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Stochastic control with signatures

Peter Bank, Christian Bayer, Paul P. Hager, Tobias Nauen, Sebastian Riedel

Abstract

This paper proposes to parameterize open loop controls in stochastic optimal control problems via suit-
able classes of functionals depending on the driver’s path signature, a concept adopted from rough path
integration theory. We rigorously prove that these controls are dense in the class of progressively mea-
surable controls and use rough path methods to establish suitable conditions for stability of the controlled
dynamics and target functional. These results pave the way for Monte Carlo methods to stochastic optimal
control for generic target functionals and dynamics. We discuss the rather versatile numerical algorithms
for computing approximately optimal controls and verify their accurateness in benchmark problems from
Mathematical Finance.

1 Introduction

Many stochastic optimal control approaches are based on dynamic programming. One starts by considering the
dynamics of a controlled system driven by some source of randomness, originating for instance from a Brown-
ian motion. Controls are then specified in open loop form as a function(al) adapted to this driving randomness
or constructed in closed form as feedback functions depending on the system itself. The evolution of the con-
trolled system and the control jointly result in some cost or reward whose expectation is ultimately sought to
be optimized. A key mathematical tool is the dynamic programming principle which in its infinitesimal form as
a Hamilton-Jacobi-Bellman (HJB) equation for the value function often takes the form of a nonlinear (integro-
)partial differential equation on state space; see [FS06] for a standard reference of this approach. Typically, these
equations can be solved only numerically, and even then it remains a daunting task, particularly due to the well
known “curse of dimensionality”: If one tries to approximate the value function by computing its value in certain
points, one quickly needs an impossibly large number of these. Alternative methods where approximations of
the value function are parameterized through, e.g., a deep neural network (DNN) have been successfully ap-
plied in recent years also in higher dimensions (cf. the survey [GPW23] and [EHJ17, SS18, HPW20] to name
just a few). But even these approaches reach their limits in situations where non-Markovian noise as generated,
for instance, by a fractional Brownian motion requires one to store the whole history of the controlled system
(or of at least parts of it). Even the derivation of the HJB equation can become challenging as one works on an
infinite-dimensional state space; see [FGS17] for a recent monograph on optimal control in such functional ana-
lytic settings. In a finite-dimensional Markovian setting, parametrizations of closed loop (feedback) controls have
been proposed in [GM05] and successfully extended using DNNs in [HE16] (see also [RW20, HH21] and the
hybrid method [HPBL21]). Again the transition to the non-Markovian setting driven, e.g., by a fractional Brownian
motion is far from evident as the entire history of the system (and maybe even more) has to be incorporated in
the control. Alternatively, bespoke finite-dimensional approximations to the controlled system can be used. But
these need to be carefully tailored to the problem under investigation; see, e.g., [BD20] and [BB23a, BHT19].

By contrast the approach proposed in the present paper uses what is called path signatures of the driving
noise to consider suitable parameterizations of open loop policies. (A closed loop approach has also recently
been proposed in [HFH+23] on which we further comment below.) We will prove that for many problems this
signature based class of policies is sufficiently rich to include some which are arbitrarily close to optimal. Studied
first by Chen [Che54], signatures were identified by Lyons [Lyo98] as the building block for his by now well
developed theory of rough path integration. At any time the signature consists of all the iterated integrals of
the components in the path under consideration against each other until the present moment. This infinite-
dimensional tensor can be shown to (essentially) encode the full evolution of the path ([HL10], [BGLY16]).
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Therefore, truncated versions of the signature can be expected to be an efficient finite-dimensional encoding of
path information that can be used by numerical approaches. Even so, the space of progressively measurable
policies still corresponds to the typically vast space of measurable, non-anticipative mappings on the path space
of the driving noise. It is thus remarkable that even linear functionals of the signature can be shown to be dense
in the space of continuous functionals over compact path spaces. This was also used by [KLPA20] who gave
a Stone-Weierstrass argument which is also at the heart of our proof of pathwise denseness of linear or DNN-
parameterized families of signature based policies in the class of all admissible ones (cf. Prop. 4.5). For the
workhorse model of stochastic optimal control where ones seeks to minimize costs like

E[L(Y U , U)] = E
[∫ T

0
f(t, Y U

t , Ut)dt+ g(Y U
T )

]
subject to system dynamics such as

Y U
0 = y0, dY U

t = b(Y U
t , Ut)dt+ σ(Y U

t )dXt, (1.1)

a stability result (Theorem 4.1) shows that this kind of denseness is sufficient for our purposes (given some
integrability assumptions).

Remarkably, this remains true when, instead of the usual choice of X as a Brownian motion, one passes to a
stochastic rough driver X such as a fractional Brownian motion WH . As a consequence, even for such non-
Markovian, inherently infinite-dimensional drivers the same signature-based policies can be used for computing
approximately optimal ones. Indeed, machine learning tools such as stochastic gradient descent become appli-
cable as soon as one can efficiently produce Monte Carlo samples of L(Y U , U) for a given signature policy
U . This optimization procedure is therefore highly versatile and largely model-independent: only its dynamics
Y U need to be generated for an open loop control determined from samples of the extended driver’s (t,Xt)t≥0

(truncated) signature. The latter can for instance be generated even offline for any driver of interest and then
re-used for different dynamics driven by the same X.

We illustrate the effectiveness of this optimization procedure by working out two case studies on linear-quadratic
stochastic optimal control problems. In either case a fractional Brownian motion makes these problems challeng-
ing to address by dynamic programming methods. In the first one, an analytic formula for the problem’s value is
nonetheless available and our numerically computed signature policies turn out to approximate it very well. In
the second case study the benchmark is provided by a highly original signature-based numerical method due
to [KLPA20] which even manages to transform the optimization problem into a deterministic one that just draws
on the expected signature. Here again our more versatile approach performs well. In either case, the signature
turns out be needed only up to level 3 or 4, which corresponds to an 5 respectively 8-dimensional encoding (at
least when using log-signatures) of the extended fractional Brownian motion’s full path (s,WH

s )s≤t.

Related literature

Initiated by [DFG17], there is ongoing development in the pathwise control of rough differential equations ([AC20,
CHT24]) and the associated rough HJB equations. Although these works are only tangentially related to our
topic, they require similar stability results for the rough dynamic system with respect to the control. To impose
minimal assumptions on the control and the regularity of the rough signal, we present a novel stability result.

The theoretical analysis of continuous-time non-Markovian control problems already constitutes a vast body
of literature, a large part of which deals with dynamic stochastic control problems where the driver is Markov
but the coefficients are path dependent (e.g. delayed systems [KS97]). We therefore restrain the discussion
to works that have an ambition in implementable numerical methods for problems including a non-Markovian
driving signal.

The work [LOSar] proposes a discretization method that applies to the optimal drift control of a (path-dependent)
differential equation driven by fractional Brownian motion with constant volatility. Exploiting the underlying Brow-
nian filtration they parameterize open loop controls as a functional of a martingale discretization of Brownian
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Stochastic control with signatures 3

motion, which are then trained based on a dynamic programming principle for the (augmented) discretized
structure. Notably the authors are able to prove convergence rates towards the optimal value. In general, as
we comment in more detail below, such discretiziation methods suffer from a proportional increase in the state
space dimension.

The recent paper [HFH+23] presents a novel method based on neural rough differential equations, originally
introduced in [KMFL20, MSKF21], which serve as a continuous-time analogue to recurrent neural networks. In
this sense, the method can be seen as the continuous-time extension of [HH21]. Similar to our work, [HFH+23]
employs a Monte Carlo-based method by directly parametrizing the control, though in their case, the parame-
terization is done for feedback (closed loop) controls. Signatures appear in [HFH+23] as a special case when
using linear activation functions, a perspective the authors use to argue for the density of their approximations.
In this case, the signature arises from the system’s state rather than its driver. In contrast, our work focusses
on open-loop approximations and on proving in a mathematically rigorous manner that the optimal control value
can be approximated. Therefore, our research provides new theoretical insights that can also support similar
approximation results for the method proposed in [HFH+23].

The paper [KLPA20] (and later also [CPASB20]) considers strategies given as linear functionals of the dynami-
cally updated signature of the system’s driver. It focusses on optimization problems where the target functional
can be expressed as a linear functional given in terms of a strategy dependent shuffle polynomial acting on the
expected signature. The shuffle product used there ensures that the space of linear signature functionals forms
an algebra, making the class of such target functionals larger than one might be led to believe from the outset,
even though this problems class is far from the generic formulation of a stochastic optimal control problem as
considered in the present paper.

In [CM24] signature models are used for stochastic portfolio theory, hence, portfolio optimization, see also
[FHW23] for a very similar approach. The recent works [CGMSF23, CGSF23] analyze asset price models
(without optimization) given as SDEs with coefficients defined as linear functionals of signatures of underly-
ing stochastic processes. They calibrate such models (jointly) to VIX and SPX options.

As an alternative to signature methods, numerical approximation of stochastic optimal control problems in non-
Markovian settings can be used. We will specifically comment on two such approaches recently explored for
specific examples.

The first such approach is to discretize the problem in time and to then enhance the state variable by the whole
history, see, for instance, [BCJ19] for a specific example. Hence, if the original state processes evolved in Rd
and we are using a time-grid of length N , then the enhanced state process evolves in RdN . Obviously, this
potentially magnifies the curse of dimensionality, unless we can rely on powerful techniques for dealing with
high-dimensional problems (such as deep learning as used in [BCJ19] or tensor-trains as used in [BEST23]).
In principle, the same issue arises for signature methods (i.e., the dimension of the truncated tensor alge-
bra is much higher than the dimension of the original state space), but signatures are empirically seen to be
highly efficient encoding of path properties, implying that the dimension of the state space required to effectively
approximate the solution is often much lower. Crucially, the dimension of the truncated signature does not de-
pend on the time-discretization. This is especially relevant when the underlying process is rough (e.g., fractional
Brownian motion with low Hurst index), and therefore requires fine discretization of the stochastic optimal control
problem.

A second workable approximation strategy can also be based on a Markovian approximation of the non-
Markovian state process, see, for instance, [BD20] for an application to portfolio optimization in rough volatility
models, as well as [BB23a, BHT19] for American options. In essence, the idea is to consider the same control
problem, but for a surrogate state process, which is a Markov process. For instance, when the state process
is given in terms of a stochastic Volterra equation, there is a general approach [BD20, BB23a] for construct-
ing multi-factor Markovian approximations essentially of Ornstein-Uhlenbeck type. This approximation will also
highly enlarge the dimension of the state space, but, under suitable conditions, the approximation method can
be extremely efficient, see [BB23b] for a concrete example. In any case, these constructions are highly problem
specific, unlike the general, model-free architecture proposed in this paper. Even if a good approximation to the
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value function – now expressed in terms of the multi-factor surrogate process – is available, actually applying
the corresponding strategy in the context of the original problem might be difficult, as it would require “inverting”
the Markovian approximation in a path-wise manner, which is generally not a well-posed problem.

Outline of the paper

In Section 2 we formalize the standard control problem studied in the paper, spelling out and discussing in
particular the technical assumptions on the coefficients in the dynamics of Y U and in the cost functional L =
L(Y U , U).

In Section 3 we provide an introduction to signatures and provide tools needed from rough path theory. We also
describe the natural (deterministic!) rough path setting for the analysis of stochastic optimal control problems,
namely stopped rough paths; see also [KLPA20]. We also recall necessary prerequisites from the theory of rough
differential equations (RDEs), and provide a new existence and uniqueness result for RDEs with a function-
valued parameter—think of the control as a function in time.

Section 4 introduces two signature-based classes of controls to approximate general progressively measurable
controls U . Specifically, we consider linear signature policies in Alin which are just linear functionals of the
present signature. Alternatively, deep signature controls fromADNN are obtained by using the path’s signature
(or, more precisely, its log-signature) as input in a neural network. Proposition 4.5 shows that both linear sig-
nature controls and deep signature controls are dense in the set A of admissible controls. By stability results
of the solution map of controlled stochastic rough differential equations, convergence of the controls implies
convergence of the controlled process YU (Lemma 4.6), and this further implies that the associated costs also
converge. Theorem 4.7 then concludes that the infimum of expected costs is the same over the three policy
classesA,Alin, andADNN.

Finally, Section 5 gives details of the numerical method suggested, together with a discussion of numerical
properties and possible extensions. We then provide two case studies. In the first, the driving process X is a
fractional Brownian motion, which we try to force to stay close to 0 by controlling its drift. In order to obtain a
well-posed problem, we penalize by the L2 norm of the control. This problem’s value is available analytically in
closed form from [BSV17] and can thus be used as a benchmark. We observe excellent accuracy for both linear
and deep signature methods.

In the second case study, we revisit an optimal execution problem already studied in [KLPA20]. Here, the driving
process, again chosen to be fractional Brownian motion, corresponds to the fundamental price of a financial
asset. We want to liquidate a position in that asset while maximizing the proceeds from selling which are ad-
versely affected by price impact. The bespoke optimization procedure of [KLPA20] provides another valuable
benchmark that we are able to match with our methodology.

2 An optimal control problem of a rough differential system

Let us start by describing more precisely the class of optimization problems we consider in this paper. We
fix an underlying complete filtered probability space (Ω,F , (Ft)t≥0,P). Admissible controls will be (Ft)-
progressively measurable processes U : [0, T ]× Ω→ U taking values in U , a closed, convex and nonempty
subset of Rk. The set of such admissible controls will be denoted byA. Any realization u = U(ω) : [0, T ]→ U
can then be viewed as an element of L0(dt;U), the space of measurable functions u : [0, T ] → U equipped
with the topology of convergence in (Lebesgue) measure Leb(dt) = dt.

We study the optimal control of the differential dynamics

dY U
t = b(Y U

t , Ut)dt+ σ(Y U
t )dXt, t ∈ [0, T ], Y U

0 = y0 ∈ Rm, (2.1)

where b : Rm × U → Rm, σ : [0, T ] × Rm → Rm×d satisfy the Lipschitz assumptions (4.2) and (4.3)
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Stochastic control with signatures 5

specified below. The stochastic driver X is a stochastic rough path with finite p-variation for some p ∈ [1,∞).
The reader can think of X as a Brownian motion, but also a fractional Brownian motion can be considered.
We refer to Section 3 for the precise details and an introduction to rough paths including the definition of the
metric rough path space Ωp,0

T (Rm) we will consider for our driver X. By Theorem 4.1 there exists then a unique
solution Y U to (2.1) which canonically extends to a stochastic rough path YU : Ω → Ωp

T (Rm) and depends
continuously on y0, X and U . The optimization objective is to minimize the expected costs

J(U) := E[L(YU , U)]

among all admissible controls U ∈ A, where the cost functional

L : Rm × Ωp
T × L

0(dt;U)→ R is continuous and bounded. (2.2)

It is then clear that there is a finite optimal cost

inf
U∈A

J(U).

In Section 4.3 below we will characterize subclasses of admissible controls, sufficient for approximating the
optimal cost. In fact, assuming additionally that

Ft is the completion of σ(Xs | 0 ≤ s ≤ t) by all P-null sets of F , 0 ≤ t ≤ T, (2.3)

it will turn out that it suffices to restrict to controls that are continuous functions on the path-space Ωp
T . This fact

allows us to deduce that it also suffices to restrict to controls that are (linear) functionals of the signature of the
time-augmented path X̂ defined below.

In the rest of this section we will discuss the above assumptions in more detail and comment on some possible
generalizations.

Form of the dynamics

Drift-controlled stochastic differential equations of the form (1.1) find many applications in various fields. Study-
ing the rough path extension (2.1) allows us to treat non-semimartingale drivers X in a unified framework,
including non-Markovian processes such as fractional Brownian motion. The price to pay for this generality is
that we cannot allow for a controlled diffusion part as in

dY U
t = b(Y U

t , Ut)dt+ σ(Y U
t , Ut)dXt. (2.4)

This is because the stochastic part of these dynamics will only be defined rigorously for a general rough path X
if the control U is controlled by X, that is, roughly speaking, it cannot fluctuate more than X itself; see [FH20]
for an introduction to rough differential equations using Gubinelli derivatives. A stability result for systems of
the form (2.4) similar to Theorem 4.1 has recently been established in [AC20] for the case p ∈ [2, 3) under
the assumption that the controls U have finite p/2-variation. In contrast to the present work, the authors in
[DFG17, AC20] have considered a pathwise “anticipating” control of the system (2.1). In [DFG17] the restriction
to drift-controlled system was imposed for non-degeneracy reasons, while [AC20] included control in the volatility
by introducing a penalty term that ensures the required regularity of controls similar to a Tychonov regularization.

We stress that the results from Section 4 are not tied to the stability results for rough differential equations.
Instead, we can study the optimal control of stochastic differential equations for which we obtain stability under
weaker conditions. In fact, referring to [Pro05] one even has sufficient stability for path-dependent stochastic
differential equations of the form

dYt = b(Ut, Y |[0,t])dt+ σ(Ut, Y |[0,t])dXt, (2.5)
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whenX is a continuous semimartingale, assuming that b and σ are bounded and functional Lipschitz uniformly
in U . Thus, to adapt our approximation results from Section 4 to cover the optimal control of (2.5) we only need
to modify the assumption on the cost functional. More precisely, we need to require the continuous dependence
of L on Y , not in the rough path sense, but in the uniform topology on C([0, T ];Rm) (see also the comments
on the form of the cost functional below). This even extends to the case of càdlàg semimartingales, where
the canonical lift is given by the iterated Marcus-integral (see [FS17] and [CF19]) and corresponding universal
approximation theorems have recently been provided in [CPSFar].

Form of the cost functional

A general form of cost functionals satisfying the continuity assumption in (2.2) is given by

L(y, u) :=

∫ T

0
f(t, yt, ut)dt+ g(yT ), y ∈ Ωp

T , u ∈ L0(dt;U), (2.6)

where f : [0, T ] × Rm × U → R, g : Rm → R are continuous and bounded. In view of such “classical”
cost functionals the definition of L as a map on the rough path space may seem cumbersome. However, this
definition does not lead to additional complications and allows us to consider cost functionals involving rough
integrals such as

L(y, u) := g

(∫ T

0
f(yt)dyt

)
, y ∈ Ωp

T , u ∈ L0(dt;U),

where f ∈ Lipγ(Rm × U ;R) for some γ > p (see the next section for the definition of this space) and
g : R → R is continuous and bounded (see [FV10, Section 10.6] for definition of the rough integral and its
continuity properties).

Boundedness of the cost functional

Assumption (2.2) allows us to disentangle the problem of approximating a given control from the convergence
of the associated costs. More precisely, we prove the approximation of admissible controls in A by controls
in a subclass A′ ⊂ A for almost sure convergence in L0(dt;U). The convergence of the associated costs
then follows from the stability result in Theorem 4.1 and the dominated convergence theorem. If one were to
consider unbounded cost functionals this disentanglement would in general not be possible. Firstly, the set of
admissible controls is intrinsically related to the cost functional by A ⊂ {U prog. meas. | E[|L(YU ,X)|] <
∞}. Secondly, the mode of convergence for approximating controls needs to be chosen accordingly to deduce
the convergence of costs. Hence, the theoretical analysis becomes more problem-specific and possibly requires
more elaborate universal approximation results for signature functionals.

To be more specific about the last statement, consider a quadratic control problem with a cost functional of the
form

L(y, u) :=

∫ T

0

{
a|yt|2 + b|ut|2

}
dt, y ∈ Ωp

T , u ∈ L0(dt;U),

where a, b > 0 are constants and U = Rk. We consider examples of such problems in Section 5.2 and 5.3.
In this case, assuming square-integrability of ‖X‖p−var, one needs to prove convergence of the approximating
sequence of controls in L2(dt⊗ dP). For the sub-class of signature controls this cannot be easily deduced
from the universal approximation in Proposition 3.3, since outside the chosen compact sets there is no general
way to bound the costs incurred. Note, however, that recently global universal approximation theorems have
become available for normalized signatures in [CO22] and on weighted functions spaces in [CST23]. In partic-
ular, [BPS23] provide a corresponding universal approximation for processes in L2(dt⊗ dP), thus allowing to
directly adapt our theoretical results to the case of quadratic control problems.
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Initial value and history

The assumption that X takes values in Ωp,0
T implies a deterministic starting value X0. A straight forward gener-

alization is an inclusion of a finite history of the path, i.e., by assuming that X is defined on the interval [t0, T ]
for some t0 < 0 and then settingFt to the completion of σ(Xs | t0 ≤ s ≤ t) for all t ∈ [0, T ]. In this case, the
approximation results from Section 4 are extended by considering controls that are functionals of the signature
started at time t0.

3 Preliminaries on rough analysis and signatures

We are going to introduce the basic definitions and notation needed for the understanding rough differential
equations and signatures. These definitions are standard in the rough path literature, we refer to [LCL07, FH20,
FV10] for a more detailed exposition.

3.1 The tensor algebra

The sequence of iterated integrals of a smooth path satisfies algebraic relations that are consequence of the
linearity of the integral and the integration by parts rule. These algebraic properties are most conveniently
revealed when organizing these intergals as tensor series. In this section we introduce the basic algebraic
concepts that will allow us to define signatures and rough paths.

Let V be a finite-dimensional R-vector space with basis {e1, . . . , ed}. We define the extended tensor algebra
by setting

T ((V )) :=

∞∏
n=0

V ⊗n

where V ⊗n denotes the n-th tensor power of V with the convention V ⊗0 := R, V ⊗1 := V . The algebraic
structure on T ((V )) is given by componentwise summation and tensor multiplication, i.e., for two tensor series
a = (an)∞n=0 and b = (bn)∞n=0 in T ((V )) the tensor product is defined by

a⊗ b =

(
n∑
k=0

ak ⊗ bn−k

)
n=0,1,...

.

We denote by 0 := (0, 0, . . . ) and 1 := (1, 0, . . . ) the neutral elements of summation and multiplication.
The tensor algebra T (V ) ⊂ T ((V )) consists of those tensor series with only finitely many non-zero elements,
which defines a subalgebra. There is a natural pairing between T ((V )) and T (V ) given by

〈·, ·〉 : T (V )× T ((V ))→ R, 〈a,b〉 := a0b0 +
∞∑
k=1

〈ak, bk〉,

where the summation is finite by the definition of T (V ) and 〈ak, bk〉 denotes the dot product1 on V ⊗k. We will
frequently use this pairing by associating an element ` ∈ T (V ) to the linear functional on the extended tensor
algebra 〈`, ·〉 : T ((V ))→ R.

The truncated tensor algebra is defined by

TN (V ) :=
N⊕
n=0

V ⊗n.

1This inner product on V ⊗k is defined as the bilinear extension of 〈ei1⊗· · ·⊗eik , ej1⊗· · ·⊗ejk 〉 := 〈ei1 , ej1〉 · · · 〈eik , ejk 〉 :=
δi1,j1 · · · δik,jk , where δ denotes the Kronecker-Delta.
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We define maps πn : T ((V )) → V ⊗n and π≤N : T ((V )) → TN (V ) by πn(a) = an and π≤N (a) =
(a0, . . . , aN ). Note that TN (V ) forms an algebra under the truncated tensor multiplication a⊗N b := π≤N (a⊗
b), for a,b ∈ TN (V ). However, we will not distinguish between the multiplication symbols on TN (V ), T (V )
and T ((V )) and use ⊗ in all cases and write 0 and 1 for the neutral elements π≤N (0) and π≤N (1) in the
truncated tensor algebra. Furthermore, TN (V ) is a finite dimensional vector space which we equip with the
norm

|a| =
N∑
n=0

|an|, a ∈ TN (V ),

where | · | =
√
〈·, ·〉 denotes the Euclidean norm on V ⊗n ∼= Rdn for any n ∈ N.

The Lie-algebra generated from {e1, . . . , ed}, where ei := (0, ei, 0, . . . ) ∈ T (V ), and the commutator
bracket

[a,b] = a⊗ b− b⊗ a, a,b ∈ T (V ),

is called the free Lie-algebra g(V ) over V . It is a sub-algebra of T ((V ))0 = {a ∈ T ((V )) | π0(a) = 0}. Its
tensor exponential, i.e., its image under the map

exp⊗ : T ((V ))0 → T ((V )), a 7→ 1 +

∞∑
n=1

1

n!
a⊗n, (3.1)

is called the free Lie groupG(V ) := exp⊗(g(V )), which is a subgroup of T ((V ))1 = {a ∈ T ((V )) | π0(a) =
1}. Indeed, (G(V ),⊗) is a group with identity 1, where for g = exp⊗(a) ∈ G(V ) the inverse element is
given by g−1 = exp⊗(−a). The inverse of the operation (3.1) is given by the tensor logarithm

log⊗ : T ((V ))1 → T ((V ))0, (1 + a) 7→ 1 +
∞∑
n=1

(−1)n+1

n
a⊗n. (3.2)

We also set gN (V ) := π≤N (gN (V )) and GN (V ) := π≤N (G(V )), which are the free nilpotent Lie algebra
and group of order N . We equip these spaces with the subspace topology in TN (V ). The truncated tensor
exponential and logarithm

expN⊗ : TN (V )0 → TN (V )1, logN⊗ : TN (V )1 → TN (V )0,

are defined using the corresponding (finite!) power series in the truncated tensor algebra. Hence, these maps
are smooth, and, furthermore, it holds logN⊗ = (expN⊗ )−1 and GN (V ) = expN⊗ (gN (V )).

3.2 Rough paths and their signatures

One can start by defining the signature for a piecewise smooth path x : [0, T ] → V , i.e., assume that the
derivative ẋ is integrable and has only finitely many points of discontinuity. We define its signature Sig(x)s,t
over the interval [s, t] ⊂ [0, T ] as the tensor series of iterated integrals. More precisely, Sig(x)s,t ∈ T ((V ))1

and for all n = 1, 2, . . . we set

πn(Sig(x)s,t) :=

∫ t

s

∫ tk

s
· · ·
∫ t2

s
ẋ(t1)⊗ · · · ⊗ ẋ(tn) dt1 · · · dtn.

One can show that as consequence of the integration by parts rule such signatures are elements of the free Lie
group G(V ), i.e., Sig(x) : ∆T → G(V ), where ∆T := {(s, t) ∈ [0, T ]2 : 0 ≤ s ≤ t ≤ T}. Moreover, we
have the Chen relation (see [Che57])

Sig(x)s,t = Sig(x)s,u ⊗ Sig(x)u,t, 0 ≤ s ≤ u ≤ t ≤ T.
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Stochastic control with signatures 9

We set Sig(x)t := Sig(x)0,t and also define the truncated signature by Sig(x)≤N := π≤N (Sig(x)).

The space Ωp
T (V ) of geometric p-rough paths for some p ≥ 1 is constructed as the closure of the set of smooth

paths under a p-variation metric that also measures the first bpc-levels of the signature, where bpc denotes the
integer part of p. To make this more precise, we first define the p-variation-distance of two group valued paths
x,y : [0, T ]→ GN (V ) by

dp−var;[s,t](x,y) := max
k=1,...,N

sup
D⊂[s,t]

∑
ti∈D

∣∣∣πk(x(ti)
−1 ⊗ x(ti+1)− y(ti)

−1 ⊗ y(ti+1)
)∣∣∣ pk
 k

p

where the supremum ranges over all partitions D = {ti} of [s, t]. We use the notation dp−var(x,y) :=
dp−var;[0,T ](x,y). The space of geometric p-rough paths Ωp

T (V ) is then defined as the set of continuous

paths x : [0, T ]→ Gbpc(V ) that satisfy

(i) dp−var;[s,t](1,x) <∞,

(ii) there exists a sequence of piecewise smooth paths (xn)n≥1 with xn : [0, T ]→ V such that

lim
n→∞

dp−var

(
x, Sig(xn)≤bpc

)
= 0.

Unless stated otherwise we will abbreviate Ωp
T = Ωp

T (V ). On the subset

Ωp,0
T := {x ∈ Ωp

T | x(0) = 1},

dp−var defines a metric. We can similarly equip Ωp
T with a metric by additionally comparing starting values. With

the thereby induced topology Ωp,0
T and Ωp

T are Polish spaces.

A key insight for geometric p-rough paths is that signature at high levels N > bpc are uniquely determined by
the signature up to level bpc. Indeed, the Lyons Extension Theorem states that every geometric rough path
x ∈ Ωp,0

T has a unique lift Sig(x) ∈ G(V ), such that π≤bpc(Sig(x)) = x and also for every N > bpc it
holds dp−var

(
π≤N (Sig(x)), 1

)
<∞ and the lifting map

Ωp,0
T → GN (V ), x 7→ Sig(x)≤N0,T

is continuous. Note that for a piecewise smooth path x : [0, T ] → V we have Sig(x)≤bpc ∈ Ωp,0
T for any

p ≥ 1. Furthermore, the signature in the rough path sense is consistent with signature in the smooth sense,
i.e., Sig(Sig(x)≤bpc) = Sig(x).

We say that a continuous path x : [0, T ] → V has a lift to a geometric p-rough path, if there exists x ∈ Ωp
T

such that π1(x) = x. Note that this lift is not unique, even though there often is a canonical choice. For instance,
this is the case for solutions to rough differential equations (see the Section 3.5) and for many stochastic process.
The canonical lift of a Brownian motion B, for example, is obtained by suitable piecewise linear approximations
(Bn)n≥1. It can be shown that for any p ∈ (2, 3) we have

Sig(Bn)≤2 ΩpT−−−→
n→∞

B :=

(
1, B,

(∫ ·
0
Bi
s ◦ dBj

s

)
i,j=1,...,d

)
almost surely,

where “◦dB” denotes the Stratonovich integration with respect to B. In particular, B defines a Ωp
T valued

random-variable, which we call the Stratonovich-lift of the Brownian motion B.
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3.3 Stopped rough paths

We can define a stochastic rough path as an Ωp
T -valued random variable. To introduce the notion of adepted-

ness, we will need to consider functionals of the restriction of a rough path to subintervals of [0, T ]. This calls for
the definition of an appropriate ambient space ΛT , where we can compare paths defined on different segments
of the time line. For rough paths this was originally proposed in [KLPA20], then elaborated in [BHRS23], and is
motivated by the functional Itô calculus, see [Dup19, CF10].

We call ΛT :=
⋃
t∈[0,T ] Ωp,0

t the space of stopped rough paths. Note that

ΛT = {x|[0,t] | x ∈ Ωp,0
T , t ∈ [0, T ]}.

Following [CF10] and [CM24] we also call a map f : ΛpT → R a non-anticipative functional. To indicate from

which set Ωp,0
t and element x ∈ ΛT is chosen, we will write it as x = xt.

To define a suitable topology on ΛT , note that we can extend a path segment xt ∈ Ωp,0
t by its constant

extrapolation xt(· ∧ t) ∈ Ωp,0
T . We then equip ΛT with the metric

d(xt,ys) := dp−var

(
xt(· ∧ t),ys(· ∧ s)

)
+ |t− s|, xt,ys ∈ ΛT .

Clearly, the topology on ΛT is the initial topology of the two maps ΛT → Ωp,0
T , xt 7→ xt(· ∧ t) and ΛT →

[0, T ], xt 7→ t. We further recall the following result from [BHRS23, Appendix A].

Proposition 3.1. ΛT is a Polish space. Furthermore, the topology on ΛT is the final topology induced by the
map ϕ : [0, T ]× Ωp,0

T → ΛT , (t,x) 7→ x|[0,t].

3.4 Time augmention and universal approximation

In order to use the signature as a feature on the path space, we extend paths by a running time component. This
will guarantee that the signature uniquely characterizes the path on the entire interval. In this section we will
explain how this extension works for geometric rough paths. We also explain the universality of linear signature
maps; see Proposition 3.3.

Let x ∈ Ωp,0
T and let (xn)n≥1 be a sequence of piecewise smooth paths such that Sig(xn)≤bpc converges

to x in Ωp,0
T We extend xn to a piecewise smooth path x̂n := t 7→ (t, xn(t)). It then follows from [FV10,

Theorem 9.32] that (Sig(x̂n)≤bpc)n≥1 forms a Cauchy sequence in Ωp,0
T (R×V ) and we denote by x̂ its limit.

Furthermore, we see from the same theorem that there exists a constant C > 0 depending on p and T such
that

dp−var(x,y) ≤ dp−var(x̂, ŷ) ≤ Cdp−var(x,y), x,y ∈ Ωp,0
T .

We define by Ω̂p,0
T := {x̂ | x ∈ Ωp,0

T } ⊂ Ωp,0
T (R × V ) the set of time augmented geometric p-rough paths.

The above estimate implies that the embedding x 7→ x̂ is continuous and that Ω̂p,0
T is also a Polish space. We

extend the notions from the previous section to these time augmented paths by passing from the stopped rough
path xt ∈ ΛT to its augmented version x̂t ∈ Ω̂p,0

T .

We will often use that signatures of time-augmentations depend continuously on the original rough path:

Lemma 3.2. For any N ∈ N, ΛT → GN (V ) : xt 7→ Sig(x̂t)≤N0,t is continuous.

Proof. For xt ∈ ΛT define the extrapolated path xt,T := xt(t ∧ ·) ∈ Ωp,0
T and its time-augmentation by

x̂t,T ∈ Ω̂p,0
T . We then have by Chen’s identity

Sig(x̂t)0,t = Sig(x̂t,T )0,t

= Sig(x̂t,T )0,T ⊗ (Sig(x̂t,T )t,T )−1

= Sig(x̂t,T )0,T ⊗ exp⊗(−e1(T − t))
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The statement then follows from continuity of the maps xt 7→ (t,xt,T ), x 7→ x̂ and x 7→ Sig(x)≤N0,T for any
N ∈ N are continuous.

We are now ready to state the approximation property of linear signature functionals within the class of continu-
ous non-anticipative functionals.

Proposition 3.3. For any continuous function f : ΛpT → R and compact set K ⊂ Ωp,0
T there exists a

sequence (`n)n≥1 ⊂ T (V ) such that

lim
n→∞

sup
t∈[0,T ]

sup
x∈K

(∣∣f(x|[0,t])− 〈`n,Sig(x̂|[0,t])〉
∣∣) = 0.

This form of universal approximation property goes back to [KLPA20]. Let us sketch its proof since it highlights
key structural properties of signatures which underline their usefulness for encoding path information. From the
algebraic properties of the signature, it follows that the linear functionals {xt 7→ 〈`,Sig(x̂t)0,t〉 | ` ∈ T (V )}
form an algebra (cf. [LCL07, Theorem 2.15]). By Lemma 3.2 it is a sub-algebra ofC(ΛT ;R). Since the signature
characterizes the path (see [HL10], [BGLY16]), the algebra is point separating (see [KLPA20, Lemma B.3] for
detailed proof). Finally, by Proposition 3.1, we have that ϕ([0, T ]×K) ⊂ ΛT is compact. The statement then
follows from the Stone-Weierstrass Theorem.

3.5 Rough differential equations

Starting as in Section 3.2, we can give meaning to a rough differential equation

dy(t) = σ(y(t))dx(t), t ∈ [0, T ], y(0) = y0 ∈ Rm. (3.3)

where x ∈ Ωp,0
T (Rd) and σ : Rm → Rm×d, by first considering it for piecewise smooth paths. Indeed, let

x : [0, T ]→ Rd be piecewise smooth and consider the system of ordinary integral equations

yk(t) = yk0 +

d∑
i=1

∫ t

0
σki (y(s))ẋi(s)ds, k = 1, . . . ,m, t ∈ [0, T ], y0 ∈ Rm. (3.4)

Given that σ is bounded and Lipschitz continuous, the above equation has a unique solution, which we denote
by Γσ(y0;x). We then say that a continuous path y : [0, T ] → Rm is a solution to the rough differential
equation (3.3) if there exists a sequence of piecewise smooth paths (xn)n≥1 such that

(i) limn→∞ dp−var

(
x, Sig(xn)≤N

)
= 0,

(ii) Γσ(y0;xn) −−−→
n→∞

y uniformly on [0, T ].

In order to state the main existence and uniqueness result for rough differential equation we introduce a con-
venient Lipschitz space. Let V and W be two Banach spaces. For γ ∈ (0, 1] and a map f : V → W we
define

‖f‖Lipγ(V ;W ) = max

{
sup
u∈V
‖f(u)‖, sup

u,v∈V

‖f(v)− f(u)‖
‖u− v‖γ

}

and, for γ > 1 and a bγc-times Fréchet-differentiable map f : V →W , we define recursively

‖f‖Lipγ(V ;W ) = max

{
sup
u∈V
‖f(u)‖, ‖f ′‖Lipγ−1(V,L(V ;W ))

}
,
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where L(V ;W ) denotes the Banach space of bounded linear functions from V to W (see [FV10, Appendix B]
for more detail). In the following we will simply write ‖f‖Lipγ = ‖f‖Lipγ(V ;W ) as the spaces V and W can
be inferred from the context. Furthermore, if we require that ‖f‖Lipγ < ∞ then we implicitly require that f is
bγc-times differentiable and we set

Lipγ(V ;W ) := {f : V →W | ‖f‖Lipγ <∞}

Given that ‖σ‖Lipγ <∞ for some γ > p it holds that equation (3.3) has a unique solution y ∈ C([0, T ];Rm).
Moreover, y has a unique lift to a geometric rough path y ∈ Ωp

T (Rm) such that for any sequence of piecewise
smooth paths (xn) satisfying (i) and yn := Γσ(y0, xn) it holds

lim
n→∞

dp−var(y, Sig(yn)≤bpc) = 0.

Furthermore, the so called Itô-Lyons solution map

Rm × Ωp,0
T (Rd)× Lipγ(Rm;Rm×d)→ Ωp

T (Rm)

(y0,x, σ) 7→ y

is locally Lipschitz continuous.

4 Approximation with Signature Controls

We are now ready to provide the main results of this paper, namely that the general, rough and non-Markovian
stochastic control problem introduced in Section 2, can be solved by controls, which are functions of the signa-
ture of the driving path. In order to do so, we first need a new, general uniform stability result for rough differential
equations whose drift depends on a measurable control, see Section 4.1. We continue by showing that progres-
sively measurable admissible controls can be approximated by continuous controls, i.e., continuous function on
the space of stopped rough paths, see Section 4.2. In Section 4.3 we derive an appropriate universal approx-
imation theorem (a.k.a. Stone-Weierstrass theorem), which allows us to conclude that signature controls (i.e.,
controls defined as linear functionals of the signatures or as neural networks applied to the log-signature) are
dense in the set of all admissible controls. Finally, we prove that we can solve the original stochastic optimal
control problem by restricting admissible controls to signature controls, in the sense that the infimum of the
expected cost is equal, see Section 4.4.

4.1 Drift-controlled rough differential equations

In the following, we will consider rough differential equations with a controlled drift term

dy(t) = b(y(t), u(t))dt+ σ(y(t))dx(t), t ∈ [0, T ], y(0) = y0 ∈ Rm, (4.1)

where u : [0, T ] → U ⊂ Rk is measurable and b : Rm × Rk → Rm. The following theorem establishes the
existence, uniqueness and stability of solutions, which will be crucial for proving our main approximation result
in Section 4.4. Substituting x = X(ω) and u = U(ω), the solution of (4.1) corresponds to the solution of the
controlled stochastic RDE (2.1) for a given realization of the noise as well as the control.

Theorem 4.1. Let x ∈ Ωp,0
T (Rd) for some p ∈ [1,∞) and assume that

sup
a∈U
‖b(·, a)‖Lip1 <∞ and ‖σ‖Lipγ+1 <∞ for some γ > p. (4.2)

Then equation (4.1) has a unique solution y with corresponding lift y ∈ Ωp
T (Rm) such that

Rm × Ωp,0
T (Rd) : (y0,x) 7→ y,
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is locally Lipschitz continuous uniformly in u. Assuming further that

sup
a,a′∈U

‖b(·, a)− b(·, a′)‖Lip1

‖a− a′‖
<∞ (4.3)

and denoting by L0(dt;U) = {u : [0, T ] → U measurable} equipped with the topology of convergence in
Lebesgue-measure, then also the map

Γb,σ : Rm × Ωp,0
T (Rd)× L0(dt,U)→ Ωp

T (Rm), (y0,x, u) 7→ y,

is continuous.

Proof. The proof uses the flow decomposition method. Let φ : [0, T ]× Rm → Rm denote the solution to

φ(t, y0) = y0 +

∫ t

0
σ(φ(s, y0)) dx(s).

From [FV10, Proposition 11.11], we know that φ is a flow of C2-diffeomorphisms and that the first and second
derivate of φ and its inverse are bounded by a constant depending only on p, γ, ‖σ‖Lipγ+1 and the rough path
norm of x. From these properties and assumption (4.2), we can conclude that the ordinary differential equation

Zy0t = y0 +

∫ t

0
(Dzφ(s, z)|z=Zy0s )−1b(φ(s, Zy0s ), u(s)) ds (4.4)

has a unique solution Zy0 for every initial condition y0. The solution to (4.1) is then given by

y(t) = φ(t, Zy0t ).

We will now construct the rough path lift of y. By definition, there exists a sequence of smooth paths (xn)n≥1

s.t.

lim
n→∞

dp−var

(
x, Sig(xn)≤bpc

)
= 0.

Let yn denote the solution to (4.1) where we replace the driving rough path by Sig(xn)≤bpc. Since the paths yn
are smooth, Sig(yn)≤bpc is well defined. It is not hard to prove that (exp

bpc
⊗ (y0)⊗Sig(yn)≤bpc)n≥1 constitutes

a Cauchy sequence in the space Ωp
T (Rm) and that the limit y is a rough path lift of y that satisfies the stated

properties. In fact, the components of y can be identified as rough integrals (cf. [FH20, Chapter 4]). To see this,
we note first that y is controlled by the rough path x in the sense of Gubinelli (cf. [FH20, Definition 4.6 and
Section 4.5]). The second iterated integral is then given by∫ t

s
(y(v)− y(s))⊗ dy(v) :=

∫ t

s
(y(v)− y(s))⊗ b(y(v), u(v)) dv

+

∫ t

s
(y(v)− y(s))⊗ σ(y(v)) dx(v).

Since the integrand in the second integral is controlled by x, the integral indeed exists as a rough integral.
Furthermore, the rough integral is again controlled by x, thus we can make sense of the third iterated integral of
y similarly. By an induction argument, iterated integrals of y of arbitrary order can be defined and it is not hard
to show that they coincide with the components of y.

The rest of the proof follows by standard arguments.

Remark 4.2. In [DFG17, Theorem 29], a similar statement is formulated in the case of p ∈ [2, 3) under the
(slightly) weaker assumption ‖σ‖Lipγ < ∞. The reason why we need one additional degree of smoothness
here is that we use the flow decomposition method for which also the second derivative of the flow φ plays a role
in the estimates to ensure global existence and uniqueness of (4.4). The proof of [DFG17, Theorem 29] avoids
the flow decomposition, but relies on a yet to be developed solution theory for rough differential equations on
Banach spaces containing a drift parameter that is only Lipschitz continuous. With this it should be possible to
get a version of Theorem 4.1 that only assumes ‖σ‖Lipγ <∞.
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4.2 Approximation of admissible controls by non-anticipative continuous path functions

We will start by lifting progressively measurable processes with measurable non-anticipative path functionals.
The proof is mainly postponed to the Appendix A. Throughout this section we will assume that Assumption (2.3)
holds, i.e., X takes values in Ωp,0

T and generates the underlying filtration (Ft).

Proposition 4.3. For any (Ft)-progressively measurable process U : [0, T ] × Ω → Rk there exists a Borel
measurable map θ : ΛT → Rk such that for

θ(X(ω)|[0,t]) = Ut(ω), (4.5)

for Leb⊗ P-a.e. (t, ω) ∈ [0, T ]× Ω. Conversely, for any Borel measurable θ : ΛpT → Rk,

U θt := θ(X|[0,t]), t ∈ [0, T ], (4.6)

defines an (Ft)-progressively measurbale process.

Proof. Let U be a (Ft)-progressively measurable process. Then U : [0, T ] × Ω → Rk is measurable with
respect to B([0, T ]) ⊗ FT . From Lemma A.1 we have that FT is the completion of X−1(B(Ωp,0

T )). Hence,

there exists a measurable map η : [0, T ]× Ωp,0
T → Rk such that U = η(·,X) upto indistinguishability.

Now fix an arbitrary t ∈ [0, T ]. Since Ut is Ft-measurable it follows again by Lemma A.1 that there exists a
map ηt : Ωp,0

t → Rk such that almost surely η(t,X) = Ut = ηt(X|[0,t]). This readily implies that almost

surely η(t,X) = η(t,X·∧t). Finally we define θ : ΛpT → Rk by setting θ(X|[0,t]) := η(t,X·∧t) which satisfies

(4.5). From the continuity of the extension map ΛT → [0, T ]×Ωp,0
T , (t,xt) := (t,xt(· ∧ t)) (see Section 3.3)

we also have that θ is measurable.

Conversely, if U is a process satisfying (4.6) for some Borel-measurable map θ : ΛT → Rk, then for any t ∈
[0, T ] and B ∈ B(Rk) we have

{(s, ω) ∈ [0, t]× Ω | Us(ω) ∈ B} = {(s, ω) ∈ [0, t]× Ω | X(ω)|[0,s] ∈ θ−1(B)}
= {(s, ω) ∈ [0, t]× Ω | ϕ(s,X(ω)|[0,t]) ∈ θ−1(B)},

where ϕ : [0, t] × Ωp,0
t → Λt : (s,x) 7→ x|[0,s]. By Proposition 3.1 the map ϕ is continuous. Since

ω 7→ X(ω)|[0,t] is Ft measurable it then follows that the above set is in B([0, t])⊗Ft.

Based on the above result, we are next going to show that admissible controls can be approximated with con-
tinuous non-anticipative path functionals, i.e., with controls in the following subclass

Ac := {U θ | θ : ΛpT → R continuous.}

Corollary 4.4. For any admissible control U ∈ A there exists a sequence (Un) inAc such that

U = lim
n→∞

Un Leb⊗ P-almost everywhere. (4.7)

We denote by PU : E → U the projection map onto the closed convex set U . Note that by the Hilbert projection
theorem (c.f. [Rud87, Theorem 4.10]) this map is unique and continuous.

Proof. The continuity of ϕ : [0, T ] × Ωp,0
T → ΛpT :, (t,x) 7→ x|[0,t] implies that the push forward µ =

ϕ(·,X(·))∗[Leb ⊗ P] is a well-defined probability measure on (ΛpT ,B(ΛpT )). From [Wiś94, p. 148] it follows
that every Borel measurable map θ : ΛpT → Rk can be approximated µ-almost surely by continuous maps.
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Now let U ∈ A. By Proposition 4.3 there exits a Borel measurable θ : ΛpT → Rk such that (4.5) holds for
Leb ⊗ P-a.e. (t, ω). From the previous paragraph it follows that there exists a sequence of continuous maps
θn : ΛpT → Rk for n ≥ 1 that converges (Leb⊗ P)-almost everywhere towards θ. This implies that

Ut(ω) = θ(X|[0,t](ω)) = lim
n→∞

θn(X|[0,t](ω)),

for Leb ⊗ P-a.e. (t, ω) ∈ [0, T ] × Ω. Finally, composing with the projection map Un := PU ◦ θ̃n ◦ X and
recalling that PU is continuous, the claim follows.

4.3 Linear and deep signature controls

The universal approximation theorem for signatures allows us to approximate any continuous functional on the
path space by linear functionals of the signature. This motivates us to consider the following class of linear
signature functionals

Tlin :=
{
θ : ΛT → E

∣∣∣ ∃`1, . . . , `k ∈ T ((Rd+1)∗) s.t. θi(x̂t) = 〈`i,Sig(x̂t)0,t〉 ∀ xt ∈ ΛpT

}
.

In general such functionals θ ∈ Tlin will not lead to admissible strategies U θ. Recall that PU is the projection
from E onto the convex set U . We then define the set of linear signature controls

Alin :=
{
U θ
∣∣∣ ∃θ′ ∈ Tlin s.t. θ = PU ◦ θ′

}
.

We will argue below that Tlin ⊂ C(ΛpT ;E), thus verifying that indeed Alin ⊂ Ac ⊂ A. Before doing so we
will, however, introduce a second class of signature strategies, based on non-linear functionals. Motivated by
the numerical efficiency for optimal stopping problems in [BHRS23], we define the following class of deep neural
functionals of the log signature

TDNN :=
{
θ : ΛT → E

∣∣∣ ∃N ∈ N, F ∈ Dηd+1,N ,k s.t. θ(x̂t) = F◦log⊗(Sig(x̂t)≤N0,t ) ∀ xt ∈ ΛpT

}
,

where log⊗ : GN (Rd+1) → gN (Rd+1) ∼= Rηd+1,N is the truncated tensor logarithm (see Section 3.1),
ηd+1,N is the dimension of the truncated log signature2 andDl,k is the class of deep neural networks mapping
from Rl to Rk with fixed depth I ≥ 1, number of neurons q ≥ 1 and activation function3 ϕ : Rq → Rq . More
precisely, Dl,k consists of functions of the form

F = A0 ◦ ϕ ◦A1 ◦ ϕ ◦ · · · ◦AI ,

where AI : Rl → Rq , A0 : Rq → Rk and Ai : Rq → Rq (0 < i < I) are linear maps. Similar to the linear
case, we define the set of deep signature controls by

ADNN :=
{
U θ
∣∣∣ ∃θ′ ∈ TDNN s.t. θ = PU ◦ θ′

}
.

The following verifies that the signature controls are dense in the set of admissible strategies.

Proposition 4.5. It holds that Tlin, TDNN ⊂ C(ΛT ;Rk). Furthermore, given assumption (2.3), it holds that
Alin,ADNN ⊂ Ac and for any admissible control U ∈ A there exists a sequence (Un)n≥1 ⊂ Alin (respec-
tively inADNN) such that

U = lim
n→∞

Un, Leb⊗ P-almost everywhere.

2We refer to [BHRS23] Section 7 for more detail on the log-signature and the dimension of the step-N nilpotent free Lie-algebra
gN (Rd+1). Note also that for simplicity we identify gN (Rd+1) with RηN ,k in the definition of TDNN without formally introducing an
isomorphism.

3An activation function is a continuous function that is not a polynomial. For example the ReLu function ϕ(x) = max{0, x}
(componentwise).
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Based on Corollary 4.4 the proof is similar to the Proposition 7.4 in [BHRS23].

Proof. Recall from Lemma 3.2 that the map xt 7→ Sig(x̂t)≤N0,T is continuous for any N ∈ N. Since also the

linear map 〈`, ·〉 : T ((Rd+1)) → R is continuous for any ` ∈ T (Rd+1) we readily conclude that Tlin ⊂
C(ΛT ;Rk). Similarly, since any F ∈ DηN ,k is a continuous function and recalling from Section 3.1 that also
the truncated logarithm log⊗ : GN (Rd+1) → gN (Rd+1) is continuous it follows similarly that TDNN ⊂
C(ΛT ;Rk). The fact thatAlin,ADNN ⊂ Ac then follows immediately by the continuity of the projection PU .

To prove the approximating result it suffices by Corollary 4.4 to show that for any θ ∈ C(ΛT ;Rk) there exits a
sequence (θn)n≥1 ⊂ Tlin (respectively TDNN), such that for a.e. ω ∈ Ω it holds

θ(X|[0,t](ω)) = lim
n→∞

θn(X|[0,t](ω)), for Leb-a.e. t ∈ [0, T ]. (4.8)

To this end, since Ωp,0
T is a Polish space, we can choose an increasing sequence of compact sets Kn ⊂ Ωp,0

T

such that limn→∞ P(X ∈ Kn) = 1. By Proposition 3.3 for each n ∈ N there exits a sequence (`n,j)j≥1 ⊂
T (Rd+1)⊗k such that for jn ∈ N large enough it holds

sup
t∈[0,T ]

sup
x∈Kn

max
i=1,...,k

(∣∣θi(x|[0,t])− 〈`ij , Sig(x̂|[0,t])〉
∣∣) ≤ 1

n
, j ≥ jn.

Defining the sequence (θn)n≥1 by θin(xt) := 〈`ijn ,Sig(x̂t)0,t〉 for all i = 1, . . . , k, we readily see that it
satisfies (4.8). To prove the approximation result forADNN it now suffices to show that TDNN is suitably dense
in Tlin. More precisely, it suffices to show that for any compact set K ⊂ Ωp,0

T , N ∈ N and ` ∈ TN (Rd+1)
there exists a sequence of functions (Fn)n≥1 ∈ Dηd+1,N ,1 such that

lim
n→∞

sup
x∈K
|〈`,Sig(x̂)0,T 〉 − Fn(log⊗ Sig(x̂)0,T )| = 0.

Recall from Section 3.1 that the map log⊗ : GN (Rd+1) → gN (Rd+1) is continuous and invertable with
inverse exp⊗. Hence, in particular the set {log⊗ Sig(x̂)0,T | x ∈ K} ⊂ gN (Rd+1) is compact. Since also
the map gN (Rd+1) → R : z 7→ 〈`, exp⊗(z)〉 is continuous, the statement now readily follows from the
universal approximation theorem for nerual networks (see e.g. [LLPS93, Theorem 1]).

4.4 Approximation of the optimal costs

In this section we present our main theoretical result, which states that the optimal expected costs of the problem
introduced in Section 2 can be approximated using the classes of signature controlsAlin andADNN. We begin
by proving the continuous dependence of the costs with respect to the underlying control. Given the continuity
of the cost functional L, this is a direct consequence of the stability result in Theorem 4.1.

Lemma 4.6. Assume that (4.2)–(2.2) hold and let (Un)n≥1 ⊂ A and U ∈ A s.t.

U = lim
n→∞

Un, Leb⊗ P-almost everywhere.

Denote by Yn = YUn respectively Y = YU the solution to the rough differential equation (2.1) with the control
Un respectively U . Then it holds

L(Y, U) = lim
n→∞

L(Yn, Un), almost surely.

Proof. We have in particular that Un(ω) converges towards U(ω) in L0(dt,U) for a.e. ω ∈ Ω. From Theo-
rem 4.1 it follows that

lim
n→∞

dp−var(Yn(ω),Y(ω)) = 0, for a.e. ω ∈ Ω.

We readily conclude using the continuity assumptions on L.
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Combining Corollary 4.4 and Proposition 4.5 with the above lemma, the following result is now a direct conse-
quence of the dominated convergence theorem.

Theorem 4.7. Given assumptions (4.2)–(2.3), we have

inf
U∈A

J(U) = inf
U∈Ac

J(U) = inf
U∈Alin

J(U) = inf
U∈ADNN

J(U).

5 Numerical Method and Examples

In this section, we will introduce a numerical method that arises from the parametrization of admissible controls in
Section 4.2. We will then evaluate its performance through two case studies of non-Markovian control problems.

The full code is available at https://github.com/hagerpa/sigControl.

5.1 Numerical Method

Fixing a signature truncation level N ≥ 1, the corresponding sub-classes ANlin ⊂ Alin and ANDNN ⊂ ADNN

constitute finite-dimensional parameterizations of admissible controls. Indeed, for ANlin the set of parameters
is given by the coefficients in the truncated tensor series `1, . . . , `k ∈ TN ((Rd+1)∗), i.e., the dimension
of the parameter space is given by k · (1 + (d + 1) + · · · (d + 1)N ). For ANDNN, the parameter space is
determined by the architecture of the deep neural networks Dηd+1,N ,k, thus characterized by the number of
hidden layers I and the number of neurons per layer q. Let us reveal the parametrization in both cases more
explicitly by noting that for any U ∈ ANlin (resp. ANDNN) there exists a vector of parameters η that defines a

function θ(· ; η) : GN (Rd+1)→ U such that Ut = θ(Sig(X̂)≤N0,t ; η). For ease of notation we then also write

U(η) ∈ ANlin (resp.ANDNN).

The next best objective towards solving the control problem is then to minimize J(U(η)) over η. This is achieved
numerically through a Monte Carlo approximation of the expectation and a time discretization for approximat-
ing the signature and solving the rough differential equation. We will first present the general structure of the
algorithm and then comment on the details below. For the sake of concreteness, we will assume that the cost
functional L is of the integral form4 (2.6).

(1) Fix a time grid Π = {t0, t1, . . . , tn} with 0 = t0 < t1 < · · · < tn = T .

(2) Generate M independent realizations {(δS(i)
j )j=1,...,n | i = 1, . . . ,M} of (Sig(X̂)≤Ntj−1,tj

)tj∈Π; then

set S
(i)
0 = 1 and iteratively S

(i)
j = S

(i)
j−1 ⊗ δS

(i)
j .

(3) Evaluate the signature controlsU
(i);η
j = θ(S

(i)
j ; η) and store the gradients∇ηθ(S(i)

j ; η), j = 1, . . . , n.

(4) Calculate or use a suitable numerical scheme to find (approximate) solutions

{(Y (i);η
j )j=0,...,n | i = 1, . . . ,M} on the grid Π of the rough differential equation (2.4) corresponding

to the samples (δS
(i)
j ).

(5) Calculate the approximate expected costs

1

M

M∑
i=1

∑
tj∈Π

f(tj , Y
(i);η
j , U

(i);η
j )(tj − tj−1) + g(Y (i);η

n )

 (5.1)

and its gradients with respect to η using the previously stored gradients of the control. Then updated η
using a step of stochastic gradient descent or a similar method.

4In general, the discretization of the cost functional depends on its specific form, while under the given assumption, a straightforward
discretization is given by the Riemann sum.
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(6) Starting from 2., repeat the above procedure with the new parameters several times or until no further
improvement.

(7) For a larger number of samples M ′ �M follow the steps 2. - 5. above once again and use (5.1) as an
approximation to the optimal control value.

Calculation of the signature

In most cases of interest, we are confined to approximate realizations of the signature Sig(X̂)≤Ntj−1,tj
in step (2)

since direct sampling is not possible. Assume that X is the limit of the lifted piecewise linear approximation of
the process X = π1(X), from which we can generate samples5. As discussed in Section 3.2, this holds true,
for example, in the case of the Stratonovich-lift of a Brownian motion. We can then approximate realizations
of the signature by sampling X on a refined grid of the interval [tj−1, tj ] and calculating the signature of the
linearly interpolated path. Here a refinement can be beneficial for the optimization procedure, since further
information from the evolution of X between tj−1 and tj can be incorporated without the need to re-evaluate
the control. The signature of a piecewise linear path can be calculated exactly, and implementations of the
underlying algebraic structure are readily accessible, e.g., in the iisignature package [RG20]. This package also
provides the necessary functionality to join the signatures over consecutive time intervals. We also note that
the log-signature of a piecewise linear path can be calculated directly using the Baker–Campbell–Hausdorff
formula, and the iisignature package also provides this functionality.

Numerical schemes

Similarly to the signature, calculating the RDE solutions explicitly is mostly not an option. Instead, one can use
various numerical schemes to calculate approximate solutions. Having already calculated approximations of

the signature increments (δS
(i)
j ) in the previous step, it is natural to use a higher-order Euler (or Taylor-type)

scheme given by

Y
(i);η
j = Y

(i);η
j−1 + b(Y

(i);η
j−1 , U

(i);η
j−1 )(tj − tj−1) + E(σ)(Y

(i);η
j−1 , δS

(i)
j ), (5.2)

for all j = 1, . . . , n, starting with Y
(i);η

0 = y0, where

E(σ)(y, δS
(i)
j ) =

N∑
k=1

d∑
i1,...,ik=1

σ[i1](y) · · ·σ[ik](y)Id(y)〈ei1...ik , δSj〉

= σ(Y
(i);η
j−1 )π1(δSj) +

d∑
i1,i2=1

m∑
l=1

[
σli1

∂

∂yl
σi2

]
(Y

(i);η
j−1 )〈ei1i2 , δSj〉+ . . .

with σ[i] :=
∑m

l=1 σ
l
i
∂
∂yl

and the identity map Id : y 7→ y. Note that one recovers the usual Euler scheme for
N = 1 and that the choice N = 2 corresponds to the Milstein scheme. In general, to guarantee convergence,
one needs to choose N ≥ bpc. This class of schemes were analyzed in [FV10] first. If no refinement of the

intervals [tj−1, tj ] is used when calculating the signature increments, we have δS
(i)
j = expN⊗ (X

(i)
tj
−X(i)

tj−1
).

Such simplified higher-order Euler schemes and their convergence rates were analyzed e.g. in [DNT12, FR14,
BFRS16]. In general, higher-order Euler schemes are easy to implement, but they require the calculation of
higher order derivatives, too, which can be costly in high dimensions. Moreover, they have a bad performance
in case the underlying RDE is stiff, in which case implicit schemes typically perform better. In [RR22], a class
of simplified Runge-Kutta schemes for RDEs was introduced and analyzed that contains derivative-free and
implementable schemes including implicit ones.

5If direct sampling from the rough path X is possible, we use piecewise geodesic interpolation instead. However, it’s worth noting
that even for a Brownian motion, direct sampling from the rough path is not possible.
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Numerical optimization procedure

The calculation of gradients in step (3) and (5) is automatized when using standard machine learning software
libraries such as PyTorch [PGM+19]. Such packages also provide state of the art variants of stochastic gradient
descent. In the numerical examples below the performance was rather insensitive to the specific choice of opti-
mization method and the choice of hyper-parameters. In this case the “Adam” method [KB14] lead to sufficient
accuracy.

Linearization of the control problem

In special cases the algebraic properties of the signature can further be employed to transform the optimization
problem into a form that allows to efficiently use non-stochastic solvers. This approach was first suggested in
[KLPA20] in the context of an optimal execution problem (see also Section 5.3 below). Without going into details,
this approach is generally possible if the the system (2.1) can be solved by integration, i.e., when b(y, u)
and σ(y) are independent of y, and when b and L are of a polynomial form. Given sufficient integrability
of Sig(X̂)0,T , the shuffle property of the signature then allows to rewrite the expected costs associated to a

signature control U ` = 〈`,Sig(X̂)0,·〉 for some ` ∈ TN (Rd+1) as

J(U `) = 〈P (`),E[Sig(X̂)≤N
′

0,T ]〉,

where P : TN (Rd+1) → TN
′
(Rd+1) with N ′ ≥ N is polynomial in the coefficients of ` ∈ TN (Rd+1).

Estimating the truncated expected signature using a Monte-Carlo average an optimal ` can then be obtain from
a deterministic solver for polynomial optimization. As observed in [KLPA20], this reformulation of the control
problem preserves quadratic convex structures, and thus allows to solve problems admitting such a structure as
quadratic programs.

5.2 Case study 1: Optimal tracking of fractional Brownian motion

As a first benchmark example we consider the problem of optimally tracking a fractional Brownian motion with a
process whose speed can be controlled at quadratic costs. Letting the Hurst parameter H vary in (0, 1] allows
us to test our numerical method in a range of cases outside the Markov and semimartingale regimes typically
considered in the literature.

To set the stage, let ξ be a one-dimensional fractional Brownian motion on some probability space (Ω,F ,P)
and put X := ξ so that ξ is trivially adapted to the augmented filtration generated by (σ(Xs; s ∈ [0, t]))t≥0.
Notice that this way the controller will not have access to the full past before time 0 of the fractional Brownian
motion; granting this extended access leads to a different, yet equally relevant control problem, which, however,
is computationally more demanding and thus left for future experiments at this point.

Now define the controlled process

Y U
t = y0 +

∫ t

0
Usds− ξt, (5.3)

where U is a progressively measurable process that represents the speed and direction of the tracking. Since
a one-dimensional fractional Brownian motion allows for a rough path lift

Xt = exp
bpc
⊗ (Xt), for some p ∈ (1/H, 1 + 1/H),

this setting fits into our theoretical framework (2.1) by choosing U = R, b(y, u) = u, σ = −1. We measure
the tracking performance by the cost functional

L(YU , U) =
1

2

∫ T

0

(
(Y U
t )2 + κ(Ut)

2
)

dt (5.4)
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where κ > 0 is the penalization parameter; we also confine ourselves to the natural class of progressively
measurable control processes U ∈ L2(P⊗ dt).

Remark 5.1. This kind of tracking problem finds several applications in mathematical finance. For instance,
following [BSV17], we can consider ξ to be the hedging strategy of a contingent claim in an idealized frictionless
reference market model driven by X ; y0 +

∫ .
0 Usds could be the evolution of a trader’s actual hedging position

when she is confronted with market impact costs as captured by κ
∫ T

0 U2
t dt. Due to these costs, the trader

has to allow for a nonzero hedging error Y U and the resulting risk can be measured by E
[∫ T

0

(
1
2(Y U

t )2
)

dt
]
.

Combining this with expected impact costs leads to (5.4).

Our choice of this particular benchmark problem is motivated by its analytic tractability: [BSV17] describes
control policies and the problem value even for general targets ξ in. For our particular tracking problem with
fractional Brownian motion, this gives:

Theorem 5.2. The minimal tracking costs for a fractional Brownian motion ξ with Hurst parameter H ∈ (0, 1)
are

inf
U

E[L(Y U , U)] =
1

2

√
κ tanh(τκ(0)) (y0)2

+
1

2

∫ T

0

∫ t

0

(∫ T

s
(zH(t, s)− zH(u, s))

cosh(τκ(u))√
κ sinh(τκ(t))

du

)2

dsdt (5.5)

+
1

2

∫ T

0

√
κ tanh(τκ(t))

(∫ T
t zH(u, t) cosh(τκ(u))du

)2

κ sinh2(τκ(t))
dt <∞.

where, for 0 ≤ s ≤ t ≤ T , we let τκ(t) := (T − t)/
√
κ, 0 ≤ t ≤ T, and

zH(t, s) := cH

(
t

s

)H− 1
2

(t− s)H−1/2 − (H − 1

2
)s

1
2
−H
∫ t

s
uH−

3
2 (u− s)H−

1
2du,

with

cH :=

(
2HΓ(3

2 −H)

Γ(H + 1
2)Γ(2− 2H)

) 1
2

.

Proof. The general form of the optimal tracking strategy is given in Theorem 1 of [BSV17]. In conjunction with
this, Theorem 3.4 of [BV18] identifies the minimal tracking error as

inf
U

E[L(Y U , U)] =
1

2

√
κ tanh(τκ(0))(x− ξ̂0)2 +

1

2
E
[∫ T

0
(ξt − ξ̂t)2dt

]
+

1

2
E
[∫ T

0

√
κ tanh(τκ(t))d〈ξ̂〉t

]
The tracking process ξ̂ introduced there takes here the form

ξ̂t :=

∫ T

t
E [ξu|Ft]

cosh(τκ(u))√
κ sinh(τκ(t))

du, 0 ≤ t ≤ T.

For Ft generated by σ(ξs, s ∈ [0, t]), the conditional expectation E [ξu|Ft] is computed in Theorem 4.2 in
[NP00]. With zH as above we obtain

E [ξu|Ft] =

∫ t

0
zH(u, s)dBs
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where

Bt :=
2H

cH

∫ t

0
sH−

1
2dMH

s , t ≥ 0

is the standard Brownian motion constructed from the Gaussian martingale obtained from the fBM ξ viaMH
t :=∫ t

0 wH(t, s)dξs, t ≥ 0, with

wH(t, s) :=
s

1
2
−H(t− s)

1
2
−H

2H
∫ 1

0 u
3
2
−H(1− u)

1
2
−Hdu

, s < t.

Straightforward computations starting from this show that

E
[∫ T

0
(ξt − ξ̂t)2dt

]
=

∫ T

0

∫ t

0

(∫ T

s
(zH(t, s)− zH(u, s))K(t, u)du

)2

dsdt

and

〈ξ̂〉t =

∫ t

0

(∫ T
s zH(u, s) cosh(τκ(u))du

)2

κ sinh2(τκ(s))
ds, t ∈ [0, T ].

Our formula for the minimal tracking error follows now by plugging the identities from the last two displays into
the general cost formula stated above.

H 1/16 1/8 1/4 1/2 3/4 1
th. optimum 0.293 0.264 0.206 0.124 0.071 0.034

Alin

N = 1 0.329 0.286 0.223 0.146 0.101 0.073
N = 2 0.315 0.275 0.211 0.127 0.076 0.041
N = 3 0.310 0.273 0.210 0.124 0.073 0.038
N = 4 0.304 0.270 0.209 0.124 0.073 0.038
N = 5 0.305 0.270 0.209 0.124 0.073 0.038

ADNN

N = 1 0.315 0.276 0.214 0.135 0.083 0.034
N = 2 0.307 0.272 0.210 0.124 0.073 0.034
N = 3 0.301 0.269 0.209 0.124 0.072 0.034
N = 4 0.300 0.267 0.208 0.124 0.072 0.034
N = 5 0.300 0.267 0.209 0.124 0.072 0.035

Table 1: Numerical results for the optimal tracking of a fractional Brownian motion with different Hurst parameters
H using strategies in Alin and ADNN (I = 2, q = 30 + η2,N ), with various signature truncation levels N .
Presented are the estimated expected costs. The fixed model parameters are y0 = 0, T = 1, and κ = 0.1. An
overall time discretization of ∆t = 10−3 was used for the calculation of signatures, Y U , and the cost functional.
The number of training and testing paths was 219 and 220, respectively. The Monte Carlo resampling error was
below 0.0002. The first row presents the continuous-time optimal values calculated using (5.5).

We have tested our approximation method against the optimal values obtained from Theorem 5.2 for several
choices of Hurst parameters H using strategies from Alin and ADNN with different signature truncation levels
N . The remaining parameters were fixed to y0 = 0, T = 1 and κ = 0.1. The outcomes of these numerical
test are collected in Table 1. We notice that using our method we can reach reasonably accurate approximations
of the continuous time optimum. Overall the performance is improved when increasing the truncation level and
when going from linear strategies inAlin to deep strategies inADNN. It turns out that already beyond truncation
levels N = 3 or N = 4 there is no further improvement and for cases H ≥ 1/2 even level N = 2 seems to
be sufficient.
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Let us comment on a few more aspects in detail:

Due to the Markovianity in the Brownian monition case H = 1/2, there exists an optimal control in feedback
form U∗t = α(t,Xt, Y

U∗
t ) for a suitable deterministic function α (cf. [BSV17]). It turns out that to learn this

control in open loop form U∗t = θ(X|[0,t]) we only need levelN = 2 log-signatures inADNN and levelN = 3
signatures in Alin to achieve sufficient accuracy. The second special case is H = 1.0, where the trajectories
of X are straight lines starting at the origin with a standard normal distributed slope X1 which becomes known
right after the start. In this case the optimal solution is of the form U∗t = 1{t>0}X1f(t) = 1{t>0}

Xt
t f(t),

where f : [0, T ] → R is a suitable nonlinear deterministic function (cf. [BSV17]). While with deep neural
networks this control can easily be learned as a function of the first level signature (t,Xt), the linear model
needs a much higher truncation level to approximate the nonlinear function f(t)/t with sufficient precision. This
carries over to an explanation for the general outperforming of ADNN strategies over those from Alin when
comparing identical signature truncation levels.

The method turned out to be efficient for this case study despite the fact that the cost functional and the drift
coefficient are unbounded over the the set of admissible controls, contrary to assumptions (2.2) and (4.2) needed
for the applicability of Theorem 4.7. This carries little surprise as we expect that our approximation results
carries over to the case of L2-type cost functionals (see paragraph on the boundedness of the cost functional
in Section 2).

5.3 Case study 2: Non-Markovian optimal execution

As a second benchmark, we consider an instance of the optimal order execution problem of [KLPA20]. ThereX
describes the fluctuations in the fundamental price of some financial asset. The controller seeks to unwind an
initial inventory q0 > 0 of shares over a (typically short) period [0, T ] by choosing trading ratesU = (Ut)t∈[0,T ]

so as to maximize on average the proceeds WU
T :=

∫ T
0 XtUtdt while taking into account market impact costs

κ
∫ T

0 U2
t dt from her sales. Any inventory remaining QUT := q0 −

∫ T
0 Utdt at time T is marked to market at

QTXT and penalized by κTQ2
T .

In the framework we study above this corresponds to the choice

Y U
0 = (0, q0, x0), dY U

t = (XtUt,−Ut, 0)dt+ (0, 0, 1)dXt, t ∈ [0, T ],

i.e., Y U := (WU , QU , X) with cost functional

L(YU , U) = −WU
T −QUTXT +

∫ T

0
κU2

t dt+ κT (QUT )2.

In our numerical experiments, we followed [KLPA20, Section 5.4], and chose X = x0 + σξ with x0 = 1.0,
σ = 0.02 and ξ a fractional Brownian motion. We tested our methodology for a range of Hurst-parameters H
and signature truncation levels N . The remaining parameters are given by κ = 10−3, κT = 10−1, q0 = 1,
and T = 1. For comparison, we calculated benchmarks with the method proposed in [KLPA20]. As described
in Section 5.1, this method is based on a transformation to a deterministic optimization problem in terms of the
expected signature.

Table 2 collects the results of all tested scenarios. For better comparison we do not present the total expected
costs, but the relative improvement compared to a trading strategy liquidating at a suitably chosen constant
speed U◦ ≡ u ∈ R, also called the time weighted average price (TWAP) strategy [CJP15, Section 6.3]. The
corresponding optimal rate and associated costs turn out to be

u = q0
κT

κ+ TκT
, J(U◦) = x0q0 − q2

0

κκt
κ+ TκT

.

Similar to the previous case study, we find an overall improvement when increasing the signature truncation
level N and when moving from strategies in Alin to strategies in ADNN. We also verify that the results of
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H 1/16 1/8 1/4 1/2 3/4 7/8

Alin

using [KLPA20]

N = 1 0.03 0.02 0.01 0.00 0.02 0.01
N = 2 1.36 0.85 0.30 0.00 0.16 0.43
N = 3 2.46 1.45 0.44 0.00 0.20 0.41
N = 4 2.61 1.51 0.47 0.00 0.20 0.44

Alin

N = 1 0.03 0.02 0.01 0.00 0.00 0.01
N = 2 1.35 0.85 0.30 0.00 0.16 0.33
N = 3 2.46 1.45 0.44 0.00 0.19 0.41
N = 4 2.55 1.51 0.47 0.00 0.20 0.40
N = 5 2.59 1.54 0.47 0.00 0.20 0.41

ADNN

N = 1 0.03 0.02 0.01 0.00 0.02 0.07
N = 2 1.36 0.87 0.30 0.00 0.20 0.43
N = 3 2.53 1.47 0.44 0.00 0.20 0.44
N = 4 2.61 1.53 0.48 0.00 0.21 0.44
N = 5 2.69 1.54 0.49 0.00 0.21 0.43

Table 2: Numerical study of the optimal execution problem with fractional price fluctuations for different Hurst
parameters H using strategies in Alin and ADNN (I = 2, q = 30 + η2,N ), with various signature truncation
levels N . Presented are relative improvements in percent w.r.t. the TWAP strategy J(U◦) ≈ 0.9990. The
fixed model parameters are q0 = 1.0, T = 1, κ = 0.001, κT = 0.1 and σ = 0.02. An overall time
discretization of ∆t = 10−2 was used. The number of training and testing paths was 219 and 222, respectively.
The Monte Carlo resampling error was below 0.001. The first block contains benchmarks obtained with the
linearization method from [KLPA20].

Alin strategies trained with our Monte Carlo method are close to those obtained with the approach proposed
in [KLPA20]. The slightly better performance of the latter method is expected due to the availability of a more
efficient optimization procedure when utilizing the quadratic convex structure of the problem. Nevertheless, using
deep signature strategies inADNN, we are able to match and, in certain situations, surpass these benchmarks
when comparing the same signature truncation levels.

A Approximation of progressively measurable controls

In this section we relate canonical filtration on Ωp
T to the Borel σ-algebras of the restricted path space Ωp

t . To
this end we define the coordinate process Z on Ωp

T by

Z : [0, T ]× Ωp
T → Gbpc(V ) : (t,x) 7→ Zt(x) := x(t).

Lemma A.1. For all t ∈ [0, T ] it holds σ(Zs | 0 ≤ s ≤ t) = ρ−1
t (B(Ωp

t )), where

ρt : Ωp
T → Ωp

t x 7→ x|[0,t].

Proof. Let t ∈ [0, T ]. Clearly σ(Zs | 0 ≤ s ≤ t) = σ(CTt ), where

CTt :=
{{

x ∈ Ωp
T | (x(t1), . . . ,x(tn)) ∈ B

} ∣∣∣ t1, . . . , tn ∈ [0, t], B ∈ B((Gbpc(V ))n)
}

are the cylinder subsets of Ωp
T restricted to the time interval [0, t]. One observes that CTt = ρ−1

t (Ct) with

Ct := Ctt ⊆ 2Ωpt . By the continuity of the map Ωp
t → Gbpc(V ) : x 7→ x(s) for all s ∈ [0, t] it follows that

Ct ⊂ B(Ωp
t ) and thus

σ(Xs | 0 ≤ s ≤ t) = σ(CTt ) = ρ−1
t (σ(Ct)) ⊆ ρ−1

t (B(Ωp
t )).
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Conversely, define the system of dissections {tnk | k = 0, . . . , n} := {tk/n | k = 0, . . . , n} of the interval
[0, t] and consider the geodesic interpolation map

φn : (Gbpc(V ))n → Ωp
t , (η1, . . . , ηn) 7→

n∑
k=1

1[tnk−1,t
n
k )Υ

ηk−1,ηk

(
(·)− tnk−1

tnk − tnk−1

)
,

where Υa,b : [0, 1] → Gbpc(V ) denotes the standard geodesic in Gbpc(V ) connecting the points a, b ∈
Gbpc(V ) (see [FV10, Theorem 7.32, Proposition 7.42]). One readily observes that φn is continuous. Indeed,
this continuity is obvious when Gbpc(V ) is equipped with the geodesic distance, i.e. the Carnot-Caratheodory
metric. In Section 3 we have equipped Gbpc(V ) with the (inhomogeneous) subspace topology of T bpc(V ).
This is consistent because the induced topology on Gbpc(V ) and Ωp

t coincides with the one induced by the
Carnot-Caratheodory metric (see [FV10, Section 8.1.3]).

For ease of notion we define for anyx ∈ Ωp
t the geodesic interpolation on {tnk} byx(n) := φn(x(tn1 ), . . . ,x(tnn)).

From Wiener’s characterization of geometric rough paths (see [FV10, Theorem 8.23]) it thus follows that

lim
n→∞

dp−var;[0,t](x
(n),x) = 0.

Hence for any x0 ∈ Ωp
t and r > 0 we have

Br(x0) :=
{
x ∈ Ωp

t

∣∣∣ dp−var;[0,t](x0,x) ≤ r
}

=
{
x ∈ Ωp

T

∣∣∣ lim
n→∞

dp−var;[0,t](x0,x
(n)) ≤ r

}
=
∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{
x ∈ Ωp

t

∣∣∣ dp−var;[0,t](x0,x
(n)) ≤ r +

1

k

}
=
∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{
x ∈ Ωp

t

∣∣∣ (x(tn1 ), . . . ,x(tnn)) ∈ φ−1
n (Br+ 1

k
(x0))

}
Since by continuity of φn it holds φ−1

n (Br(x0)) ∈ B((Gbpc(V ))n), we see that the above right-hand side
is the limes inferior of cylinder sets and thus in σ(Ct). This proves that B(Ωp

t ) ⊆ σ(Ct) and thus finally
B(Ωp

t ) = σ(CTt ) = σ(Zs | 0 ≤ s ≤ t).
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