models (see [27, 36, 37, 39, 53, 55]) and the Cahn–Hilliard–Oono (see [10, 31]), Cahn–Hilliard–Darcy
(see [1, 51]), Cahn–Hilliard–Brinkman (see [25]) and Cahn–Hilliard with curvature effects (see [11])
systems.

None of the papers cited above is concerned with the aspect of sparsity, i.e., the possibility that any
locally optimal control may vanish in subregions of positive measure of the space-time cylinder Q
that are controlled by the sparsity parameter κ. In this paper, we focus on sparsity, where we restrict
ourselves to the case of full sparsity which is connected to the L1(Q)-norm functional G introduced
in (1.9). Other types of sparsity such as directional sparsity with respect to time and directional sparsity
with respect to space (see, e.g., [48]) are not treated in this paper.

Sparsity in the optimal control theory for partial differential equations has become an active field of
research. Beginning with [52], many results on sparse optimal controls for PDEs were published. We
mention only very few of them with closer relation to our paper, in particular [2, 34, 35] on directional
sparsity and [6] on a general theorem for second-order conditions. Moreover, we refer to some new
trends in the investigation of sparsity, namely, infinite horizon sparse optimal control (see, e.g., [41,42])
and fractional order optimal control (cf. [44,45]).

The abovementioned papers concentrated on the first-order optimality conditions for sparse optimal
controls of single elliptic and parabolic equations. In [4,5], first- and second-order optimality conditions
have been discussed in the context of sparsity for the (semilinear) system of FitzHugh–Nagumo equa-
tions. More recently, sparsity of optimal controls for reaction-diffusion systems of Cahn–Hilliard type
have been addressed in [21, 29, 48]. Moreover, we refer to the measure control of the Navier–Stokes
system studied in [3]. Second-order sufficient optimality conditions for sparse controls for the viscous
Cahn–Hilliard system were recently addressed in [22].

Second-order sufficient optimality conditions are based on a condition of coercivity that is required
to hold for the smooth part J of J in a certain critical cone. The nonsmooth part G contributes to
sufficiency by its convexity. For the strength of sufficient conditions it is crucial that the critical cone be
as small as possible. In their paper [5], Casas–Ryll–Tröltzsch devised a technique by means of which
a very advantageous (i.e., small) critical cone can be chosen. This method was originally introduced
for a class of semilinear second-order parabolic problems with smooth nonlinearities. In the recent
papers [22, 49, 50] it has been demonstrated that it can be adapted correspondingly to the sparse
optimal control of Allen–Cahn systems with dynamic boundary conditions [49], to a large class of
systems modeling tumor growth [50], and to the viscous Cahn–Hilliard system [22], where in all of
these papers logarithmic nonlinearities could be admitted.

It is the main aim and novelty of this work to show that also the classical nonviscous Cahn–Hilliard
system can be treated accordingly. This is by no means obvious, since in the nonviscous case the
solutions to the state and the adjoint state systems enjoy less regularity than in the viscous one. And
indeed, it turns out that the needed analytic effort is considerably larger than in the viscous case, while
the optimization part of the argument changes only little.

In particular, one of the key elements of the technique is to show that the reduced cost functional asso-
ciated with the smooth part J of J is twice continuously differentiable, which in turn requires that the
control-to-state operator is twice continuously Fréchet differentiable between U = L2(0, T ;L2(Ω))
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and a suitable Banach space. For this to be the case, it seems mandatory that the phase variable
ϕ satisfies a so-called uniform separation property. While such a condition can in the viscous case
be shown also for logarithmic potentials, a corresponding result seems in the nonviscous case to be
available only for regular potentials. We therefore have to restrict our analysis to such nonlinearities in
this paper, thereby excluding logarithmic potentials.

Another difficulty arises from the fact that the first component of the solution triple to the linearized
state system (see (3.3)–(3.7) below) is not known to be bounded. This entails that the technique
employed in [22], which is based on the good differentiability properties of Nemytskii operators on L∞

spaces and makes use of the implicit function theorem, does not carry over to the nonviscous case. All
this has the consequence that the proof of the needed twice continuous Fréchet differentiability of the
control-to-state operator is technically quite challenging and sometimes a bit tedious. Nevertheless, it
turns out that all difficulties can be overcome.

The paper is organized as follows. In the following section, we formulate the general assumptions and
study the state system, proving the existence of a unique solution. We also show the local Lipschitz
continuity of the control-to-state operator. In Section 3, we then prove that the control-to-state operator
is twice continuously Fréchet differentiable between appropriate Banach spaces. The proofs in this
section require the main analytical effort of this paper. In Section 4, we investigate the control problem
(CP) with sparsity. Besides analyzing the associated adjoint problem, we derive the first-order neces-
sary optimality conditions. The final section then brings the derivation of the announced second-order
sufficient optimality conditions for controls that are locally optimal in the sense of L2(Q).

Prior to this, let us fix some notation. For any Banach space X , we denote by ‖ · ‖X and X∗ the
corresponding norm and its dual space, respectively. For two Banach spaces X and Y that are both
continuously embedded in some topological vector space Z , we consider the linear space X ∩ Y
that becomes a Banach space if equipped with its natural norm ‖v‖X∩Y := ‖v‖X + ‖v‖Y for
v ∈ X ∩ Y . The standard Lebesgue and Sobolev spaces defined on Ω are, for 1 ≤ p ≤ ∞ and
m ∈ N ∪ {0}, denoted by Lp(Ω) and Wm,p(Ω), respectively. If p = 2, we also use the usual
notation Hm(Ω) := Wm,2(Ω). Moreover, for convenience, we denote the norm of Lp(Ω) by ‖ · ‖p
for 1 ≤ p ≤ ∞, and we set

H := L2(Ω), V := H1(Ω), W :=
{
v ∈ H2(Ω) : ∂nv = 0 on Γ

}
,

where we denote by ( · , · ) the natural inner product in H . As usual, H is identified with a subspace
of the dual space V ∗ according to the identity

〈u, v〉 = (u, v) for every u ∈ H and v ∈ V .

We then have the Hilbert triple V ⊂ H ⊂ V ∗ with dense and compact embeddings.

We close this section by introducing a convention concerning the constants used in estimates within
this paper: we denote by C any positive constant that depends only on the given data occurring in
the state system and in the cost functional, as well as on a constant that bounds the L2(Q)–norms
of the elements of Uad. The actual value of such generic constants C may change from formula to
formula or even within formulas. Finally, the notation Cδ indicates a positive constant that additionally
depends on the quantity δ.
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Optimality conditions with sparsity for the Cahn–Hilliard system 5

2 Properties of the state system

2.1 Notation and assumptions

In this section, we formulate the general assumptions for the data of the state system (1.2)–(1.6), and
we introduce some known tools for later use. Throughout this paper, we generally assume:

(A1) f = f1 + f2, where f1 ∈ C5(R) is a convex and nonnegative function with f1(0) = 0 and
f2 ∈ C5(R) has a Lipschitz continuous first derivative f ′2 on R.

(A2) γ > 0 is a constant. Moreover, w0 ∈ V and ϕ0 ∈ H3(Ω) ∩W .

(A3) R > 0 is a fixed constant, and UR := {u ∈ L2(Q) : ‖u‖L2(Q) < R}.

From the condition (A1) it follows that f ′1 is monotone increasing on R and induces a maximal mono-
tone operator in R×R. Note that (A1) is fulfilled if f is given by the potential (1.10), and the condition
ϕ0 ∈ H3(Ω) ∩W implies that ϕ0 ∈ C0(Ω). Moreover, the mean value

m0 :=
1

|Ω|

∫
Ω

ϕ0, (2.1)

where |Ω| denotes the Lebesgue measure of Ω, belongs to a bounded interval in R. In the following,
we use the notation v to denote the mean value of a generic function v ∈ L1(Ω). More generally, we
set

v :=
1

|Ω|
〈v, 1〉 for every v ∈ V ∗, (2.2)

noting that the constant function 1 is an element of V . Clearly, v is the usual mean value of v if v ∈ H .

Next, we recall an important tool which is commonly used when working with problems connected
to the Cahn–Hilliard equation. To this end, consider the weak formulation of the Poisson equation
−∆z = ζ with homogeneous Neumann boundary conditions. Namely, for a given ζ ∈ V ∗ (which
does not necessarily belong to H), we consider the problem of finding

z ∈ V such that

∫
Ω

∇z · ∇v = 〈ζ, v〉 for every v ∈ V . (2.3)

Since Ω is connected and smooth, it is well known that the above problem admits solutions z ∈ V
if and only if ζ has zero mean value. Hence, we can introduce the following solution operator N by
setting

N : dom(N) := {ζ ∈ V ∗ : ζ = 0} → {z ∈ V : z = 0}, N : ζ 7→ z, (2.4)

where z is the unique solution to (2.3) satisfying z = 0. It turns out that N is an isomorphism between
the above spaces, and it follows that the formula

‖ζ‖2
∗ :=

∫
Ω

|∇N(ζ − ζ)|2 + |ζ|2 for every ζ ∈ V ∗ (2.5)

defines a Hilbert norm in V ∗ that is equivalent to the standard dual norm of V ∗. In particular, there is
a constant CΩ > 0, which depends only on Ω, such that

|〈ζ, v〉| ≤ CΩ ‖ζ‖∗ ‖v‖V for all ζ ∈ V ∗ and v ∈ V . (2.6)
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Moreover, from the Young, Poincaré and Sobolev inequalities, elliptic estimates, and Ehrling’s lemma,
we have the estimates

ab ≤ δ

2
|a|2 +

1

2δ
|b|2 for all a, b ∈ Rand δ > 0, (2.7)

‖v‖V ≤ CΩ

(
‖∇v‖H×H×H + |v|

)
for every v ∈ V , (2.8)

‖v‖W ≤ CΩ

(
‖∆v‖H + ‖v‖∗

)
for every v ∈ W , (2.9)

‖v‖p ≤ δ ‖∇v‖H×H×H + CΩ,p,δ ‖v‖∗ for every v ∈ V , p ∈ [1, 6) and δ > 0, (2.10)

‖v‖V ≤ δ ‖∆v‖H + CΩ,δ ‖v‖∗ for every v ∈ W and δ > 0. (2.11)

In addition, from the above properties there follow the identities∫
Ω

∇Nζ · ∇v = 〈ζ, v〉 for every ζ ∈ dom(N) and v ∈ V , (2.12)

〈ζ,Nξ〉 = 〈ξ,Nζ〉 for every ζ, ξ ∈ dom(N), (2.13)

〈ζ,Nζ〉 =

∫
Ω

|∇Nζ|2 = ‖ζ‖2
∗ for every ζ ∈ dom(N). (2.14)

Moreover, we point out the equality

〈∂tζ(t),Nζ(t)〉 =
1

2

d

dt
‖ζ(t)‖2

∗ for a.a. t ∈ (0, T ) , (2.15)

which holds true for every ζ ∈ H1(0, T ;V ∗) satisfying ζ = 0 for a.e. t ∈ (0, T ).

2.2 Existence for the state system

In this section, we are going to prove an existence result for the state system. Prior to this, we notice
that, thanks to the linear equation (1.4) and the second initial condition in (1.6), w can be explicitly
written in terms of u by means of the variation of constants formula

w(x, t) = w0(x) exp(−t/γ) +

∫ t

0

exp(−(t− s)/γ)u(x, s)ds, a.e. (x, t) ∈ Q. (2.16)

We have the following result.

Theorem 2.1. Suppose that (A1)–(A3) are fulfilled. Then the state system (1.2)–(1.6) has for every
u ∈ L2(0, T ;H) a unique solution triple (ϕ, µ, w) satisfying

ϕ ∈ W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ C0(Q), (2.17)

µ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ∩H3(Ω)), (2.18)

w ∈ H1(0, T ;H). (2.19)

In addition, there is a constant K1 > 0, which depends only on ‖u‖L2(0,T ;H) and the data of the state
system, such that

‖ϕ‖W 1,∞(0,T ;V ∗)∩H1(0,T ;V )∩L∞(0,T ;W )∩C0(Q)

+ ‖µ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W∩H3(Ω)) + ‖w‖H1(0,T ;H) ≤ K1 (2.20)

whenever (ϕ, µ, w) is the solution to the state system associated with u.
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Proof. Although the proof of the above result seems to be pretty standard by now, we carry it out for
the reader’s convenience. We argue by a Faedo–Galerkin approximation. To this end, consider the
eigenvalues {λj}j∈N of the eigenvalue problem

−∆v = λv in Ω, ∂nv = 0 on Γ,

and let {ej}j∈N ⊂ W be the associated eigenfunctions, normalized by ‖ej‖H = 1. Then

0 = λ1 < λ2 ≤ . . . , lim
j→∞

λj = +∞,∫
Ω

ejek =

∫
Ω

∇ej · ∇ek = 0 for j 6= k.

We then define the n-dimensional spaces Vn := span{e1, . . . , en} for n ∈ N, where we observe
that V1 is just the space of constant functions on Ω. It is well known that the union of these spaces is
dense in both H and V . Notice also that

Nv ∈ Vn for every v ∈ Vn with v = 0. (2.21)

Indeed, if v ∈ Vn and v = 0 then v =
∑n

j=2 cjej with suitable cj ∈ R, j = 1, . . . n, and

z :=
∑n

j=2 λ
−1
j cjej ∈ Vn satisfies z = 0 and −∆z = v, that is, z = Nv.

The approximating n-dimensional problem then reads as follows: find functions

ϕn(x, t) =
n∑
j=1

ϕnj(t)ej(x), µn(x, t) =
n∑
j=1

µnj(t)ej(x), wn(x, t) =
n∑
j=1

wnj(t)ej(x),

(2.22)
such that

〈∂tϕn, v〉+

∫
Ω

∇µn · ∇v = 0 for all v ∈ Vn , a.e. in (0, T ), (2.23)∫
Ω

∇ϕn · ∇v + (f ′(ϕn), v)− (wn, v) = (µn, v) for all v ∈ Vn , a.e. in (0, T ), (2.24)

γ (∂twn, v) + (wn, v) = (u, v) for all v ∈ Vn , a.e. in (0, T ), (2.25)

ϕn(0) = Pn(ϕ0), wn(0) = Pn(w0), a.e. in Ω, (2.26)

where Pn denotes the H-orthogonal projection onto Vn. Then Pn(v) =
∑n

j=1(v, ej)ej for every
v ∈ H , and we have (see [11, formula (3.14)]), with a constant CΩ > 0 depending only on Ω,

‖Pn(v)‖Y ≤ CΩ‖v‖Y for every v ∈ Y , where Y ∈ {H,V,W}. (2.27)

Next, we insert v = ek in all of the equations (2.23)–(2.26), for k = 1, . . . , n, obtaining the system

d

dt
ϕnk + λk µnk = 0 a.e. in (0, T ), (2.28)

µnk = λkϕnk + (f ′(ϕn), ek)− wnk a.e. in (0, T ), (2.29)

γ
d

dt
wnk + wnk = (u, ek) a.e. in (0, T ), (2.30)

ϕnk(0) = (ϕ0, ek), wnk(0) = (w0, ek). (2.31)
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Now insert for µnk in (2.28), using (2.29). We then arrive at an initial value problem for an explicit ODE
system in the 2n unknowns (ϕn1, ..., ϕnn, wn1, ..., wnn) with locally Lipschitz continuous nonlinear-
ities and coefficient functions in L2(0, T ). By Carathéodory’s theorem, this ODE system has a unique
maximal solution belonging to H1(0, Tn;R2n) for some Tn ∈ (0, T ]. This solution in turn uniquely
determines via (2.29) and (2.22) a triple (ϕn, µn, wn) ∈ (H1(0, Tn;Vn))3 that solves (2.23)–(2.26)
on Ω × [0, Tn], with the regularity of µn following from (2.29) and (A1). We show that one can take
Tn = T . We do this by deriving a series of a priori estimates for the finite-dimensional approximations.
In the following, C > 0 denotes constants that may depend on ‖u‖L2(0,T ;H) and the data of the state
system, but not on n ∈ N.

First estimate. Testing (2.25) by ∂twn, with the help of (2.7) we immediately get the estimate

‖wn‖H1(0,Tn;H) ≤ C . (2.32)

Then, we test (2.23) by ϕn ∈ Vn and (2.24) by −∆ϕn ∈ Vn, add, and integrate over [0, t] where
t ∈ (0, Tn]. After a cancellation and reorganisation of terms, we obtain that

1

2
‖ϕn(t)‖2

H +

∫∫
Qt

|∆ϕn|2 +

∫∫
Qt

f ′′1 (ϕn)|∇ϕn|2

≤ 1

2
‖ϕn(0)‖2

H −
∫∫

Qt

wn ∆ϕn +

∫∫
Qt

f ′2(ϕn)∆ϕn .

By the convexity of f1, the last term on the left-hand side is nonnegative. Moreover, owing to (A1), we
have |f ′2(ϕn)| ≤ C(1 + |ϕn|) a.e. in Ω× (0, Tn). In view of (2.32) and Young’s inequality, the sum
of the last two terms on the right-hand side is therefore bounded by

1

2

∫∫
Qt

|∆ϕn|2 + C

∫ t

0

(
1 + ‖ϕn(s)‖2

H

)
ds .

Consequently, by Gronwall’s lemma, and using the estimate (2.9), we infer that

‖ϕn‖L∞(0,Tn;H)∩L2(0,Tn;W ) ≤ C . (2.33)

We can draw an important consequence from (2.32) and (2.33): indeed, by a standard argument
it follows from these bounds that the local solution (ϕn1, ..., ϕnn, wn1, ..., wnn) to the ODE system
resulting from (2.28)–(2.31) is uniformly bounded and thus, by its maximality, global. Therefore, it must
exist on the whole interval [0, T ], that is, we have Tn = T . We will exploit this fact in the following
estimates.

Second estimate. Next, we recall that the constant function v = 1 belongs to V1. Inserting it in
(2.23) yields that ∂tϕn = 0 a.e. in (0, T ), which entails that N(∂tϕn) is well defined and belongs
to Vn. We now insert v = N(∂tϕn) in (2.23) and v = ∂tϕn in (2.24), add, and integrate over [0, t]
where t ∈ (0, T ]. Using (2.12) and (2.14), and noting the cancellation of two terms, we obtain the
identity ∫ t

0

‖∂tϕn(s)‖2
∗ ds+

1

2

∫
Ω

|∇ϕn(t)|2 +

∫
Ω

f1(ϕn(t))

=
1

2
‖∇Pn(ϕ0)‖2 +

∫
Ω

f1(Pn(ϕ0)) +

∫∫
Qt

wn∂tϕn −
∫∫

Qt

f ′2(ϕn)∂tϕn .
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Optimality conditions with sparsity for the Cahn–Hilliard system 9

By (A1), the third term on the left-hand side is nonnegative. Moreover, by (2.27), the first summand
on the right-hand side is bounded, and we have, using the continuity of the embedding H2(Ω) ⊂
C0(Ω), that ‖Pn(ϕ0)‖C0(Ω) ≤ C‖Pn(ϕ0)‖W ≤ C‖ϕ0‖W . This obviously implies that the sequence

{
∫

Ω
f1(Pn(ϕ0))} is bounded. Moreover, we obtain from (2.32), (2.33), and Young’s inequality, that∫∫

Qt

wn∂tϕn =

∫
Ω

wn(t)ϕn(t)−
∫

Ω

Pn(w0)Pn(ϕ0)−
∫∫

Qt

ϕn∂twn ≤ C .

Finally, we infer from (2.6), (2.33), and Young’s inequality, that

−
∫∫

Qt

f ′2(ϕn)∂tϕn ≤ C

∫ t

0

‖∂tϕn(s)‖∗ ‖f ′2(ϕn(s))‖V ds

≤ 1

2

∫ t

0

‖∂tϕn(s)‖2
∗ ds + C

∫∫
Qt

(
|f ′2(ϕn)|2 + |f ′′2 (ϕn)|2 |∇ϕn|2

)
≤ 1

2

∫ t

0

‖∂tϕn(s)‖2
∗ ds + C ,

since, owing to (A1), we have |f ′2(ϕn)| ≤ C(1 + |ϕn|) and |f ′′2 (ϕn)| ≤ C a.e. in Q. Combining
the above estimates, we have therefore shown that

‖ϕn‖H1(0,T ;V ∗)∩L∞(0,T ;V ) + ‖f1(ϕn)‖L∞(0,T ;L1(Ω)) ≤ C . (2.34)

Third estimate. At this point, we recall that ∂tϕn = 0 a.e. in (0, T ), which implies that (cf. (2.1))

ϕn(t) = Pn(ϕ0) =
1

|Ω|

∫
Ω

(ϕ0, e1)e1 = ϕ0 ‖e1‖2
H = m0 for all t ∈ [0, T ]. (2.35)

For almost every t ∈ (0, T ), we now insert v = N(ϕn(t) −m0) in (2.23) and v = ϕn(t) −m0 in
(2.24), and add the results. We obtain∫

Ω

|∇(ϕn(t)−m0)|2 +

∫
Ω

f ′1(ϕn(t))(ϕn(t)−m0)

= −〈∂tϕn(t),N(ϕn(t)−m0)〉 +

∫
Ω

(wn(t)− f ′2(ϕn(t))(ϕn(t)−m0)

≤ C ‖∂tϕn(t)‖∗ ‖N(ϕn(t)−m0)‖V
+ (‖wn(t)‖H + ‖f ′2(ϕn(t))‖H) (‖ϕn(t)−m0‖H) . (2.36)

Owing to (2.34) and to the bounds for N(ϕn(t) − m0 implied by (2.33) and (2.35), it follows that
the first summand on the right-hand side is bounded in L2(0, T ). Moreover, the second summand is
already known to be bounded in L∞(0, T ).

Now recall that f ′1 is monotone increasing and that (2.35) holds. Then there exist constants δ0 > 0
and C0 > 0 such that

f ′1(r)(r −m0) ≥ δ0|f ′1(r)| − C0 for every r ∈ R. (2.37)

For this estimate we refer to [43, Appendix, Prop. A.1] (see also the detailed proof given in [30, p. 908]).
Applying (2.37), we therefore can infer from (2.36) that

‖f ′1(ϕn)‖L2(0,T ;L1(Ω)) ≤ C . (2.38)
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Next, we insert the constant function 1 ∈ V1 in (2.24). We obtain, for a.e. t ∈ (0, T ),∫
Ω

f ′1(ϕn(t)) +

∫
Ω

(f ′2(ϕn(t))− wn(t)) = |Ω|µn(t). (2.39)

By (2.38) and previous estimates, both summands on the left-hand side are bounded in L2(0, T ).
Then we conclude that

‖µn‖L2(0,T ) ≤ C . (2.40)

At this point, we test (2.23) by v = µn(t) − µn(t), which has zero mean value. It then follows from
Young’s inequality and (2.34) that∫∫

Q

|∇µn|2 = −
∫ T

0

〈∂tϕn(t), µn(t)− µn(t)〉 dt

≤ C

∫ T

0

‖∂tϕn(t)‖∗ ‖(µn − µn)(t)‖V dt ≤ C +
1

2

∫∫
Q

|∇µn|2 ,

whence, invoking also (2.40) and the Poincaré inequality (2.8), we arrive at

‖µn‖L2(0,T ;V ) ≤ C . (2.41)

Fourth estimate. We now differentiate both the equations (2.23) and (2.24) with respect to t, then
test the first of the resulting equations by v = N(∂tϕn(t)) and the second by v = ∂tϕn(t). Addition
and integration over (0, t), where t ∈ (0, T ], and use of the properties of the operator N, lead after
the cancellation of two terms to the identity

1

2
‖∂tϕn(t)‖2

∗ +

∫∫
Qt

|∇∂tϕn|2 +

∫∫
Qt

f ′′1 (ϕn)|∂tϕn|2

=
1

2
‖∂tϕn(0)‖2

∗ −
∫∫

Qt

f ′′2 (ϕn)|∂tϕn|2 +

∫∫
Qt

∂twn ∂tϕn . (2.42)

By the convexity of f1, the third term on the left-hand side is nonnegative. Moreover, the sum of the
last two terms on the right-hand side, which we denote by I , can be estimated as follows:

I ≤ C + C

∫∫
Qt

|∂tϕn|2 ≤
1

2

∫∫
Qt

|∇∂tϕn|2 + C

∫ t

0

‖∂tϕn(s)‖2
∗ ds

≤ C +
1

2

∫∫
Qt

|∇∂tϕn|2 .

Here we have used (2.32), (2.34), (A1), Young’s inequality, and the compactness inequality (2.10) with
p = 2.

For the initial value we have

‖∂tϕn(0)‖2
∗ = −

∫
Ω

µn(0) ∂tϕn(0) = −
∫

Ω

(−∆(ϕn(0)) + f ′(ϕn(0))− wn(0))∂tϕn(0)

≤ C ‖∂tϕn(0)‖∗ ‖ −∆(ϕn(0)) + f ′(ϕn(0))− wn(0)‖V .

We claim that the second factor on the right-hand side in bounded. Indeed, by (2.27), we have
‖wn(0)‖V = ‖Pnw0‖V ≤ C‖w0‖V < +∞, since (see (A2)) w0 ∈ V . Moreover, we have
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Optimality conditions with sparsity for the Cahn–Hilliard system 11

already shown above in the second estimate that the sequence {Pn(ϕ0)} is bounded in C0(Ω).
Therefore, as ϕ0 ∈ V and again by (2.27),

‖f ′(ϕn(0))‖2
V = ‖f ′(Pn(ϕ0))‖2

V =

∫
Ω

(|f ′(Pn(ϕ0))|2 + |f ′′(Pn(ϕ0))|2 |∇Pn(ϕ0)|2)

≤ C + C‖Pn(ϕ0)‖2
V ≤ C + C‖ϕ0‖2

V < +∞ .

Finally, we have

∆Pn(ϕ0) =
n∑
j=1

(ϕ0, ej)∆ej = −
n∑
j=1

λj(ϕ0, ej)ej , ∇∆Pn(ϕ0) = −
n∑
j=1

λj(ϕ0, ej)∇ej ,

whence

‖∆Pn(ϕ0)‖2
V =

n∑
j=1

(λ2
j + λ3

j) |(ϕ0, ej)|2 ≤
∞∑
j=1

(λ2
j + λ3

j) |(ϕ0, ej)|2 < +∞ ,

since, by (A2), ϕ0 ∈ H3(Ω) ∩W . In conclusion, we have shown that

‖ϕn‖W 1,∞(0,T ;V ∗)∩H1(0,T ;V ) ≤ C . (2.43)

In particular, we now see that the right-hand side of (2.36) is even bounded in L∞(0, T ), so that

‖f ′1(ϕn)‖L∞(0,T ;L1(Ω)) ≤ C ,

and it follows from (2.39) that
‖µn‖L∞(0,T ) ≤ C . (2.44)

At this point, we test (2.24) by v = (µn − µn)(t), without integrating over time. As at the end of the
third estimate, it then follows from (2.44) and Poincaré’s inequality (2.8) that

‖µn‖L∞(0,T ;V ) ≤ C . (2.45)

Next, we test (2.24) for a.e. t ∈ (0, T ) by v = −∆ϕn(t) ∈ Vn, without integrating over time. We
obtain∫

Ω

|∆ϕn(t)|2 +

∫
Ω

f ′′1 (ϕn(t))|∇ϕn(t)|2 = −
∫

Ω

(wn(t) + µn(t)− f ′2(ϕn(t)) ∆ϕn(t) ,

whence, using Young’s inequality, (2.32), (2.34), (2.45), and elliptic regularity,

‖ϕn‖L∞(0,T ;W ) ≤ C . (2.46)

Existence. By virtue of the uniform estimates shown in the previous steps, there exists a triple
(ϕ, µ, w) such that (possibly only on a suitable subsequence which is again labeled by n ∈ N)

ϕn → ϕ weakly star in W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) , (2.47)

µn → µ weakly star in L∞(0, T ;V ) , (2.48)

wn → w weakly in H1(0, T ;H) . (2.49)
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Since, owing to the compactness of the embedding W ⊂ C0(Ω), it follows from [47, Sect. 8, Cor. 4]
that H1(0, T ;V ) ∩ L∞(0, T ;W ) is compactly embedded in C0(Q), we may also assume that

ϕn → ϕ strongly in C0(Q) , (2.50)

whence, by the local Lipschitz continuity of f ′,

f ′(ϕn)→ f ′(ϕ) strongly in C0(Q) . (2.51)

With these strong convergence properties at hand, it follows from a standard argument (which needs
no repetition here) that (ϕ, µ, w) is in fact a solution to the state system (1.2)–(1.6). Moreover, we
can infer from the semicontinuity properties of norms and the estimates shown above that there is a
constant K0 > 0, which depends only on ‖u‖L2(0,T ;H) and the data of the state system, such that

‖ϕ‖W 1,∞(V ∗)∩H1(0,T ;V )∩L∞(0,T ;W )∩C0(Q) + ‖µ‖L∞(0,T ;V ) + ‖w‖H1(0,T ;H) ≤ K0 .

In addition, we conclude from (1.2) and elliptic regularity that µ ∈ L2(0, T ;H3(Ω) ∩W ) and

‖µ‖L2(0,T ;H3(Ω)∩W ) ≤ C .

Besides, taking the time derivative in (1.3), we can infer from comparison that also µ ∈ H1(0, T ;V ∗)
and

‖µ‖H1(0,T ;V ∗) ≤ C .

With this, the existence of a solution (ϕ, µ, w) and of a constant K1 > 0 with the asserted properties
is shown. It remains to prove its uniqueness. This will be done below in Theorem 2.7 in the continuous
dependence estimate.

An immediate consequence of the uniform bound established for ‖ϕ‖C0(Q) and of the uniqueness
still to be proved below is the following.

Corollary 2.2. Assume that (A1)–(A3) are fulfilled. Then there is a constant K2 > 0 depending only
on the data of the system and R such that

max
0≤i≤5

(
max
j=1,2

‖f (i)
j (ϕ)‖C0(Q) + ‖f (i)(ϕ)‖C0(Q)

)
≤ K2 , (2.52)

whenever (ϕ, µ, w) is the solution to the state system (1.2)–(1.6) in the sense of Theorem 2.1 asso-
ciated with some u ∈ UR.

Remark 2.3. It is worth noting that for the proof of Theorem 2.1 it was not necessary to assume that
f1(r) has a sufficiently strong (e.g., at least quadratic) growth as |r| → +∞. Such an assumption
has been made in many papers dealing with regular potentials. The reason for this is that in our
approach we avoid to test (2.24) by ∂tϕn before sufficiently strong estimates for ϕ (here derived in
the first estimate) are available to handle the term −

∫∫
Qt
f ′2(ϕn) ∂tϕn that arises on the right-hand

side. It is well possible that a corresponding line of argumentation works also in many other cases,
thus avoiding the growth assumption.
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Remark 2.4. Our approach in the proof of Theorem 2.1 consisted in approximating all equations
including (1.4), despite the fact that we had the explicit solution (2.16) (in terms of u) at our disposal.
On the other hand, the approximation turns out to be a convenient approach especially if (1.4) would be
replaced by a more complicated and possibly coupled PDE, still with the control on the right-hand side.
In particular, we point out that in the paper [22], concerned with the viscous Cahn–Hilliard equation,
the coefficient γ in the analog of (1.4) is allowed to depend on the space variable x ∈ Ω, being
however bounded from below by a positive constant. This setting can be considered also here without
major modifications: of course, then the approximation (2.25) of (1.4) is no longer valid and should be
replaced by ∫

Ω

γ ∂twn v + (wn, v) = (u, v) for all v ∈ Vn , a.e. in (0, T ),

with the consequence that the resulting ODE system (2.30) changes into

n∑
j=1

(∫
Ω

γejek

)dwnj
dt

+ wnk = (u, ek) a.e. in (0, T ), k = 1, . . . , n.

Nonetheless, note that
(∫

Ω
γejek

)
j,k

, j, k = 1, . . . , n, are the coefficients of a symmetric and pos-
itive definite (and thus invertible) matrix, so that the resulting modified ODE system (2.28)–(2.31) is
still easily solvable with a time-dependent maximal solution.

2.3 An auxiliary lemma

In this section, we show the following preparatory lemma which will prove useful in numerous estima-
tions in the following.

Lemma 2.5. Suppose that functions

a ∈ L2(0, T ;W 1,4(Ω)), g ∈ L2(0, T ;V ), h ∈ L2(0, T ;H) (2.53)

are given. Then there is a unique triple (ϕ, µ, w) such that

ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (2.54)

µ ∈ L∞(0, T ;V ), (2.55)

w ∈ H1(0, T ;H), (2.56)

as well as

〈∂tϕ, v〉 +

∫
Ω

∇µ · ∇v = 0 for all v ∈ V and a.e. in (0, T ) , (2.57)

−∆ϕ− µ− w = aϕ+ g a.e. in Q , (2.58)

γ∂tw + w = h a.e. in Q , (2.59)

∂nϕ = 0 a.e. on Σ , (2.60)

ϕ(0) = 0, w(0) = 0, a.e. in Ω . (2.61)

Moreover, there is some constant K3 > 0, which increases monotonically with respect to the value of
the norm ‖a‖L2(0,T ;W 1,4(Ω)), such that

‖ϕ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖µ‖L2(0,T ;V ) + ‖w‖H1(0,T ;H)

≤ K3

(
‖g‖L2(0,T ;V ) + ‖h‖L2(0,T ;H)

)
. (2.62)
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Proof. The existence proof is again performed via a Faedo–Galerkin approximation using the same
finite-dimensional spaces as in the proof of Theorem 2.1. For the sake of brevity, we avoid writing
the system explicitly here and just provide the relevant formal a priori estimate (2.62) for the con-
tinuous system, which in the rigorous argument has to be performed for the finite-dimensional ap-
proximations. With this a priori estimate (2.62) at hand, the standard limit process using weak and
weak-star compactness can be carried out to prove the existence of a solution (ϕ, µ, w) having the
regularity (2.54)–(2.56). Notice that also the uniqueness of the solution immediately follows: indeed, if
(ϕi, µi, wi), i = 1, 2, are two solutions, then (ϕ, µ, w) := (ϕ1 − ϕ2, µ1 − µ2, w1 − w2) satisfies
the system (2.57)–(2.61) with g = h = 0, and (2.62) yields that ϕ = µ = w = 0.

To begin with, we first note that (2.57) implies that ∂tϕ = 0 a.e. in (0, T ) which, thanks to the
initial condition ϕ(0) = 0, yields that ϕ(t) = 0 for all t ∈ [0, T ]. We thus may test (2.57) by
1
2
N(∂tϕ) + 1

2
µ+ ϕ, (2.58) by ∂tϕ−∆ϕ− µ, and (2.59) by K ∂tw, where the constant K > 0 is

yet to be determined. Addition of the resulting equations and integration over (0, t), where t ∈ (0, T ],
then leads to the cancellation of some terms, and upon rearraging the terms, we arrive at the identity

1

2

∫ t

0

‖∂tϕ(s)‖2
∗ ds +

1

2
‖ϕ(t)‖2

V +
K

2
‖w(t)‖2

H +
1

2

∫∫
Qt

|∇µ|2

+

∫∫
Qt

(
|∆ϕ|2 + |µ|2 +Kγ|∂tw|2

)
=

∫∫
Qt

∇ϕ · ∇µ +

∫∫
Qt

w ∂tϕ −
∫∫

Qt

w∆ϕ −
∫∫

Qt

µw +

∫∫
Qt

aϕ(−∆ϕ− µ)

+

∫∫
Qt

aϕ∂tϕ +

∫∫
Qt

g(−∆ϕ− µ) +

∫∫
Qt

g∂tϕ + K

∫∫
Qt

h∂tw :=
9∑
j=1

Ij , (2.63)

with obvious meaning. Five of the terms on the right-hand side can be easily estimated using Young’s
inequality (2.7). Namely, we have

|I1| ≤
1

4

∫∫
Qt

|∇µ|2 +

∫∫
Qt

|∇ϕ|2 , (2.64)

|I3| ≤
1

4

∫∫
Qt

|∆ϕ|2 +

∫∫
Qt

|w|2 , (2.65)

|I4| ≤
1

4

∫∫
Qt

|µ|2 +

∫∫
Qt

|w|2 , (2.66)

|I7| ≤
1

4

∫∫
Qt

(|∆ϕ|2 + |µ|2) + 2

∫∫
Qt

|g|2 , (2.67)

|I9| ≤
Kγ

4

∫∫
Qt

|∂tw|2 +
K

γ

∫∫
Qt

|h|2 . (2.68)

The remaining four terms, which involve ∂tϕ and/or a, require more attention. At first, we use (2.6)
and Young’s inequality to see that

|I8| ≤ C

∫ t

0

‖∂tϕ(s)‖∗ ‖g(s)‖V ds ≤
1

8

∫ t

0

‖∂tϕ(s)‖2
∗ ds + C ‖g‖2

L2(0,t;V ) . (2.69)

Next, we have I2 =
∫

Ω
w(t)ϕ(t)−

∫∫
Qt
ϕ∂tw, so that, by Young’s inequality (2.7),

|I2| ≤
1

4
‖ϕ(t)‖2

H + ‖w(t)‖2
H +

Kγ

4

∫∫
Qt

|∂tw|2 +
K

γ

∫∫
Qt

|ϕ|2 . (2.70)
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Now observe that we have the continuous embedding W 1,4(Ω) ⊂ L∞(Ω). Hence,

‖a‖L2(0,T ;L∞(Ω)) ≤ C ‖a‖L2(0,T ;W 1,4(Ω)) .

Therefore, by Young’s inequality,

|I5| ≤
∫ t

0

‖a(s)‖∞ ‖ϕ(s)‖H
(
‖∆ϕ(s)‖H + ‖µ(s)‖H

)
ds

≤ 1

4

∫∫
Qt

(|∆ϕ|2 + |µ|2) + C

∫ t

0

‖a(s)‖2
W 1,4(Ω) ‖ϕ(s)‖2

H ds . (2.71)

Finally, we estimate I6. Using (2.6), as well as the Young and Hölder inequalities, we infer that

|I6| ≤ C

∫ t

0

‖∂tϕ(s)‖∗ ‖a(s)ϕ(s)‖V ds

≤ 1

8

∫ t

0

‖∂tϕ(s)‖2
∗ ds + C

∫∫
Qt

|a|2 (|ϕ|2 + |∇ϕ|2) + C

∫∫
Qt

|∇a|2 |ϕ|2

≤ 1

8

∫ t

0

‖∂tϕ(s)‖2
∗ ds + C

∫ t

0

‖a(s)‖2
∞ ‖ϕ(s)‖2

V ds + C

∫ t

0

‖∇a(s)‖2
4 ‖ϕ(s)‖2

4 ds

≤ 1

8

∫ t

0

‖∂tϕ(s)‖2
∗ ds + C

∫ t

0

‖a(s)‖2
W 1,4(Ω) ‖ϕ(s)‖2

V ds . (2.72)

At this point, we choose K = 4. It then follows from (2.63)–(2.72), that there are constants C1 > 0,
C2 > 0, which do not depend on a, h and g , such that

‖ϕ(t)‖2
V + ‖w(t)‖2

H +

∫ t

0

‖∂tϕ(s)‖2
∗ ds +

∫∫
Qt

(
|∆ϕ|2 + |µ|2 + |∇µ|2 + |∂tw|2

)
≤ C1

∫ t

0

(
‖g(s)‖2

V + ‖h(s)‖2
H

)
ds + C2

∫ t

0

(
1 + ‖a(s)‖2

W 1,4(Ω)

)(
‖ϕ(s)‖2

V + ‖w(s)‖2
H

)
ds .

Since the real-valued function s 7→ C2(1 + ‖a(s)‖2
W 1,4(Ω)) belongs to L1(0, T ), we can apply

Gronwall’s lemma, whence the inequality (2.62) follows. In addition, the standard form of the Gronwall
inequality ensures that the constant K3 can be chosen to be monotonically increasing with respect
to ‖a‖L2(0,T ;W 1,4(Ω)).

Remark 2.6. We point out that the assumption a ∈ L2(0, T ;W 1,4(Ω)) in (2.53) is set for con-
venience, to be used in the following, but it can be replaced by the more general assumption a ∈
L2(0, T ;W 1,p(Ω)) with p > 3. Indeed, the above estimates in the proof can be repeated without
major changes. In particular, the estimate (2.72) of I6 can be arranged as follows:

|I6| ≤
1

8

∫ t

0

‖∂tϕ(s)‖2
∗ ds + C

∫ t

0

‖a(s)‖2
∞ ‖ϕ(s)‖2

V ds + C

∫ t

0

‖∇a(s)‖2
p ‖ϕ(s)‖2

q ds

≤ 1

8

∫ t

0

‖∂tϕ(s)‖2
∗ ds + C

∫ t

0

‖a(s)‖2
W 1,p(Ω) ‖ϕ(s)‖2

V ds ,

as p is greater than the space dimension 3 and q := 2p/(p − 2) < 6, so that V ⊂ Lq(Ω) with
continuous embedding.
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2.4 Continuous dependence and uniqueness

Next, we state a continuous dependence result that, in particular, guarantees the uniqueness of the
solution provided by Theorem 2.1.

Theorem 2.7. Suppose that the conditions (A1)–(A3) are fulfilled. Then there exists a constant K4 >
0 such that the following holds true: whenever ui ∈ UR, i = 1, 2, are given and (ϕi, µi, wi), i = 1, 2,
are corresponding solutions to (1.2)–(1.6) in the sense of Theorem 2.1, then

‖ϕ1 − ϕ2‖H1(0,T ;V ∗)∩C0([0,T ];V )∩L2(0,T ;W ) + ‖µ1 − µ2‖L2(0,T ;V ) + ‖w1 − w2‖H1(0,T ;H)

≤ K4 ‖u1 − u2‖L2(0,T ;H). (2.73)

Proof. Let us set, for convenience,

u := u1 − u2 , ϕ := ϕ1 − ϕ2 , µ := µ1 − µ2 , w := w1 − w2 .

Then ϕ(0) = 0 and w(0) = 0 a.e. in Ω, as well as ∂nϕ = 0 a.e. on Σ. In addition, writing
(1.2)–(1.4) for (ϕi, µi, wi), i = 1, 2, and taking the differences, we obtain that

〈∂tϕv〉+

∫
Ω

∇µ · ∇v = 0 for every v ∈ V and a.e. in (0, T ) , (2.74)

−∆ϕ− µ− w = −(f ′(ϕ1)− f ′(ϕ2)) a.e. in Q , (2.75)

γ ∂tw + w = u a.e. in Q . (2.76)

Now observe that

−(f ′(ϕ1)− f ′(ϕ2)) = −
∫ 1

0

d

ds
f ′(ϕ2 + s(ϕ1 − ϕ2)) ds = aϕ ,

where

a := −
∫ 1

0

f ′′(ϕ2 + s(ϕ1 − ϕ2)) ds . (2.77)

With this choice of a, we see that the triple (ϕ, µ, w) satisfies a system of the form (2.57)–(2.61) with
g = 0 and h = u. By virtue of Lemma 2.5, the assertion will thus be proved if we can show that
there exists some constant C > 0, which depends only on the data of the system and R, such that

‖a‖L2(0,T ;W 1,4(Ω)) ≤ C. (2.78)

Now recall that u1, u2 ∈ UR. Since the constant K1 from (2.20) depends for controls belonging to
UR only on the data and R, it follows that

‖ϕ2 + s(ϕ1 − ϕ2)‖C0(Q) ≤ K1 for all s ∈ [0, 1].

By the continuity of f ′′, it then follows that ‖a‖C0(Q) is bounded by a constant that only depends on
the data and R. The same then holds for ‖a‖L2(0,T ;L4(Ω)). Finally, we obviously have that |∇a| ≤
C (|∇ϕ1|+ |∇ϕ2|) a.e. inQ. But this implies that ‖∇a‖L∞(0,T ;L6(Ω)3) is bounded, which then also
holds for ‖a‖L2(0,T ;W 1,4(Ω)).

With this, the assertion is proved: note that the space L∞(0, T ;V ) in (2.62) is replaced by
C0([0, T ];V ) in (2.73) since ϕ1, ϕ2 are known to be continuous from [0, T ] to V (cf. (2.20)). In
particular, from (2.73), in the case when u1 = u2, it follows that ϕ = µ = w = 0, which proves the
uniqueness of the solution.
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Optimality conditions with sparsity for the Cahn–Hilliard system 17

3 Differentiability of the control-to-state operator

Let us introduce the Banach spaces

X :=
(
H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

)
× L2(0, T ;V )×H1(0, T ;H) , (3.1)

Y :=
(
W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ C0(Q)

)
×
(
H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ∩H3(Ω))

)
×H1(0, T ;H) . (3.2)

From Theorem 2.1 and Theorem 2.7 we know that the control-to-state operator

S : u 7→ S(u) = (S1(u), S2(u), S3(u)) := (ϕ, µ, w)

is well defined as a mapping from U = L2(0, T ;H) into Y and Lipschitz continuous as a mapping
from UR into X for every R > 0. In this section, we study the differentiability properties of this
operator. More precisely, we want to show that under the assumptions (A1)–(A3) the operator S is
twice continuously Fréchet differentiable on U as a mapping from U into X. We first show the following
result.

Theorem 3.1. Suppose that the conditions (A1)–(A3) are fulfilled. Then the control-to-state operator
S is for any R > 0 Fréchet differentiable in UR as a mapping from U into X. Moreover, for every
u∗ ∈ UR and every increment h ∈ L2(0, T ;H), the triple (ξ, η, v) = S′(u∗)[h] ∈ X is the unique
solution to the linearized system

〈∂tξ, v〉 +

∫
Ω

∇η · ∇v = 0 for all v ∈ V and a.e. in (0, T ), (3.3)

−∆ξ − η − v = −f ′′(ϕ∗)ξ a.e. in Q, (3.4)

γ∂tv + v = h a.e. in Q, (3.5)

∂nξ = 0 a.e. on Σ, (3.6)

ξ(0) = 0, v(0) = 0 a.e. in Ω. (3.7)

Proof. The existence of a unique solution (ξ, η, v) ∈ X to the system (3.3)–(3.7) follows directly from
Lemma 2.5: indeed, the system (3.3)–(3.7) is of the form (2.57)–(2.61) with g = 0 and a = −f ′′(ϕ∗),
and, in view of (2.20), it is easily verified that

‖ − f ′′(ϕ∗)‖L2(0,T ;W 1,4(Ω)) ≤ C,

with a constantC > 0 which depends only on the data of the state system and R. Moreover, it follows
from (2.62) that the linear mapping h 7→ (ξ, η, v) is continuous from U into X.

To show the asserted Fréchet differentiability, we consider increments h ∈ U with u∗+h ∈ UR and
denote by C > 0 constants that may depend on the data andR, but not on the special choice of such
increments. We also set (ϕh, µh, wh) := S(u∗ + h), (ϕ∗, µ∗, w∗) := S(u∗), and

yh := ϕh − ϕ∗ − ξ, zh := µh − µ∗ − η, ζh := wh − w∗ − v.

We then have to show that

‖S(u∗ + h)− S(u∗)− S′(u∗)[h]‖X = ‖(yh, zh, ζh)‖X = o
(
‖h‖L2(0,T ;H)

)
as ‖h‖L2(0,T ;H) → 0 . (3.8)
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Observe that (2.73) implies that

‖ϕh − ϕ∗‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖µh − µ∗‖L2(0,T ;V ) + ‖wh − w∗‖H1(0,T ;H)

≤ C ‖h‖L2(0,T ;H) . (3.9)

Moreover, the triple (yh, zh, ζh) ∈ X is obviously a solution to the system

〈∂tyh, v〉 +

∫
Ω

∇zh · ∇v = 0 for all v ∈ V and a.e. in (0, T ), (3.10)

−∆yh − zh − ζh = −
(
f ′(ϕh)− f ′(ϕ∗)− f ′′(ϕ∗)ξ

)
a.e. in Q, (3.11)

γ∂tζ
h + ζh = 0 a.e. in Q, (3.12)

∂ny
h = 0 a.e. on Σ, (3.13)

yh(0) = 0, ζh(0) = 0, a.e. in Ω, (3.14)

whence it immediately follows that ζh = 0 a.e. in Q. Moreover, we infer from Taylor’s theorem with
integral remainder that

f ′(ϕh)− f ′(ϕ∗)− f ′′(ϕ∗)ξ = f ′′(ϕ∗)yh + Ah(ϕh − ϕ∗)2 a.e. inQ, (3.15)

with the remainder

Ah :=

∫ 1

0

(1− s) f ′′′(ϕ∗ + s(ϕh − ϕ∗)) ds . (3.16)

From this we conclude that the system (3.10)–(3.14) is of the form (2.57)–(2.61) with a := −f ′′(ϕ∗)
and g := −Ah(ϕh − ϕ∗)2.

In view of (2.20), we have ‖a‖L2(0,T ;W 1,4(Ω)) = ‖ − f ′′(ϕ∗)‖L2(0,T ;W 1,4(Ω)) ≤ C . It thus follows
from (2.62) in Lemma 2.5 that (3.8), and thus the assertion the theorem, is valid provided we can show
that

‖g‖2
L2(0,T ;V ) = ‖ − Ah(ϕh − ϕ∗)2‖2

L2(0,T ;V ) ≤ C ‖h‖4
L2(0,T ;H) . (3.17)

Now observe that, a.e. in Q,

|Ah| ≤ C , |∇Ah| ≤ C
(
|∇ϕ∗|+ |∇ϕh|

)
, (3.18)

∇
(
Ah(ϕh − ϕ∗)2

)
= ∇Ah(ϕh − ϕ∗)2 + 2Ah(ϕh − ϕ∗)∇(ϕh − ϕ∗) . (3.19)

Therefore, we have that

‖ − Ah(ϕh − ϕ∗)2‖2
L2(0,T ;V )

≤ C

∫∫
Q

|ϕh − ϕ∗|4 + C

∫∫
Q

(
|∇ϕ∗|2 + |∇ϕh|2

)
|ϕh − ϕ∗|4

+ C

∫∫
Q

|ϕh − ϕ∗|2 |∇(ϕh − ϕ∗)|2 =: J1 + J2 + J3,

with obvious meaning. Now, owing to (2.20), (3.9), Hölder’s inequality, and the continuity of the em-
beddings V ⊂ L6(Ω) ⊂ L4(Ω),

J1 ≤ C

∫ T

0

‖(ϕh − ϕ∗)(t)‖4
4 dt ≤ C ‖ϕh − ϕ∗‖4

L∞(0,T ;V ) ≤ C ‖h‖4
L2(0,T ;H) ,
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as well as

J3 ≤ C

∫ T

0

‖(ϕh − ϕ∗)(t)‖2
4 ‖∇(ϕh − ϕ∗)(t)‖2

L4(Ω)3 dt

≤ C ‖ϕh − ϕ∗‖2
L∞(0,T ;V ) ‖ϕh − ϕ∗‖2

L2(0,T ;W ) ≤ C ‖h‖4
L2(0,T ;H) .

Finally, we infer that

J2 ≤ C

∫ T

0

(
‖∇ϕ∗(t)‖2

L6(Ω)3 + ‖∇ϕh(t)‖2
L6(Ω)3

)
‖(ϕh − ϕ∗)(t)‖4

6 dt

≤ C ‖ϕh − ϕ∗‖4
L∞(0,T ;V )

(
‖ϕ∗‖2

L2(0,T ;W ) + ‖ϕh‖2
L2(0,T ;W )

)
≤ C ‖h‖4

L2(0,T ;H) ,

which concludes the proof of the assertion.

As the next step, we show that the mapping S′ : L2(0, T ;H)→ L(L2(0, T ;H);X), u 7→ S′(u), is
locally Lipschitz continuous. We have the following result.

Theorem 3.2. Suppose that (A1)–(A3) are fulfilled. Then there is a constant K5 > 0, which depends
only on the data of the state system and on R, such that the following holds: whenever ui ∈ UR,
i = 1, 2, are given, then it holds for every h ∈ L2(0, T ;H) that

‖(S′(u1)− S′(u2))[h]‖X ≤ K5 ‖u1 − u2‖L2(0,T ;H) ‖h‖L2(0,T ;H) . (3.20)

Proof. Let h ∈ L2(0, T ;H) be fixed. We set (ϕi, µi, wi) := S(ui) and (ξi, ηi, vi) := S′(ui)[h],
for i = 1, 2, and put

u := u1 − u2, ϕ := ϕ1 − ϕ2, µ := µ1 − µ2, w := w1 − w2,

ξ := ξ1 − ξ2, η := η1 − η2, v := v1 − v2 .

It then easily follows that (ξ, η, v) ∈ X is a solution to the system

〈∂tξ, ρ〉 +

∫
Ω

∇ξ · ∇ρ = 0 for all ρ ∈ V and a.e. t ∈ (0, T ) , (3.21)

−∆ξ − η − v = aξ + g a.e. in Q , (3.22)

γ∂tv + v = 0 a.e. in Q , (3.23)

∂nξ = 0 a.e. on Σ , (3.24)

ξ(0) = 0, v(0) = 0, a.e in Ω , (3.25)

where we have put
a := −f ′′(ϕ1), g := −(f ′′(ϕ1)− f ′′(ϕ2))ξ2 . (3.26)

Again, this is a system of the form (2.57)–(2.61), and it is easily shown that ‖a‖L2(0,T ;W 1,4(Ω)) is
bounded. Hence, by Lemma 2.5, the result will be proved once we can show that

‖g‖L2(0,T ;V ) ≤ C ‖u‖L2(0,T ;H) ‖h‖L2(0,T ;H) . (3.27)

Now observe that, by Taylor’s formula,

f ′′(ϕ1)− f ′′(ϕ2) =

∫ 1

0

f ′′′(ϕ2 + s(ϕ1 − ϕ2)) dsϕ =: Bh ϕ ,
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which in view of (2.52) implies that, a.e. in Q,

|g| ≤ |Bh| |ξ2| |ϕ| ≤ C |ξ2| |ϕ| ,
|∇g| ≤ C

(
|ξ2| |ϕ|

(
|∇ϕ1|+ |∇ϕ2|

)
+ |ξ2| |∇ϕ| + |∇ξ2| |ϕ|

)
.

Next, we recall that

‖(ξi, ηi, vi)‖X = ‖S′(ui)[h]‖X ≤ C ‖h‖L2(0,T ;H), for i = 1, 2.

We therefore can conclude as follows:

‖g‖2
L2(0,T ;H) ≤ C

∫∫
Q

|ξ2|2 |ϕ|2 ≤ C

∫ T

0

‖ξ2(t)‖2
4 ‖ϕ(t)‖2

4 dt

≤ C ‖ξ2‖2
L∞(0,T ;V ) ‖ϕ‖2

L∞(0,T ;V ) ≤ C ‖u‖2
L2(0,T ;H) ‖h‖2

L2(0,T ;H) ,

where we also have used (2.73). Moreover, by similar reasoning, and using the embedding V ⊂
L4(Ω) once more,∫∫

Q

|∇g|2 ≤ C

∫∫
Q

|ξ2|2 |ϕ|2
(
|∇ϕ1|2 + |∇ϕ2|2

)
+ C

∫∫
Q

|ξ2|2 |∇ϕ|2

+ C

∫∫
Q

|∇ξ2|2 |ϕ|2

≤ C ‖ξ2‖2
L∞(0,T ;V ) ‖ϕ‖2

L∞(0,T ;V )

(
‖ϕ1‖2

L2(0,T ;W ) + ‖ϕ2‖2
L2(0,T ;W )

)
+ C ‖ξ2‖2

L∞(0,T ;V ) ‖ϕ‖2
L2(0,T ;W ) + C ‖ϕ‖2

L∞(0,T ;V ) ‖ξ2‖2
L2(0,T ;W )

≤ C ‖ξ2‖2
L∞(0,T ;V )∩L2(0,T ;W ) ‖ϕ‖2

L∞(0,T ;V )∩L2(0,T ;W )

≤ C ‖u‖2
L2(0,T ;H) ‖h‖2

L2(0,T ;H) .

The assertion is thus proved.

Having shown this continuous dependence estimate, we can now proceed to prove that the control-to-
state operator has a second Fréchet derivative. We have the following result:

Theorem 3.3. Suppose that the conditions (A1)–(A3) are fulfilled. Then the control-to-state operator
S is for anyR > 0 twice Fréchet differentiable in UR as a mapping from U into X. Moreover, for every
u∗ ∈ UR and all increments h, k ∈ L2(0, T ;H), the triple (ψ, ν, z) = S′′(u∗)[h, k] ∈ X is the
unique solution to the bilinearized system

〈∂tψ, v〉+

∫
Ω

∇ν · ∇v = 0 for all v ∈ V and a.e. in (0, T ), (3.28)

−∆ψ − ν − z = −f ′′(ϕ∗)ψ − f ′′′(ϕ∗)ξhξk a.e. in Q, (3.29)

γ∂tz + z = 0 a.e. in Q, (3.30)

∂nψ = 0 a.e. on Σ, (3.31)

ψ(0) = 0, z(0) = 0 a.e. in Ω, (3.32)

where (ξh, ηh, vh) := S′(u∗)[h] and (ξk, ηk, vk) := S′(u∗)[k].

DOI 10.20347/WIAS.PREPRINT.3114 Berlin 2024



Optimality conditions with sparsity for the Cahn–Hilliard system 21

Proof. By virtue of Lemma 2.5, we first establish the existence of a unique solution (ψ, ν, z) ∈ X

to the system (3.28)–(3.32), where we immediately note that z = 0 a.e. in Q, due to (3.30) and
(3.32). Indeed, the system (3.28)–(3.32) is of the form (2.57)–(2.61), where in this case we have that
a := −f ′′(ϕ∗) and g := −f ′′′(ϕ∗)ξhξk. Since, again, ‖a‖L2(0,T ;W 1,4(Ω)) ≤ C , it suffices to show
that ‖g‖L2(0,T ;V ) ≤ C . We achieve this by proving an estimate of the form

‖g‖L2(0,T ;V ) ≤ C ‖h‖L2(0,T ;H) ‖k‖L2(0,T ;H), (3.33)

which in view of (2.62) then also implies that the mapping (h, k) 7→ (ψ, ν, z) is continuous from
L2(0, T ;H)× L2(0, T ;H) into X. To this end, recall that

‖ξh‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ ‖S′(u)[h]‖X ≤ C ‖h‖L2(0,T ;H) ,

and a corresponding estimate holds true for ξk. Therefore, using (2.52), we have that

‖g‖2
L2(0,T ;H) ≤ C

∫∫
Q

|ξh|2 |ξk|2 ≤ C

∫ T

0

‖ξh(t)‖2
4 ‖ξk(t)‖2

4 dt

≤ C ‖ξh‖2
L∞(0,T ;V ) ‖ξk‖2

L∞(0,T ;V ) ≤ C ‖h‖2
L2(0,T ;H) ‖k‖2

L2(0,T ;H) .

Moreover, in view of (2.52), we have a.e. in Q that

|∇g| ≤ C
(
|∇ϕ∗| |ξh| |ξk| + |∇ξh| |ξk| + |ξh| |∇ξk|

)
,

so that∫∫
Q

|∇g|2 ≤ C

∫∫
Q

(
|∇ϕ∗|2 |ξh|2 |ξk|2 + |∇ξh|2 |ξk|2 + |ξh|2 |∇ξk|2

)
≤ C

∫ T

0

‖∇ϕ∗(t)‖2
L6(Ω)3 ‖ξh(t)‖2

6 ‖ξk(t)‖2
6 dt

+ C

∫ T

0

(
‖∇ξh(t)‖2

L4(Ω)3 ‖ξk(t)‖2
4 + ‖ξh(t)‖2

4 ‖∇ξk(t)‖2
L4(Ω)3

)
dt.

Hence, it results that∫∫
Q

|∇g|2 ≤ C ‖ϕ∗‖2
L∞(0,T ;W ) ‖ξh‖2

L∞(0,T ;V ) ‖ξk‖2
L∞(0,T ;V )

+ C
(
‖ξh‖2

L2(0,T ;W ) ‖ξk‖2
L∞(0,T ;V ) + ‖ξh‖2

L∞(0,T ;V ) ‖ξk‖2
L2(0,T ;W )

)
≤ C ‖h‖2

L2(0,T ;H) ‖k‖2
L2(0,T ;H) ,

which concludes the existence and uniqueness proof.

We now show the differentiability result. For this, we have to show that

sup
‖h‖L2(0,T ;H)=1

‖S′(u∗ + k)[h]− S′(u∗)[h]− (ψ, ν, z)‖X = o
(
‖k‖L2(0,T ;H)

)
as ‖k‖L2(0,T ;H) → 0 . (3.34)

To this end, let h, k ∈ L2(0, T ;H) be given with ‖h‖L2(0,T ;H) = 1 and u∗ + k ∈ UR. Next, we put

(ξh, ηh, vh) := S′(u∗)[h] and (ξ
h
, ηh, vh) := S′(u∗ + k)[h] . We have, since ‖h‖L2(0,T ;H) = 1,

‖(ξh, ηh, vh)‖X + ‖(ξh, ηh, vh)‖X ≤ C . (3.35)
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Moreover, it follows from (3.20) that

‖(ξh − ξh, ηh − ηh, vh − vh)‖X ≤ C ‖k‖L2(0,T ;H) . (3.36)

Next, we consider the functions

Φ := ξ
h − ξh − ψ, ρ := ηh − ηh − ν, ω := vh − vh − z .

A little calculation then shows that the triple (Φ, ρ, ω) ∈ X solves the system

〈∂tΦ, v〉 +

∫
Ω

∇Φ · ∇v = 0 for all v ∈ V and a.e. t ∈ (0, T ) , (3.37)

−∆Φ− ρ− ω = −f ′′(ϕ∗)Φ + g a.e. in Q , (3.38)

γ∂tω + ω = 0 a.e. in Q , (3.39)

∂nΦ = 0 a.e. on Σ , (3.40)

Φ(0) = 0, ω(0) = 0, a.e. in Ω , (3.41)

where

g = −
(
f ′′(ϕk)− f ′′(ϕ∗)

)(
ξ
h − ξh

)
−
(
f ′′(ϕk)− f ′′(ϕ∗)− f ′′′(ϕ∗)ξk

)
ξh

=: g1 + g2 , (3.42)

with obvious notation. Clearly, (3.37)–(3.41) is again of the form (2.57)–(2.61), and since we have
‖ − f ′′(ϕ∗)‖L2(0,T ;W 1,4(Ω)) ≤ C , the assertion will be proved once we can show that

‖g‖2
L2(0,T ;V ) ≤ C ‖k‖4

L2(0,T ;H) . (3.43)

At first, similar estimates as above, using (2.20), (2.52), (3.35) and (3.36), yield that

‖g1‖2
L2(0,T ;V )

≤ C

∫∫
Q

|f ′′(ϕk)− f ′′(ϕ∗)|2 |ξh − ξh|2

+ C

∫∫
Q

(
|f ′′′(ϕk)|2|∇(ϕk − ϕ∗)|2 + |∇ϕ∗|2 |f ′′′(ϕk)− f ′′′(ϕ∗)|2

)
|ξh − ξh|2

+ C

∫∫
Q

|f ′′(ϕk)− f ′′(ϕ∗)|2 |∇(ξ
h − ξh)|2,

which leads to

‖g1‖2
L2(0,T ;V )

≤ C

∫ T

0

‖(ϕk − ϕ∗)(t)‖2
4 ‖(ξ

h − ξh)(t)‖2
4 dt

+ C

∫ T

0

‖∇(ϕk − ϕ∗)(t)‖2
L4(Ω)3 ‖(ξ

h − ξh)(t)‖2
4 dt

+ C

∫ T

0

‖∇ϕ∗(t)‖2
L6(Ω)3 ‖(ϕk − ϕ∗)(t)‖2

6 ‖(ξ
h − ξh)(t)‖2

6 dt

+ C

∫ T

0

‖(ϕk − ϕ∗)(t)‖2
4 ‖∇(ξ

h − ξh)(t)‖2
L4(Ω)3 dt

≤ C ‖k‖4
L2(0,T ;H) . (3.44)
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Next, observe that

g2 = −ξh
(
f ′′′(ϕ∗) (ϕk − ϕ∗ − ξk) +Qk (ϕk − ϕ∗)2

)
where

Qk :=

∫ 1

0

(1− s)f (4)(ϕ∗ + s(ϕk − ϕ∗)) ds

satisfies, by virtue of (2.52),

|Qk| ≤ C, |∇Qk| ≤ C (|∇ϕ∗|+ |∇ϕk|), a.e. in Q. (3.45)

We therefore have

‖g2‖2
L2(0,T ;V ) ≤ C

∫∫
Q

|ξh|2
(
|ϕk − ϕ∗ − ξk|2 + |ϕk − ϕ∗|4

)
+ C

∫∫
Q

|∇ξh|2
(
|ϕk − ϕ∗ − ξk|2 + |ϕk − ϕ∗|4

)
+ C

∫∫
Q

|ξh|2
(
|∇ϕ∗|2 |ϕk − ϕ∗ − ξk|2 + |∇(ϕk − ϕ∗ − ξk)|2

)
+ C

∫∫
Q

|ξh|2
(
|∇Qk|2 |ϕk − ϕ∗|4 + |Qk|2 |ϕk − ϕ∗|2 |∇(ϕk − ϕ∗)|2

)
.

Based on this, we can infer that

‖g2‖2
L2(0,T ;V )

≤ C

∫ T

0

‖ξh(t)‖2
4 ‖(ϕk − ϕ∗ − ξk)(t)‖2

4 dt + C

∫ T

0

‖ξh(t)‖2
6 ‖(ϕk − ϕ∗)(t)‖4

6 dt

+ C

∫ T

0

‖∇ξh(t)‖2
L4(Ω)3 ‖(ϕk − ϕ∗ − ξk)(t)‖2

4 dt

+ C

∫ T

0

‖∇ξh(t)‖2
L6(Ω)3 ‖(ϕk − ϕ∗)(t)‖4

6 dt

+ C

∫ T

0

‖ξh(t)‖2
6 ‖∇ϕ∗(t)‖2

L6(Ω)3 ‖(ϕk − ϕ∗ − ξk)(t)‖2
6 dt

+ C

∫ T

0

‖ξh(t)‖2
4 ‖∇(ϕk − ϕ∗ − ξk)(t)‖2

L4(Ω)3 dt

+ C

∫ T

0

‖ξh(t)‖2
6 ‖∇Qk(t)‖2

L6(Ω)3 ‖(ϕk − ϕ∗)(t)‖2
6 ‖(ϕk − ϕ∗)(t)‖2

∞ dt

+ C

∫ T

0

‖ξh(t)‖2
6 ‖(ϕk − ϕ∗)(t)‖2

6 ‖∇(ϕk − ϕ∗)(t)‖2
6 dt

=:
8∑
j=1

Mj , (3.46)

with obvious notation. It remains to show that Mj ≤ C ‖k‖4
L2(0,T ;H), for 1 ≤ j ≤ 8. In order not to

overload the exposition, we restrict ourselves to show this for only two of the terms, leaving the check

DOI 10.20347/WIAS.PREPRINT.3114 Berlin 2024



P. Colli, J. Sprekels 24

of the others to the interested reader. To this end, recall that in the proof of Theorem 3.1 we have
shown (with k replaced by h ) that

‖ϕk − ϕ∗ − ξk‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W )

≤ ‖S(u∗ + k)− S(u∗)− S′(u∗)[k]‖X ≤ C ‖k‖2
L2(0,T ;H) . (3.47)

By virtue of (3.35) and the continuity of the embedding V ⊂ L4(Ω), we therefore conclude that

|M6| ≤ C ‖ξh‖2
L∞(0,T ;V ) ‖ϕk − ϕ∗ − ξk‖2

L2(0,T ;W ) ≤ C ‖k‖4
L2(0,T ;H) .

Moreover, invoking (3.35), (3.45), (2.20), (2.73), and the continutity of the embeddings V ⊂ L6(Ω)
and W ⊂ L∞(Ω), we also have that

|M7| ≤ C
(
‖ϕ∗‖2

L∞(0,T ;W ) + ‖ϕk‖2
L∞(0,T ;W )

)
‖ϕk − ϕ∗‖2

L∞(0,T ;V ) ‖ϕk − ϕ∗‖2
L2(0,T ;W )

≤ C ‖k‖4
L2(0,T ;H) .

With this, the assertion is proved.

Finally, we show that the mapping u 7→ S′′(u) is locally Lipschitz continuous. We have the following
result.

Theorem 3.4. The mapping S′′ : L2(0, T ;H) → L(L2(0, T ;H),L(L2(0, T ;H),X)), u 7→
S′′(u), is Lipschitz continuous in the following sense: there exists a constant K6 > 0, which depends
only onR and the data, such that, for all controls u1, u2 ∈ UR and all increments h, k ∈ L2(0, T ;H),
it holds that

‖ (S′′(u1)− S′′(u2)) [h, k]‖X ≤ K6 ‖u1 − u2‖L2(0,T ;H) ‖h‖L2(0,T ;H) ‖k‖L2(0,T ;H) . (3.48)

Proof. Let u1, u2 ∈ UR and h, k ∈ L2(0, T ;H) be given. We put

(ϕi, µi, wi) := S(ui), (ξhi , η
h
i , v

h
i ) := S′(ui)[h], (ξki , η

k
i , v

k
i ) := S′(ui)[k],

(ψi, νi, zi) := S′′(ui)[h, k], for i = 1, 2,

where we recall (2.73), (3.20) and the fact that ‖S′(ui)[h]‖X ≤ C ‖h‖L2(0,T ;H), i = 1, 2, and
that an analogous estimate holds true for S′(ui)[k]. Moreover, a little calculation shows that the triple
(ψ, ν, z) ∈ X solves the system

〈∂tψ, y〉 +

∫
Ω

∇ψ · ∇y = 0 for all y ∈ V and a.e. in Q , (3.49)

∆ψ − ν − z = aψ + g a.e. in Q , (3.50)

γ∂tz + z = 0 a.e. in Q , (3.51)

∂nψ = 0 a.e. on Σ , (3.52)

ψ(0) = 0, z(0) = 0, a.e. in Ω , (3.53)

where a := −f ′′(ϕ2) is bounded in L2(0, T ;W 1,4(Ω)) and

g := −(f ′′(ϕ1)− f ′′(ϕ2))ψ1 − (f ′′′(ϕ1)− f ′′′(ϕ2))ξh1 ξ
k
1

− f ′′′(ϕ2) (ξh1 − ξh2 ) ξk1 − f ′′′(ϕ2) ξh2 (ξk1 − ξk2 )

=:
4∑
j=1

gj , (3.54)
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with obvious notation. In view of (2.62) in Lemma 2.5, it suffices to show that

‖gj‖2
L2(0,T ;V ) ≤ C ‖u‖L2(0,T ;H) ‖h‖L2(0,T ;H) ‖k‖L2(0,T ;H) for j = 1, 2, 3, 4. (3.55)

We demonstrate this only for the second and third terms. The other two terms can be treated similarly
and, in order to keep the paper at a reasonable length, are left to the reader. We have, using (2.20),
(2.52), (2.73), (3.20), Hölder’s inequality, and the continuity of the embeddings V ⊂ L6(Ω) ⊂ L4(Ω)
and W ⊂ L∞(Ω),

‖g2‖2
L2(0,T ;V )

≤ C

∫ T

0

‖(ϕ1 − ϕ2)(t)‖2
6 ‖ξh1 (t)‖2

6 ‖ξk1 (t)‖2
6 dt

+ C

∫ T

0

‖(ϕ1 − ϕ2)(t)‖2
∞ ‖∇ϕ1(t)‖2

L6(Ω)3‖ξh1 (t)‖2
6 ‖ξk1 (t)‖2

6 dt

+ C

∫ T

0

‖∇(ϕ1 − ϕ2)(t)‖2
L6(Ω)3‖ξh1 (t)‖2

6 ‖ξk1 (t)‖2
6 dt

+ C

∫ T

0

‖(ϕ1 − ϕ2)(t)‖2
6 ‖∇ξh1 (t)‖2

L6(Ω) ‖ξk1 (t)‖2
6 dt

+ C

∫ T

0

‖(ϕ1 − ϕ2)(t)‖2
6 ‖ξh1 (t)‖2

6 ‖∇ξk1 (t)‖2
L6(Ω)3 dt,

so that

‖g2‖2
L2(0,T ;V )

≤ C ‖ϕ1 − ϕ2‖2
L∞(0,T ;V ) ‖ξh1‖2

L∞(0,T ;V ) ‖ξk1‖2
L∞(0,T ;V )

+ C ‖ϕ1‖2
L∞(0,T ;W ) ‖ξh1‖2

L∞(0,T ;V ) ‖ξk1‖2
L∞(0,T ;V ) ‖ϕ1 − ϕ2‖2

L2(0,T ;W )

+ C ‖ξh1‖2
L∞(0,T ;V ) ‖ξk1‖2

L∞(0,T ;V ) ‖ϕ1 − ϕ2‖2
L2(0,T ;W )

+ C ‖ϕ1 − ϕ2‖2
L∞(0,T ;V ) ‖ξh1‖2

L2(0,T ;W ) ‖ξk1‖2
L∞(0,T ;V )

+ C ‖ϕ1 − ϕ2‖2
L∞(0,T ;V ) ‖ξh1‖2

L∞(0,T ;V ) ‖ξk1‖2
L2(0,T ;W )

≤ C ‖S(u1)− S(u2)‖2
X ‖S′(u1)[h]‖2

X ‖S′(u1)[k]‖2
X

≤ C ‖u1 − u2‖2
L2(0,T ;H) ‖h‖2

L2(0,T ;H) ‖k‖2
L2(0,T ;H) .

Similarly, it holds that

‖g3‖2
L2(0,T ;V ) ≤ C

∫ T

0

‖(ξh1 − ξh2 )(t)‖2
4 ‖ξk1 (t)‖2

4 dt

+ C

∫ T

0

‖∇ϕ2‖2
L6(Ω)3 ‖(ξh1 − ξh2 )(t)‖2

6 ‖ξk1 (t)‖2
6 dt

+ C

∫ T

0

‖∇(ξh1 − ξh2 )(t)‖2
L4(Ω)3 ‖ξk1 (t)‖2

4 dt

+ C

∫ T

0

‖(ξh1 − ξh2 )(t)‖2
4 ‖∇ξk1‖2

4 dt

≤ C ‖u1 − u2‖2
L2(0,T ;H) ‖h‖2

L2(0,T ;H) ‖k‖2
L2(0,T ;H) .

With this, the assertion is proved.
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Remark 3.5. With Theorem 3.4, we have shown that the control-to-state operator S is twice continu-
ously Fréchet differentiable as a mapping from U = L2(0, T ;H) into X. This result paves the way
to prove first-order necessary and second-order sufficient optimality conditions for the optimal control
problem (CP) in the following section.

4 The optimal control problem

In this section, we study the optimal control problem (CP) with the cost functional (1.1). Besides the
general conditions (A1)–(A3), we make the following assumptions:

(A4) It holds b1 ≥ 0, b2 ≥ 0, b3 > 0, and κ > 0.

(A5) The thresholds u, u ∈ L∞(Q) satisfy u ≤ u almost everywhere in Q, and the target func-
tions satisfy ϕQ ∈ L2(Q) and ϕΩ ∈ V.

We assume κ > 0 to include the effects of sparsity. By an obvious modification, the theory of second-
order conditions remains valid also for κ = 0.

Remark 4.1. The assumption ϕΩ ∈ V is useful in order to have more regular solutions to the as-
sociated adjoint system (see below). It is not overly restrictive in view of the continuous embedding
(H1(0, T ;H) ∩ L2(0, T ;W )) ⊂ C0([0, T ];V ) which implies that ϕ(T ) ∈ V .

The following existence result can be shown with a standard argument.

Theorem 4.2. Let (A1)–(A5) hold and suppose that G : L2(0, T ;H) → R is nonnegative, convex
and continuous. Then the optimal control problem (CP) admits a solution u∗ ∈ Uad.

4.1 The adjoint system

In the following, let u∗ ∈ UR be fixed and (ϕ∗, µ∗, w∗) = S(u∗) be the associated state. The
corresponding adjoint state system is formally given by:

− ∂tp−∆q + f ′′(ϕ∗)q = b1(ϕ∗ − ϕQ) in Q, (4.1)

−∆p− q = 0 in Q, (4.2)

− γ∂tr + r − q = 0 in Q, (4.3)

∂np = ∂nq = 0 on Σ, (4.4)

p(T ) = b2(ϕ∗(T )− ϕΩ), r(T ) = 0 in Ω. (4.5)

We immediately observe that the system is decoupled in the sense that r can be directly recovered
from (4.3) with the terminal condition r(T ) = 0 once q is determined. We point out that (4.1) has
to be rewritten in a weak (variational) form. We now show a well-posedness result for a slightly more
general system.

Theorem 4.3. Suppose that (A1)–(A3) are fulfilled, and assume that u∗ ∈ UR with (ϕ∗, µ∗, w∗) =
S(u∗), g1 ∈ L2(0, T ;H) and g2 ∈ V are given. Then the system
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〈−∂tp, v〉 +

∫
Ω

∇q · ∇v +

∫
Ω

f ′′(ϕ∗)q v =

∫
Ω

g1 v for all v ∈ V , a.e. in (0, T ), (4.6)

−∆p− q = 0 a.e. in Q , (4.7)

− γ∂tr + r − q = 0 a.e. in Q , (4.8)

∂np = 0 a.e. on Σ , (4.9)

p(T ) = g2, r(T ) = 0, a.e. in Ω , (4.10)

has a unique solution triple (p, q, r) with the regularity

p ∈ H1(0, T ;V ∗) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ∩H3(Ω)), (4.11)

q ∈ L2(0, T ;V ), (4.12)

r ∈ H1(0, T ;V ). (4.13)

Moreover, there is a constant K7 > 0, which depends only on R and the data, such that the two
inequalities below hold:

‖p‖C0([0,T ];H)∩L2(0,T ;W ) + ‖q‖L2(0,T ;H) + ‖r‖H1(0,T ;H)

≤ K7

(
‖g1‖L2(0,T ;H) + ‖g2‖H

)
, (4.14)

‖p‖C0([0,T ];V )∩L2(0,T ;W∩H3(Ω)) + ‖q‖L2(0,T ;V ) + ‖r‖H1(0,T ;V )

≤ K7

(
‖g1‖L2(0,T ;H) + ‖g2‖V

)
. (4.15)

Proof. The linear initial-boundary value problem given by (4.6), (4.7), (4.9), together with the first
terminal condition in (4.5), is again solved via a Faedo–Galerkin approximation using the same eigen-
values, eigenfunctions and n-dimensional approximating spaces Vn as in the proof of Theorem 2.1.
For the sake of shortness, we avoid to write the approximating n-dimensional analogues of (4.6)–(4.7)
explicitly here and just provide the relevant a priori estimates formally for the continuous problem.
Having these estimates for the n-dimensional approximations, one can apply the standard weak and
weak-star compactness arguments to pass to the limit as n → ∞, thereby showing the existence of
the sought solution. Uniqueness then follows immediately from the linearity and the estimate (4.14).

To this end, we insert v = p in (4.6) and test (4.7) by −q. Then we add the resultants, noting that a
cancellation of two terms occurs, and integrate over (t, T ), where t ∈ [0, T ) is arbitrary. Introducing
the notation Qt := Ω × (t, T ) for t ∈ [0, T ), we then obtain, after rearranging terms and invoking
(2.52) and Young’s inequality,

1

2
‖p(t)‖2

H +

∫∫
Qt

|q|2 =
1

2
‖g2‖2

H −
∫∫

Qt

f ′′(ϕ∗)q p+

∫∫
Qt

g1 p

≤ 1

2

(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
H

)
+

1

2

∫∫
Qt

|q|2 + C

∫∫
Qt

|p|2 .

Gronwall’s lemma then yields that

‖p‖2
L∞(0,T ;H) + ‖q‖2

L2(0,T ;H) ≤ C
(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
H

)
. (4.16)

In addition, we conclude from (4.7) and (4.9), invoking standard elliptic estimates, that

‖p‖2
L2(0,T ;W ) ≤ C

(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
H

)
, (4.17)
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and comparison in (4.8) immediately shows that also

‖r‖2
H1(0,T ;H) ≤ C

(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
H

)
. (4.18)

The validity of the inequality (4.14) is thus shown.

Next, we insert v = q in (4.6) and test (4.7) (formally) by −∂tp. Addition and integration over (t, T )
then yields

1

2

∫
Ω

|∇p(t)|2 +

∫∫
Qt

|∇q|2 =
1

2

∫
Ω

|∇g2|2 +

∫∫
Qt

(
g1q − f ′′(ϕ∗)q2

)
≤ ‖g2‖2

V + ‖g1‖2
L2(0,T ;H) + C

∫∫
Qt

|q|2 ≤ C
(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
V

)
,

by virtue of Young’s inequality, and invoking the assumption g2 ∈ V along with (2.52) and (4.16).
Then, we deduce that

‖p‖L∞(0,T ;V ) + ‖q‖L2(0,T ;V ) ≤ C
(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
V

)
, (4.19)

whence, using (4.7) and elliptic regularity,

‖p‖L2(0,T ;W∩H3(Ω)) ≤ C
(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
V

)
. (4.20)

In addition, using (4.19) and the endpoint condition r(T ) = 0, we obtain directly from (4.8) that also

‖r‖2
H1(0,T ;V ) ≤ C

(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
V

)
. (4.21)

Moreover, comparison in (4.6) yields that

‖p‖H1(0,T ;V ∗) ≤ C
(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
V

)
.

Finally, as the embedding
(
H1(0, T ;V ∗)∩L2(0, T ;H3(Ω))

)
⊂ C0([0, T ];V ) is continuous, (4.11)

follows, and the inequality (4.15) results from (4.19)–(4.21). This concludes the proof of the assertion.

Remark 4.4. This remark collects three different comments.

1. From the proof of Theorem 4.3 the reader may realize that a weaker existence and uniqueness
result holds if g1 ∈ L2(0, T ;H) and g2 is just in H , with a solution (p, q, r) having the regularity
expressed in (4.14). In fact, if we consider a weaker formulation of (4.6), namely,

W ∗〈−∂tp, v〉W −
∫

Ω

q∆v +

∫
Ω

f ′′(ϕ∗)q v =

∫
Ω

g1 v for all v ∈ W , a.e. in (0, T ),

then we deduce from (4.16)–(4.18) and a comparison of terms in the above equation that

‖∂tp‖L2(0,T ;W ∗) ≤ C
(
‖g1‖2

L2(0,T ;H) + ‖g2‖2
H

)
,

which, along with (4.17), implies that p ∈ C0([0, T ];H) and gives a meaning to the first terminal
condition in (4.10). Of course, uniqueness then follows from inequality (4.14).

2. In the case of the adjoint system (4.1)–(4.5), the one of interest for our theory, we have
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g1 := b1(ϕ∗ − ϕQ) ∈ L2(0, T ;H) and g2 := b2(ϕ∗(T ) − ϕΩ) ∈ V , so that Theorem 4.3
ensures that for every u∗ ∈ L2(0, T ;H) there is a unique solution (p∗, q∗, r∗) with the regularity
(4.11)–(4.13) that satisfies (4.15).

3. If, for i = 1, 2, ui ∈ UR is given with the associated state (ϕi, µi, wi) = S(ui) and adjoint
state (pi, qi, ri), then the triple (p1 − p2, q1 − q2, r1 − r2) solves the system (4.6)–(4.10) with
g1 := b1(ϕ1 − ϕ2) ∈ L2(0, T ;H) and g2 := b2(ϕ1(T ) − ϕ2(T )) ∈ V . In view of (2.73), it
therefore follows from (4.15) the estimate

‖p1 − p2‖C0([0,T ];V )∩L2(0,T ;W∩H3(Ω)) + ‖q1 − q2‖L2(0,T ;V ) + ‖r1 − r2‖H1(0,T ;V )

≤ C ‖ϕ1 − ϕ2‖C0([0,T ];V ) ≤ C ‖u1 − u2‖L2(0,T ;H) . (4.22)

4.2 First-order necessary optimality conditions

In this section, we derive first-order necessary optimality conditions for local minima of the optimal
control problem (CP). We assume that (A1)–(A5) are fulfilled and that G : L2(0, T ;H) → R is
a general nonnegative, convex and continuous functional. We define the reduced cost functionals
associated with the functionals J and J introduced in (1.1) by

Ĵ(u) := J(S1(u), u), Ĵ(u) = J(S1(u), u) . (4.23)

Since S = (S1, S2, S3) is twice continuously Fréchet differentiable from U = L2(0, T ;H) into the
space C0([0, T ];H)×L2(0, T ;V )×H1(0, T ;H) (which contains X), it follows from the chain rule
that the smooth part Ĵ of the reduced objective functional is a twice continuously Fréchet differentiable
mapping from U into R, where, for every u∗ ∈ L2(0, T ;H) and every h ∈ L2(0, T ;H), it holds with
(ϕ∗, µ∗, w∗) = S(u∗) that

Ĵ ′(u∗)[h] = b1

∫∫
Q

ξh(ϕ∗ − ϕQ) + b2

∫
Ω

ξh(T )(ϕ∗(T )− ϕΩ) + b3

∫∫
Q

u∗h , (4.24)

where (ξh, ηh, vh) = S′(u∗)[h] ∈ Z is the unique solution to the linearized system (3.3)–(3.7)
associated with h.

In the following, we assume that u∗ ∈ Uad is a locally optimal control for (CP) in the sense of
L∞(Q). In this connection, recall that a control u∗ ∈ Uad is called locally optimal in the sense of
Lp(Q) for some p ∈ [1,+∞] if and only if there is some ε > 0 such that

Ĵ(u) ≥ Ĵ(u∗) for all u ∈ Uad satisfying ‖u− u∗‖Lp(Q) ≤ ε. (4.25)

It is easily seen that any locally optimal control in the sense of Lp(Q) with 1 ≤ p <∞ is also locally
optimal in the sense of L∞(Q). Therefore, a result proved for locally optimal controls in the sense of
L∞(Q) is also valid for locally optimal controls in the sense of Lp(Q) for 1 ≤ p <∞. In particular, it
is true for (globally) optimal controls.

A standard argument (for details, see, e.g., [22,48,49]) then shows that there is some λ∗ ∈ ∂G(u∗) ⊂
L2(0, T ;H) such that

Ĵ ′(u∗)[u− u∗] + κ

∫∫
Q

λ∗(u− u∗) ≥ 0 ∀u ∈ Uad. (4.26)

As usual, we simplify the expression Ĵ ′(u∗)[u− u∗] in (4.26) by means of the adjoint state variables
defined in (4.1)–(4.5). A standard calculation using the linearized system (3.3)–(3.7) then leads to the
following result.
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Theorem 4.5. (Necessary optimality condition) Suppose that (A1)–(A5) are fulfilled and that G :
L2(0, T ;H) → R is nonnegative, convex and continuous. Moreover, let u∗ ∈ Uad be a locally
optimal control of (CP) in the sense of L∞(Q) with associated state (ϕ∗, µ∗, w∗) = S(u∗) and
adjoint state (p∗, q∗, r∗). Then there exists some λ∗ ∈ ∂G(u∗) such that, for all u ∈ Uad,∫∫

Q

(r∗ + κλ∗ + b3u
∗) (u− u∗) ≥ 0 . (4.27)

4.3 Sparsity of controls

The convex function G in the objective functional accounts for the sparsity of optimal controls, i.e.,
the possibility that any locally optimal control may vanish in some subset of the space-time cylinderQ.
The form of this region depends on the particular choice of the functional G. The sparsity properties
can be deduced from the variational inequality (4.27) and the particular form of the subdifferential
∂G. Here, we restrict ourselves to the case of full sparsity which is connected to the L1(Q)−norm
functional G introduced in (1.9). Its subdifferential is given by (see [40])

∂G(u) =

λ ∈ L2(Q) : λ(x, t) ∈


{1} if u(x, t) > 0
[−1, 1] if u(x, t) = 0
{−1} if u(x, t) < 0

for a.e. (x, t) ∈ Q

 . (4.28)

With exactly the same argument as in the proof of the corresponding result [22, Thm. 4.7], we obtain
the following result.

Theorem 4.6. (Full sparsity) Suppose that the assumptions (A1)–(A5) are fulfilled, and assume that
u and u are constants such that u < 0 < u. Let u∗ ∈ Uad be a locally optimal control in the sense
of L∞(Q) for the problem (CP) with the functional G defined in (1.9), and with associated state
(ϕ∗, µ∗, w∗) = S(u∗) solving (1.2)–(1.6) and adjoint state (p∗, q∗, r∗) solving (4.1)–(4.5). Then there
exists a function λ∗ ∈ ∂G(u∗) satisfying (4.27), and it holds

u∗(x, t) = 0 ⇐⇒ |r∗(x, t)| ≤ κ, for a.e. (x, t) ∈ Q. (4.29)

Moreover, if r∗ and λ∗ are given, then u∗ is obtained from the projection formula

u∗(x, t) = max
{
u,min

{
u,−b−1

3 (r∗ + κλ∗) (x, t)
}}

for a.e. (x, t) ∈ Q.

4.4 Second-order sufficient optimality conditions

We conclude this paper with the derivation of second-order sufficient optimality conditions for functions
u∗ obeying the first-order necessary optimality conditions of Theorem 4.5. Second-order sufficient
optimality conditions are based on a condition of coercivity that is required to hold for the smooth part
J of J in a certain critical cone. The nonsmooth part G contributes to sufficiency by its convexity. In
the following, we generally assume that the conditions (A1)–(A5) are fulfilled. Our analysis will follow
closely the lines of [22], which in turn is an adaptation of the technique used in the proof of [5, Thm. 3.4]
for the sparse control of the FitzHugh–Nagumo system.

To this end, we fix a control u∗ satisfying the first-order necessary optimality conditions, and we set
(ϕ∗, µ∗, w∗) = S(u∗). Then the cone

C(u∗) = {v ∈ L2(0, T ;H) satisfying the sign conditions (4.30) a.e. in Q},
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where

v(x, t)

{
≥ 0 if u∗(x, t) = u
≤ 0 if u∗(x, t) = u

, (4.30)

is called the cone of feasible directions, which is a convex and closed subset of L2(0, T ;H). We also
need the directional derivative of G at u ∈ L2(0, T ;H) in the direction v ∈ L2(0, T ;H), which is
given by

G′(u, v) = lim
t↘0

1

t
(G(u+ tv)−G(u)) . (4.31)

Following the definition of the critical cone in [5, Sect. 3.1], we define

Cu∗ = {v ∈ C(u∗) : Ĵ ′(u∗)[v] + κG′(u∗, v) = 0} , (4.32)

which is also a closed and convex subset of L2(0, T ;H). According to [5, Sect. 3.1], it consists of all
v ∈ C(u∗) satisfying

v(x, t)


= 0 if |r∗(x, t) + b3u

∗(x, t)| 6= κ
≥ 0 if u∗(x, t) = u or (r∗(x, t) = −κ and u∗(x, t) = 0)
≤ 0 if u∗(x, t) = u or (r∗(x, t) = κ and u∗(x, t) = 0)

. (4.33)

At this point, we provide an explicit expression for Ĵ ′′(u)[h, k] for arbitrary u, h, k ∈ L2(0, T ;H).
Arguing exactly as in the derivation of the corresponding formula [22, Eq. (4.52)], we obtain that

Ĵ ′′(u∗)[h, k] =

∫∫
Q

(
b1 − f (3)(ϕ∗)q∗

)
ξh ξk + b2

∫
Ω

ξh(T )ξk(T ) + b3

∫∫
Q

h k , (4.34)

where (ξh, ηh, vh) = S′(u∗)[h] and (ξk, ηk, vk) = S′(u∗)[k].

For the proof of the second-order sufficient optimality condition, we will need the following preparatory
result.

Lemma 4.7. Assume that (A1)–(A5) are satisfied and that u∗ ∈ Uad is given with associated state
(ϕ∗, µ∗, w∗) and adjoint state (p∗, q∗, r∗). Suppose that {ũj} ⊂ Uad converges strongly inL2(0, T ;H)
to u∗, and that {hj} ⊂ L2(0, T ;H) converges weakly inL2(0, T ;H) to h. In addition, let (ϕ̃j, µ̃j, w̃j) =
S(ũj), and let (p̃j, q̃j, r̃j) be the associated adjoint state, for j ∈ N. Moreover, let, for arbitrary

h ∈ L2(0, T ;H), (ξh, ηh, vh) = S′(u∗)[h], as well as (ξ̃hj , η̃hj , ṽhj) = S′(ũj)[hj], for j ∈ N. Then

lim
j→∞

Ĵ ′(ũj)[hj] = Ĵ ′(u∗)[h] , (4.35)

lim
j→∞

(∫∫
Q

(
b1 − f (3)(ϕ̃j)q̃j

)∣∣ξ̃hj ∣∣2 + b2

∫
Ω

∣∣ξ̃hj(T )
∣∣2)

=

∫∫
Q

(
b1 − f (3)(ϕ∗)q∗

)∣∣ξh∣∣2 + b2

∫
Ω

∣∣ξh(T )
∣∣2 . (4.36)

Proof. At first, notice that (4.22) yields that ‖r̃j − r∗‖H1(0,T ;H) → 0 as j →∞, which implies that

lim
j→∞

Ĵ ′(ũj)[hj] = lim
j→∞

∫∫
Q

(r̃j + b3ũj)hj =

∫∫
Q

(r∗ + b3u
∗)h = Ĵ ′(u∗)[h] ,

i.e., (4.35) is valid. Next, in order to prove (4.36), we observe that

(ξ̃hj , η̃hj , ṽhj)− (ξh, ηh, vh) = (S′(ũj)− S′(u∗)) [hj] + S′(u∗)[hj − h] .
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By virtue of (3.20) and the boundedness of {hj} in L2(0, T ;H), the first summand on the right
converges to zero strongly in X. The second converges to zero weakly star in (cf. (3.1))(

H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )
)
× L2(0, T ;V )×H1(0, T ;H).

Thanks to the compact embedding V ⊂ Lp(Ω) for 1 ≤ p < 6, the compactness result stated
in [47, Sect. 8, Cor. 4]) then ensures that

ξ̃hj → ξh strongly in C0([0, T ];L5(Ω)) . (4.37)

In particular, we have that

lim
j→∞

(
b1

∫∫
Q

∣∣ξ̃hj ∣∣2 + b2

∫
Ω

∣∣ξ̃hj(T )
∣∣2) = b1

∫∫
Q

∣∣ξh∣∣2 + b2

∫
Ω

∣∣ξh(T )
∣∣2 . (4.38)

Moreover, we obtain from (2.73) that ‖ϕ̃j − ϕ∗‖H1(0,T ;V ∗)∩L∞(0,T ;V ) → 0 as j → ∞, so that we
can conclude from [47, Sect. 8, Cor. 4], the global estimate (2.52), and (4.22), that, as j →∞,

‖f (3)(ϕ̃j)− f (3)(ϕ∗)‖C0([0,T ];L5(Ω)) → 0, (4.39)

‖q̃j − q∗‖L2(0,T ;H) → 0. (4.40)

Combining this with (4.37), we readily verify that

lim
j→∞

∫∫
Q

f (3)(ϕ̃j)q̃j
∣∣ξhj ∣∣2 =

∫∫
Q

f (3)(ϕ∗)q∗
∣∣ξh∣∣2, (4.41)

which concludes the proof.

With Lemma 4.7 shown, the road is paved for the proof of second-order sufficient optimality conditions.
To this end, we will employ the following coercivity condition:

Ĵ ′′(u∗)[v, v] > 0 ∀ v ∈ Cu∗ \ {0} . (4.42)

Condition (4.42) is a direct extension of associated conditions that are standard in finite-dimensional
nonlinear optimization. In the optimal control of partial differential equation, it was first used in [6]. We
have the following result.

Theorem 4.8. (Second-order sufficient condition) Suppose that (A1)–(A5) are fulfilled. Moreover, let
u∗ ∈ Uad, together with the associated state (ϕ∗, µ∗, w∗) = S(u∗) and the adjoint state (p∗, q∗, r∗),
fulfill the first-order necessary optimality conditions of Theorem 4.5. If, in addition, u∗ satisfies the
coercivity condition (4.42), then there exist constants ε > 0 and ζ > 0 such that the quadratic
growth condition

Ĵ(u) ≥ Ĵ(u∗) + ζ ‖u− u∗‖2
L2(0,T ;H) (4.43)

holds for all u ∈ Uad with ‖u − u∗‖L2(0,T ;H) < ε. Consequently, u∗ is a locally optimal control in
the sense of L2(0, T ;H).

Proof. The proof is exactly the same as that of the corresponding [22, Thm. 4.8]. In order not to seem
repetitive, we therefore only sketch the argument, pointing out the places in the proof where the results
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of Lemma 4.7 are used. We argue by contradiction, assuming that the claim of the theorem is not true.
Then there exists a sequence of controls {uj} ⊂ Uad such that, for all j ∈ N,

‖uj − u∗‖L2(0,T ;H) <
1

j
while Ĵ(uj) < Ĵ(u∗) +

1

2j
‖uj − u∗‖2

L2(0,T ;H) . (4.44)

Noting that uj 6= u∗ for all j ∈ N, we define

τj := ‖uj − u∗‖L2(0,T ;H) and hj :=
1

τj
(uj − u∗) .

Then ‖hj‖L2(0,T ;H) = 1 and, possibly after selecting a subsequence, we can assume that

hj → h weakly in L2(0, T ;H)

for some h ∈ L2(0, T ;H). The proof is now split into three parts.

(i) h ∈ Cu∗ : Here, one has to show that (cf. (4.32)) Ĵ ′(u∗)[h] + κG′(u∗, h) = 0, in particular. This
follows exactly as in the corresponding step (i) in [22], where in the proof of the inequality Ĵ ′(u∗)[h] +
κG′(u∗, h) ≤ 0 the identity (4.35) is used.

(ii) h = 0: The proof of this claim is again exactly the same as in the corresponding step (ii)
in the proof of [22, Thm. 4.8]. It uses the identity (4.36) in order to show that (4.44) implies that
Ĵ ′′(u∗)[h, h] ≤ 0, whence h = 0 follows using (4.42).

(iii) Contradiction: Again, the argumentation is exactly the same as the corresponding step (iii) in the
proof of [22, Thm. 4.8]: we know from the previous step that hj → 0 weakly in L2(0, T ;H). Now,
(4.34) yields that

Ĵ ′′1 (u∗)[hj, hj] =

∫∫
Q

(
b1 − f (3)(u∗)q∗

)
|ξhj |2 + b2

∫
Ω

|ξhj(T )|2 + b3

∫∫
Q

|hj|2 , (4.45)

where we have set (ξhj , ηhj , vhj) = S′(u∗)[hj], for j ∈ N. Since hj → 0 weakly in L2(0, T ;H),
we find from (4.36) in Lemma 4.7 that the sum of the first two integrals on the right-hand side of (4.45)
converges to zero. On the other hand, ‖hj‖L2(0,T ;H) = 1 for all j ∈ N, by construction. Therefore,

lim inf
j→∞

Ĵ ′′(u∗)[hj, hj] ≥ lim inf
j→∞

b3

∫∫
Q

|hj|2 = b3 > 0 . (4.46)

On the other hand, the condition (4.44) leads, using (4.36) again, to the conclusion that

lim inf
j→∞

Ĵ ′′(u∗)[hj, hj] ≤ 0 ,

which contradicts (4.46). The assertion of the theorem is thus proved.
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