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A convergent adaptive finite element stochastic Galerkin method
based on multilevel expansions of random fields

Markus Bachmayr, Martin Eigel, Henrik Eisenmann, Igor Voulis

Abstract

The subject of this work is an adaptive stochastic Galerkin finite element method for para-
metric or random elliptic partial differential equations, which generates sparse product polynomial
expansions with respect to the parametric variables of solutions. For the corresponding spatial
approximations, an independently refined finite element mesh is used for each polynomial co-
efficient. The method relies on multilevel expansions of input random fields and achieves error
reduction with uniform rate. In particular, the saturation property for the refinement process is en-
sured by the algorithm. The results are illustrated by numerical experiments, including cases with
random fields of low regularity.

1 Introduction

Elliptic partial differential equations with coefficients depending on countably many parameters arise
in particular in problems of uncertainty quantification. In this context, they result from expansions of
random fields on the computational domain as function series with scalar random coefficients cor-
responding to the parametric variables. The method constructed and analyzed here yields approxi-
mations of the parameter-dependent solutions using adaptive finite elements in the spatial variables
combined with a sparse polynomial expansion in the parametric variables.

1.1 Problem statement

On a polygonal domainD ⊂ Rd, where typically d ∈ {1, 2, 3}, we consider the elliptic model problem

−∇ · (a∇u) = f on D, u = 0 on ∂D, (1)

in weak formulation with f ∈ L2(D). AssumingM0 to be a countable index set with 0 ∈ M0 and
takingM =M0 \ {0}, the parameter-dependent coefficient a is assumed to be given by an affine
parameterization

a(y) = θ0 +
∑
µ∈M

yµθµ, y = (yµ)µ∈M ∈ Y = [−1, 1]M (2)

with θµ ∈ L∞(D) for µ ∈ M0 and ess infD θ0 > 0. Well-posedness is ensured by the uniform
ellipticity condition [17]

cB = ess inf
D

{
θ0 −

∑
µ∈M
|θµ|

}
> 0. (3)
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M. Bachmayr, M. Eigel, H. Eisenmann, I. Voulis 2

Note that as a consequence, for CB = supy∈Y ∥a(y)∥L∞(D) we have

CB ≤ 2∥θ0∥L∞ − cB. (4)

To fix a probability distribution of the random coefficients y ∈ Y in (2), we now introduce a product
measure σ on Y . For simplicity, we take σ to be the uniform measure on Y , where σ =

⊗
µ∈M σ1

with σ1 the uniform measure on [−1, 1]. With V = H1
0 (D), for each given y ∈ Y let u(y) ∈ V be

defined by ∫
D

a(y)∇u(y) · ∇v dx =

∫
D

fv dx for all v ∈ V . (5)

Then by (3), the mapping Y ∋ y 7→ u(y) ∈ V can be regarded as an element of the Bochner space

V := L2(Y, V, σ) ≃ V ⊗ L2(Y, σ).

From the univariate Legendre polynomials {Lk}k∈N that are orthonormal with respect to the uniform
measure on [−1, 1], we obtain the orthonormal basis {Lν}ν∈F of product Legendre polynomials for
L2(Y, σ), which for y ∈ Y are given by

Lν(y) =
∏
µ∈M

Lνµ(yµ), ν ∈ F = {ν ∈ NM
0 : νµ ̸= 0 for finitely many µ ∈M};

see, for example, [15, 25]. For u ∈ V solving (1) with coefficient (2) in the sense of (5), we thus have
the basis expansion

u(y) =
∑
ν∈F

uνLν(y), uν =

∫
Y

u(y)Lν(y) dσ(y) ∈ V. (6)

By restricting the summation over ν in (6) to a finite subset F ⊂ F , we obtain semidiscrete best
approximations by elements of V⊗span{Lν}ν∈F . To obtain fully discrete computable approximations,
for each ν the coefficient uν ∈ V needs to be replaced by a further approximation in some finite-
dimensional subspace Vν ⊂ V . We thus aim to find an approximation of u from a subspace

Ṽ =

{∑
ν∈F

vνLν : vν ∈ Vν , ν ∈ F
}
⊂ V (7)

of total dimension
∑

ν∈F dimVν . In the present work, each Vν is chosen as a suitable finite element
subspace of V .

1.2 Parameter expansions and approximability

Different types of expansion (2) can be used for the parametrized coefficient a. A typical choice are
expansions with similar properties as Karhunen-Loève representations of random fields, where the
functions θµ, µ ∈ M, oscillate with increasing frequencies on all of D. In the case d = 1 with
D = (0, 1), a popular test case of this type is

a(y)(x) = 1 + c
∞∑
j=1

j−βyj sin(jπx), x ∈ D = (0, 1), y ∈ Y, (8)
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A convergent adaptive finite element stochastic Galerkin method 3

with β > 1 and sufficiently small c > 0, corresponding to the choice θ0 = 1, M = N, and
θj(x) = cj−β sin(jπx) for each j ∈ M. In the limiting case β = 1, the functions θj result from the
Karhunen-Loève decomposition of the Brownian bridge on (0, 1), and with the random coefficients
y ∈ Y distributed according to σ in (8) one obtains analogous smoothness properties of random
draws of a(y).

However, coefficients a with very similar features can also be obtained by different expansions with
multilevel structure. A basic example, again on D = (0, 1), are hierarchical piecewise linear hat
functions: let θ(x) = max{1− 2|x− 1

2
|, 0} and

θℓ,k(x) = θ(2ℓx− k), (ℓ, k) ∈M =
{
(ℓ, k) : ℓ ∈ N0, k ∈ {0, . . . , 2ℓ − 1}

}
.

Then for any α > 0,

a(y)(x) = 1 + c
∑

(ℓ,k)∈M
2−αℓyℓ,kθℓ,k(x), x ∈ D = (0, 1), y ∈ Y, (9)

yields a random field a with very similar features as (8), but expanded in terms of the locally supported
functions θℓ, with |supp θℓ,k| = 2−ℓ. The choice α = 1

2
corresponds to the well-known Lévy-Ciesielski

representation of the Brownian bridge [14].

One advantage of the multilevel representation (9) in view of the uniform ellipticity condition (3) is
that coefficients with lower smoothness than in (8) can be realized: for any α > 0, the series in (9)
converges absolutely in L∞(0, 1) uniformly in y ∈ Y , and thus one can parameterize coefficients
with arbitrarily low Hölder regularity.

However, representations with multilevel structure as in (9) are also advantageous for the convergence
rates of adaptive sparse approximations of u. One observes that the localization in the hat functions
θℓ,k in (9) translates to highly localized features in the Legendre coefficients uν , depending on the
coordinates that are activated in ν. This is illustrated in the case α = 1 in Figure 1. As one can recog-
nize, these coefficients have efficient approximations by piecewise linear finite elements on adaptive
grids. However, these grids clearly need to be chosen with a different local refinement for each ν, so
that the corresponding subspaces Vν in (7) differ accordingly.

Similar results can be obtained for more general domains D in dimensions d > 1 when the diffusion
coefficient a is given in terms of an expansion with an analogous multilevel structure. The precise
assumptions that we use on such multilevel structure for general d are as follows.

Assumption 1. We assume θµ ∈ L∞(D) for µ ∈M0 such that the following hold for all µ ∈M:

(i) diam supp θµ ∼ 2−|µ|,

(ii) #{µ ∈M : |µ| = ℓ} ≲ 2dℓ for each ℓ ∈ N0 and there exists M > 0 such that for each µ,

#{µ′ ∈M : |µ| = |µ′|, supp θµ ∩ supp θµ′ ̸= ∅} ≤M,

(iii) for some α > 0, one has ∥θµ∥L∞(Ω) ≲ 2−α|µ|.

As in the above one-dimensional example, representing a in terms of such multilevel basis func-
tions with localized supports leads to favorable sparse approximability of u. As a consequence of
[2, Cor. 8.8], for sufficiently regular f and D and expansions of a according to Assumption 1, for
α ∈ (0, 1] and with Ṽ as in (7) we have

min
v∈Ṽ
∥u− v∥V ≤ C

(∑
ν∈F

dimVν

)−s
for any s <


α
d
, d ≥ 2,

2
3
α, d = 1.

(10)
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ν = (0,0,0, . . .)

ν = (1,0,0, . . .)

ν = (0,1,0, . . .)
ν = (0,0,1, . . .)

ν = (0,0,0,1, . . .)
ν = (0,0,0,0,1, . . .)
ν = (0,0,0,0,0,1, . . .)
ν = (0,0,0,0,0,0,1, . . .)

. . .

ν = (0, . . . ,0,1, . . .)
ν = (0, . . . ,0,0,1, . . .)

. . .

ν = (1,1,0,0, . . .)

ν = (1,0,1,0, . . .)

...

ν = (0, . . . . . . ,0,1, . . .)

ν = (0, . . . . . . ,0,0,1, . . .)

Figure 1: Plots of Legendre coefficients uν ∈ H1
0 (0, 1) (normalized to equal ∥uν∥L∞) in the expan-

sion (6) with a given by the hierarchical hat function expansion (9) with α = 1, and nodes of adaptively
generated piecewise linear approximations on dyadic subintervals.

The numerical tests in [6] indicate that with spatial basis functions of sufficiently high approximation
order, this also holds for α > 1.

Remarkably, the limiting convergence rate α/d in (10) for d ≥ 2 is the same as for approximating
u(y) by finite elements in V for randomly chosen y ∼ σ (see [1]), and also the same as the rate with
respect to #F for semidiscrete approximation of u from V ⊗ span{Lν}ν∈F obtained in [3]. In other
words, when a is given as a multilevel expansion, when using independent adaptive approximations
for each Legendre coefficient uν , ν ∈ F , one can achieve sufficiently strong sparsification that com-
bined spatial-parametric approximations converge at the same rate as only spatial or only parametric
approximations. In contrast to results obtained using expansions of a without further structure, these
results hold even when convergence is limited by the decay rate α in the coefficient expansion, rather
than by the spatial approximation rate of the finite elements.

1.3 Stochastic Galerkin discretization

We define B : V → V ′ and Φ ∈ V ′ by

⟨Bv,w⟩ =
∫
Y

∫
D

(
θ0 +

∑
µ∈M

yµθµ

)
∇v(y) · ∇w(y) dx dσ(y), ⟨Φ, w⟩ =

∫
Y

f
(
w(y)

)
dσ(y) .

(11)
The operator B induces an inner product ⟨·, ·⟩B = ⟨B·, ·⟩ with corresponding norm ∥·∥B on V . Note
that √

cB∥v∥V =
√

inf
y∈Y

a(y) ∥v∥V ≤ ∥v∥B ≤
√

sup
y∈Y

a(y) ∥v∥V =
√
CB∥v∥V . (12)
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A convergent adaptive finite element stochastic Galerkin method 5

As a consequence,

√
cB∥v∥B ≤

⟨Bv, v⟩
∥v∥V

≤ ∥Bv∥V ′ = sup
w∈V

⟨Bv,w⟩
∥w∥V

≤ sup
w∈V

⟨Bv,w⟩
C

−1/2
B ∥w∥B

=
√
CB∥v∥B. (13)

The stochastic variational formulation of (1) with coefficient a given by (2) then reads: find u ∈ V such
that

Bu = Φ in V ′. (14)

Inserting product Legendre expansions as in (6) of u, v into (14) leads to the semidiscrete form of the
stochastic Galerkin problem for the coefficient functions uν , ν ∈ F ,∑

µ∈M0

∑
ν′∈F

(Mµ)ν,ν′Aµuν′ = δ0,νf, ν ∈ F , (15)

where Aµ : V → V ′ are defined, for µ ∈M0, by

⟨Aµv, w⟩ =
∫
D

θµ∇v · ∇w dx for all v, w ∈ V ,

and the mappings Mµ : ℓ2(F)→ ℓ2(F) are given by

M0 =

(∫
Y

Lν(y)Lν′(y) dσ(y)

)
ν,ν′∈F

, Mµ =

(∫
Y

yµLν(y)Lν′(y) dσ(y)

)
ν,ν′∈F

, µ ∈M.

Since the L2([−1, 1], σ1)-orthonormal Legendre polynomials {Lk}k∈N satisfy the three-term recur-
rence relation

yLk(y) =
√
βk+1Lk+1(y) +

√
βkLk−1(y), βk = (4− k−2)−1,

with L0 = 1, L−1 = 0, β0 = 0, we have

M0 =
(
δν,ν′

)
ν,ν′∈F , Mµ =

(√
βνµ+1 δν+eµ,ν′ +

√
βνµ δν−eµ,ν′

)
ν,ν′∈F

, µ ∈M,

with the Kronecker vectors eµ = (δµ,µ′)µ′∈M.

In the remainder of this work, for simplicity we formulate our method and its analysis for d = 2.
The results carry over immediately to the cases d = 1 and d > 2. We assume a fixed conforming
simplicial coarsest triangulation T̂0 of D. If a second (not necessarily conforming) triangulation T can
be generated from T̂0 by steps of newest vertex bisection, we write T ≥ T̂0. For such triangulations
that are in addition conforming, we consider the standard Lagrange finite element spaces

V (T ) = P1(T ) ∩ V,

where P1(T ) denotes the functions on D that are piecewise affine on each element of T .

Assume a family of triangulations T = (Tν)ν∈F with finite F ⊂ F and conforming Tν ≥ T̂0 for each
ν ∈ F . We consider stochastic Galerkin discretization subspaces V(T) given in terms of (7) by

V(T) =
{∑
ν∈F

vνLν : vν ∈ V (Tν), ν ∈ F
}
⊂ V . (16)
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The total number of degrees of freedom for representing each element of V(T) is then dimV(T) =∑
ν∈F dimV (Tν). We use the abbreviation

N(T) =
∑
ν∈F

#Tν , (17)

so that N(T) ≂ dimV(T).
For the finite-dimensional subspaces V(T) ⊂ V , we consider the stochastic Galerkin variational
formulation for uT ∈ V(T),

⟨BuT, v⟩ = Φ(v) for all v ∈ V(T). (18)

As a consequence of (3), the bilinear form given by the left hand side of (18) is elliptic and bounded
on V , and by Céa’s lemma we obtain

∥uT − u∥V ≤
2∥θ0∥L∞ − cB

cB
min
v∈V(T)

∥v − u∥V .

1.4 Adaptive scheme and novel contributions

The objective of this paper is to construct an adaptive stochastic Galerkin finite element method that
can make full use of the approximability result (10) by performing independent refinements of meshes
for each Legendre coefficient; in other words, for each uν we use a potentially completely different
finite element subspace V (Tν). Our discretization refinement indicators are obtained from residuals
in a stochastic Galerkin formulation of the problem. The basic strategy for doing so follows our ear-
lier results in [6], where we used adaptive wavelet discretizations rather than finite elements for the
spatial variable. As there, the first step for obtaining residual approximations in the present work is
a semidiscrete adaptive operator compression only in the parametric variables, which identifies the
relevant interactions between different Legendre coefficients.

Based on this information, the errors in the individual spatial discretizations of the Legendre coef-
ficients need to be handled. As an initial step towards results on optimal computational costs, as
achieved with spatial discretizations by wavelets in [6], in the present work we propose and analyze an
adaptive method using standard P1 finite elements that in each refinement step ensures a fixed error
reduction factor, a feature that is also known as saturation property. This guarantee is in contrast to
previous works using independent finite element subspaces V (Tν) with potentially different meshes
Tν for the different coefficients uν , such as [7, 18, 19]: in particular, the convergence analysis given
in [18] and [7] is based on assuming the saturation property to hold for a certain hierarchical error
estimation strategy.

One can distinguish two separate difficulties in proving the saturation property for refinements based
on the residual in a stochastic Galerkin method. First, in the stochastic variables, we need to identify
product polynomial indices that should be added to the approximation subset F ⊂ F . Strategies that
ensure an error reduction have previously been considered, for example, in [20, 21]; these, however,
rely on summability of the norms ∥θµ∥L∞ , which for multilevel expansions of random fields is too
strong a requirement. To exploit the multilevel structure in the expansion (2) and obtain a scheme
that enables linear scaling of computational costs, we instead adapt the approach of [6] based on
operator compression in the stochastic variables. This amounts to adaptively dropping summands in
the semidiscrete operator representation

(∑
µ∈M0

∑
ν′∈F(Mµ)ν,ν′Aµ

)
ν,ν′∈F as in (15) that acts on

sequences of Legendre coefficients.
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A convergent adaptive finite element stochastic Galerkin method 7

The second and more subtle difficulty arises in the refinement of spatial discretizations. In the case of
discretizations with a single spatial mesh (that is, where the meshes Tν are identical for all ν ∈ F ),
standard residual error estimation techniques can be applied as in [20]. Since we use independent
meshes for each ν, each spatial component of the residual contains sums of jump functionals corre-
sponding to different meshes, which cannot be treated using standard techniques based on Galerkin
orthogonality.

Moreover, with such residual components that are proper functionals inH−1(D) arising from integrals
over the edges (or facets) of different meshes, it is not clear a priori whether a method using a solve-
mark-refine cycle can actually achieve a reduction of the error (or a suitable notion of a quasi-error [12])
by a fixed factor in every iteration: as considered in detail in [16], this may require several refinement
steps. In [16], which addresses adaptive finite elements for standard scalar elliptic problems with
right-hand sides that are not in L2(D), an additional inner refinement loop is introduced. However,
this approach is not easily generalizable to our setting, since in the present case the functionals in
question depend on the approximate solution.

We thus use a different strategy for error estimation and mesh refinement that is based on residual
indicators obtained with a BPX finite element frame [11,22,24]. Such a frame can be obtained by taking
the union over all standard finite element basis functions associated to a hierarchy of grid refinements.
Frames of this type have been used in [23] in the construction of sparse tensor products and in [22]
in the analysis of hierarchical error estimation. We approximate H−1-norms via frame coefficients
similarly as outlined in [22, Rem. 6.4], where in contrast to the graded quadrilateral meshes assumed
in [22], we work with meshes refined via standard newest vertex bisection.

1.5 Outline

We begin by recapitulating basic properties of newest vertex bisection and of finite element frames in
Section 2. In Section 3, we describe the adaptive stochastic Galerkin solver and collect the relevant
properties of its constituent procedures, which we use in Section 4 to prove convergence of the method
with a fixed error reduction in each step. Section 5 is devoted to numerical tests that, in view of
the expected convergence rates (10), hint at optimality properties of the method. In Section 6, we
summarize our findings and point out several directions for further work.

2 Finite element frames

Our adaptive scheme is driven by error estimates derived from the norm in V ′ = L2(Y, V
′, σ) of

the residual for a given approximation v =
∑

ν∈F vνLν ∈ L2(Y, V, σ) in the stochastic variational
formulation (14),

∥Bv − Φ∥V ′ =

(∑
ν∈F

∥∥∥ ∑
µ∈M0

∑
ν′∈F

(Mµ)ν,ν′Aµvν′ − δ0,νf
∥∥∥2

V ′

) 1
2

. (19)

Since we are mainly interested in the effect of the parameter-dependent diffusion coefficient, to avoid
technicalities, in what follows we assume the right-hand side f to be piecewise polynomial on the
initial spatial mesh T̂0, from which all meshes arising in the spaces (16) are generated by newest
vertex bisection. The treatment of more general f is discussed in Remark 10.

Our main task in the approximation of residuals is thus to identify the most relevant indices in the
summation over ν in (19), and for each such ν to approximate the V ′-norm of linear combinations of
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terms of the form Aµvν′ , where vν′ ∈ V (Tν′) for some conforming Tν′ ≥ T̂0. For the latter task, we
use finite element frames derived from a hierarchy of uniform refinements of T̂0.

For newest vertex bisection, we assume the initial triangulation T̂0 to have an edge labelling that is
admissible in the sense of [9, Lem. 2.1]; that is, each edge in T̂0 is labelled either 0 or 1 such that each
triangle in T̂0 has exactly two edges labelled 1 and one edge labelled 0.

Newest vertex bisection is then applied to a triangle with labels (i, i, i− 1) by bisecting the edge with
the lowest label i − 1 and assigning the label i + 1 to both halves of the bisected edge and to the
newly added bisecting edge, so that the two newly created triangles both have labels (i+ 1, i+ 1, i)
and the edges opposite the newly added vertex will be the next to be bisected. The meshes generated
by newest vertex bisection are uniform shape regular, dependent only on the initial triangulation T̂0.

Note that after two applications of newest vertex bisection to a mesh with admissible initial labelling,
every edge has been bisected once. This gives rise to a hierarchy of meshes T̂1, T̂2, . . ., where T̂j+1

is obtained from T̂j by applying two passes of newest vertex bisection to the full mesh, such that a new
node is added to each edge in T̂j . For each j, we define ψλ with λ = (j, k) as the enumeration of
piecewise affine hat functions in V (T̂j), normalized such that ∥ψλ∥V = 1, where k = 1, . . . , Nj =

dimV (T̂j). We assume that T̂0 gives rise to a nontrivial finite element space, i.e., N0 > 0, and set

Θ =
{
(j, k) : j = 0, 1, 2, . . . , k = 1, . . . , Nj

}
.

The family ψλ, λ ∈ Θ, of hat functions on all levels of the uniformly refined grid hierarchy (that is, the
function system underlying the classical BPX preconditioner [11]) is then a frame of V , which means
that for ξ ∈ V ′, we have a proportionality with uniform constants between ∥(⟨ξ, ψλ⟩)λ∈Θ∥ℓ2(Θ) and

∥ξ∥V ′ . Under the given assumptions on the mesh hierarchy (T̂j)j≥0, we obtain the result of [23,
Thm. 5] in the following form.

Lemma 1. The family Ψ = (ψλ)λ∈Θ is a frame of V , that is, there exist cΨ, CΨ > 0 depending only
on T̂0 such that

c2Ψ∥ξ∥2V ′ ≤
∑
λ∈Θ
|⟨ξ, ψλ⟩|2 ≤ C2

Ψ∥ξ∥2V ′ , ξ ∈ V ′. (20)

We assume each function θµ, µ ∈ M, to be piecewise polynomial on a triangulation T̂j for some j
depending on |µ| in the following sense.

Assumption 2. There exists m ∈ N0, k ∈ N0 and K ∈ N such that for all µ ∈M, θµ ∈ Pm(T̂|µ|+k)
and #{T ∈ T|µ|+k : supp θµ ∩ T ̸= ∅} ≤ K .

The case of given non-polynomial functions θν can be treated by replacing them by polynomial approx-
imations. For example, for functions in wavelet-type expansions of Matérn random fields constructed
in [4], it is not difficult to obtain suitable efficient polynomial approximations with uniform accuracy that
satisfy Assumption 2, see [4, Eq. (139)].

For approximating dual norms in V ′ of sums of functionals of the form Aµvν with vν ∈ V (Tν), with
T the joint refinement of Tν and the mesh on which θµ is piecewise polynomial, we use integration by
parts to obtain

⟨Aµvν , w⟩ =
∫
D

θµ∇vν · ∇w dx =
∑
K∈T

{∫
∂K∩D

θµn · ∇vν w ds−
∫
K

∇ · (θµ∇vν)w dx

}
(21)
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A convergent adaptive finite element stochastic Galerkin method 9

for w ∈ V . Here the integrands θµn · ∇vν and∇ · (θµ∇vν) are polynomials on the respective sub-
domains by ?? 2. We can thus apply the following result on the decay of ℓ2-tails of frame coefficients.
A related estimate is obtained in [22, Sec. 6] with frames on graded quadrilateral meshes.

We define level(E) for an edge E and level(T ) for a triangular element T as the unique j such
that the uniform mesh T̂j contains E or either T or a bisection of T , respectively. Similarly, for the
enumeration indices λ = (j, k) ∈ Θ, we define |λ| = j.

Lemma 2. Let d1, d2 ∈ N0. There exist C > 0 and J0 ∈ N depending only on T̂0 and d1, d2 such
that for all J ≥ J0 the following holds: For any T ≥ T̂0 with interior edges E and any ξ ∈ V ′ of the
form

⟨ξ, v⟩ =
∑
K∈T

∫
K

ξKv dx+
∑
E∈E

∫
E

ξEv ds, v ∈ V, (22)

where ξK ∈ Pd1(K), K ∈ T , and ξE ∈ Pd2(E), E ∈ E , we have( ∑
λ∈ΘJ (T )

∣∣⟨ξ, ψλ⟩∣∣2) 1
2 ≤ C2−J

(∑
λ∈Θ

∣∣⟨ξ, ψλ⟩∣∣2) 1
2

with

ΘJ(T ) =
{
λ ∈ Θ: (∀K ∈ T : meas2(suppψλ ∩K) > 0 =⇒ |λ| > level(K) + J)

∧ (∀E ∈ E : meas1(suppψλ ∩ E) > 0 =⇒ |λ| > level(E) + 2J)
}
. (23)

Proof. For λ ∈ ΘJ(T ) we have, by uniform shape regularity and the definition of ΘJ(T ), that ψλ
have support on a uniformly bounded number of elements K ∈ T . Thus∣∣∣∑

K∈T

∣∣⟨ξK , ψλ⟩∣∣∣∣∣2 ≲ ∑
K∈T

∣∣⟨ξK , ψλ⟩∣∣2, ∣∣∣∑
E∈E

∣∣⟨ξE, ψλ⟩∣∣∣∣∣2 ≲ ∑
E∈E

∣∣⟨ξE, ψλ⟩∣∣2 (24)

with uniform constants. Let
hK = 2− level(K), hE = 2− level(E) .

By (24) and using that by the normalization of ψλ, with j = |λ| we have that ∥ψλ∥L2(K) ≲ 2−j and

∥ψλ∥L2(E) ≲ 2−
1
2
j . Thus∑

λ∈ΘJ (T )

∣∣⟨ξ, ψλ⟩∣∣2 ≲ ∑
K∈T

∑
λ∈ΘJ (T )

∣∣⟨ξK , ψλ⟩∣∣2 +∑
E∈E

∑
λ∈ΘJ (T )

∣∣⟨ξE, ψλ⟩∣∣2
≲

∑
K∈T

∑
j>level(K)+J

2−2j∥ξK∥2L2(K) +
∑
E∈E

∑
j>level(E)+2J

2−j∥ξE∥2L2(E)

≲ 2−2J
∑
K∈T

h2K∥ξK∥2L2(K) + 2−2J
∑
E∈E

hE∥ξE∥2L2(E) .

Since for all K ∈ T and E ∈ E , the components ξK and ξE are polynomial with degrees bounded
by d1 and d2, respectively, [27, Thm. 3.59] yields∑

K∈T
h2K∥ξK∥2L2(K) +

∑
E∈E

hE∥ξE∥2L2(E) ≲ ∥ξ∥2V ′

with a constant depending only on the initial triangulation T̂0 and on max{d1, d2}. By (20),

∥ξ∥2V ′ ≲
∑
λ∈Θ

∣∣⟨ξ, ψλ⟩∣∣2
with a further constant depending only on T̂0. This concludes the proof.
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We use Lemma 2 to estimate the V ′-norms in (19): we first determine the relevant indices ν ∈ F in the
summation on the right-hand side of (19). This is done by an operator compression in the parametric
degrees of freedom that is independent of the spatial meshes. For each of these ν, we evaluate the
frame coefficients

rν = (rν,λ)λ∈Θν , rν,λ =

〈∑
ν′∈F

∑
µ∈M0(ν,ν′)

(Mµ)ν,ν′Aµvν′ , ψλ

〉

for suitable finite subsetsM0(ν, ν
′) ⊂ M0 and for λ ∈ Θν ⊂ Θ. Here Θν is chosen according to

Lemma 2 such that ∑
λ/∈Θν

r2ν,λ ≤ ζ2
∑
λ∈Θ

r2ν,λ

with a sufficiently small relative error ζ ∈ (0, 1).

The indices (ν, λ) corresponding to the largest values |rν,λ| are selected for refinement, based on a
condition analogous to the Dörfler criterion, by a tree thresholding procedure. Subsequently, for each
ν, the associated current mesh Tν is refined such that all selected frame elements are contained in
the resulting finite element space. A similar strategy has been outlined for the refinement of a single
finite element mesh in [22]. It is especially in our setting, with interactions between many different
meshes in elliptic systems of PDEs, that this technique provides crucial flexbility compared to standard
approaches of a posteriori error estimation.

3 Adaptive solver

In this section, we describe the adaptive solver and analyze its constituent procedures. As noted
above, the adaptive scheme is based on Galerkin discretizations on successively refined meshes.
Here the way in which the underlying residual error indicators are obtained and used in the mesh
refinement differs from previous approaches to adaptive stochastic Galerkin finite element methods.
We combine adaptive operator compression in the stochastic degrees of freedom with frame-based
spatial refinement indicators. These are subsequently used in a tree-based selection of refinements
that in each iteration of the adaptive scheme permits the application of multiple refinement steps within
single mesh elements; this latter property is crucial in ensuring error reduction by a uniform factor.

3.1 Residual estimation

As a first first step in the adaptive scheme, we require a semidiscrete adaptive compression of the
operator B : V → V ′. For ℓ ∈ N0 we define the truncated operators Bℓ by

⟨Bℓv, w⟩ =
∫
Y

∫
D

(
θ0 +

∑
µ∈M
|µ|<ℓ

yµθµ

)
∇v(y) · ∇w(y) dx dσ(y) for all v, w ∈ V . (25)

We make use of two particular consequences of Assumption 1: First, for the expansion functions
(θµ)µ∈M we have that there exists C1 > 0 such that for all ℓ ≥ 0,

#{µ : |µ| = ℓ} ≤ C12
dℓ. (26)
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Second, there exists C2 > 0 such that with the α > 0 in Assumption 1(iii), for all ℓ ≥ 0,∑
|µ|=ℓ
|θµ| ≤ C22

−αℓ a.e. in D. (27)

As in [6, Prop. 3.2], we have the following approximation result.

Proposition 3. With C2 > 0 as in (27), for all ℓ ≥ 0,

∥B −Bℓ∥V→V ′ =
∥∥∥∑
|µ|≥ℓ

Mµ ⊗ Aµ
∥∥∥
ℓ2(F)⊗V→ℓ2(F)⊗V ′

≤ C2

1− 2−α
2−αℓ.

We introduce the following notation: for ν ∈ F and v ∈ V ,

[v]ν =

∫
Y

vLν(y) dσ(y),

and similarly, for ξ ∈ V ′ = L2(Y, V
′, σ),

[ξ]ν =

∫
Y

ξLν(y) dσ(y) , (28)

so that
⟨ξ, v⟩V ′,V =

∑
ν∈F
⟨[ξ]ν , [v]ν⟩V ′,V .

Note that ∥v∥V = ∥(∥[v]ν∥V )ν∈F∥ℓ2 and thus also ∥ξ∥V ′ = ∥(∥[ξ]ν∥V ′)ν∈F∥ℓ2 .

For sequences v ∈ ℓ2(F) and s > 0, we define the standard approximation spaces As = As(F)
with quasi-norm

∥v∥As(F) = sup
N∈N0

(1 +N)smin{∥v −w∥ℓ2(F) : # suppw ≤ N}. (29)

Thus for v ∈ L2(Y, V, σ) with
∥∥(∥[v]ν∥V )ν∈F∥∥As <∞, for each N ∈ N there exists FN ⊂ F with

#FN ≤ N such that∥∥∥∥v − ∑
ν∈FN

[v]νLν

∥∥∥∥
L2(Y,V,σ)

≤ (N + 1)−s
∥∥(∥[v]ν∥V )ν∈F∥∥As .

Similarly as in [6], we construct a routine APPLY in Algorithm 3.1 taking in a tolerance η > 0 and v ∈ V
with finite stochastic support supp([v]ν)ν∈F < ∞ that produces a blockwise operator compression,
adapted to v and encoded by subsets of M0 × supp([v]ν)ν∈F . These subsets of indices specify
which truncation of B as in (25) should be applied to which subset of Legendre coefficients of v. The
following result is obtained by minor modifications of the proof of [6, Prop. 4.8].

Proposition 4. Let s > 0 with s < α
d

, letB be as in (11), let v satisfy #supp([v]ν)ν∈F <∞, and let
ℓi, i = 0, . . . , I , and g be as defined in Algorithm 3.1. Then ∥Bv−g∥V ′ ≤ η, forF = supp([g]ν)ν∈F
we have

#F ≤
∑
ν∈F

#M(ν) ≲
J∑
j=0

2dℓj#Fj ≲ η−
1
s

∥∥(∥[v]ν∥V )ν∈F∥∥ 1
s

As , (30)

and
max
i=0,...,I

ℓi ≲ 1 + |log η|+ log
∥∥(∥[v]ν∥V )ν∈F∥∥As . (31)

The constants in the inequalities depend on C as in Algorithm 3.1, CB , d, α, s, and on C1 from (26).
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Algorithm 3.1 (M(ν))ν∈F , (Fi, ℓi)Ii=0 = APPLY(v; η), for N := # supp([v]ν)ν∈F <∞, η > 0.

(i) If ∥B∥V→V ′∥v∥V ≤ η, return the empty tuple with F = ∅; otherwise, with Ī := ⌈log2N⌉, for
i = 0, . . . , Ī , determine Fi ⊂ F such that #Fi ≤ 2i and PFi

v =
∑

ν∈Fi
[v]νLν satisfies

∥v − PFi
v∥V ≤ C min

#F̃≤2i
∥v − PF̃v∥V

with an absolute constant C > 0. Choose I as the minimal integer such that

δ = ∥B∥V→V ′∥v − PFI
v∥V ≤

η

2
.

(ii) With d0 = PF0v, di = (PFi
− PFi−1

)v, i = 1, . . . , Ī , and Ni = #Fi, set

ℓi =

⌈
α−1 log2

(
CB
η − δ

(∥di∥V
Ni

) α
α+d( I∑

k=0

∥dk∥
d

α+d

V N
α

α+d

k

))⌉
, i = 0, . . . , I.

(iii) With g defined by

g =
I∑
i=0

Bℓidi,

for each ν ∈ F = supp([g]ν)ν∈F , collect the sets M(ν) ⊂ M0 × supp([v]ν)ν∈F of minimal
size such that

[g]ν =
∑

(µ,ν′)∈M(ν)

(Mµ)ν,ν′ Aµ vν′ , ν ∈ F,

and return (M(ν))ν∈F as well as (Fi, ℓi)Ii=0.

As a next step, for g and F as defined in Algorithm 3.1, for each ν ∈ F we need to evaluate

[g]ν =
∑

(µ,ν′)∈M(ν)

(Mµ)ν,ν′ Aµ vν′ ∈ V ′. (32)

We represent each [g]ν as a piecewise polynomial on a (not necessarily conforming) triangulation as
in Theorem 2. To this end, we first compute each summand

[g]ν,ν′ = (Mµ)ν,ν′ Aµ vν′

in (32). Note that the index µ in the definition [g]ν,ν′ is the unique index such that ν ′ = ν ± eµ. For
fixed ν ′, we can compute all [g]ν,ν′ for ν ∈ F by traversing the mesh of vν′ once. Let Kν′ denote
the elements in the mesh of vν′ and let ℓν′ = maxν′∈Fi

ℓi. ?? 1 (ii) guarantees that each element
K ∈ Kν′ is required for at most Cℓν′(2dℓν′−level(K)) summands, with a uniform constant C . Hence,
computing all [g]ν,ν′ for ν ∈ F has a complexity of order O(ℓν′#Kν′ + 2dℓν′ ). However, for fixed ν,
the summands [g]ν,ν′ are on different meshes.

To efficiently evaluate the sum, we use the natural tree structure on the triangles that are generated by
newest vertex bisection, that is, the children of a triangle are the two triangles generated by bisection.
The routine SUM in Algorithm 3.2 yields a representation of [g]ν on a joint grid, with a computational
complexity that is linear in the sum of the sizes of the triangulations of [g]ν,ν′ .
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Algorithm 3.2 ξ̄ = SUM((ξν)ν∈F ) with finite F ⊂ F and ξν is of the form (22) on a mesh Tν with
edges Eν for each ν ∈ F .

Let ξν,K and ξν,E be the polynomials of this representation for each K ∈ Tν and E ∈ Eν ,
respectively. For each triangle K let E(K) denote the edge that is bisected by newest vertex
bisection of K , and Ki and Ei(K) for i = 1, 2 be the corresponding bisected elements and edges.

(i) Initialize ξ̄: Let ξ̄K = 0 and ξ̄E = 0 for every element and every edge;

(ii) For every K and E in the elements and edges of Tν and every ν, add the respective polynomial
to ξ̄:

ξ̄K ← ξ̄K + ξν,K ; ξ̄E ← ξ̄E + ξν,E.

(iii) Set T = ∅ and for each K such that ξ̄K ̸= 0 or ξ̄E(K) ̸= 0, insert all ancestors of K into T, so

that T becomes a tree with root elements R ⊆ T̂0;

(iv) While T is not empty:

For all K in R add polynomials to the corresponding children in T:

ξ̄Ki
← ξ̄Ki

+ ξ̄K for i = 1, 2; ξ̄K ← 0;

ξ̄Ei(K) ← ξ̄Ei(K) + ξ̄E(K) for i = 1, 2; ξ̄E(K) ← 0;

remove K from T and R and insert K1, K2 into R;

(v) Return ξ̄.

Remark 5. The step (ii) in Algorithm 3.2 can be executed while computing [g]ν,ν′ without explicitly
storing [g]ν,ν′ .

3.1.1 Approximate dual norm evaluation

By Theorem 1, we have the equivalent expression for the dual norm of the approximate residual

∥w∥2V ′ = ∥(∥[g]ν∥V ′)ν∈F∥2ℓ2 ≂
∑
ν∈F

∑
λ∈Θ
|⟨[g]ν , ψλ⟩|2.

With the help of Theorem 2 we can estimate the latter expression by evaluating the coefficients
⟨[g]ν , ψλ⟩ for all λ ∈ Θ \ ΘJ(T ) for some J . We now ensure that the costs for computing these
coefficients are linear in the size of Θ \ ΘJ(T ). For any frame element ψλ, we define K(ψλ) as the
supporting triangles, E(ψλ) as the corresponding interior edges, and

R(ψλ) = {ψµ : |µ| = |λ|+ 1 and supp(ψµ) ⊂ supp(ψλ)}

as the set of frame elements in terms of which ψλ can be represented on the next higher level of
refinement, that is, there are coefficients hλ,mu such that ψλ =

∑
ψµ∈R(ψλ)

hλ,µψµ.

Lemma 6. Let J ∈ N and let T ≥ T̂0 be a triangulation with edges E . Then for ΘJ(T ) as in (23),
we have #(Θ \ΘJ(T )) ≲ 4J#T .
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Proof. By construction of ψλ, for K ∈ T we have

#
{
λ ∈ Θ: meas2(suppψλ ∩K) > 0 and |λ| ≤ level(K) + J

}
≲ 4J ,

and for any edge E ∈ E ,

#
{
λ ∈ Θ: meas1(suppψλ ∩ E) > 0 and |λ| ≤ level(E) + 2J

}
≲ 4J .

Since

Θ \ΘJ(T ) =
{
λ ∈ Θ: (∃K ∈ T : meas2(suppψλ ∩K) > 0 ∧ |λ| ≤ level(K) + J)

∨ (∃E ∈ E : meas1(suppψλ ∩ E) > 0 ∧ |λ| ≤ level(E) + 2J)
}
,

we have #
(
Θ \ΘJ(T )

)
≲ 4J#T .

Lemma 7. Let J ∈ N. For any not necessarily conforming triangulation T with interior edges E
and any ξ ∈ V ′ of the form (22), where ξK ∈ Pd1(K), K ∈ T , and ξE ∈ Pd2(E), E ∈ E , the
evaluation of the coefficients ⟨ξ, ψλ⟩ for all λ ∈ Θ \ ΘJ(T ) requires at most C#(Θ \ ΘJ(T ))
basic operations, where C depends only on d1, d2 and on maxλ∈Θ#K(ψλ), maxλ∈Θ#E(ψλ), and
maxλ∈Θ#R(ψλ).

Proof. First, if ξ is polynomial on K ∈ K(ψλ) and E ∈ E(ψλ), then ⟨ξ, ψλ⟩ can be evaluated in
c (#K(ψλ) + #E(ψλ)) basic operations using quadrature, where c depends only on the polynomial
degrees d1 and d2. Otherwise, we evaluate

⟨ξ, ψλ⟩ =
∑

ψµ∈R(ψλ)

hλ,µ⟨ξ, ψµ⟩,

which requires #R(ψλ) operations. It remains to estimate the size of

Θξ = {λ′ ∈ Θ : ψλ′ ∈ R(ψλ) for λ ∈ Θ with ξ not polynomial on K ∈ K(ψλ) or E ∈ E(ψλ)}.

Note that if ξ is not polynomial on all K ∈ K(ψλ) and E ∈ E(ψλ), then ψλ /∈ Θ0(T ) by definition.
Hence,

Θξ ⊆ {λ′ ∈ Θ : ψλ′ ∈ R(ψλ) for some λ ∈ Θ \Θ0(T )}
and #Θξ ≤ #(Θ \ Θξ,0)maxλ∈Θ#R(ψλ) ≤ #(Θ \ ΘJ(T ))maxλ∈Θ#R(ψλ). The number of
basic operations thus does not exceed

c (#K(ψλ) + #E(ψλ) + max
λ∈Θ

#R(ψλ)) (#Θξ +#Θ \ΘJ(T )) ≤ C#Θ \ΘJ(T ).

A practical method implementing this result is given with the method DUALNORMINDICATORS in Algo-
rithm 3.3. Finally, this and the previous algorithms are used to estimate the residual similarly as in [6]
with Algorithm 3.4 for prescribed tolerances of the approximations.

Remark 8. For computational purposes one can avoid explicit treatment of edge terms: instead of
applying integration by parts as in (21) to each term of the formAµvν , one can also use for each given
ψλ that

⟨Aµvν , ψλ⟩ =
∫
D

qµ,ν · ∇ψλ dx

with a piecewise polynomial vector field qµ,ν . One can thus apply the same algorithmic considera-
tions to the components of these vector fields on the triangles and then form inner products with the
gradients of the frame elements.
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Algorithm 3.3 (Θ+, (⟨ξ, ψλ⟩)λ∈Θ+) = DUALNORMINDICATORS(ξ, J) with ξ as in (22), J ∈ N.

Let T and E be as in Theorem 2, with T the smallest triangulation such that (22) holds for ξ.
Initialize L = 0 and Θ̃L = {λ : |λ| = 0}.

(i) Set L← L+ 1 and

Θ̃L =
{
λ′ : ψλ′ ∈ R(ψλ) for λ ∈ Θ̃L−1 ∧( (

ξ not polynomial on K or E for some K ∈ K(ψλ), E ∈ E(ψλ)
)

∨
(
suppψλ′ ∩K ′ ̸= ∅ and L ≤ level(K ′) + J for some K ′ ∈ K

)
∨
(
suppψλ′ ∩ E ′ ̸= ∅ and L ≤ level(E ′) + 2J for some E ′ ∈ E

) )}
;

(ii) If Θ̃L ̸= ∅ go to (i), else go to (iii);

(iii) For j = L− 1, L− 2, . . . , 0: For all λ ∈ Θ̃j evaluate ⟨ξ, ψλ⟩ via

⟨ξ, ψλ⟩ =
∑

ψλ′∈R(ψλ)

rλ,λ′⟨ξ, ψλ′⟩ ifR(ψλ) ⊂ Θ̃j+1, or by quadrature otherwise;

(iv) Set Θ+ =
L−1⋃
j=0

Θ̃j and return
(
Θ+,

(
⟨ξ, ψλ⟩

)
λ∈Θ+

)
.

Note that with sequences (rν)ν∈F such that rν ∈ ℓ2(Θ) for ν ∈ F and
∑

ν∈F∥rν∥2ℓ2 < ∞, we
associate r = (rν,λ)ν∈F ,λ∈Θ ∈ ℓ2(F ×Θ). We write ∥r∥ = ∥r∥ℓ2 , so that in particular

∥r∥ =
∥∥(∥rν∥ℓ2(Θ)

)
ν∈F

∥∥
ℓ2(F)

.

Proposition 9. Let ((Θ+
ν )ν∈F+ , (r̂ν)ν∈F+ , η, b) be the return values of Algorithm 3.4 and let

Λ+ =
{
(ν, λ) ∈ F ×Θ: ν ∈ F+, λ ∈ Θ+

ν

}
. (33)

Set r̂ν = 0 for ν /∈ F+. Furthermore, let z = (⟨[Bv]ν , ψλ⟩)ν∈F ,λ∈Θ and f = (⟨[f ]ν , ψλ⟩)ν∈F ,λ∈Θ.
Then ∥z− f∥ ≤ b and either b ≤ ε, or r̂ satisfies

∥r̂− (f − z)∥ ≤ ζ∥f − z∥, (34)

where we have #supp r̂ ≤ #Λ+ =
∑

ν∈F+ #Θ+
ν and

#Λ+ ≲ #T (f) + (1 + |log η|+ log∥(∥[v]ν∥)ν∈F∥As)2N(T)

+ (1 + |log η|+ log∥(∥[v]ν∥)ν∈F∥As)η−
1
s∥(∥[v]ν∥)ν∈F∥

1
s
As . (35)

The number of operations in Algorithm 3.4 is bounded by a fixed multiple of

(1 + log2(η0/η))
(
#F log#F +#T (f) + (1 + |log η|+ log∥(∥[v]ν∥)ν∈F∥As)2N(T)

+ (1 + |log η|+ log∥(∥[v]ν∥)ν∈F∥As)η−
1
s∥(∥[v]ν∥)ν∈F∥

1
s
As

)
. (36)
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Algorithm 3.4 ((Θ+
ν )ν∈F+ , (r̂ν)ν∈F+ , ([r]ν)ν∈F+ , η, b) = RESESTIMATE(v; ζ, η0, ε), for

#supp([v]ν)ν <∞, relative tolerance ζ > 0, initial tolerance η0, target tolerance ε.

Set η = η0; choose Ĵ such that ζĴ := C2−Ĵ < ζ .

(i) Set (M(ν))ν∈F+ , (Fi, ℓi)
I
i=0 = APPLY(v; η/CΨ) by Algorithm 3.1;

(ii) For each ν ′ ∈ supp([v]ν)ν

Let ℓν′ = maxν′∈Fi
ℓi;

For each µ such that |µ| ≤ ℓν′ and ν such that (µ, ν ′) ∈M(ν) compute

[g]ν,ν′ = (Mµ)ν,ν′Aµ[v]ν′

by traversing the mesh of [v]ν′ once;

(iii) For each ν ∈ F+, use Algorithm 3.2 to evaluate

[r]ν = δ0,νf −
∑

(µ,ν′)∈M(ν)

[g]ν,ν′ = SUM
(
δ0,νf, (−[g]ν,ν′)(µ,ν′)∈M(ν)

)
;

(iv) For each ν ∈ F+ set (Θ+
ν , r̂ν) = DUALNORMINDICATORS([r]ν , Ĵ) by Algorithm 3.3;

(v) Let b = η + (1 +
ζĴ√
1−ζ2

Ĵ

)∥(∥r̂ν∥ℓ2)ν∈F+∥. If η ≤ ζ−ζĴ
1+ζ
∥(∥r̂ν∥ℓ2)ν∈F+∥ or b ≤ ε,

return ((Θ+
ν )ν∈F+ , (r̂ν)ν∈F+ , ([r]ν)ν∈F+ , η, b);

otherwise, set η ← η/2 and go to (i);
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Proof. First, we show the residual error bounds similarly to [6, Thm. 4.15]. As a consequence of
Theorem 1 and Theorem 4, we have ∥z− g∥ ≤ CΨ∥Bv − g∥V ′ ≤ η, where with [g]ν as in (32),

gν =
(
⟨[g]ν , ψλ⟩

)
λ∈Θ and

(
⟨[g]ν − δ0,νf, ψλ⟩

)
λ∈Θν

= r̂ν .

By Theorem 2, we can bound the truncation error by∑
ν∈F+

∑
λ/∈Θν

|⟨[g]ν − δ0,νf, ψλ⟩|2 ≤ ζ2
Ĵ

∑
ν∈F+

∑
λ∈Θ
|⟨[g]ν − δ0,νf, ψλ⟩|2.

Thus

∥r̂∥2 =
∑
ν∈F+

∑
λ∈Θν

|⟨[g]ν−δ0,νf, ψλ⟩|2 ≥ (1−ζ2
Ĵ
)
∑
ν∈F+

∑
λ∈Θ
|⟨[g]ν−δ0,νf, ψλ⟩|2 = (1−ζ2

Ĵ
)∥f−g∥2.

Together with ∥f − z∥ ≥ ∥f − g∥ − η, this first results in

∥r̂− (f − z)∥ ≤ ∥w − z∥+ ∥r̂− (f − g)∥ ≤ η + ζĴ∥f − g∥ ≤ η +
ζĴ√
1− ζ2

Ĵ

∥r̂∥ (37)

and hence ∥f − z∥ ≤ η + (1 + ζĴ(1− ζ2Ĵ)
− 1

2 )∥r̂∥ = b. If additionally η ≤ ζ−ζĴ
1+ζ
∥r̂∥, it results in

∥r̂− (f − z)∥ ≤ η+ ζĴ∥f − g∥ ≤ (ζ − ζĴ)∥r̂∥+ ∥f − g∥ − ζη ≤ ζ(∥f − g∥ − η) ≤ ζ∥f − z∥.

This shows the prescribed error accuracy.

We now estimate #Λ+ =
∑

ν∈F+ #Θ+
ν . Let T̃ν ≥ T̂0 be a triangulation, such that [r]ν is polynomial

on its triangles and edges. Then by Theorem 6 and Theorem 7, we have

#Θ+
ν ≤ c(Ĵ)#T̃ν .

We thus estimate
∑

ν∈F+ #T̃ν . To this end, we also denote by

T̃ν,ν′ = {T ∈ T̃ν : supp[g]ν,ν′ ∩ T ̸= ∅}

the supporting triangles of [g]ν,ν′ . Let T be a triangle in the triangulation Tν′ of [v]ν′ . If level(T ) =
ℓ + k for some ℓ ≤ ℓν′ , then all θµ with |µ| ≤ ℓ are polynomial on T by ?? 2. On the one hand, by
?? 1 (ii) we have

#
{
(T̃ , ν) : T̃ ∈ T̂ν,ν′ for some ν = ν ′ ± µ, |µ| ≤ ℓ and T ∩ T̃ ̸= ∅

}
≤ 2Mℓ ≤ 2Mℓν′ .

On the other hand, #{T̃ ∈ Tν′±eµ,ν′ : level(T̃ ) = |µ|+ k} ≤ 2K by ?? 2. Hence, we have∑
|µ|≤ℓν

(
#Tν′+eµ,ν′ +#Tν′−eµ,ν′

)
≤ 2Mℓν′#Tν′ +

∑
|µ|≤ℓν′

2K ≲ #Tν′ℓν′ + 2dℓν′

and

#Λ+ =
∑
ν∈F+

#Θ+
ν ≲ #T (f) +N(T) max

ν′∈F
ℓ2ν′ +

J∑
j=0

#Fj2
dℓj max

ν′∈F
ℓν′ ,

where an additional factor of maxν′∈F ℓν′ occurs by completing the supports T̃ν,ν′ to a (not necessarily
conforming) triangulation. The estimate (35) then follows with Theorem 4.
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It remains to estimate the number of operations. As in [6], the cost of Algorithm 3.1 is of order

N(T) + #F log#F + η−
1
s∥(∥[v]ν∥)ν∈F∥

1
s
As .

For step (ii) in Algorithm 3.4, we have to count how often each triangle in T is required, leading to an
order of

(1 + |(| log η + log ∥(∥[v]ν∥)ν∈F∥As))N(T) + η−
1
s∥(∥[v]ν∥)ν∈F∥

1
s
As .

The application of SUM in Algorithm 3.2 is linear in the size of triangulations. This results in the com-
plexity

#T (f) + (1 + |log η + log ∥(∥[v]ν∥)ν∈F∥As|)2N(T)

+ η−
1
s∥(∥[v]ν∥)ν∈F∥

1
s
As(1 + |log η|+ log ∥(∥[v]ν∥)ν∈F∥As).

The number of basic operations in Algorithm 3.3 is linear in the size of Λ+, which is again of the
same order by Theorem 7. Finally, we have at most 1 + log2(η0/η) outer loops, which leads to the
bound (36).

Remark 10. For simplicity, we have assumed the parameter-independent source term f to be piece-
wise polynomial on the initial triangulation T̂0. However, the above strategy for computing residual
indicators can easily be modified to accommodate more general f . In particular for f ∈ L2(D), it
suffices to adapt the computation of the single residual component [r]ν for ν = 0 in step (iii) of Al-
gorithm 3.4, where f can be replaced by an approximation on a sufficiently fine grid according to the
current error tolerance. For f ∈ H−1(D) that are proper functionals, one may instead directly modify
step (iv) using the frame coefficients ⟨f, ψλ⟩, λ ∈ Θ, and knowledge on their decay properties. Since
such modifications are problem-dependent, we do not go into further detail here.

3.2 Refining the triangulations

Our refinement strategy is based on selecting a subset of the residual indicators produced by RESES-
TIMATE (Algorithm 3.4) according to a bulk chasing criterion and subsequently refining the individual
meshes in the approximation such that they resolve the selected frame elements. We assume that
RESESTIMATE is performed for an approximation on the given conforming meshes T = (Tν)ν∈F 0

with finite F 0 ⊂ F .

Let us first consider the selection of residual indicators. Recall that for all ν ∈ F+ ⊂ F , RESESTI-
MATE produces vectors of residual indicators r̂ν corresponding to indices Θ+

ν , with associated spatial-
parametric index set Λ+ ⊂ F × Θ as in (33). Since the computational costs of the operations that
we perform depend on tree structure in the frame index sets, we use the strategy based on tree
coarsening described in [6, Sec. 4.5] that preserves such structures in the selection.

To this end we first fix a tree structure on the frame elements ψλ, λ ∈ Θ, and thus on the index set
Θ. This tree structure is determined by choosing a unique parent ψλ′ for each frame element ψλ with
|λ| > 0 such that |λ| = |λ′| + 1 and meas2(suppψλ ∩ suppψλ′) > 0. The tree structure on Θ
induces a natural tree structure on ΘF (and thus on F ×Θ) with roots ({ψλ : |λ| = 0})ν∈F .

We use the procedure Λ = TREEAPPROX(Λ0,Λ+, r̂, η) from [6, Alg. 4.4] to obtain a coarsening Λ
of Λ+ such that Λ0 ⊆ Λ ⊆ Λ+, where Λ0,Λ are subsets with the chosen tree structure and η > 0;
see also [8,10]. Here we take Λ0 = {(ν, λ) ∈ F 0 ×Θ: ψλ ∈ V (Tν)}.
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For Λ generated in this manner, TREEAPPROX ensures

∥r̂|Λ∥2 ≥ ∥r̂∥2 − η.

For any prescribed ω0 ∈ (0, 1), taking η = (1−ω2
0)∥r∥2 we obtain the desired bulk chasing condition

∥r̂|Λ∥ ≥ ω0∥r̂∥ . (38)

Remark 11. As a consequence of [6, Cor. 4.20], the resulting Λ has the following optimality property:
for each ω1 ∈ [ω0, 1), there exists C̃ > 0 such that #(Λ \ Λ0) ≤ C̃#(Λ̃ \ Λ0) for all tree subsets
Λ̃ ⊇ Λ0 such that ∥r̂|Λ̃∥ ≥ ω1∥r̂∥.

For Λ satisfying (38) selected in this manner, let F = {ν ∈ F : ∃λ ∈ Θ: (ν, λ) ∈ Λ} ⊆ F+ and
Θν = {λ ∈ Θ: (ν, λ) ∈ Λ} ⊆ Θ+

ν for ν ∈ F , where Θν inherits the tree structure of Λ. We now
define a procedure

(T̃ν)ν∈F = MESH(Λ) (39)

that outputs the componentwise smallest sequence of meshes such that for each ν ∈ F , T̃ν is
conforming and span{ψλ}λ∈Θν ⊆ V (T̃ν). Note that in a setting where Λ0 ⊆ Λ, the meshes T̃ν
are refinements of the initial meshes Tν that are given by the frame elements in Λ0: (Tν)ν∈F 0 =
MESH(Λ0).

Proposition 12. The meshes (T̃ν)ν∈F produced by MESH(Λ) in (39) satisfy #T̃ν ≲ #Θν for each
ν ∈ F and can be obtained using a number of operations proportional to #Θν , with constants
depending only on T̂0.

The proof relies on the following bound on the complexity of conforming meshes created by newest
vertex bisection, which is a consequence of [9, Thm. 2.4], see also [26, Thm. 3.2] and [12, Lem. 2.3].

Theorem 13. Let T0 = T̂0 and for k = 1, . . . , n, let Tk be defined as the smallest conforming
refinement of Tk−1 such that the elementsMk−1 ⊆ Tk−1 are bisected. Then with C0 > 0 depending
only on T̂0,

#Tn −#T0 ≤ C0

n−1∑
k=0

#Mk.

Proof of Proposition 12. For each ν ∈ F , given a tree Θν , we can apply Theorem 13 to the construc-
tion of a suitable triangulation T̃ν with #T̃ν ≲ #Θν in the following way. We may assume that Θν

contains the roots {λ : |λ| = 0} as

#({λ : λ is an ancestor of some λ′ ∈ Θν } ∪Θν) ≲ #Θν

by the tree structure of Θν . Now let the sequence of triangulations in Theorem 13 be defined by
T0 = T̂0 and

Mk = {T ∈ Tk : T ∩ suppψλ and |λ| = k + 1}

with the slight adaptation that each marked triangle is bisected twice. We get
∑n−1

k=0 #Mk ≲ Θν as
each hat function on a uniform refinement has support on only a bounded number of triangles, and
thus the result follows.
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Algorithm 3.5 w = GALERKINSOLVE(T, v, r, ℓ, ε0) given a family of triangulations T, an approxi-
mate solution v ∈ V(T), an approximated residual r ∈ V ′, accuracy parameter ℓ of the operator
compression, and a target tolerance ϵ0.

(i) Assemble linear operators Bℓ, P on the coefficients of the nodal basis of T such that u⊺Bℓv =
⟨Bℓv, u⟩ for all u, v ∈ V(T), P satisfies (41), and r such that ⟨v, r⟩ = ⟨r, v⟩.

(ii) Use the preconditioned conjugated gradient method to find q with nodal coefficients q and
⟨P(Bℓq− r), (Bℓq− r)⟩ ≤ ε20.

(iii) Return w = v + q;

3.3 Solving Galerkin systems

As a starting point for solving the Galerkin systems, we recall the frame property Theorem 1 and
assume an approximated residual r computed by Algorithm 3.4 with tolerance η, which satisfies ∥r−
(f − Bv)∥V ′ ≤ η/CΨ. We use the preconditioned conjugated gradient (PCG) method to find a
correction q of the current solution approximation such that for a ρ > 0,

∥r −Bℓq∥V(T)′ ≤
ρ

cΨ
∥r̂∥. (40)

Here, the discrete dual norm is given by

∥g∥V(T)′ = sup
v∈V(T)

⟨g, v⟩
∥v∥V

.

The condition (40) can be verified directly in the PCG method as follows. Let A ∈ RN×N with N =
dimV(T) be the coefficient matrix such that for nodal coordinate vectors u,v ∈ RN of functions
u, v ∈ V(T) we have ⟨Au,v⟩ =

∫
Y

∫
D
∇u(x, y) · ∇v(x, y) dx dy. We use the modification of the

BPX preconditioner to general meshes generated by newest vertex bisection analyzed in [13]. For this
preconditioner with matrix representation P, there exist cp, CP > 0 such that we have the spectral
equivalence

cP ⟨P−1u,u⟩ ≤ ⟨Au,u⟩ ≤ CP ⟨P−1u,u⟩ for all u ∈ RN . (41)

For g in V ′, we thus have

∥g∥2V(T)′ = sup
v∈V(T)

⟨g, v⟩2
∥v∥2V

= sup
v∈RN

|⟨g,v⟩|2
⟨Av,v⟩ ≤ sup

h∈RN

|⟨g,Ph⟩|2
cP ⟨h,Ph⟩ ≤

1

cP
⟨Pg,g⟩,

where we substituted v = Ph, used the spectral equivalence and the Cauchy-Schwarz inequality.
Similarly, we have ∥g∥2V(T)′ ≥ 1

CP
⟨Pg,g⟩.

Proposition 14. Assume an initial approximation v on a triangulation T̃ ≤ T, and with sufficiently
small global tolerance ε, let

((Θ+
ν )ν∈F+ , (r̂ν)ν∈F+ , ([r]ν)ν∈F+ , η, b)=RESESTIMATE(v; ζ, η0, ε)

be the output of Algorithm 3.4 and w = GALERKINSOLVE(T, v, r, ℓ, cP−1/2c−1
Ψ ρ∥r̂∥) be the output

of Algorithm 3.5. Then the approximation w of the Galerkin solution uT satisfies the error bound

∥uT − w∥B ≤ γ(ζ, ℓ, ρ, Ĵ)∥r̂∥,
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where

γ(ζ, ℓ, ρ, Ĵ) =
1

cΨ

1√
cB

ζ − ζĴ
1 + ζ

+
ζĴ√
1− ζ2

Ĵ

+ ρ+
C2

1− 2−α
2−αℓ

1

cB

(
1

1− ζĴ
+ ρ

) .

Proof. We assume that ε is sufficiently small so that RESESTIMATE does not terminate with the con-
dition b ≤ ε in step (v). Recall from (13) that ∥v∥B ≤ c

−1/2
B ∥Bv∥V(T)′ for v ∈ V(T). We consider a

decomposition of the total error for w = v + q,

∥uT − w∥B ≤
1√
cB
∥f −B(v + q)∥V(T)′

≤ 1√
cB

(
∥r − (f −Bv)∥V(T)′ + ∥r −Bℓq∥V(T)′ + ∥(Bℓ −B)q∥V(T)′

)
.

(42)

For the first term on the right in (42), using (37) in the proof of Theorem 9 and Theorem 1

∥r − (f −Bv)∥V(T)′ ≤
1

cΨ

ζ − ζĴ
1 + ζ

+
ζĴ√
1− ζ2

Ĵ

 ∥r̂∥.
Note that Theorem 9 uses the frame norm while the estimate above is with respect to the discrete dual
norm, which is obviously smaller than the full dual norm used in Theorem 1.

By assumption, the second term on the right in (42) satisfies the bound (40) with relative solver error
ρ as a result of Algorithm 3.5. For the last term, first note that

∥Bℓq∥V(T)′ = ∥r − (r −Bℓq)∥V(T)′ ≤ ∥r∥V(T)′ +
ρ

cΨ
∥r̂∥.

Moreover, again with Theorem 9 for the approximation of the full sequence of residual frame coeffi-
cients r̄ = ((⟨[r]ν , ψλ⟩)λ∈Θ)ν∈F , we derive

∥r∥V(T)′ ≤
1

cΨ
∥r̄∥ ≤ 1

cΨ

1

1− ζĴ
∥r̂∥. (43)

By Theorem 3 and using that cB∥q∥V(T) ≤ ∥Bℓq∥V(T)′ , we thus obtain

∥(Bℓ −B)q∥V(T)′ ≤
C2

1− 2−α
2−αℓ∥q∥V(T) ≤

C2

1− 2−α
2−αℓ

1

cB

(
∥r∥V(T)′ +

ρ

cΨ
∥r̂∥

)
.

With (43) it follows that

∥(Bℓ −B)q∥V(T)′ ≤
C2

1− 2−α
2−αℓ

1

cΨ

1

cB

(
1

1− ζĴ
+ ρ

)
∥r̂∥.

A combination of the preceding estimates yields the result.

Remark 15. The number of steps of the PCG method in Algorithm 3.5 terminates after a uniform finite
number of steps since we require a fixed relative accuracy. Hence, the computational complexity of
the algorithm does not deteriorate when successive mesh refinements take place.
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Algorithm 3.6 Adaptive Galerkin Method

Set the parameters ℓ, ζ, ω0 and relative accuracy ρ, set initial u0 = 0 and formally
∥r̂−1∥ = CΨ∥f∥V ′ . Let k = 0;

(i) (Λ+, (r̂kν)ν , ([r
k]ν)ν , ηk, bk) = RESESTIMATE(uk; ζ, ζ

1+ζ
∥r̂k−1∥, ε) by Algorithm 3.4

(ii) If bk ≤ ε, return uk.

(iii) Λk+1 = TREEAPPROX(Λk,Λ+, r̂k, (1− ω2
0)∥r̂k∥2);

(iv) Tk+1 = MESH(Λk+1);

(v) uk+1 = GALERKINSOLVE(Tk+1, uk, rk, ℓ, 1√
cP

ρ
cΨ
∥r̂k∥) by Algorithm 3.5

(vi) k ← k + 1 and go to (i);

4 Convergence analysis

We now come to the main result of this work, where we show error reduction by a uniform factor
in each step of the adaptive scheme Algorithm 3.6. This reduction factor depends on a number of
parameters and constants from previous sections: on cB and CB from (3) and (4), respectively; on the
frame bounds cΨ, CΨ in (20); and ω0 as in (38).

Let T = (Tν)ν∈F with conforming Tν ≥ T̂0 for all ν ∈ F with finite F ⊂ F be given, and let
T̃ = (T̃ν)ν∈F̃ be any refinement with F̃ ⊇ F and conforming T̃ν ≥ Tν for ν ∈ F as well as T̃ν ≥ T0
for ν ∈ F+ \ F . Note that for the exact solution u ∈ V , the Galerkin solution uT̃ ∈ V(T̃) and an
arbitrary w ∈ V(T), we then have the Galerkin orthogonality relation

∥u− w∥2B = ∥u− uT̃∥2B + ∥uT̃ − w∥2B . (44)

In what follows, recalling notation (28), let

r(w) =
(〈
[Bw − f ]ν , ψλ

〉)
ν∈F ,λ∈Θ ∈ ℓ2(F ×Θ) .

We denote by PT : V → V the orthogonal projection in V onto V(T), which corresponds to the
V -orthogonal projection onto V (Tν) for each ν.

Lemma 16. For w ∈ V(T), let r̂ ∈ ℓ2(F ×Θ) be such that

∥r(w)− r̂∥ℓ2 ≤ ζ∥r(w)∥ℓ2

with ζ ∈ (0, 1
2
), and let Λ̃ = (Θ̃ν)ν∈F with Θ̃ν ⊂ Θ, ν ∈ F , be chosen such that

∥r̂|Λ̃∥ℓ2 ≥ ω0∥r̂∥ℓ2

with ω0 ∈ (0, 1], where (1+ω0)ζ < ω0. Let T̃ = MESH(Λ̃), then withCB,Ψ = C2
ΨCB/(c

2
ΨcB) ≥ 1,

we have

∥u− uT̃∥B ≤
(
1−

(
ω0 − (1 + ω0)ζ

)2
CB,Ψ

) 1
2

∥u− w∥B.
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Proof. Using (20), we obtain

∥w − uT̃∥B ≥
1√
CB
∥B(w − uT̃)∥V ′ ≥ 1√

CB
∥P ′

T̃B(w − uT̃)∥V ′ =
1√
CB
∥P ′

T̃(Bw − f)∥V ′

≥ 1√
CBCΨ

(∑
ν

∑
λ∈Θ
|⟨[Bw − f ]ν , PT̃ψλ⟩|2

) 1
2

=
1√

CBCΨ

(∑
ν

∑
λ∈S̃ν

|⟨[Bw − f ]ν , ψλ⟩|2 +
∑
ν

∑
λ∈Θ\S̃ν

|⟨[Bw − f ]ν , PT̃ψλ⟩|2
) 1

2

≥ 1√
CBCΨ

(∑
ν

∑
λ∈S̃ν

|⟨[Bw − f ]ν , ψλ⟩|2
) 1

2
=

1

CΨ

√
CB
∥r(w)|Λ̃∥.

We now note that

∥r(w)|Λ̃∥ ≥ ∥r̂|Λ̃∥ − ∥r(w)− r̂∥ ≥ ω0∥r̂∥ − ζ∥r(w)∥ ≥ ω0∥r(w)∥ − (1 + ω0)ζ∥r(w)∥,
and thus

∥r(w)|Λ̃∥ ≥
(
ω0 − (1 + ω0)ζ

)
∥r(w)∥ =

(
ω0 − (1 + ω0)ζ

)(∑
ν

∑
λ∈Θ
|⟨[Bw − f ]ν , ψλ⟩|2

) 1
2

≥
(
ω0 − (1 + ω0)ζ

)
cΨ∥Bw − f∥V ′ ≥

(
ω0 − (1 + ω0)ζ

)
cΨ
√
cB∥w − u∥B .

The statement thus follows with Galerkin orthogonality (44).

Lemma 17. Let ∥uT̃ − w̃∥B ≤ γ∥r̂∥. Then

∥u− w̃∥B ≤ δ∥u− w∥B (45)

with

δ =

(
1−

(
ω0 − (1 + ω0)ζ

)2
CB,Ψ

+ γ2(1 + ζ)2C2
ΨCB

) 1
2

and CB,Ψ from Theorem 16.

Proof. Combining

γ∥r̂∥ ≤ γ(1 + ζ)∥r(w)∥ ≤ γ(1 + ζ)CΨ∥Bw − f∥V ′ ≤ γ(1 + ζ)CΨ

√
CB∥w − u∥B

with the Galerkin orthogonality ∥u− w̃∥2B = ∥u− uT̃∥2B + ∥uT̃ − w̃∥2B , the statement follows.

Considering Theorem 14, there are some requirements for the parameters that enter in γ to ensure
an error reduction in Theorem 17. The conditions on ζ and ω0 read

0 < (C + 2)ζ < 1 with C2 =
C2

ΨCBCB,Ψ
c2ΨcB

(46)

and

ω0 > (C + 1)
ζ

1− ζ . (47)

Then it is possible to also find parameters ℓ, ρ and Ĵ to achieve the condition on γ

γ = γ(ζ, ℓ, ρ, Ĵ) <
ω0 − (1 + ω0)ζ

(1 + ζ)
√
CB,ΨCBCΨ

. (48)

With the help of Theorem 14 and Theorem 17 we can thus state the following result on error reduction
in each step.
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Theorem 18. Assume conditions (46) and (47). Then there exist parameters ℓ, ρ, Ĵ such that (48) is
satisfied. Consequently, the adaptive algorithm achieves the error reduction

∥u− uk+1∥B ≤ δ∥u− uk∥B,

where δ from Theorem 17 is independent of k.

Proof. We first note that (48) and

1− (ω0 − (1 + ω0)ζ)
2

CB,Ψ
+ γ2(1 + ζ)2C2

ΨCB < 1,

are equivalent and thus error reduction is achieved due to (45) in Theorem 17. The terms 2−αℓ, ζĴ
and ρ appearing in γ(ζ, ℓ, ρ, Ĵ) from Theorem 14 can be made arbitrarily small for sufficiently large
Ĵ and ℓ and sufficiently small ρ. Thus the condition (46) is satisfiable whenever

1

cΨ

1√
cB

(
ζ

1 + ζ

)
<

ω0 − (1 + ω0)ζ

(1 + ζ)
√
CB,ΨCBCΨ

,

which directly leads to (47), and noting that ω0 < 1, the condition (46) for ζ follows as well.

Remark 19. Concerning the computational complexity of the method, note that all substeps of the
adaptive method Algorithm 3.6 have either linear costs up to logarithmic factors in N(T) or in the
target accuracy rate η−

1
s , as seen notably for the most expensive step RESESTIMATE in Theorem 9.

The complexity of GALERKINSOLVE is linear in N(T) and only deteriorates for larger ℓ, as noted in
Theorem 15. For quasi-optimal computational complexity of the adaptive method, it thus only remains
to show that the number of degrees of freedom in the approximation that is added in each step of the
iterative method remains quasi-optimal.

5 Numerical Experiments

The adaptive Galerkin method Algorithm 3.6 was implemented for spatial dimensions d = 1 and d = 2
using the Julia programming language, version 1.9.2. The numerical experiments were performed on a
Dell PowerEdge R725 workstation with AMD EPYC 7742 64-core processor. For the code to reproduce
the tests, see [5].

For d = 2 we chose the L-shaped domainD = (0, 1)2\(0, 0.5)2, with an initial mesh of 24 congruent
triangles with 5 interior nodes. For d = 1 we simply takeD = (0, 1). In Figure 2 we show refinements
of different components that appear during the adaptive method.

For the random fields a(y), we use an expansion in terms of hierarchical hat functions formed by
dilations and translations of θ(x) = (1 − |2x − 1|)+. Specifically, for d = 1, θµ with µ = (ℓ, k) is
given by

θℓ,k(x) := c2−αℓθ(2ℓx− k), k = 0, . . . , 2ℓ − 1, ℓ ∈ N0. (49)

This yields a wavelet-type multilevel structure satisfying Assumptions 1 and thus (26) and (27), where

M = {(ℓ, k) : k = 0, . . . , 2ℓ − 1, ℓ ≥ 0}

with level parameters |(ℓ, k)| = ℓ. For d = 2, we take the isotropic product hierarchical hat functions

θℓ,k1,k2(x) := c2−αℓθ(2ℓx− k1) θ(2ℓx− k2), (ℓ, k1, k2) ∈M, (50)
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Figure 2: Triangulation of approximations of different components uν in (6), analogous to Figure 1,
generated by the adaptive method for different ν for d = 2. Top: ν = 0, bottom: ν = eµ for two
different µ ∈M.

with

M =
{
(ℓ, k1, k2) : ℓ ∈ N0, k1, k2 = 0, 1

2
, . . . , 2ℓ − 3

2
, 2ℓ − 1 with k1 ∈ N0 or k2 ∈ N0,

and supp θℓ,k1,k2 ⊂ D
}
.

As in [6], we improved the quantitative performance by choosing parameters not strictly to theory. The
adaptive scheme is tested with α = 1

2
, 2
3
, 1, 2 for both d = 1 and d = 2. We take f ≡ 1 and

c = 1
10

in (49), (50). The parameters of the scheme are chosen as ω0 = 1
10

, CB = 1
50

, cΨ =

CΨ = cP = CP = 1, and the relative accuracy ρ = 1
50

. To choose an adequate parameter Ĵ ,
we tested different ranges of refinement, until we found no qualitative differences compared to higher
values of Ĵ . This resulted in Ĵ = 2 for d = 1 and Ĵ = 1 for d = 2. The results of the numerical
tests are shown in Figure 3 for d = 1 and in Figure 4 for d = 2. They are compared to the expected
approximation rates (10) seen as dashed lines. Remarkably, for d = 1 the rate for degrees of freedom
even resembles the expected limiting approximation rates for stochastic variables α instead of 2

3
α. In

the case d = 2, the limiting approximation rates 1
2
min{α, 1} expected for piecewise linear spatial

approximations are recovered by the adaptive method.

6 Conclusions and Outlook

We have constructed a novel adaptive stochastic Galerkin finite element method that guarantees a re-
duction of the error in energy norm in every step of the adaptive scheme while using an independently
refined spatial mesh for each product orthonormal polynomial coefficient of the solution. All operations
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Figure 3: Computed residual bounds for d = 1 as a function of total number of degrees of free-
dom dimV(T) ≂ N(T) of the current approximation of u (solid grey lines), degrees of stochastic
freedom #F (solid black lines), and elapsed computation time in seconds (dash-dotted line).
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Figure 4: Computed residual bounds for d = 2 as a function of total number of degrees of freedom
dimV(T) ≂ N(T) of the current approximation of u (solid grey lines), number of product Legendre
polynomials #F (solid black lines), and elapsed computation time in seconds (dash-dotted line).
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that need to be performed also have costs that are consistent with total computational costs scaling
linearly (up to logarithmic factors) with respect to the total number of degrees of freedom N(T). Such
scaling of the costs is also visible in the numerical experiments. What is thus left for future work is
to show that the number of new degrees of freedom that is added in each iteration of the adaptive
scheme is quasi-optimal, which will then yield optimal computational complexity of the method.

As for the earlier wavelet-based method in [6], our numerical tests confirm the approximability results
(10) obtained in [2]. For d = 1 with spatial approximation by piecewise linear finite elements, we
observe a new effect going beyond the existing tests, where for the reachable accuracies we obtain
a better convergence rate than ensured by the theory (and observed for higher-order wavelets in [6]).
This may be related to the particular piecewise linear structures that appear in the exact solution for
d = 1 (see Figure 1), but this effect is yet to be understood in detail.

Finally, let us note that although we have conducted the analysis of the method for the case d = 2 for
simplicity, everything that we have done can be generalized immediately to d > 2, but the practical
implementation in the case d = 3 poses some further technical challenges.
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