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Gelation in cluster coagulation processes
Luisa Andreis, Tejas Iyer, Elena Magnanini

Abstract

We consider the problem of gelation in the cluster coagulation model introduced by
Norris [Comm. Math. Phys., 209(2):407-435 (2000)], where pairs of clusters of types
(x, y) taking values in a measure space E, merge to form a new particle of type z ∈ E
according to a transition kernel K(x, y,dz). This model possesses enough generality
to accommodate inhomogeneities in the evolution of clusters, including variations in
their shape or spatial distribution. We derive general, sufficient criteria for stochastic
gelation in this model. As particular cases, we extend results related to the classical
Marcus–Lushnikov coagulation process, showing that reasonable ‘homogenous’ coagu-
lation processes with exponent γ > 1 yield gelation; and also, coagulation processes
with kernel K̄(m,n) ≥ (m ∧ n) log (m ∧ n)3+ε for ε > 0.

1 Introduction

Models of coagulation arise widely in many scientific models, in areas ranging from physi-
cal chemistry (in the formation of polymers), to astrophysics (in modelling the formation of
galaxies). A classical model for coagulation involves collections of particles (which we refer
to later on, formally, as ‘clusters’), each attributed with a mass. Pairs of particles coagulate
to form new particles at a rate K̄(x, y), where x and y are masses of the particles. This
stochastic coagulation model is known as the Marcus–Lushnikov process [25, 15, 24]. The
limiting behaviour of the particle masses as the number of particles tends to infinity in the
Marcus–Lushnikov model is generally expected to be encoded by a set of infinitely many dif-
ferential equations (or measure-valued differential equations) known as the Smoluchowski or
Flory equations.
Particular cases of the Marcus–Lushnikov model are closely related to other stochastic models:
the case K̄(x, y) = 1 corresponds to the Kingman’s coalescent [22], the case K̄(x, y) =
x+ y has multiple interpretations, including being related to Aldous’ continuum random tree
[1, 4, 10], whilst the case K̄(x, y) = xy is closely related to the Erdős–Rényi random graph
(see, for example, [20, 3, 2, 9]). We refer the reader to the review paper [5] for a more general
overview, although remark that there has been a lot of progress made over the last 25 years.
We also note that in this paper, we are interested in models of pure coagulation; whilst a lot
of work in the literature also allows for the fragmentation of particles.
A natural question of interest related to coagulation processes is whether or not at some
time t > 0 there is the formation of macroscopic or giant particles (gels), i.e. particles
whose masses are on a significantly larger scale than the ones of the initial particles in the
system. Motivated by the application to polymer chemistry, this is known as gelation. Gelation
is generally defined as whether a solution of the Smoluchowski (or Flory) equation fails to
‘conserve mass’, which means, intuitively, that mass is lost to ‘infinite-mass’ particles. This is
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closely linked to the appearance of ‘large particles’ in the Marcus–Lushnikov model as long as
one knows that the trajectories of the process concentrate on solution(s) of such an equation.
This fact was first used by Jeon to prove existence of gelling solutions to the Smoluchowski
equation [21] whenever there exists α > 1/2 such that K̄(x, y) ≥ (xy)α (see also [29] for
a simplified exposition). An alternative proof of gelation using analytic tools was provided by
Escobedo, Mischler and Perthame [14] (see also [13]), whilst Laurencot [23] improved this to
show that gelation occurs whenever K̄(x, y) ≥ √xy(log(x) log(y))1+ε, for ε > 0. However, a
longstanding scientific conjecture that has not previously been proven rigorously states that if
K̄ is homogenous with exponent γ > 1 (i.e., K̄(cx, cy) = cγK̄(x, y) for c > 0) then gelation
occurs (see, e.g. [5, 12, 32]).
Although an extensive literature is devoted to the classical Marcus–Lushnikov process, relatively
less is known about variants of this model incorporating inhomogenieties of particles, for
example, their shape, velocity, or location in space. A framework introduced by Norris in [26],
called the cluster coagulation model, allows one to incorporate these features in a rather
general way. In [26] a weak law of large numbers has also been proved, recently extended to
weaker assumptions in [7]. See also [27] for a variant that incorporates diffusion of clusters.
However, apart from a particular special case of the model [18], general criteria for gelation
in this model that incorporate information about these inhomogeneities are lacking, despite
being of interest from both the perspective of applications in physics, and mathematically.
It should be noted that whilst this model is rather general, and can incorporate spatial charac-
teristics in the clusters, it lacks an important feature: movement of particles in space indepen-
dent of coagulation events. There are a number of results related to other models incorporating
the movement of particles as Brownian motions in space [16, 17, 34, 30], or as particles jump-
ing across two sites [31, 33]; but we are not aware of any general results concerning criteria for
gelation in these models, apart from the interesting induced gelation effect in a particular case
of the two-site model [12]. Recently, in [8], the question of gelation in a spatial coagulation
model has been approached using a different approach, with Poisson point processes and large
deviations.

1.1 Overview on our contribution

In this paper we make a contribution to the aforementioned gap in the literature by providing
a general sufficient criterion for gelation in the cluster coagulation model.

1 In Theorem 2.4, we provide sufficient criteria for gelation in the general setting of the
cluster coagulation model. These criteria may be of interest in applied settings, where
the kernels may take into account many features of a cluster, not only the mass.

2 As a consequence, in Corollary 2.8 we provide improved criteria for gelation in the
classical Marcus–Lushnikov process. We show, as a particular case, that reasonable ‘ho-
mogenous’ coagulation processes with exponent γ > 1 yield gelation, thus, providing, as
far as we now, the first rigorous proof of the aforementioned generally accepted scientific
principle. We also show, that, if for ε > 0, K̄(x, y) ≥ (x ∧ y)(log (x ∧ y))3+ε, gelation
occurs - a condition that depends only on the size of the minimum of merging clusters.

To prove the gelation statements, we apply techniques introduced by Jeon [21] (see also [29]),
exploiting the Markovian dynamics and the generator of the process to bound the expected
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value of the random time when a positive fraction of the mass of the system is made up of
‘large’ clusters. In the general spatial setting, we use a coarse-graining procedure, partitioning
the space into regions where the interaction rates between clusters have sufficient lower bounds.
The summability condition in Assumption 2.1 ensures large clusters form ‘quickly’ enough for
gelation to arise. When the state space also incorporates, for example, the position of the
clusters, this criterion guarantees gelation for kernels that are products of a function decreasing
in the distance between clusters, and of a ‘gelling’ kernel of the masses. The improved sufficient
criteria for gelation in the non-spatial Marcus-Lushnikov model, outlined in Item 2 above, are
a result of finer lower bounds on the generator compared to the bounds in [21, 29].
The rest of the paper is structured as follows.

1 In Section 1.2 we introduce the cluster coagulation model and we define gelation in this
context. In Section 1.3 we provide examples of natural models that fit into the framework
of cluster coagulation processes.

2 In Section 2 we state our results. In particular, in Section 2.1 we state our sufficient
criteria for gelation, the main theorem of this paper. In Corollary 2.8 we state how
this criteria translate into the setting of classical, non-spatial, coagulation processes,
improving the state of the art in this setting. In Section 2.2 we mention a connection
with inhomogeneous graphs and how to derive some gelation criteria from them. Such
a connection is based on a natural coupling, which we omit to prove here (we refer to
an extended pre-print version of this work for it [6]).

3 Finally, Section 3 deals with the proofs of the main results.

1.2 Definition of the process and gelation

We consider the cluster coagulation process, introduced by Norris in [26], where clusters are
characterised by their type, an element of a measurable space (E,B). Associated with a cluster
of type x ∈ E is a mass function m : E → (0,∞). Another important quantity associated
with the process is a coagulation kernel K : E×E×B → [0,∞), which satisfies the following:

1 for all A ∈ B (x, y) 7→ K(x, y, A) is measurable;

2 for all x, y ∈ E K(x, y, ·) is a measure on E;

3 symmetric: for all A ∈ B, x, y ∈ E K(x, y, A) = K(y, x, A);

4 K is finite: for all x, y ∈ E K̄(x, y) := K(x, y, E) <∞;

5 K preserves mass: for all x, y ∈ E, m(z) = m(x) +m(y) for K(x, y, ·)-a.a. z ∈ E.

Suppose that we begin with a configuration of clusters labelled by an index set I. Then,

� to each labelled pair of clusters, independently, with types x, y ∈ E and K̄(x, y) > 0 we
associate an exponential clock (exponential random variable) with parameter K̄(x, y);
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Figure 1: Two clusters of types x and y merge at rate K̄(x, y) into a particle of type z, sampled
from the probability measure K(x, y, dz)/K̄(x, y), with mass m(z) = m(x) +m(y).

� upon the elapsure of the next exponential random variable in the process, corresponding
to a labelled pair with types x, y ∈ E, say, the associated clusters are removed and
replaced with a new labelled cluster with type z ∈ E, where z is sampled from the
probability measure

K(x, y, ·)
K̄(x, y)

.

We refer the reader to Section 1.3 for natural examples of coagulation models that fit into
this framework. Figure 1 illustrates the coagulation mechanism.
Throughout this paper we consider sequences of cluster coagulation processes, depending on a
parameter N ∈ N, that is for each process of the sequence we have a coagulation kernel that
depends on the parameter (we denote it with KN). One may consider this parameter N , up to
random fluctuations, as the total initial mass of the system. We analyse the process in limiting
regimes as N → ∞. For each N ∈ N, we consider the process as a measure valued Markov
process (L(N)

t )t≥0 on the space of finite point measures on E, i.e., the space of positive,
integer valued, finite measures on E. The point measure L(N)

t encodes the configuration of
clusters at time t, so that for A ⊆ E, a ∈ (0,∞), L(N)

t (A∩m−1([a,∞))) denotes the random
number of clusters of mass at least a belonging to A at time t. SupposeM+(E) denotes the
set of finite, positive measures on E. Then, the infinitesimal generator AN associated with
the process is defined as follows: for any bounded measurable test function F :M+(E)→ R,
we have

ANF (ξ) = 1
2

∫
E×E×E

ξ(dx) (ξ − δx) (dy)KN(x, y, dz)
(
F (ξ(x,y)→z)− F (ξ)

)
∀ξ ∈M+(E),

(1)
where ξ(x,y)→z := ξ + (δz − δx − δy). Note that, the measure ξ in (1) is always non-negative,
since, we always assume the process is initiated by a finite point measure. Thus, for any
x ∈ E, by assumption ξ({x}) ∈ N0 is a non-negative integer, representing the number of
clusters of type x. The measure ξ(x,y)→z, therefore, describes the configuration of the system
after a coagulation involving the two clusters x, y ∈ E merging to form a cluster z with
m(z) = m(x) +m(y), for KN(x, y, ·)-a.a. z ∈ E.
Remark 1.1. Abusing notation for brevity, if we write ξ(dx) for ξ({x}), the factor 1

2 in front
of the generator in (1) ensures that the number of pairs that interact at rate K̄N(x, y) is
ξ(dx)ξ(dy) if x 6= y and

(
ξ(dx)(ξ(dx)−1)

2

)
if x = y.

Whilst we allow the kernel KN to depend on N , we are often motivated by scenarios where
KN ≡ K for some fixed kernel K. In such cases, it is well known that, in order to observe
non-trivial limiting behaviour of the process (for example in proving a law of large numbers)
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a time rescaling is needed. This allows one to counterbalance the increase in the number of
interactions as the initial mass of clusters grows with N . This motivates the definition of the
following normalised process:

L̄(N)
t := L(N)

t/N/N.

Note that the normalised process is still a Markov process on M+(E) with generator ÃN ,
defined such that for ξ̃ ∈M+(E) and any bounded measurable test function F :M+(E)→
R, we have

ÃNF (ξ̃) = N

2

∫
E×E×E

ξ̃(dx)
(
ξ̃ − δx

N

)
(dy)KN(x, y, dz)

(
F

(
ξ̃ + (δz − δx − δy)

N

)
− F (ξ̃)

)
.

(2)

The scaling by N comes from the following. First, to get the total rate at which clusters asso-
ciated with x and y interact, we need to multiply each of the terms ξ̃(dx) and

(
ξ̃ − δx

N

)
(dy)

by a factor of N . Then, note that the time re-scaling t 7→ t/N corresponds to ‘slowing down’
each of the exponential clocks in the system by a factor of N . If X is exponentially distributed
with rate K, NX is exponentially distributed with rate K/N . Therefore, we need to normalise
the kernel by KN 7→ KN/N . Combining these steps leads to the above. Given a measure
µ ∈M+(E) and a measurable function f : E → R, we denote by

〈f, µ〉 :=
∫
E
f(x)µ(dx).

At the level of the stochastic process, we denote by PN (·) and EN [·] probability distributions
and expectations with regards to the trajectories of the process (L̄(N)

t )t≥0 with generator ÃN
and possibly random initial condition L̄(N)

0 . To ensure the process is well defined, we assume
throughout that N L̄(N)

0 is, almost surely, a point measure. In addition, we introduce the
following notation for the regular conditional distribution and expectations when the initial
condition L̄(N)

0 is given by a (deterministic) measure π(N) ∈M+(E)

PN,π(N) (·) := PN
(
· | L̄(N)

0 = π(N)
)

and EN,π(N) [·] := EN
[
· | L̄(N)

0 = π(N)
]
. (3)

Remark 1.2. As with L̄(N)
0 , we always only consider initial configurations π(N) such that Nπ(N)

is a finite point measure.

For brevity, we generally refer to sequences of cluster coagulation processes
{

(L̄(N)
t )t≥0

}
N∈N

as a cluster coagulation process.
Our main interest is the presence of gelation in the cluster coagulation process, indicating
the emergence of ‘large’ clusters. The following is a minor reformulation of the definitions
from Jeon [21, Definition 2]. First, it is helpful to define random times indicating the presence
of these large cluster. Let ψ : N → N be given such that limN→∞ ψ(N) = +∞, and let
δ ∈ (0, 1). For each N ∈ N we define the (ψ, δ)-gelation time τN(ψ, δ) by

τN(ψ, δ) := inf
{
t ≥ 0 :

〈
m1m≥ψ(N), L̄(N)

t

〉
≥ δ

}
. (4)

Definition 1.3 (Stochastic gelation and strong gelation). Take a cluster coagulation process
{(L̄(N)

t )t≥0}N∈N:
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1 for a function ψ : N → N such that limN→∞ ψ(N) = +∞ and δ > 0, the (ψ, δ)-
stochastic gelation time of the cluster coagulation process (L̄(N))N∈N is defined by

Tψ,δg := inf
{
t ≥ 0 : lim sup

N→∞
PN (τN(ψ, δ) ≤ t) > 0

}
;

2 we define the strong gelation time of the cluster coagulation process by

inf{t > 0 : ∃ 0 < α, δ ≤ 1 such that lim sup
N→∞

PN (τN(αN, δ) ≤ t) > 0}.

If, for some ψ : N → N such that limN→∞ ψ(N) = +∞ and δ > 0 we have Tψ,δg < ∞ we
say that stochastic gelation occurs. If the strong gelation time is finite, we say that strong
gelation occurs.
Remark 1.4. Gelation is also often defined in terms of deterministic trajectories. More precisely,
under suitable assumption of convergence of the sequence of kernels {KN}N , one expects the
trajectories of (L̄(N)

t )t≥0 to concentrate on solutions of the so called ‘Smoluchowski’ equation
as N →∞, or better to its modification that includes the influence of gel, the so called ‘Flory’
equation, see [26, 7]. Suppose (L̄∗t )t≥0 is a trajectory solving this equation, with

〈
m, L̄∗0

〉
<∞.

One says (L̄∗t )t≥0 is a ‘gelling solution’ if for some t, ε > 0,
〈
m, L̄∗t

〉
≤
〈
m, L̄∗0

〉
− ε. An

equivalence principle by Jeon, which one may generalise to the cluster coagulation setting,
shows that whenever (L̄(N)

t )t≥0 displays this concentration, stochastic gelation is equivalent to
the existence of gelling solutions to the associated equation (see [21, Theorem 5]).

1.3 Examples of cluster coagulation processes

The cluster coagulation process is general enough to encompass a large number of examples,
depending on particular choices of the space E. In the following examples we fix KN ≡ K for
some kernel K.
Example 1 (Classical kernel). If E = (0,∞), K(x, y, dz) = K̄(x, y)δx+y, for a continuous
symmetric function K̄(x, y), and the mass function m(x) ≡ x, the above process corresponds
to the classical Marcus–Lushnikov process.
Example 2 (Historical Marcus–Lushnikov processes). One may extend E to incorporate not
just the masses of clusters, but their histories. Indeed, we can take E to be a space where
clusters x encode not only their mass, but the history of coagulations (a binary tree embedded
in time) leading to the formation of that particle (see [19] for more details). For these processes,
Jacquot in [19] proved a weak law of large numbers for the trajectories (L̄(N)

t )t∈[0,T ) when the
kernel is a function only of the associated masses and it is bounded from above by a product
of sublinear functions.
Example 3 (Toy spatial coagulation models). A large number of toy models that incorporate
information about the locations of clusters in ‘space’ fall into this framework. For example, we
may take E = S × (0,∞) where S ⊆ Rd; in this case an element x of E coincides with a pair
(p, n), p ∈ S, n ∈ (0,∞) and we interpret p as the location of a cluster, and n := m(p, n)
as its mass. We may, then, assume that after a coagulation between clusters x = (p, n), y =
(s, o), the new cluster is placed at a new location, given by a measurable function of the
original clusters, for example, the centre of mass np+os

n+o . Thus, in this case K((p, n), (s, o), ·) =
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K̄((p, n), (s, o))δnp+os
n+o ,n+o. Another alternative would be a model in which the new particle

occupies one of the locations of the previous clusters with probability proportional to their
mass, so that K((p, n), (s, o), ·) = K̄((p, n), (s, o))

(
n
n+oδp,n+o + o

n+oδs,n+o
)
(this is the way

in which the ‘collision operator’ is defined in the model of coagulating Brownian clusters
of [16]).

Example 4 (Bilinear coagulation processes). In the case that E = [0,∞)d, A ∈ [0,∞)d×d
is a symmetric matrix with non-negative entries and K(x, y, dz) = (xTAy)δx+y, this model
corresponds to the bilinear coagulation model studied in [18]. In that paper, the authors prove
a weak law of large numbers for the particle system, showing that the trajectories converge
to the unique solution of the Flory equation, and characterise explicitly the ‘gelling time’, by
using comparisons between this process and inhomogeneous random graph processes.1

2 Gelation in the coagulation process

In this section, we state general sufficient conditions for stochastic gelation in the cluster
coagulation model. As this model is rather general, the conditions required are more technical
than conditions for the classical Marcus–Lushnikov process. The main motivation for these
results is that, in applications to non-equilibrium processes inhomogenieties in the space E
(corresponding to, for example, locations in space, the ‘types’ of cluster, or their velocities)
may play a major role in whether or not gelation occurs.

2.1 Main result: sufficient criteria for stochastic gelation

In Assumption 2.1, we incorporate the inhomogeneities into the gelation criterion via a coarse-
graining procedure. In other words, we assume that, for each N , we can ‘partition’ the space E
in such a manner that we have sufficient lower bounds on the rate at which clusters belonging
to a common partition interact. For example, if E is a metric space, we might partition the
space into balls of a fixed radius, thus grouping together clusters that are ‘close’, or of a similar
‘type’. Note that, in our assumptions, these partitions are allowed to grow with N , allowing
for a ‘finer’ approximation as N is made larger.
The techniques we use extend those previously developed for the Marcus–Lushnikov process
by Jeon [21] (see also Rezakhanlou [29]).

Assumption 2.1 (Assumptions on the kernel). Suppose that {KN(x, y, dz)}N∈N is a sequence
of kernels associated with a cluster coagulation process. For functions ξ, ψ : N → N, with
limN→∞ ψ(N) =∞ we assume the following.

1 For each j ≤ log2(ψ(N)) there exists a partition P(j)
N of the set m−1([2j, 2j+1)) ⊆ E

such that
∣∣∣P(j)

N

∣∣∣ ≤ ξ(N). Moreover, with c′N(P, j) := inf{K̄N(x, y) : x, y ∈ P ∈P(j)
N },

we have
c′N(P, j) > 0 ∀P ∈P(j)

N . (5)
1Actually, the model studied in [18] is slightly more general, in that clusters x belong to a metric space S,

and K̄(x, y) = π(x)TAπ(y), where π : S → Rd is a continuous function. Clusters x may also change values
according to a kernel J on S, in such a way that π(x) is preserved.
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2 There exists a sequence (fj)j∈N0 ∈ (0,∞)N0 such that ∑∞j=0 fj <∞, and

lim sup
N→∞

dlog2(ψ(N))e∑
j=0

2jφN(j)
f 2
j

<∞, (6)

where φN(j) := ∑
P∈P

(j)
N

1
c′N (P,j) .

3 We have limN→∞
ξ(N)
N

= 0.

Remark 2.2. The intuition behind Assumption 2.1 can be summarised as follows.

1 Item 1 guarantees that we can partition the space E in such a way that a pair of clusters
has strictly positive rate of interaction if the two clusters are close enough and have
‘comparable masses’.

2 Item 2, ensures that the lower bounds in (5) are sufficiently large to render the quantity in
(6) finite. This is a technical assumption that we need to guarantee that the expectation
of τN(ψ, δ) is bounded from above by a finite value.

3 Item 3 ensures the partitions are not too ‘fine’. Under this condition, the pigeonhole
principle can be used to show that there are enough clusters in each element of the
partition to guarantee that the process does not get ‘stuck’.

Remark 2.3. In Item 2 of Assumption 2.1, if the choices of partitions can be made in a manner
independent of N , so that φN(·) ≡ φ(·), then (6) reduces to showing that, for some sequence
(fj)j∈N0 ∈ (0,∞)N0 with ∑∞j=0 fj <∞, we have ∑∞j=0

2jφ(j)
f2
j

<∞.

This may be formulated in a more elegant way: there exists a sequence of positive values
{fi}i∈N such that ∑i∈N fi < ∞ and ∑i∈N 2jφ(j)/f 2

i < ∞, if and only if ∑i∈N(2jφ(j))1/3 <
∞. Indeed, on the one hand, if ∑i∈N(2jφ(j))1/3 < ∞, then it is enough to choose fj =
(2jφ(j))1/3. For the other implication, by Hölder’s inequality we see that ∑j∈N(2jφ(j))1/3 ≤(∑

j∈N
(2jφ(j))
f2
j

) 1
3

(∑i∈N fi)
2
3 .

In the following theorem, recall that by Remark 1.2 we only consider initial configurations
π(N) that are finite point processes. Moreover, recall Definition 1.3 and the definition of τN
from (4).

Theorem 2.4. Suppose that
{

(L̄(N)
t )t≥0

}
N∈N

is a cluster coagulation process satisfying As-
sumption 2.1.

1 Suppose that {π(N)}N∈N is a sequence of deterministic initial conditions such that, there
exists ε > 0 and ρ0 ∈ (0, 1], such that for all N ∈ N,

〈
m1m≥1,π

(N)
〉
> ε, and〈

m1m≥1,π
(N)
〉

〈m1m≥1,π(N)〉
≥ ρ0. (7)

Then, there exists a function ψ′ with limN→∞ ψ
′(N) = ∞, such that, for any δ ∈

(0, ρ0ε)
lim sup
N→∞

EN,π(N) [τN(ψ′(N), δ)] < C, (8)
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for a constant C, independent of π(N) and δ. Moreover, if limN→∞
〈
m1m≥1,π

(N)
〉

=
∞, then

lim
N→∞

EN,π(N) [τN(ψ′(N), δ)] = 0.

2 Suppose that {L̄(N)
0 }N∈N is sequence of random initial conditions such that for some

ε > 0 and ρ0 ∈ (0, 1]

lim sup
N→∞

PN

〈m1m≥1, L̄(N)
0

〉
> ε,

〈
m1m≥1, L̄(N)

0

〉
〈
m1m≥1, L̄(N)

0

〉 ≥ ρ0

 > 0. (9)

Then stochastic gelation occurs in the process.

Remark 2.5. In Theorem 2.4, the condition on
〈
m1m≥1,π

(N)
〉
ensures that there is enough

mass bounded from below to form a gel. We can also prove stochastic gelation when the
indicators 1m≥1 may be replaced by any 1m≥c for any c > 0, as long as Assumption 2.1 is
satisfied for the re-scaled function m̃ := m/c instead of m. Indeed, gelation with the re-scaled
mass function m̃ also implies gelation with the original mass function m.
Remark 2.6. In Theorem 2.4, we can think of N as describing the size of the system. Item 1 is
a quenched result, holding for a sequence of deterministic initial conditions {π(N)}N∈N, whilst
Item 2 provides criteria for stochastic gelation given a sequence of random initial conditions.
Remark 2.7. The second part of Item 1 in Theorem 2.4 proves that when limN→∞

〈
m1m≥1,π

(N)
〉

=
∞, and Assumptions 2.1 is satisfied, we have the so called instantaneous gelation.

The following corollary applies these conditions to the classical Marcus–Lushnikov process,
i.e., the setting of Example 1. In particular, it provides criteria for stochastic gelation that
improves those appearing in [21, Corollary 1], [29, Theorem 1.3] and [23, Proposition 3.15].
In this context, fix a kernel KN ≡ K (removing dependence on N).

Corollary 2.8. Let
{

(L̄(N)
t )t≥0

}
N∈N

be a sequence of Marcus-Lushnikov processes with kernel
K, i.e., we are in the setting of Example 1. Suppose that ∃ ε > 0 and ρ0 ∈ (0, 1] such
that (9) is satisfied for the sequence of initial conditions

{
L̄(N)

0 }N∈N. Moreover, with c′(j) :=
infx,y∈[2j ,2j+1) K̄(x, y) > 0, for all j ∈ N0, suppose that

∞∑
j=0

(
2j
c′(j)

) 1
3

<∞, (10)

Then stochastic gelation occurs. In particular, when (9) is satisfied, stochastic gelation occurs
if one of the following two assumptions is satisfied by the kernel K̄:

1 we have infu∈[1,2] K̄(1, u) > 0 and for all x, y > 0 and all c > 0 sufficiently large
K̄(cx, cy) = cγK̄(x, y), with γ > 1;

2 we have infx,y≥1 K̄(x, y) > 0 and there exists ε > 0 such that, for all x, y sufficiently
large K̄(x, y) ≥ (x ∧ y) log (x ∧ y)3+ε.

In the space-homogeneous setting of Corollary 2.8, we have the following remarks.
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Remark 2.9. Intriguingly, Equation (10) shows that gelation may occur for kernels where
K̄(x, y) = 0 whenever y/x > 2 (or y/x < 1/2). This criterion shows that interactions
between particles of ‘similar size’ is enough to ensure gelation, as long as it is strong enough
(hence the condition on its growth).
Remark 2.10. In view of Remark 2.5, if (9) is satisfied with the indicators 1m≥1 replaced by
any 1m≥c for some c > 0, and (10) is satisfied with c′(j) := infx,y∈[c2j ,c2j+1) K̄(x, y), then we
can also show that stochastic gelation occurs.
Remark 2.11. We can more precisely quantify the function ψ involved in the (ψ, δ)-stochastic
gelation time (i.e., the function describing the sizes of the large particles contributing to
gelation - see Definition 1.3). In particular we can show that Tψ,δg <∞ for any ψ(N) ≤ N b,
and any b ∈ (0, 1). See also Example 6.

2.2 Gelation criteria via coupling with inhomogeneous random graphs

Here we fix KN ≡ K for some kernel K. It is well-known that for the classical multiplicative
kernel K̄(x, y) = m(x)m(y), if the process starts withN particles of mass 1 at time t = 0, then
the cluster masses at time t > 0 are in one-to-one correspondence with the sizes of components
of a continuous time analogue of the Erdős–Rényi random graph, where edges appear between
pairs of vertices at rate 1/N . Likewise, the work by Patterson and Heydecker [18] shows that
for cluster coagulation models of any ‘bilinear’ type (see Section 1.3), the cluster masses at any
time t are in one-to-one correspondence with the component sizes of an inhomogenous random
graph. Thus, in regimes where a ‘giant component’ arises in the inhomogeneous random graph
model, gelation occurs in the coagulation process, with an explicit description of the gelation
time.
Theorem 2.12 below generalises these results. First, we define some terminology required
to make a connection with inhomogeneous random graphs (using the established results
from [11]). We call a coagulation kernel K graph dominating if

for all x, y, q ∈ E, K(x, y, ·)-a.a. z we have K̄ (z, q) ≥ K̄(x, q) + K̄(y, q).

If the opposite inequality holds, we say the kernel is graph dominated.
In Theorem 2.12 we assume the following. First, the initial conditions are monodispersed,
i.e., Supp

(
L(N)

0

)
⊆ {x ∈ E : m(x) = 1} for all N ∈ N. Next, assume that there exists a

deterministic L̄∗0 ∈M+(E) such that

L̄(N)
0 → L̄∗0 weakly, in probability. (11)

Moreover, assume that the mass function m is continuous and E is a separable metric space,
on which L̄∗0 is a Borel probability measure. Note that when the initial conditions are monodis-
persed and (11) holds then Supp

(
L̄∗0
)
⊆ {x ∈ E : m(x) = 1}. Now, define the following

quantities

TK̄,L̄∗0f(x) :=
∫
E
f(y)K̄(x, y)L̄∗0(dy), Σ(K̄, L̄∗0) := sup

f∈L2(L̄∗0),‖f‖L2(L̄∗0)=1

∥∥∥TK̄,L̄∗0f∥∥∥L2(L̄∗0)

and t∗ := inf
{
t > 0 : tΣ(K, L̄∗0) > 1

}
.

Theorem 2.12. Suppose that the above conditions are satisfied. Then the following hold.
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1 If (L̄(N)
t )t≥0 is graph dominating, then strong gelation occurs, with strong gelation time

at most t∗.

2 If (L̄(N)
t )t≥0 is graph dominated then, for any ψ : N→ N non-decreasing with

limN→∞ ψ(N) =∞, and for any δ > 0 we have Tψ,δg ≥ t∗.

�

Remark 2.13. Theorem 2.12 works by coupling the coagulation process with the following
inhomogeneous random graph process. The vertices of the graph are given by the initial
clusters, with atoms of L(N)

0 determining types of the initial set of vertices (all of mass 1).
Then, edges in the graph appear between vertices of type x, y ∈ E at rate K̄(x, y). The
condition of being graph dominating (similarly graph dominated) allows this coupling to be
carried out in such a way that a coagulation between clusters precedes the appearance of an
edge between associated connected components in the inhomogeneous random graph model.
Thus, gelation occurs before the appearance of a giant component in the graph, well-known to
emerge at time t∗. As this coupling argument is quite straightforward, we omit the details in
this paper (see, however, the extended pre-print [6]). Nevertheless, we believe that examples,
such as the following, mean that this monotonicity is important to be aware of in applied
contexts.

Example 5. Suppose we are in the same setting as Example 3 with clusters moving to their
centre of mass. Let ρ : S → [0,∞) be an even, concave function. Then the coagulation
process with kernel K̄ : (S × N0)2 → [0,∞) defined by K̄((p,m), (s, n)) := mnρ(p − s) is
graph dominating.

3 Proofs of main results

This section is dedicated to the proofs of Theorem 2.4 and Corollary 2.8. For the proof of Item 1
of Theorem 2.4 we fix a sequence of initial conditions {π(N)}N∈N satisfying the assumptions
of the theorem for some ε, ρ0 > 0, and fix δ ∈ (0, ρ0ε) (this is the threshold involved in defini-
tion (4)). Recall from (3) that PN,π(N)(·) and EN,π(N) [·] denote probabilities and expectations
associated with a coagulation process that starts with such an initial condition.
Since δ ∈ (0, ερ0) we have δ = ερ, for some ρ ∈ (0, ρ0). Note that if (fk)k∈N0 satisfies the
requirement of Item 2 of Assumption 2.1, we may re-scale (fk)k∈N0 so that ∑∞i=0 fi = ρ0−ρ >
0. This re-scaling does not affect Assumption 2.1. Therefore, with (fi)i∈N0 defined in this way,
define a strictly decreasing sequence (ρk)k∈N0 as follows: define ρ0 according to (7), and for
k ∈ N set

ρk := ρ+
∑
i≥k

fi, (12)

so that ρk ↓ ρ > 0.
We recall that in Theorem 2.4 we assume that there exists a function ψ(N) satisfying As-
sumption 2.1. Ideally, with ψ′ being the function appearing in Item 1 of Theorem 2.4, we
would have ψ′ = ψ. However, from a technicality in the proof of Item 1 of Theorem 2.4 (more
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specifically to apply Lemma 3.1) we need to define ψ′ by

ψ′(N) := ψ(N)∧κ(N) where κ(N) := max

k ∈ N : 2k
min0≤h≤log2(k)−1 fh

≤
N
〈
m1m≥1,π

(N)
〉

ξ(N)

 .
(13)

In this way we ensure that the following inequality is satisfied:

2ψ′(N)
min0≤h≤log2(ψ′(N))−1 fh

≤
N
〈
m1m≥1,π

(N)
〉

ξ(N) for all N ∈ N. (14)

The function ψ′(N) satisfies the conditions of Assumption 2.1 since we have limN→∞ ψ
′(N) =

∞. Indeed, by definition,

lim inf
N→∞

κ(N) + 1
min0≤h≤log2(κ(N)+1)−1 fh

> lim inf
N→∞

N
〈
m1m≥1,π

(N)
〉

2ξ(N) =∞, (15)

where the last equality follows by Item 3 of Assumption 2.1. If κ(N) were bounded infinitely
often, the left-side of (15) would also be bounded. Hence limN→∞ κ(N) = ∞, and since
limN→∞ ψ(N) =∞, from (13) we also have limN→∞ ψ

′(N) =∞.
Now, in order to prove Theorem 2.4, we define the family of functions Fk : M+(E) → R+

such that, for each L ∈M+(E)

Fk(L) := 〈m1m≥2k+1 ,L〉
〈m1m≥1,π(N)〉

. (16)

We also define an associated family of stopping times (Tk)k∈N such that

Tk := inf
{
t > 0 :

〈
m1m≥2i , L̄

(N)
t

〉
/
〈
m1m≥1,π

(N)
〉
≥ ρi for all i = 0, 1, . . . , k

}
. (17)

In words, Tk represents the first time that the total mass of clusters with mass at least 2i
exceeds ρi

〈
m1m≥1,π

(N)
〉
for each i = 0, . . . , k. Note that the functions Fk and the times Tk

depend on π(N) and on N , but for brevity of notation, we will exclude this dependence in the
remainder of the section.

Lemma 3.1. Suppose that ~v = (v1, . . . , vn), ~c = (c1, . . . , cn) are such that vh ∈ N and
ch > 0, for all h = 1, . . . , n. Then, if ∑n

h=1 vh ≥ κ1 > n and ∑n
h=1

1
ch

= κ2 then

∑
h

ck
(
v2
h − vh

)
≥ (κ1 − n)2

2κ2
. (18)

Proof. Re-writing the left side of Equation (18) we get

∑
h

ch(v2
h − vh)1{vh>1} ≥

1
2
∑
h

(vh1{vh≥2})2

1/ch
≥

(∑
h vh1{vh≥2}

)2

2κ2
,

where the last inequality is due to the Cauchy–Schwarz inequality. Since ∑h vh1{vh≥2} ≥
κ1 − n ≥ 1, we deduce the result.

We now prove Theorem 2.4.

DOI 10.20347/WIAS.PREPRINT.3039 Berlin, August 23, 2023/rev. March 3, 2025



Gelation in cluster coagulation processes 13

3.1 Proof of Item 1 of Theorem 2.4

Proof. We first fix a positive integer k ≤ dlog2(ψ′(N))e−1, where we recall that the function
ψ′ comes from (13) (the reason for this choice of k is to be able to apply Item 1 of Assump-
tion 2.1 later on). Note that the function Fk defined in (16) is bounded above by 1 almost
surely on the path of the process, and is clearly measurable. Now, recalling the generator in (2),
as Fk only considers the masses of clusters larger than 2k+1, ignoring other features, and the
mass of the coagulated cluster z is m(z) = m(x) +m(y), we deduce that

ÃNFk(L̄(N)
t ) = 1

2 〈m1m≥1,π(N)〉

∫
E×E

L̄(N)
t (dx)

(
L̄(N)
t − 1

N
δx

)
(dy)K̄N(x, y) (19)

×
[
(m(x) +m(y))1(m(x) +m(y) ≥ 2k+1)−m(x)1(m(x) ≥ 2k+1)−m(y)1(m(y) ≥ 2k+1)

]
.

Now,
M

(N)
Fk

(t) := Fk(L̄(N)
t )− Fk(π(N))−

∫ t

0
ÃNFk(L̄(N)

s )ds

is a martingale with respect to the natural filtration of the process2 initiated by the measure
π(N). Let I, J > 0 be given. By Doob’s optional sampling theorem (see, for example, [28,
Corollary 2.3.6 and Theorem 2.3.2]) applied to the bounded stopping times I ∧Tk ≤ I ∧Tk+1
we have

EN,π(N)

[
Fk(L̄I∧Tk+1)

]
= EN,π(N)

[
Fk(L̄I∧Tk)

]
+ EN,π(N)

[∫ I∧Tk+1

I∧Tk
ÃNFk(L̄t)dt

]

≥ EN,π(N)

[∫ I∧Tk+1

I∧Tk
ÃNFk(L̄t)dt

]

≥ EN,π(N)

[
1Tk≤J

∫ I∧Tk+1

I∧Tk
ÃNFk(L̄t)dt

]
.

Noting that ÃNFk is non-negative and the integrand on the left is monotone in I, by monotone
convergence in I, and Fatou’s lemma we have

EN,π(N)

[
Fk(L̄Tk+1)

]
≥ EN,π(N)

[
1Tk≤J lim inf

I→∞

∫ I∧Tk+1

I∧Tk
ÃNFk(L̄t)dt

]

= EN,π(N)

[
1Tk≤J

∫ Tk+1

Tk
ÃNFk(L̄t)dt

]
.

Now, by applying monotone convergence in J , we deduce that

EN,π(N)

[
Fk(L̄Tk+1)

]
≥ EN,π(N)

[
1Tk<∞

∫ Tk+1

Tk
ÃNFk(L̄t)dt

]
. (20)

We now seek lower bounds for the quantity ÃNFk(L̄t) appearing in (20), when Tk ≤ t < Tk+1
(notice that Tk+1 might even be equal to +∞). First, note that

m(x)1(m(x) ≥ 2k+1) +m(y)1(m(y) ≥ 2k+1) ≤ (m(x) +m(y))1(m(x) or m(y) ≥ 2k+1).
(21)

2The fact that M (N)
Fk

(t) is a martingale follows from the definition of the infinitesimal generator of the
process, see, for example, [28, Proposition 7.1.6]
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Using (21), we may bound (19) from below so that

ÃNFk(L̄(N)
t ) ≥ 1

2 〈m1m≥1,π(N)〉

∫
E×E

L̄(N)
t (dx)

(
L̄(N)
t − 1

N
δx

)
(dy)K̄N(x, y)

× (m(x) +m(y))1(m(x) +m(y) ≥ 2k+1 > m(x),m(y))

≥ 2k
〈m1m≥1,π(N)〉

∫
E×E

L̄(N)
t (dx)

(
L̄(N)
t − 1

N
δx

)
(dy)K̄N(x, y)

× 1(m(x) +m(y) ≥ 2k+1 > m(x),m(y))

≥ 2k
〈m1m≥1,π(N)〉

∑
P∈P

(k)
N

∫
P×P

L̄(N)
t (dx)

(
L̄(N)
t − 1

N
δx

)
(dy)K̄N(x, y)

× 1(m(x) +m(y) ≥ 2k+1 > m(x),m(y)),

where the last inequality follows from restricting the integral from the space E × E to the
space ⋃

P∈P
(k)
N

P × P , with the partition P(k)
N as defined in Item 1 of Assumption 2.1. Now,

using the definition of c′N(P, k) in Item 1 of Assumption 2.1 we bound this further by

2k
〈m1m≥1,π(N)〉

∑
P∈P

(k)
N

c′N(P, k)
∫
P×P

L̄(N)
t (dx)

(
L̄(N)
t − 1

N
δx

)
(dy) (22)

×1(m(x) +m(y) ≥ 2k+1 > m(x),m(y)).

Moreover, since P ∈ P(k)
N , by Item 1 of Assumption 2.1 for (x, y) ∈ P × P we have 2k ≤

m(x),m(y) < 2k+1. This implies that the indicator 1(m(x) + m(y) ≥ 2k+1 > m(x),m(y))
in (22) is one. Thus, we can re-write (22) as

2k
〈m1m≥1,π(N)〉

∑
P∈P

(k)
N

c′N(P, k)
∫
P

L̄(N)
t (dx)

((∫
P

L̄(N)
t (dx)

)
− 1
N

)
.

For brevity of notation, we now write
〈
f, L̄(N)

t

〉
for terms of the form

∫
E L̄(N)

t (dx)f(x) or∫
E L̄(N)

t (dy)f(y). Then, summing over the possible valuesm(x),m(y) ∈ [2k, 2k+1), we deduce
the lower bound

ÃNFk(L̄(N)
t ) ≥ 2k

〈m1m≥1,π(N)〉
∑

P∈P
(k)
N

2k+1−1∑
n1,n2=2k

c′N(P, k)
〈
1n1≤m(x)<n1+1,x∈P , L̄(N)

t

〉

×
(〈

1n2≤m(x)<n2+1,x∈P , L̄(N)
t

〉
− 1
N

1{n1=n2}

)
= 2k
〈m1m≥1,π(N)〉

(23)

× 1
N2

∑
P∈P

(k)
N

c′N(P, k)
(N 2k+1−1∑

n=2k

〈
1n≤m(x)<n+1,x∈P , L̄(N)

t

〉)2
−N

2k+1−1∑
n=2k

〈
1n≤m(x)<n+1,x∈P , L̄(N)

t

〉.
We now wish to apply Lemma 3.1 to the sum indexed by the elements P of P(k)

N in the above
display, where the integer valued random variables ∑2k+1−1

n=2k N
〈
1n≤m(x)<n+1,x∈P , L̄(N)

t

〉
play

the role of vh in the lemma. These integers count the number of clusters at time t in each
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element P of the partition P(k)
N . Since |P(k)

N | ≤ ξ(N), ξ(N) plays the role of n appearing in
Lemma 3.1.
Note, that, if Tk ≤ t < Tk+1, by the definition in (17), we have〈
m1m≥2k , L̄

(N)
t

〉
≥ ρk

〈
m1m≥1,π

(N)
〉

and
〈
m1m≥2k+1 , L̄(N)

t

〉
< ρk+1

〈
m1m≥1,π

(N)
〉
,

so that 〈
m12k≤m<2k+1 , L̄(N)

t

〉 (12)
≥ fk

〈
m1m≥1,π

(N)
〉
. (24)

Therefore, we choose κ1 in Lemma 3.1 such that
n∑
h=1

vh =
∑

P∈P
(k)
N

2k+1−1∑
n=2k

N
〈
1n≤m(x)<n+1,x∈P , L̄(N)

t

〉
= N

〈
12k≤m<2k+1 , L̄(N)

t

〉
(24)
≥ N

fk
〈
m1m≥1,π

(N)
〉

2k+1 =: κ1

For the assumptions of Lemma 3.1 to hold, we further require

κ1 = N
fk
〈
m1m≥1,π

(N)
〉

2k+1 > ξ(N).

This follows from the fact that

κ1 = N
fk
〈
m1m≥1,π

(N)
〉

2k+1 ≥
(min0≤`≤dlog2(ψ′(N))e−1 f`)N

〈
m1m≥1,π

(N)
〉

ψ′(N)
(14)
≥ 2ξ(N) > ξ(N)

(25)

where the first inequality in (25) is obtained by inserting the value k = log2(ψ′(N)) −
1 in the denominator. Therefore, applying Lemma 3.1 to the sum in (23), with κ2 :=∑
P∈P

(k)
N

c′N(P, k)−1 we obtain the lower bound:

ÃNFk(L̄(N)
t ) ≥ 2k

〈m1m≥1,π(N)〉N2 ×
(κ1 − n)2

2κ2
=

2k−1
(〈
m1m≥1,π

(N)
〉

fk
2k+1 − ξ(N)

N

)2

〈m1m≥1,π(N)〉∑
P∈P

(k)
N

c′N(P, k)−1 ,

∀ t ∈ [Tk, Tk+1). Since (25) implies that ξ(N)
N
≤ 1

2

〈
m1m≥1,π

(N)
〉

fk
2k+1 , we finally deduce the

bound

ÃNFk(L̄(N)
t ) ≥

f 2
k

〈
m1m≥1,π

(N)
〉

2k+5(∑
P∈P

(k)
N

c′N(P, k)−1) , for all k ≤ log2(ψ′(N))− 1 and t ∈ [Tk, Tk+1).

Now, recalling that 0 ≤ Fk(L̄(N)
t ) ≤ 1, by applying (20) we have

1 ≥ EN,π(N)

[
Fk(L̄(N)

Tk+1
)
]

≥ EN,π(N)

[
1Tk<∞

∫ Tk+1

Tk
ÃFk(L̄(N)

t )dt
]

≥
f 2
k

〈
m1m≥1,π

(N)
〉

2k+5(∑
P∈P

(k)
N

c′N(P, k)−1)EN,π(N) [1Tk<∞(Tk+1 − Tk)]
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which in turn yields

EN,π(N) [1Tk<∞(Tk+1 − Tk)] ≤
2k+5(∑

P∈P
(k)
N

c′N(P, k)−1)
〈m1m≥1,π(N)〉 f 2

k

. (26)

Now, by assumption in Equation (7), we have T0 = 0 <∞ almost surely. Thus, by induction
and the bound in (26), for all k ≤ dlog2(ψ′(N))e − 1, we have EN,π(N) [Tk] < ∞ and hence
Tk <∞ almost surely. Therefore, for all k ≤ dlog2(ψ′(N))e − 1 we may re-write (26) as

EN,π(N) [Tk+1 − Tk] ≤
2k+5(∑

P∈P
(k)
N

c′N(P, k)−1)
〈m1m≥1,π(N)〉 f 2

k

. (27)

Then, by summing (27), we deduce that

EN,π(N)

[
Tdlog2(ψ′(N))e

]
=
dlog2(ψ′(N))e−1∑

k=0
EN,π(N) [(Tk+1 − Tk)]

≤ 1
〈m1m≥1,π(N)〉

dlog2(ψ′(N))e−1∑
k=0

2k+5(∑
P∈P

(k)
N

c′N(P, k)−1)
f 2
k

. (28)

Now, recall that according to the definition in (12) and just above it, δ = ρε and ρk > ρ for
all k. Therefore we have

Tdlog2(ψ′(N))e = inf
{
t > 0 :

〈
m1m≥2i , L̄

(N)
t

〉
/
〈
m1m≥1,π

(N)
〉
≥ ρi, ∀i = 0, 1, . . . , dlog2(ψ′(N))e

}
≥ inf

{
t > 0 :

〈
m1m≥ψ′(N), L̄(N)

t

〉
/
〈
m1m≥1,π

(N)
〉
≥ ρ

}
≥ inf

{
t > 0 :

〈
m1m≥ψ′(N), L̄(N)

t

〉
≥ ρε

} (4)= τN(ψ′(N), δ), (30)

almost surely.
Combining (30) with (28), we deduce that

EN [τN(ψ′(N), δ)] ≤ EN,π(N)

[
Tdlog2(ψ′(N))e

]
≤ 1
〈m1m≥1,π(N)〉

dlog2(ψ′(N))e−1∑
k=0

2k+5(∑
P∈P

(k)
N

c′N(P, k)−1)
f 2
k

≤ 1
ε

dlog2(ψ′(N))e−1∑
k=0

2k+5(∑
P∈P

(k)
N

c′N(P, k)−1)
f 2
k

. (31)

By Equation (6), the right-side of (31) is a constant C = C(ε), independent of π(N) and
δ, from which we deduce (8). In addition, the right-side just above (31) tends to zero if〈
m1m≥1,π

(N)
〉
→∞, proving the last statement in Item 1 of Theorem 2.4.

3.2 Proof of Item 2 of Theorem 2.4

Proof of Item 2 of Theorem 2.4. To prove Item 2 of Theorem 2.4 we apply Item 1 of Theo-
rem 2.4 and anneal over the possible values of L̄(N)

0 . In this regard, define the event

E (N)(ε, ρ0) :=

〈m1m≥1, L̄(N)
0

〉
> ε,

〈
m1m≥1, L̄(N)

0

〉
〈
m1m≥1, L̄(N)

0

〉 ≥ ρ0

 .
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Since the bound in (8) is independent of π(N) and N , see (31), we have

EN
[
τN(ψ′(N), δ)

∣∣∣∣∣ E (N)(ε, ρ0)
]
≤ C.

Using the assumption from (9), set p0 := lim supPN
(
E (N)(ε, ρ0)

)
> 0. Then, there ex-

ists a subsequence (Nj)j∈N such that limj→∞ PNj
(
E (Nj)(ε, ρ0)

)
= p0. In particular, for Nj

sufficiently large,
PNj

(
E (Nj)(ε, ρ0)

)
> 0.

By Markov’s inequality,

PNj

(
τNj(ψ′(Nj), δ) ≤ 2C

∣∣∣∣∣ E (Nj)(ε, ρ0)
)
≥ 1

2 .

We thus get

lim sup
N→∞

PN (τN(ψ′(N), δ) ≤ 2C) ≥ lim
j→∞

PNj
(
τNj(ψ′(Nj), δ) ≤ 2C

)
≥ lim

j→∞
PNj

({
τNj(ψ′(Nj), δ) ≤ 2C

}
∩ E (Nj)(ε, ρ0)

)
= lim

j→∞
PNj

(
τNj(ψ′(Nj), δ) ≤ 2C

∣∣∣∣∣ E (Nj)(ε, ρ0)
)
PNj

(
E (Nj)(ε, ρ0)

)
≥ p0

2 .

We deduce that stochastic gelation occurs according to Definition 1.3 (with Tψ′,δg ≤ 2C).

3.3 Proof of Corollary 2.8

We finish this section with the proof of Corollary 2.8.

Proof of Corollary 2.8. To prove the first statement of the corollary we apply Item 2 of
Theorem 2.4. In order to do so, we need to show that Assumption 2.1 is satisfied. Re-
call that in this setting E = (0,∞) and m(x) = x for all x ∈ (0,∞). Therefore, in
Assumption 2.1, for every j we can take trivial single-set partition of [2j, 2j+1), so that
ξ(N) ≡ 1. Since each of the partitions P(j)

N consist of the single set [2j, 2j+1), and we
assumed c′(j) = infx,y∈[2j ,2j+1) K̄(x, y) > 0, we also have, for all N ∈ N

c′N(P, j) ≡ c′N([2j, 2j+1), j) ≡ c′(j) > 0, ∀j ∈ N0,

where c′N(P, j) are as defined in Item 1 of Assumption 2.1. Now, for Item 2, Equation (6)
reduces to showing that for some sequence (fj)j∈N0 ∈ (0,∞)N0 with ∑∞j=0 fj <∞, we have

∞∑
j=0

2j
f 2
j c
′(j) <∞,

where we note that the sum may be taken to infinity because in this case the term φN is
independent of N . However, by Remark 2.3, this is equivalent to (10). Finally, for Item 3 of
Assumption 2.1, since ξ(N) ≡ 1, we clearly have limN→∞

ξ(N)
N

= 0. This concludes the proof
of the first statement of the corollary.
For the second assertion, note that in either of the two cases, we have
c′(j) = infx,y∈[2j ,2j+1) K̄(x, y) > 0 for all j ∈ N0. Hence, we only need to show that under
each assumption, (10) is satisfied. Indeed,
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1 Under Item 1, set κ∗ := infi∈[1,2] K̄(1, i) > 0. By the homogeneity assumption there
exists j0 ∈ N such that, for all j ≥ j0 we have (assuming without loss of generality
x < y), K̄(x, y) = xγK̄

(
1, y

x

)
≥ κ∗2γj =: c′(j) whenever 2j ≤ x, y < 2j+1. This

implies that
∞∑
j=0

(
2j
c′(j)

) 1
3

= 1
(κ∗)1/3

∞∑
j=0

2(1−γ)/3 <∞,

whenever γ > 1.

2 Under Item 2, by assumption there exists a j0 ∈ N such that, for all j ≥ j0 we have
K̄(x, y) ≥ 2j(j log 2)3+ε =: c′(j) for 2j ≤ x, y < 2j+1. This implies that

∞∑
j=0

(
2j
c′(j)

) 1
3

= 1
(log 2)1+ε/3

∞∑
j=0

1
j1+ε/3 <∞.

Example 6. As mentioned in Remark 2.11, in the setting of Corollary 2.8, we can quantify the
sizes of the large clusters contributing to gelation. Indeed, the proof of Item 1 of Theorem
2.4 can be retraced with the choice of fk := 1

k1+ε (recall the assumptions introduced around
Equation (12)). In particular condition (14) reduces to check whether

N

4 ≥ ψ′(N)(dlog2(ψ′(N))e)1+ε ∀N ∈ N

(recall that ξ(N) ≡ 1). This can be achieved by taking for instance any ψ′(N) ≤ N b for any
b ∈ (0, 1), and ε sufficiently small.
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