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Abstract

This paper deals with the study of a three-dimensional model of thermomechanical coupling for
viscous solids exhibiting hysteresis effects. This model is written in accordance with the formalism
of generalized standard materials. It is composed by the momentum equilibrium equation combined
with the flow rule, which describes some stress-strain dependance, and the heat-transfer equation.
An existence result for this thermodynamically consistent problem is obtained by using a fixed-point
argument and some qualitative properties of the solutions are established.

1 Description of the problem

Motivated by the study of visco-elasto-plastic materials and Shape-Memory Alloys (SMA), we consider in

this paper a thermomechanical coupling for a class of Generalized Standard Materials (GSM) exhibiting

hysteresis effects. More precisely, in the framework of GSM due to Halphen and Nguyen (see [HaN75])

the mechanical behavior of the material is described by the momentum equilibrium equation combined

with a constitutive law (flow rule) and the unknowns are the displacement u and an internal variable z

which allows to take into account some dissipation at the microscopic level. Indeed, plasticity and phase

transitions are inelastic processes which involve some loss of energy, transformed into heat. Thus it is

necessary to take into account the thermal process in the description of the problem.

The model considered here is based on the Helmholtz free energy W (ε, z, θ), depending on the in-

finitesimal strain tensor ε = ε(u)
def
= 1

2(∇u+∇uT) for the displacement u, the internal variable z and

the temperature θ. Here (·)T denotes the transpose of a tensor. We assume thatW can be decomposed

as follows

W (ε, z, θ)
def
= Wmech(ε, z) −W θ(θ) + θW coup(ε, z), (1.1)

which ensures that entropy separates the thermal and mechanical variables (see (1.3)). Let us emphasize

that the last term in the right hand side of (1.1) allows for coupling effects between the temperature and

both the displacement and the internal variable. We make the assumption of small deformations. The

momentum equilibrium equation and the flow rule are given by

− div(σel+Aε̇) = f, (1.2a)

∂Ψ(ż) + Bż + σ
inel ∋ 0, (1.2b)

where f is a given loading, σ
el def

= ∂εW (ε, z, θ), σ
inel def

= ∂zW (ε, z, θ), A and B are two viscosity

tensors and Ψ is the dissipation potential. As it is common in modeling hysteresis effects in mechanics,

we assume that Ψ is convex, positively homogeneous of degree 1 and 0 ∈ ∂Ψ(0) which ensures that

σ
inel .ż ≤ 0.

Then the specific entropy is defined by the Gibb’s relation

s
def
= −∂θW (ε, z, θ) = ∂θW

θ(θ) −W coup(ε, z), (1.3)

and the entropy equation

θṡ− div(κ∇θ) = Aε̇:ε̇ + Bż.ż + Ψ(ż), (1.4)
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gives some balance between the heat flux j = −κ∇θ, where κ is the heat conductivity, and the

dissipation rate ξ
def
= Aε̇:ε̇ +Bż.ż+ Ψ(ż) ≥ 0. If the system is thermally isolated and θ > 0, we have

∫

Ω
ṡdx =

∫

Ω

div(κ∇θ)
θ dx+

∫

Ω

ξ
θ dx =

∫

Ω

κ∇θ·∇θ
θ2 dx+

∫

Ω

ξ
θ dx ≥ 0,

which guarantees that the second law of thermodynamics is satisfied. Furthermore, let

W in(ε, z, θ)
def
= W (ε, z, θ) + θs

be the internal energy. By using the chain rule and (1.2)–(1.4), we obtain

∫

Ω
Ẇ in(ε, z, θ)dx =

∫

Ω
f ·u̇dx+

∫

∂Ω
κ∇θ·ndx,

which gives the total energy balance in terms of the internal energy, the power of external load and heat.

Hence the model considered here is thermodynamically consistent.

We assume in the sequel that

Wmech(ε, z)
def
= 1

2E(ε−ε
inel ):(ε−ε

inel ) + α
2 |∇z|

2 +H1(z), ε
inel def

= Qz, (1.5a)

W θ def
= c(θln(θ)−θ), (1.5b)

W coup(ε, z)
def
= βI:ε +H2(z), (1.5c)

where c is the heat capacity, β ≥ 0 is the isotropic thermal expansion coefficient, I is the identity matrix,

α ≥ 0 is a coefficient that measures some non local interaction effects for the internal variable z, E is

the elasticity tensor,Hi, i = 1, 2, are two hardening functionals and Q is an affine mapping from a finite

dimensional real vector space Z to R
3×3
sym . More precisely, Q is decomposed as follows

∀z ∈ Z : Qz
def
= Q̃z + Q,

with Q̃ ∈ L(Z,R3×3
sym ) and Q ∈ R

3×3
sym . We observe that by inserting on the one hand (1.5a) and (1.5c)

into (1.2) and by carrying on the other hand (1.5b), (1.5c) and (1.3) into (1.4), we obtain

− div(E(ε(u)−Qz)+βθI+Aε(u̇)) = f, (1.6a)

∂Ψ(ż) + Bż − Q̃
T

E(ε(u)−Qz) + ∂zH1(z) + θ∂zH2(z) − α∆z ∋ 0, (1.6b)

cθ̇− div(κ∇θ) = Aε(u̇):ε(u̇) + θ(βI:ε(u̇)+∂zH2(z).ż) + Bż.ż + Ψ(ż), (1.6c)

together with boundary conditions

u = 0, α∇z·n = 0, κ∇θ·n = 0 on ∂Ω × [0, τ), (1.7)

and initial conditions

u(·, 0) = u0, z(·, 0) = z0, θ(·, 0) = θ0 in Ω. (1.8)

Here Ω ⊂ R
3 is a reference configuration and n denotes the outward normal to the boundary ∂Ω of

Ω. As usual, (˙), ∂i
z and ∂ denote the time derivative ∂

∂t , the i-th derivative with respect to z and the

subdifferential in the sense of convex analysis (see [Bre73]), respectively. Moreover ε1:ε2 and z1.z2
denote the inner product of ε1 and ε2 in the space of symmetric 3×3 tensors R

3×3
sym and z1 and z2 in

the finite dimensional real vector space Z .
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The increasing interest in smart materials for industrial applications has deeply stimulated the study of

such models in engineering as well as in mathematical literature during the last decade. If the coupling

with heat equation (1.6c) is ignored (for instance, if the characteristic dimension of the material is small in

at least one direction, the temperature can be considered as a data), the problem (1.6a)–(1.6b) together

with (1.7)–(1.8) is nowadays quite well understood; existence results can be obtained either by using

classical methods for maximal monotone operators (see [AlC04]) or more specific techniques for rate-

independent processes when the viscosity tensors vanish (see [MiT04, Mie05, FrM06, MiR07, Mie07,

MiP07, MRS08]). On the contrary, if the temperature is considered as an unknown, the coupling with the

thermal process, which is not rate-independent, does not allow to use the previous techniques and the

problem becomes much more difficult. Indeed, the natural functional framework for the right-hand side

of (1.6c) seems at a first glance to be L1(0, τ ; L1(Ω)) since we usually expect the displacements to

be in W1,2(0, τ ;W1,2(Ω)). This difficulty has been overcome in a serie of recent papers by using the

so-called enthalpy transformation. More precisely, assuming that the heat conductivity is a continuous

function of θ such that

∃γ > 1, ∃cc > 0, ∀θ ≥ 0 : c(θ) ≥ cc(1+θ)γ−1, (1.9)

a new unknown, the enthalpy, is defined by

ϑ
def
=

∫ θ

0
c(s)ds,

and the heat equation is replaced by the enthalpy equation:

ϑ̇− div
(

κ
c(ζ(ϑ))∇ϑ

)
= Aε(u̇):ε(u̇) + ζ(ϑ)(βI:ε(u̇)+∂zH2(z).ż) + Bż.ż + Ψ(ż),

with |θ=ζ(ϑ)| ≤
( γ

cc max(ϑ, 0)
) 1

γ . Roughly speaking, this change of unknown weakens the coupling

effects (the greater is γ, the weaker is the coupling effects) and allows to build a solution either by using

a time-discretization ([BaR08, Rou10, BaR11]) or by using a fixed-point argument ([PaP11a, PaP11b,

PaP11c]). Unfortunately, assumption (1.9) on the heat conductivity is not always satisfied and we will

consider in this paper the more standard case where c is a function of x. In such a case, the enthalpy is

simply ϑ
def
= c(x)θ and does not provide any help in the mathematical analysis of the system (1.6)–(1.8).

In other words, we have to manage directly with the original coupling (1.6a), (1.6b) and (1.6c). For this

problem, we will prove an existence result by using a fixed-point argument. Since the right-hand side of

(1.6c) behaves as a quadratic term with respect to θ, we can not expect a global existence result without

some smallness assumptions on the coupling parameters β and ∂zH2.

The paper is organized as follows. In Section 2, we introduce the assumptions on the data, and we

present the main result (local existence result). Then Section 3 is devoted to its proof. In Section 4,

we establish some further properties of the solution, namely we prove that the temperature remains

positive and thus is physically admissible and that u, z and θ satisfy some global energy estimate.

Furthermore we investigate sufficient conditions to get a global solution. Finally, in Section 5, we present

some examples which fit our modelization.

2 Statement of the result

We consider a reference configuration Ω ⊂ R
3, which is a bounded domain such that ∂Ω ∈ C2+ρ

with ρ > 0. Let us begin this section by introducing some assumptions on the data as well as obvious

consequences following from these assumptions used later on in this work.
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(A–1) The dissipation potential Ψ is positively homogeneous of degree 1, satisfies the triangle inequality

and remains bounded on the unit ball of Z , i.e., we have

∀γ ≥ 0, ∀z ∈ Z : Ψ(γz) = γΨ(z), (2.1a)

∀z1, z2 ∈ Z : Ψ(z1+z2) ≤ Ψ(z1) + Ψ(z2), (2.1b)

∃CΨ > 0, ∀z ∈ Z : 0 ≤ Ψ(z) ≤ CΨ|z|. (2.1c)

It is clear that (2.1) implies that Ψ is convex and continuous. With (2.1c), we can also check

immediately that 0 ∈ ∂Ψ(0).

(A–2) The hardening functionals Hi, i = 1, 2, belong to C2(Z; R) and satisfy the following inequalities

∃cH1, c̃H1 ≥ 0, ∀z ∈ Z : H1(z) ≥ cH1 |z|2 − c̃H1 , (2.2a)

∃CHi
zz > 0, ∀z ∈ Z : |∂2

zHi(z)| ≤ CHi
zz . (2.2b)

Note that (2.2b) leads to

∃CHi
z > 0, ∀z ∈ Z : |∂zHi(z)| ≤ CHi

z (1+|z|), |Hi(z)| ≤ CHi
z (1+|z|2). (2.3)

(A–3) The elasticity tensor E : Ω → L(R3×3
sym ; R3×3

sym ) is a symmetric positive definite operator such

that

∃cE > 0, ∀ε ∈ L2(Ω; R3×3
sym ) : cE‖ε‖2

L2(Ω) ≤

∫

Ω
Eε:εdx, (2.4a)

∀i, j, k = 1, 2, 3 : E(·),
∂Ei,j(·)

∂xk
∈ L∞(Ω). (2.4b)

(A–4) The viscosity tensors A and B are symmetric positive definite such that

∃cA, CA > 0, ∀ε ∈ R
3×3
sym : cA|ε|2 ≤ Aε:ε ≤ CA|ε|2, (2.5a)

∃cB, CB > 0, ∀z ∈ Z : cB|z|2 ≤ Bz.z ≤ CB|z|2. (2.5b)

(A–5) The inelastic strain is given by ε
inel def

= Qz = Q̃z + Q with

Q̃ ∈ L(Z,R3×3
sym ) and Q ∈ R

3×3
sym . (2.6)

(A–6) The external loading f satisfies

f ∈ H1(0, T ; L2(Ω)) with T > 0. (2.7)

(A–7) The heat capacity c : Ω → R and the conductivity κc : Ω → R
3×3
sym satisfy the following

inequalities

∃Cc, cc > 0 : cc ≤ c(x) ≤ Cc a.e. x ∈ Ω, (2.8a)

∃cκ > 0, ∀v ∈ R
3 : κ(x)v.v ≥ cκ|v|2 a.e. x ∈ Ω, (2.8b)

∃Cκ > 0 : |κ(x)| ≤ Cκ a.e. x ∈ Ω. (2.8c)
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Finally, we assume that α ≥ 0 and either α > 0 and cH1 > 0 or α = 0 and ∂zH2 ≡ 0. Note that

the boundary condition α∇z·n = 0 on ∂Ω × [0, τ) will disappear if α = 0. We use later the following

notations; Wm,r
Dir (Ω)

def
= {ξ ∈ Wm,r(Ω) : ξ = 0 on ∂Ω} and Wm,r

Neu (Ω)
def
= {ξ ∈ Wm,r(Ω) :

∇ξ·n = 0 on ∂Ω} with m ≥ 1 and r ≥ 2 are two integers.

As usual Korn’s inequality will play a role in the mathematical analysis developed in the next sections.

We have assumed that ∂Ω is of class C2+ρ, so we have

∃CKorn > 0, ∀u ∈ W1,2
Dir(Ω) : ‖ε(u)‖2

L2(Ω) ≥ CKorn‖u‖2
W1,2(Ω), (2.9)

for further details on Korn’s inequality, the reader is referred to [KoO88, DuL76].

As a starting point in the study of the problem (1.6)–(1.8), let us consider the heat equation

cθ̇ − div(κ∇θ) = f
eθ, (2.10)

with initial and boundary conditions

θ(·, 0) = θ0 in Ω, κ∇θ·n = 0 on ∂Ω × [0, τ). (2.11)

If f
eθ ∈ L2(0, τ ; L2(Ω)) and θ0 ∈ W1,2

κ, Neu(Ω)
def
= {ξ ∈ W1,2(Ω) : κ∇ξ·n = 0 on ∂Ω}, this

problem admits a unique solution θ ∈ L∞(0, τ ;W1,2
Neu(Ω)) (see [Eva10]).

Now we recall existence and uniqueness results for the system composed by the momentum equilibrium

equation and the flow rule (1.6a)–(1.6b) when the temperature is a given data. More precisely, let θ̃ be

given in Lq(0, τ ; Lp(Ω)). We consider the following problem: Find u : [0, τ ] → R
3 and z : [0, τ ] → Z

such that

− div(E(ε(u)−Qz)+βθ̃I+Aε(u̇)) = f, (2.12a)

∂Ψ(ż) + Bż − Q̃
T

E(ε(u)−Qz) + ∂zH1(z) + θ̃∂zH2(z) − α∆z ∋ 0, (2.12b)

with boundary conditions

u = 0, α∇z·n = 0 on ∂Ω × [0, τ), (2.13)

and initial conditions

u(·, 0) = u0, z(·, 0) = z0 in Ω. (2.14)

Proposition 2.1 Let τ ∈ (0, T ] and θ̃ be given in Lq(0, τ ; Lp(Ω)) with p ∈ [4, 6]. Assume that

(2.1), (2.2), (2.4), (2.5), (2.6), (2.7), u0 ∈ W1,p
Dir(Ω) and z0 ∈ W2,p

Neu(Ω) if α > 0 or z0 ∈ Lp(Ω) if

α = 0 hold. Then the problem (2.12)–(2.14) admits a unique solution u ∈ W1,q(0, τ ;W1,p
Dir(Ω)) and

z ∈ Lq/2(0, τ ;W2,p
Neu(Ω)) ∩ C0([0, τ ];W1,2

Neu(Ω)) ∩ W1,q/2(0, τ ; Lp(Ω)) ∩ W1,q(0, τ ; Lp/2(Ω)) if

α > 0 and z ∈ W1,q(0, τ ; Lp(Ω)) if α = 0 for any q > 8. Furthermore θ̃ 7→ (u, z) maps any bounded

subset of Lq(0, τ ; Lp(Ω)) into a bounded subset of W1,q(0, τ ;W1,p
Dir(Ω))×(Lq/2(0, τ ;W2,p

Neu(Ω)) ∩

C0([0, τ ];W1,2
Neu(Ω)) ∩ W1,q/2(0, τ ; Lp(Ω)) ∩ W1,q(0, τ ; Lp/2(Ω))) when α > 0 or into a bounded

subset of W1,q(0, τ ;W1,p
Dir(Ω)) × W1,q(0, τ ; Lp(Ω)) when α = 0.

The key tool to prove existence, uniqueness and boundedness results for (2.12)–(2.14) consists in inter-

preting this system of partial differential equations as an ordinary differential equation in an appropriate

Banach space. For the detailed proof, the reader is referred to [PaP11a, Thm. 4.1, Prop. 4.2, Lem. 4.4–

4.5] and [PaP11c, Thm. 3.1, Prop. 3.2, Lem. 3.4–3.5] when α > 0 and to [PaP11b, Thm. 4.1] when

α = 0.
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So we may prove the existence of a solution for the coupled problem (1.6)–(1.8) by combining via a

fixed-point argument the results of Proposition 2.1 with the existence results for the heat equation with

f
eθ given by

f
eθ def
= Aε(u̇):ε(u̇) + θ̃(βI:ε(u̇)+∂zH2(z).ż) + Bż.ż + Ψ(ż).

We will obtain

Theorem 2.2 Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), (2.8), θ0 ∈ W1,2
κ, Neu(Ω), u0 ∈ W1,4

Dir(Ω)

and z0 ∈ W2,4
Neu(Ω) if α > 0 and z0 ∈ L4(Ω) if α = 0 hold. Then there exists τ ∈ (0, T ] such that the

problem (1.6)–(1.8) admits a solution on [0, τ ] such that θ ∈ L∞(0, τ ;W1,2
κ, Neu(Ω))∩C0(0, τ ; L4(Ω)),

θ̇ ∈ L2(0, τ ; L2(Ω)), u ∈ W1,q(0, τ ;W1,4
Dir(Ω)), z ∈ Lq/2(0, τ ;W2,4

Neu(Ω))∩C0([0, τ ];W1,2
Neu(Ω))∩

W1,q/2(0, τ ; L4(Ω))∩W1,q(0, τ ; L2(Ω)) when α > 0, z ∈ W1,q(0, τ ; L4(Ω)) when α = 0, for any

q > 8.

Next, reminding that the problem is thermodynamically consistent if θ > 0, we establish at Proposition 4.1

that the solution obtained in the previous theorem is physically admissible, i.e. remains positive whenever

θ0 ≥ θ̄ almost everywhere in Ω, with θ̄ > 0. Finally, a global energy estimate is obtained in Proposition

4.2 and sufficient conditions on β and ∂zH2 are proposed to get a global solution (u, z, θ) defined on

[0, T ].

3 Proof of Theorem 2.2

This section is dedicated to the proof of Theorem 2.2 by using a fixed-point argument. More precisely, for

any given θ̃ ∈ C0([0, τ ]; L4(Ω)) with τ ∈ (0, T ], let f
eθ def
= Aε(u̇):ε(u̇)+ θ̃(βI:ε(u̇)+∂zH2(z).ż)+

Bż.ż + Ψ(ż) where (u, z) is the unique solution of (2.12)–(2.14). Using Proposition 2.1, we obtain

f
eθ ∈ L2(0, τ ; L2(Ω)) and thus the heat-transfer equation (2.10)–(2.11) possesses a unique solution

θ ∈ L∞(0, τ ;W1,2
Neu(Ω)) such that θ̇ ∈ L2(0, τ ; L2(Ω)). This allows us to define a mapping

Φ
eθ,θ
τ : C0([0, τ ]; L4(Ω)) → C0([0, τ ]; L4(Ω))

θ̃ 7→ θ.

Our aim consists in proving that this mapping satisfies the assumptions of Schauder’s fixed point theorem

for some positive τ ∈ (0, T ].

Let us define the set Qτ
def
= Ω × (0, τ) with τ ∈ (0, T ]. In the sequel, the notations for the constants

introduced in the proofs are valid only in the proof.

Proposition 3.1 Let τ belongs to (0, T ]. Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), (2.8), θ0 ∈
W1,2

κ, Neu(Ω), u0 ∈ W1,4
Dir(Ω) and z0 ∈ W2,4

Neu(Ω) if α > 0 and z0 ∈ L4(Ω) if α = 0 hold.

Then Φ
eθ,θ
τ maps any bounded subset of C0([0, τ ]; L4(Ω)) into a bounded relatively compact subset

of C0([0, τ ]; L4(Ω)).

Proof. We recall first existence, uniqueness and regularity results for the heat-transfer equation. More

precisely, let consider the system (2.10)–(2.11). We assume that (2.8) holds and that the initial temper-

ature θ0 ∈ W1,2
κ, Neu(Ω) and f

eθ ∈ L2(0, τ ; L2(Ω)). By using Galerkin’s method (see for instance
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[Eva10]), we may prove that this problem admits a unique solution θ ∈ L∞(0, τ ;W1,2
Neu(Ω)) with

θ̇ ∈ L2(0, τ ; L2(Ω)).

Moreover we have the following a priori estimates

‖θ(·, t)‖2
L2(Ω) + 2cκ

cc ‖∇θ‖2
L2(0,τ ;L2(Ω)) ≤

1
cc

(
Cc‖θ0‖2

L2(Ω)+‖f
eθ‖2

L2(0,τ ;L2(Ω))

)
exp

(
τ
cc

)
(3.1)

and

cc‖θ̇‖2
L2(0,τ ;L2(Ω)) + cκ‖∇θ(·, t)‖2

L2(Ω) ≤ Cκ‖∇θ0‖2
L2(Ω) + 1

cc‖f
eθ‖2

L2(0,τ ;L2(Ω)) (3.2)

for almost every t ∈ [0, τ ]. Therefore we add (3.1) and (3.2), we have

cc‖θ̇‖2
L2(0,τ ;L2(Ω)) + min(1, cκ)‖θ(·, t)‖2

W1,2(Ω) + 2cκ

cc ‖∇θ‖2
L2(0,τ ;L2(Ω))

≤ max
(

Cc

cc exp
(

τ
cc

)
, Cκ

)
‖θ0‖2

W1,2(Ω) + 1
cc

(
exp

(
τ
cc

)
+1

)
‖f

eθ‖2
L2(0,τ ;L2(Ω))

(3.3)

for almost every t ∈ [0, τ ]. We introduce now the following functional space

V((τ1, τ2)×Ω)
def
=

{
θ ∈ L∞(τ1, τ2;W

1,2(Ω)) : θ̇ ∈ L2(τ1, τ2; L
2(Ω))

}
, 0 ≤ τ1 < τ2 ≤ T,

endowed with the norm

∀θ ∈ V((τ1, τ2)×Ω) : ‖θ‖V((τ1,τ2)×Ω)
def
= ‖θ‖L∞(τ1,τ2;W1,2(Ω)) + ‖θ̇‖L2(τ1,τ2;L2(Ω)).

Then it follows from (3.3) that there exists a generic constant Cθ > 0, independent of τ , such that the

solution of problem (2.10)–(2.11) satisfies

‖θ‖V((0,τ)×Ω) ≤ Cθ exp
(

τ
cc

)(
‖θ0‖W1,2(Ω)+‖f

eθ‖L2(0,τ ;L2(Ω))

)
. (3.4)

With Proposition 2.1, it is plain to see that for any θ̃ belonging to a bounded subset of C0([0, τ ]; L4(Ω)),

f
eθ def

= Aε(u̇):ε(u̇) + θ̃(βI:ε(u̇)+∂zH2(z).ż) + Bż.ż + Ψ(ż) belongs to a bounded subset of

Lq/4(0, τ ; L2(Ω)) for any q > 8. Furthermore Hölder’s inequality gives

‖f
eθ‖L2(0,τ ;L2(Ω)) ≤ τ

q−8
2q ‖f

eθ‖Lq/4(0,τ ;L2(Ω)).

We insert (3.4) into (3.3), we find

‖θ‖V((0,τ)×Ω) ≤ Cθ exp
(

τ
cc

)(
‖θ0‖W1,2(Ω)+τ

q−8
2q ‖f

eθ‖Lq/4(0,τ ;L2(Ω))

)
.

Thus it is clear that Φ
eθ,θ
τ maps any bounded subset of C0([0, τ ]; L4(Ω)) into a bounded subset of

V((0, τ)×Ω). However V((0, τ)×Ω) is compactly embedded into C0([0, τ ]; L4(Ω)) (see [Sim87]),

which allows us to conclude. �

Proposition 3.2 Let τ belongs to ∈ (0, T ]. Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), (2.8),

θ0 ∈ W1,2
κ, Neu(Ω), u0 ∈ W1,4

Dir(Ω) and z0 ∈ W2,4
Neu(Ω) if α > 0 and z0 ∈ L4(Ω) if α = 0 hold. Then

the mapping Φ
eθ,θ
τ is continuous from C0([0, τ ]; L4(Ω)) into C0([0, τ ]; L4(Ω)).
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Proof. Let us consider a converging sequence (θ̃n)n∈N ∈ (C0([0, τ ]; L4(Ω)))N and let θ̃∗ be its limit.

We denote by (un, zn) the solution of (2.12)–(2.14) with θ̃ = θ̃n, and θn
def
= Φ

eθ,θ
τ (θ̃n) for all n ≥ 0.

Similarly, let (u∗, z∗) be the solution of (2.12)–(2.14) with θ̃ = θ̃∗, and θ∗
def
= Φ

eθ,θ
τ (θ̃∗). Since (θ̃n)n∈N is

a bounded family of C0([0, τ ]; L4(Ω)), we infer that (θn)n∈N is bounded in V((0, τ)×Ω). It follows that

(θn)n∈N is relatively compact in C0([0, τ ]; L4(Ω)) (see [Sim87]). Hence, there exists a subsequence,

still denoted by (θn)n∈N, such that

θn → θ in C0([0, τ ]; L4(Ω)),

θn ⇀ θ in L2(0, τ ;W1,2(Ω)) weak,

θ̇n ⇀ θ̇ in L2(0, τ ; L2(Ω)) weak,

and for all n ≥ 0, we have θn(·, 0) = θ0 and
∫

Qτ

c(x)θ̇n(x, t)ξ(x)w(t)dxdt +

∫

Qτ

κ(x)∇θn(x, t)∇ξ(x)w(t)dxdt

=

∫

Qτ

f
eθn(x, t)ξ(x)w(t)dxdt

(3.5)

for all ξ ∈ W1,2(Ω) and w ∈ D(0, τ). We observe that since (θn)n∈N converges strongly to θ in

C0([0, τ ]; L4(Ω)), we have immediately θ(·, 0) = θ0. In order to pass to the limit in (3.5), it remains to

study the convergence of (f
eθn)n∈N. We begin with the study of the convergence of (un, zn)n∈N.

It is convenient to introduce the following functional space Xα(Ω) = W1,2
Neu(Ω) if α > 0 and Xα(Ω) =

L2(Ω) if α = 0.

Lemma 3.3 Let τ ∈ (0, T ]. Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), u0 ∈ W1,4
Dir(Ω) and

z0 ∈ W2,4
Neu(Ω) if α > 0 and z0 ∈ L4(Ω) if α = 0 hold. Then the mapping θ̃ 7→ (u, z), where (u, z) is

the unique solution of (2.12)–(2.14), is continuous from C0([0, τ ]; L4(Ω)) into W1,2(0, τ ;W1,2
Dir(Ω) ×

L2(Ω)) ∩ L∞(0, τ ;W1,2
Dir(Ω) × Xα(Ω)).

Proof. We consider θ̃i ∈ C0([0, τ ]; L4(Ω)) and for i = 1, 2, we denote by (ui, zi) the solution of the

following system:

− div(E(ε(ui)−Qzi)+βθ̃iI+Aε(u̇i)) = f, (3.6a)

∂Ψ(żi) + Bżi − Q̃
T

E(ε(ui)−Qzi) + ∂zH1(zi) + θ̃i∂zH2(zi) − α∆zi ∋ 0, (3.6b)

with boundary conditions

ui = 0, α∇zi·n = 0 on ∂Ω × [0, τ), (3.7)

and initial conditions

ui(·, 0) = u0, zi(·, 0) = z0 in Ω. (3.8)

On the one hand, with the definition of the subdifferential ∂Ψ(żi) (see [Bre73]), we have
∫

Ω
−E(ε(ui)−Qzi):(Q̃ż3−i−Q̃żi)dx+

∫

Ω
Bżi.(ż3−i−żi)dx

− α

∫

Ω
∆zi.(ż3−i−żi)dx+

∫

Ω
∂zH1(zi).(ż3−i−żi)dx

+

∫

Ω
θ̃i∂zH2(zi).(ż3−i−żi)dx+

∫

Ω
Ψ(ż3−i)dx−

∫

Ω
Ψ(żi)dx ≥ 0

(3.9)
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for almost every t ∈ [0, τ ]. On the other hand, we multiply (3.6a) by u̇3−i−u̇i, we integrate this expres-

sion over Ω and we add it to to (3.9). We obtain

∫

Ω
E(ε(ui)−Qzi):((ε(u̇3−i)−Q̃ż3−i)−(ε(u̇i)−Q̃żi))dx

+ β

∫

Ω
θ̃iI:(ε(u̇3−i)−ε(u̇i))dx+

∫

Ω
Aε(u̇i):(ε(u̇3−i)−ε(u̇i))dx

+

∫

Ω
Bżi.(ż3−i−żi)dx− α

∫

Ω
∆zi.(ż3−i−żi)dx+

∫

Ω
∂zH1(zi).(ż3−i−żi)dx

+

∫

Ω
θ̃i∂zH2(zi).(ż3−i−żi)dx−

∫

Ω
f ·(u̇3−i−u̇i)dx

+

∫

Ω
Ψ(ż3−i)dx−

∫

Ω
Ψ(żi)dx ≥ 0

(3.10)

for almost every t ∈ [0, τ ]. Therefore, we take i = 1, 2 in (3.10), and thus we add these two inequalities,

we obtain ∫

Ω
E(ε(ū)−Q̃z̄):(ε( ˙̄u)−Q̃ ˙̄z)dx+

∫

Ω
Aε( ˙̄u):ε( ˙̄u)dx+

∫

Ω
B ˙̄z. ˙̄zdx

− α

∫

Ω
∆z̄. ˙̄zdx+

∫

Ω
(∂zH1(z1)−∂zH1(z2)). ˙̄zdx

≤ −β

∫

Ω
θ̄I:ε( ˙̄u)dx−

∫

Ω
(θ̃1∂zH2(z1)−θ̃2∂zH2(z2)). ˙̄zdx

with ū
def
= u1−u2, z̄

def
= z1−z2 and θ̄

def
= θ̃1−θ̃2. Let CH1 > 0 and define

δα(t)
def
= 1

2

∫

Ω
E(ε(ū)−Q̃z̄):(ε(ū)−Q̃z̄)dx− α

2

∫

Ω
∆z̄.z̄dx+ CH1

2

∫

Ω
|z̄|2 dx (3.11)

for all t ∈ [0, τ ]. By using assumptions (2.4) and (2.6) combined with Korn’s inequality, we find that there

exists cδ > 0 such that

∀t ∈ [0, τ ] : δα(t) ≥ cδ
(
‖ū(·, t)‖2

W1,2(Ω)+‖z̄(·, t)‖2
L2(Ω)

)
+α

2 ‖∇z̄(·, t)‖
2
L2(Ω). (3.12)

Furthermore Proposition 2.1 implies that the mapping δα(·) is continuous on [0, τ ] and its derivative in

the sense of distributions belongs to L1(0, τ). Then δα(·) is absolutely continuous on [0, τ ] and with

(2.2b), (2.5) and (3.11), we get

δ̇α(t) + cA‖ε( ˙̄u)‖2
L2(Ω) + cB‖ ˙̄z‖2

L2(Ω) ≤ (CH1
zz +CH1)

∫

Ω
|z̄|| ˙̄z|dx

− β

∫

Ω
θ̄I:ε( ˙̄u)dx−

∫

Ω
(θ̃1∂zH2(z1)−θ̃2∂zH2(z2)). ˙̄zdx

(3.13)

for almost every t ∈ [0, τ ].

Let us distinguish now the cases α = 0 and α > 0.

If α = 0, then ∂zH2 ≡ 0 and (3.13) reduces to

δ̇0(t) + cA‖ε( ˙̄u)‖2
L2(Ω) + cB‖ ˙̄z‖2

L2(Ω) ≤ (CH1
zz +CH1)

∫

Ω
|z̄|| ˙̄z|dx− β

∫

Ω
θ̄I:ε( ˙̄u)dx

9



for almost every t ∈ [0, τ ]. The two terms of the right hand side can be estimated by using Cauchy-

Schwarz’s inequality, it comes that

δ̇0(t) + cA

2 ‖ε( ˙̄u)‖2
L2(Ω) + cB

2 ‖ ˙̄z‖2
L2(Ω) ≤

9β2

2cA
‖θ̄‖2

L2(Ω) + (C
H1
zz +CH1)2

2cB
‖z̄‖2

L2(Ω)

≤ 9β2

2cA
‖θ̄‖2

L2(Ω) + (C
H1
zz +CH1)2

2cBcδ δα(t).

Therefore we integrate over (0, t) and we use Grönwall’s lemma, we find

δ0(t) + cA

2 ‖ε( ˙̄u)‖2
L2(0,t;L2(Ω)) + cB

2 ‖ ˙̄z‖2
L2(0,t;L2(Ω))

≤ 9β2

2cA
t‖θ̄‖2

C0([0,τ ];L2(Ω)) exp
( (C

H1
zz +CH1)2

2cBcδ τ
)

for all t ∈ [0, τ ].

If α 6= 0, the following decomposition is used to estimate the last term in (3.13), namely

(θ̃1∂zH2(z1)−θ̃2∂zH2(z2)). ˙̄z = (θ̄∂zH2(z1)+θ̃2(∂zH2(z1)−∂zH2(z2))). ˙̄z.

Then it follows that

δ̇α(t) + cA

2 ‖ε( ˙̄u)‖2
L2(Ω) + 3cB

4 ‖ ˙̄z‖2
L2(Ω) ≤

9β2

2cA
‖θ̄‖2

L2(Ω) + (C
H1
zz +CH1)2

cB
‖z̄‖2

L2(Ω)

+

∫

Ω

(
|θ̄||∂zH2(z1)|| ˙̄z|+|θ̃2||∂zH2(z1)−∂zH2(z2)|| ˙̄z|

)
dx.

(3.14)

Observe that (2.2b), (2.3) and Young’s inequality give
∫

Ω

(
|θ̄||∂zH2(z1)|| ˙̄z|+|θ̃2||∂zH2(z1)−∂zH2(z2)|| ˙̄z|

)
dx

≤ CH2
z

∫

Ω

(
1+|z1|

)
|θ̄|| ˙̄z|dx+ CH2

zz

∫

Ω
|θ̃2||z̄|| ˙̄z|dx ≤ C

H2
z

2γ1
‖θ̄‖2

L2(Ω)

+ C
H2
z

2γ2

∫

Ω
|θ̄|2|z1|

2 dx+ C
H2
zz

2γ3

∫

Ω
|θ̃2|

2|z̄|2 dx+ C
H2
z (γ1+γ2)+C

H2
zz γ3

2 ‖ ˙̄z‖2
L2(Ω),

with γi > 0, i = 1, 2, 3. We notice that z1 ∈ Lq/2(0, τ ;W2,4
Neu(Ω)) and W2,4

Neu(Ω) →֒ L∞(Ω) with

continuous embedding, thus we have
∫

Ω

(
|θ̄||∂zH2(z1)|| ˙̄z|+|θ2||∂zH2(z1)−∂zH2(z2)|| ˙̄z|

)
dx ≤ C

H2
z

2γ1
‖θ̄‖2

L2(Ω)

+ C
H2
z

2γ2
‖z1‖

2
L∞(Ω)‖θ̄‖

2
L2(Ω) + C

H2
zz

2γ3
‖θ̃2‖

2
L4(Ω)‖z̄‖

2
L4(Ω)+

C
H2
z (γ1+γ2)+C

H2
zz γ3

2 ‖ ˙̄z‖2
L2(Ω).

(3.15)

We insert (3.15) in (3.14) and we choose γ1 = γ2 = cB

4C
H2
z

and γ3 = cB

2C
H2
zz

. Using the continuous

embedding W1,2(Ω) →֒ L4(Ω) and (3.12), we obtain

δ̇α(t)+ cA

2 ‖ε( ˙̄u)‖2
L2(Ω)+

cB

4 ‖ ˙̄z‖2
L2(Ω)≤

( 9β2

2cA
+2(C

H2
z )2

cB
+2(C

H2
z )2

cB
‖z1‖

2
L∞(Ω)

)
‖θ̄‖2

L2(Ω)

+ 1
cδ
αcB

(
(CH1

zz +CH1)2+C1(C
H2
zz )2‖θ̃2‖

2
L4(Ω)

)
δα(t)

(3.16)

for almost every t ∈ [0, τ ], where C1 is the generic constant involved in the continuous embedding of

W1,2(Ω) into L4(Ω) and cδα
def
= min

(
cδ, α

2

)
. Let us define

c(θ̃2)
def
= 1

cδ
αcB

(
(CH1

zz +CH1)2+C1(C
H2
zz )2‖θ̃2‖

2
C0([0,τ ],L4(Ω))

)
.
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By using Grönwall’s lemma, we get

δα(t) + cA

2 ‖ε( ˙̄u)‖2
L2(0,t;L2(Ω)) + cB

4 ‖ ˙̄z‖2
L2(0,t;L2(Ω))

≤
( 9β2

2cA
τ+2(C

H2
z )2

cB
τ+2(C

H2
z )2

cB
‖z1‖

2
L2(0,τ ;L∞(Ω))

)
‖θ̄‖2

C0([0,τ ];L2(Ω))(1+τc(θ̃2) exp(c(θ̃2)τ))

for all t ∈ [0, τ ]. �

As a corollary, it is possible to prove that

Lemma 3.4 Let τ ∈ (0, T ]. Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), u0 ∈ W1,4
Dir(Ω) and

z0 ∈ W2,4
Neu(Ω) if α > 0 and z0 ∈ L4(Ω) if α = 0 hold. Then the mapping θ̃ 7→ f

eθ with f
eθ =

Aε(u̇):ε(u̇)+ θ̃(βI:ε(u̇)+∂zH2(z).ż)+Bż.ż+Ψ(ż), where (u, z) is the unique solution of (2.12)–

(2.14), is continuous from C0([0, τ ]; L4(Ω)) into Lr(0, τ ; L4/3(Ω)), with 1
r = 2

q + 1
2 .

Proof. We consider once again θ̃i ∈ C0([0, τ ]; L4(Ω)) and for i = 1, 2, we denote by (ui, zi) the

solution of the system (3.6)–(3.8). With the definition of f
eθ we have

f
eθ1 − f

eθ2 = Aε(u̇1+u̇2):ε(u̇1−u̇2) + (θ̃1−θ̃2)(βI:ε(u̇1)+∂zH2(z1).ż1)

+ θ̃2(βI:ε(u̇1−u̇2)+∂zH2(z1).ż1−∂zH2(z2).ż2)+B(ż1+ż2).(ż1−ż2)+Ψ(ż1)−Ψ(ż2).

Thus it comes that

|f
eθ1−f

eθ2| ≤ ‖A‖|ε(u̇1+u̇2)||ε( ˙̄u)| + |θ̄|(3β|ε(u̇1)|+C
H2
z (1+|z1|)|ż1|)

+ |θ̃2|(3β|ε( ˙̄u)|+|∂zH2(z1).ż1−∂zH2(z2).ż2|) + ‖B‖|ż1+ż2|| ˙̄z| + |Ψ(ż1)−Ψ(ż2)|.

But (2.1c) and (2.1b) lead to

|Ψ(ż1)−Ψ(ż2)| ≤ CΨ|ż1−ż2| = CΨ| ˙̄z|

and (2.3) and (2.2b) give

|∂zH2(z1).ż1−∂zH2(z2).ż2| ≤ |∂zH2(z1)|| ˙̄z| + |∂zH2(z1)−∂zH2(z2)||ż2|

≤ CH2
z (1+|z1|)| ˙̄z| + CH2

zz |z̄||ż2|.

Then, reminding that ∂zH2 ≡ 0 whenever α = 0, the boundedness properties of (u, z) stated at

Proposition 2.1 and the continuity property of θ̃ 7→ (u, z) proved in Lemma 3.3 allow us to conclude by

using Young’s inequality. �

Now we may conclude the proof of Proposition 3.2. Indeed, since (θ̃n)n∈N converges strongly to θ̃∗ in

C0([0, τ ]; L4(Ω)), we infer from Lemma 3.4 that

lim
n→+∞

∫

Qτ

f
eθn(x, t)ξ(x)w(t)dxdt =

∫

Qτ

f
eθ∗(x, t)ξ(x)w(t)dxdt

for all ξ ∈ W1,2(Ω) and w ∈ D(0, τ). Therefore we may pass to the limit in all the terms of (3.5) to get
∫

Qτ

c(x)θ̇(x, t)ξ(x)w(t)dxdt +

∫

Qτ

κ(x)∇θ(x, t)∇ξ(x)w(t)dxdt

=

∫

Qτ

f
eθ∗(x, t)ξ(x)w(t)dxdt

(3.17)
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for all ξ ∈ W1,2(Ω) and w ∈ D(0, τ). It follows that θ is solution of problem (2.10)–(2.11) with the

data f
eθ∗ . Besides by uniqueness of the solution, it comes that θ = θ∗ and the whole sequence (θn)n∈N

converges to θ∗ in C0([0, τ ]; L4(Ω)). �

Corollary 3.5 Let τ ∈ (0, T ]. Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), (2.8), θ0 ∈ W1,2
κ,Neu(Ω),

u0 ∈ W1,4
Dir(Ω) and z0 ∈ W2,4

Neu(Ω) if α > 0 and z0 ∈ L4(Ω) if α = 0 hold. Then there exists

τ ∈ (0, T ] such that Φ
eθ,θ
τ admits a fixed point in C0([0, τ ]; L4(Ω)).

Proof. We have already proved in the previous propositions that Φ
eθ,θ
τ is a continuous mapping from

C0([0, τ ]; L4(Ω)) into C0([0, τ ]; L4(Ω)) and maps any bounded subset C ⊂ C0([0, τ ]; L4(Ω)) into

a bounded relatively compact subset. Hence we will be able to conclude by using Schauder’s fixed point

theorem (see [Eva10]) if we can find a closed convex bounded subset C of C0([0, τ ]; L4(Ω)) such that

Φ
eθ,θ
τ (C) ⊂ C.

Let C1 > 0 be the generic constant involved in the continuous embedding of W1,2(Ω) into L4(Ω)
and let Rθ > C1Cθ exp( T

cc )‖θ0‖W1,2(Ω), where Cθ is the constant defined in Proposition 3.1. For any

τ ∈ (0, T ] and θ̃ ∈ C
def
= B̄C0([0,τ ];L4(Ω))(0, R

θ), we denote θ = Φ
eθ,θ
τ (θ̃) and we have (see (3.4))

‖θ‖V((0,τ)×Ω) ≤ Cθ exp
(

τ
cc

)(
‖θ0‖W1,2(Ω)+‖f

eθ‖L2(0,τ ;L2(Ω))

)

and θ ∈ C0([0, τ ]; L4(Ω)). Thus we have

‖θ‖C0([0,τ ];L4(Ω)) = ‖θ‖L∞(0,τ ;L4(Ω))

≤ C1Cθ exp
(

τ
cc

)(
‖θ0‖W1,2(Ω)+τ

q−8
2q ‖f

eθ‖Lq/4(0,τ ;L2(Ω))

) (3.18)

for any q > 8. Since limτ→0 τ
q−8
2q = 0, we only need to prove that ‖f

eθ‖Lq/4(0,τ ;L2(Ω)) remains

bounded independently of τ . Let us emphasize that Proposition 2.1 implies that f
eθ remains in a bounded

subset of Lq/4(0, τ ; L2(Ω)) but this does not allow us to conclude since we don’t know if the diameter of

this bounded subset depends on τ or not. In order to cope with this difficulty, we consider the extension

of θ̃ to [0, T ] by zero on (τ, T ]. We denote by θ̃ext this extension. Of course, for any θ̃ ∈ C, we have

θ̃ext ∈ Lq(0, T ; L4(Ω)) for any q > 8 and

‖θ̃ext‖Lq(0,T ;L4(Ω)) = ‖θ̃‖Lq(0,τ ;L4(Ω)) = τ
1
q ‖θ̃‖C0([0,τ ];L4(Ω)) ≤ T

1
qRθ.

Then we define (uext, zext) as the unique solution of problem (2.12)–(2.14) with τ replaced by T and θ̃

replaced by θ̃ext. Since θ̃ext remains in the closed ball B̄Lq(0,T ;L4(Ω))(0, T
1/qRθ), Proposition 2.1 im-

plies that (uext, zext) remains in a bounded subset of W1,q(0, τ ;W1,4
Dir(Ω))× (Lq/2(0, τ ;W2,4

Neu(Ω))∩

C0([0, τ ];W1,2
Neu(Ω))∩W1,q/2(0, τ ; L4(Ω))∩W1,q(0, τ ; L2(Ω))) ifα > 0 or W1,q(0, τ ;W1,4

Dir(Ω))×
W1,q(0, τ ; L4(Ω)) if α = 0. It follows that

f
eθext def

= Aε(u̇ext):ε(u̇ext) + θ̃ext(βI:ε(u̇ext)+∂zH2(zext).żext) + Bżext.żext + Ψ(żext)

remains in a bounded subset of Lq/4(0, T ; L2(Ω)), i.e. there exists a constant C(Rθ), depending only

onRθ and the data, such that ‖f
eθext‖Lq/4(0,T ;L2(Ω)) ≤ C(Rθ). But f

eθ coincide with f
eθext on [0, τ ] and

‖f
eθ‖Lq/4(0,τ ;L2(Ω)) = ‖f

eθext1[0,τ ]‖Lq/4(0,T ;L2(Ω)) ≤ ‖f
eθext‖Lq/4(0,T ;L2(Ω)) ≤ C(Rθ). (3.19)
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Then by introducing (3.19) into (3.18) and by choosing τ ∈ (0, T ] such that

C1Cθ exp
(

τ
cc

)(
‖θ0‖W1,2(Ω)+τ

q−8
2q C(Rθ)) ≤ Rθ,

we may conclude. �

We can consider τ ∈ (0, T ] such that Φ
eθ,θ
τ admits a fixed point θ in C0([0, τ ]; L4(Ω)) and we define

(u, z) as the unique solution of problem (2.12)–(2.14) with θ̃ = θ. By definition of Φ
eθ,θ
τ , (u, z, θ) is a solu-

tion of the coupled problem (1.6)–(1.8) and by combining the regularity results for (u, z) given at Proposi-

tion 2.1 with the regularity results for the heat-transfer equation recalled in the proof of Proposition 3.1, we

get θ ∈ L∞(0, τ ;W1,2
κ, Neu(Ω)) ∩ C0(0, τ ; L4(Ω)), θ̇ ∈ L2(0, τ ; L2(Ω)), u ∈ W1,q(0, τ ;W1,4

Dir(Ω)),

z ∈ Lq/2(0, τ ;W2,4
Neu(Ω))∩C0([0, τ ];W1,2

Neu(Ω))∩W1,q/2(0, τ ; L4(Ω))∩W1,q(0, τ ; L2(Ω)) when

α > 0, z ∈ W1,q(0, τ ; L4(Ω)) when α = 0, for any q > 8. Hence the proof of Theorem 2.2 is

complete.

4 Further properties of the solution

Let us recall that system (1.6)–(1.8) is thermodynamically consistent if the temperature remains posi-

tive (see Section 1). So we begin this section by proving that the solutions (u, z, θ) of (1.6)–(1.8) are

physically admissible, i.e. θ(x, t) > 0 almost everywhere in Qτ . To this aim we introduce the following

assumption for the initial temperature:

(A–8) There exists θ̄ > 0 such that

θ0(x) ≥ θ̄ > 0 a.e. x ∈ Ω. (4.1)

Proposition 4.1 Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), (2.8), θ0 ∈ W1,2
κ,Neu(Ω), u0 ∈

W1,4
Dir(Ω) and z0 ∈ W2,4

Neu(Ω) if α > 0 and z0 ∈ L4(Ω) if α = 0 hold. Assume also that condi-

tion (4.1) is satisfied and κ ∈ C1(Ω̄). Then, any solution (u, z, θ) of problem (1.6)–(1.8) defined on

[0, τ ], τ ∈ (0, T ], is thermodynamically admissible, i.e. θ(x, t) > 0 for almost every (x, t) ∈ Qτ .

Proof. The key tool of the proof is the classical Stampacchia’s truncation method (see [Bre83]). So we

consider a function G ∈ C1(R; R) such that

(i) ∃CG′

> 0, ∀σ ∈ R : |G′(σ)| ≤ CG′

,

(ii) G is strictly increasing on (0,∞),

(iii) ∀σ ≤ 0 : G(σ) = 0,

and we define Γ(σ)
def
=

∫ σ
0 G(s)ds for all σ ∈ R. Now let (u, z, θ) be a solution of (1.6)–(1.8) on [0, τ ].

We will prove that θ is positive almost everywhere in Qτ in two steps: first we will establish that θ is non

negative, then that θ remains bounded from below by a positive quantity.

Since we have assumed that κ ∈ C1(Ω̄), we can infer that θ ∈ L2(0, τ,W2,2(Ω)). Indeed, θ is a fixed

point of Φ
eθ,θ
τ , thus

− div(κ(x)∇θ) = f θ − c(x)θ̇
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with f θ = Aε(u̇):ε(u̇) + θ(βI:ε(u̇)+∂zH2(z).ż) + Bż.ż + Ψ(ż) ∈ L2(0, τ ; L2(Ω)) and c(x)θ̇ ∈
L2(0, τ ; L2(Ω)). It follows that − div(κ(x)∇θ) ∈ L2(0, τ ; L2(Ω)). We can consider the time vari-

able as a parameter and the linearity of the operator − div(κ(x)∇·) combined with classical regularity

properties (see [Bre83]) yield the announced result.

Then we introduce the mapping ϕ : [0, τ ] → R given by

ϕ(t)
def
= exp

(
− 1

cc

∫ t

0

9β2

2cA
‖θ(·, s)‖L∞(Ω) ds

)
(4.2)

for all t ∈ [0, τ ] if α = 0 and by

ϕ(t)
def
= exp

(
− 1

cc

∫ t

0

( 9β2

2cA
+ (C

H2
z )2

cB

(
1+‖z(·, s)‖2

L∞(Ω)

))
‖θ(·, s)‖L∞(Ω) ds

)
(4.3)

for all t ∈ [0, τ ] if α > 0. Reminding that z ∈ Lq/2(0, τ ;W2,4
Neu(Ω)) for any q > 8 if α > 0 and

W2,2(Ω) →֒ L∞(Ω), we can deduce that ϕ ∈ W1,1(0, τ) and 0 ≤ ϕ(t) ≤ 1 for almost every

t ∈ [0, τ ]. Next we define Θθϕ(t)
def
=

∫
Ω c(x)Γ(θϕ(x, t))dx with θϕ(x, t)

def
= −θ(x, t)ϕ(t) for almost

every (x, t) ∈ Qτ . Since θ ∈ V((0, τ)×Ω)∩L2(0, τ,W2,2(Ω)), we get θϕ ∈ L∞(0, τ ;W1,2(Ω))∩
W1,1(0, τ ; L2(Ω)) and

θ̇ϕ(x, t)=
(
−θ̇(x, t)+ θ(x,t)

cc
9β2

2cA
‖θ(·, t)‖L∞(Ω)

)
ϕ(t) if α = 0,

θ̇ϕ(x, t)=
(
−θ̇(x, t)+ θ(x,t)

cc

( 9β2

2cA
+ (C

H2
z )2

cB

(
1+‖z(·, t)‖2

L∞(Ω)

))
‖θ(·, t)‖L∞(Ω)

)
ϕ(t) if α > 0

for almost every (x, t) ∈ Qτ . Thus Θθϕ is absolutely continuous on [0, τ ] and we have

Θ̇θϕ(t) =

∫

Ω
c(x)G(θϕ)θ̇ϕ dx = −

∫

Ω
G(θϕ)(div(κ∇θ)+Aε(u̇):ε(u̇)

+θ(βI:ε(u̇)+∂zH2(z).ż)+Bż.ż+Ψ(ż))ϕdx−

∫

Ω
c(x)G(θϕ)θϕ̇dx

= −

∫

Ω
G′(θϕ)κ∇θϕ:∇θϕ dx−

∫

Ω
G(θϕ)(Aε(u̇):ε(u̇)

+θ(βI:ε(u̇)+∂zH2(z).ż)+Bż.ż+Ψ(ż))ϕdx−

∫

Ω
c(x)G(θϕ)θϕ̇dx

(4.4)

for almost every t ∈ [0, τ ]. We evaluate now the second term of the right hand side of (4.4). By using

(2.3), (2.5) and Cauchy-Schwarz’s inequality, we get

Aε(u̇):ε(u̇) + βθI:ε(u̇) ≥ cA|ε(u̇)|2 − 3β|θ||ε(u̇)| ≥ cA

2 |ε(u̇)|2 − 9β2

2cA
|θ|2, (4.5)

and if α > 0
Bż.ż + θ∂zH2(z).ż ≥ cB|ż|2 − |θ||∂zH2(z)||ż|

≥ cB|ż|2 − CH2
z |θ|(1+|z|)|ż| ≥ cB

2 |ż|2 − (C
H2
z )2

cB
(1+|z|2)|θ|2.

(4.6)

We insert (4.5) and (4.6) into (4.4), then reminding that G′(θϕ) ≥ 0 almost everywhere, we obtain

Θ̇θϕ(t) ≤

∫

Ω
G(θϕ) 9β2

2cA

(
|θ|2+ c(x)

cc ‖θ‖L∞(Ω)θ
)
ϕdx

if α = 0 and

Θ̇θϕ(t) ≤

∫

Ω
G(θϕ)

( 9β2

2cA
+ (C

H2
z )2

cB

(
1+‖z‖2

L∞(Ω)

))(
|θ|2+ c(x)

cc ‖θ‖L∞(Ω)θ
)
ϕdx

14



if α > 0, for almost every t ∈ [0, τ ]. Now we observe that G(Θθϕ) vanishes whenever θ is non negative

and

|θ|2+ c(x)
cc ‖θ‖L∞(Ω)θ = |θ|

(
|θ|− c(x)

cc ‖θ‖L∞(Ω)

)
≤ |θ|

(
|θ|−‖θ‖L∞(Ω)

)
≤ 0

whenever θ is non positive. Hence Θ̇θϕ(t) ≤ 0 for almost every t ∈ [0, τ ]. Since we have Θθϕ(0) =∫
Ω c(x)Γ(−θ0(x))dx = 0, we infer that Θθϕ(t) ≤ 0 for all t ∈ [0, τ ]. It follows that Γ(θϕ(x, t)) = 0

for almost every (x, t) ∈ Qτ implying that θϕ(x, t) = −θ(x, t)ϕ(t) ≤ 0 i.e. θ(x, t) ≥ 0 for almost

every (x, t) ∈ Qτ .

Let us establish now that the temperature θ(x, t) remains positive for almost every (x, t) ∈ Qτ . To this

aim, we define Θ̃eθϕ
(t)

def
=

∫
Ω c(x)Γ(θ̃ϕ(x, t)) dx with θ̃ϕ(x, t)

def
= −θ(x, t) + θ̄ϕ(t) for almost every

(x, t) ∈ Qτ . Since θ ∈ W1,2(0, τ ; L2(Ω)), we infer that Θ̃θϕ is absolutely continuous on [0, τ ] and we

have

˙̃
Θeθϕ

(t) =

∫

Ω
c(x)G(θ̃ϕ)

˙̃
θϕ dx = −

∫

Ω
G(θ̃ϕ)(div(κ∇θ)+Aε(u̇):ε(u̇)

+θ(βI:ε(u̇)+∂zH2(z).ż)+Bż.ż+Ψ(ż)−c(x)θ̄ϕ̇)dx=−

∫

Ω
G′(θ̃ϕ)κ∇θ̃ϕ:∇θ̃ϕdx

−

∫

Ω
G(θ̃ϕ)(Aε(u̇):ε(u̇)+θ(βI:ε(u̇)+∂zH2(z).ż)+Bż.ż+Ψ(ż)−c(x)θ̄ϕ̇)dx

(4.7)

for almost every t ∈ [0, τ ]. We estimate the right hand side of (4.7) by using the same tricks as previously,

we obtain
˙̃
Θeθϕ

(t) ≤

∫

Ω
G(θ̃ϕ)

( 9β2

2cA
|θ|2+c(x)θ̄ϕ̇

)
dx

if α = 0 and
˙̃
Θeθϕ

(t) ≤

∫

Ω
G(θ̃ϕ)

(( 9β2

2cA
+ (C

H2
z )2

cB

(
1+|z|2

))
|θ|2+c(x)θ̄ϕ̇

)
dx

if α > 0, for almost every t ∈ [0, τ ]. It follows from (4.2) and (4.3) that

˙̃
Θeθϕ

(t) ≤

∫

Ω
G(θ̃ϕ) 9β2

2cA

(
|θ|2− c(x)

cc ‖θ‖L∞(Ω)θ̄ϕ
)
dx

if α = 0 and

˙̃
Θeθϕ

(t) ≤

∫

Ω
G(θ̃ϕ)

( 9β2

2cA
+ (C

H2
z )2

cB

(
1+‖z‖2

L∞(Ω)

))(
|θ|2− c(x)

cc ‖θ‖L∞(Ω)θ̄ϕ
)
dx

if α > 0, for almost every t ∈ [0, τ ]. Then we observe that G(θ̃ϕ) vanishes whenever θ ≥ θ̄ϕ, and

|θ|2 − c(x)
cc ‖θ‖L∞(Ω)θ̄ϕ ≤ ‖θ‖L∞(Ω)

(
|θ|− c(x)

cc θ̄ϕ
)
≤ 0

whenever 0 ≤ θ ≤ θ̄ϕ. Since we have already proved that θ is non negative almost everywhere in

Qτ , we may infer that
˙̃
Θeθϕ

(t) ≤ 0 for almost every t ∈ [0, τ ]. Therefore Θ̃eθϕ
(t) ≤ Θ̃eθϕ

(0) =
∫
Ω c(x)Γ(−θ0+θ̄) dx = 0 for all t ∈ [0, τ ]. It follows that Γ(θ̃ϕ(x, t)) = 0 for almost every (x, t) ∈
Qτ , which implies that

θ̃ϕ(x, t) = −θ(x, t) + θ̄ϕ ≤ 0

for almost every (x, t) ∈ Qτ . �

Furthermore the solutions of problem (1.6)–(1.8) satisfy the following global estimate:
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Proposition 4.2 Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), (2.8), θ0 ∈ W1,2
κ, Neu(Ω), u0 ∈

W1,4
Dir(Ω) and z0 ∈ W2,4

Neu(Ω) if α > 0 and z0 ∈ L4(Ω) if α = 0 hold. Assume also that condi-

tion (4.1) is satisfied, κ ∈ C1(Ω̄) and cH1 > 0. Then, there exists a constant C0 > 0, depending only

the data such that for any solution (u, z, θ) of problem (1.6)–(1.8) defined on [0, τ ], τ ∈ (0, T ], we have

∀t ∈ [0, τ ] : ‖u(·, t)‖2
W1,2(Ω) + ‖z(·, t)‖2

L2(Ω) + α‖∇z(·, t)‖2
L2(Ω) + ‖θ(·, t)‖L1(Ω) ≤ C0.

Proof. First we choose u̇ as a test-function in (1.6a) and the constant function equal to 1 in (1.6c). We get
∫

Qt

(E(ε(u)−Qz)+βθI+Aε(u̇)):ε(u̇)dxds =

∫

Qt

f ·u̇dxds (4.8)

and ∫

Ω
c(·)θ(·, t)dx =

∫

Ω
c(·)θ0 dx+

∫

Qt

Aε(u̇):ε(u̇)dxds+

∫

Qt

Bż.żdxds

+

∫

Qt

θ(βI:ε(u̇)+∂zH2(z).ż)dxds+

∫

Qt

Ψ(ż)dxds.

(4.9)

Then we use the definition of the subdifferential ∂Ψ; for almost every s ∈ [0, τ ] and all z̃ ∈ L2(Ω,Z),

we have
∫

Ω
(Bż(·, s)−Q̃

T

E(ε(u(·, s))−Qz(·, s)).(z̃−ż(·, s))dx−

∫

Ω
α∆z(·, s).(z̃−ż(·, s))dx

+

∫

Ω
∂zH1(z(·, s))+θ(·, s)∂zH2(z(·, s)).(z̃−ż(·, s))dx

+

∫

Ω
Ψ(z̃)dx−

∫

Ω
Ψ(ż(·, s))dx ≥ 0.

But Ψ is positively homogeneous of degree 1, so by choosing successively z̃ ≡ 0 and z̃ = 2ż(·, s) and

integrating over [0, t] ⊂ [0, τ ], we obtain
∫

Qt

(Bż−Q̃
T

E(ε(u)−Qz)+∂zH1(z)+θ(·, s)∂zH2(z)−α∆z).żdxds

+

∫

Qt

Ψ(ż)dxds = 0.

(4.10)

Now we add (4.8), (4.9) and (4.10), we get

1
2

∫

Ω
E(ε(u(·, t))−Qz(·, t)):(ε(u(·, t))−Qz(·, t))dx +

∫

Ω
H1(z(·, t))dx

+ α
2 ‖∇z(·, t)‖

2
L2(Ω) +

∫

Ω
c(·)θ(·, t)dx = 1

2

∫

Ω
E(ε(u0)−Qz0):(ε(u0)−Qz0)dx

+ α
2 ‖∇z

0‖2
L2(Ω) +

∫

Ω
H1(z

0)dx+

∫

Ω
c(·)θ0 dx+

∫

Qt

f ·u̇dxds.

(4.11)

We estimate from below the two first terms of the left hand side by using (2.2a), (2.4a) and (2.6). Indeed,

for any λ ∈ (0, 1), we find

1
2

∫

Ω
E(ε(u(·, t))−Qz(·, t)):(ε(u(·, t))−Qz(·, t))dx +

∫

Ω
H1(z(·, t))dx

≥ 1
2(1−λ)cE‖ε(u(·, t))‖2

L2(Ω) +
(
1− 1

λ

)
‖E‖L∞(Ω)

(
‖Q̃‖2‖z(·, t)‖2

L2(Ω)+|Q|2|Ω|
)

+ cH1‖z(·, t)‖2
L2(Ω) − c̃H1 |Ω|.
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We may choose λ ∈ (0, 1) such that
(
1− 1

λ

)
‖E‖L∞(Ω)‖Q̃‖2 + cH1 > 0,

i.e.

1 > λ >
‖E‖L∞(Ω)‖eQ‖2

‖E‖L∞(Ω)‖eQ‖2+cH1
.

Then
1
2

∫

Ω
E(ε(u(·, t))−Qz(·, t)):(ε(u(·, t))−Qz(·, t))dx +

∫

Ω
H1(z(·, t))dx

≥ C
(
‖u(·, t)‖2

W1,2(Ω)+‖z(·, t)‖2
L2(Ω)

)
− C̃,

with
C

def
= min

(
1
2(1−λ)cECKorn,

(
1− 1

λ

)
‖E‖L∞(Ω)‖Q̃‖2+cH1

)
,

C̃
def
=

(
1
λ−1

)
‖E‖L∞(Ω)|Q|2|Ω| + c̃H1 |Ω|.

Now we integrate by parts the last term of the right hand side of (4.11) to get

C
2 ‖u(·, t)‖

2
W1,2(Ω) + C‖z(·, t)‖2

L2(Ω) + α
2 ‖∇z(·, t)‖

2
L2(Ω) +

∫

Ω
c(·)θ(·, t)dx

≤ 1
2

∫

Ω
E(ε(u0)−Qz0):(ε(u0)−Qz0)dx+ α

2 ‖∇z
0‖2

L2(Ω)

+

∫

Ω
H1(z

0)dx+

∫

Ω
c(·)θ0 dx+ C̃ + ‖f‖C0([0,T ];L2(Ω))‖u

0‖L2(Ω)

+ 1
2C ‖f‖2

C0([0,T ];L2(Ω)) + 1
2‖ḟ‖

2
L2(0,T ;L2(Ω)) + 1

2

∫ t

0
‖u‖2

L2(Ω) ds.

Then, reminding that θ remains non negative, Grönwall’s lemma allows us to conclude. �

Let us find now some sufficient conditions on the data which will lead to a global existence result, i.e.

existence of a solution of problem (1.6)–(1.8) defined on the whole interval [0, T ]. First we observe that

the heat-transfer equation (1.6c) and the system composed of the momentum equilibrium equation and

the flow rule (1.6a)–(1.6b) are totally decoupled if β = 0 and ∂zH2 ≡ 0. In such a case, we may obtain

a solution of (1.6)–(1.8) by applying Proposition 2.1 to solve (2.12)–(2.14) with θ̃ = 0 and τ = T , then

by finding the solution θ of (2.10)–(2.11) with

f
eθ = Aε(u̇):ε(u̇) + Bż.ż + Ψ(ż).

Hence we will consider only the case of non vanishing coupling parameters β 6= 0 or ∂zH2 6≡ 0. By

using more detailed estimates for the mapping θ̃ 7→ (u, z), we can obtain more precise estimates for f
eθ

which will allow us to prove that the mapping Φ
eθ,θ
T possesses a fixed point in C0([0, T ]; L4(Ω)).

Let us begin with the case α = 0. Then we have

Lemma 4.3 ([PaP11b, Thm. 4.1]). Let τ ∈ (0, T ]. Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7) hold.

Let θ̃ ∈ Lq(0, τ ; Lp(Ω)), with q > 8 and p ∈ [4, 6], u0 ∈ W1,p
Dir(Ω) and z0 ∈ Lp(Ω) be given

and denote by (u, z) the unique solution of (2.12)–(2.14). Then, there exists a non decreasing positive

mapping τ 7→ Cu,z(τ), independent of the initial data, such that

‖u‖C0([0,τ ];W1,p(Ω)) + ‖z‖C0([0,τ ];Lp(Ω)) + ‖u̇‖Lq(0,τ ;W1,p(Ω)) + ‖ż‖Lq(0,τ ;Lp(Ω))

≤ Cq
u,z(τ)

(
‖u0‖W1,p(Ω)+‖z0‖Lp(Ω)+β‖θ̃‖Lq(0,τ ;Lp(Ω))+1

)
.
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Let us assume from now on that u0 ∈ W1,4
Dir(Ω), z0 ∈ L4(Ω), θ0 ∈ W1,2

κ,Neu(Ω) and let θ̃ ∈

C0([0, τ ]; L4(Ω)) with τ ∈ (0, T ]. From Lemma 4.3 we can estimate f
eθ as follows

‖f
eθ‖Lq/2(0,τ ;L2(Ω)) ≤ ‖A‖‖ε(u̇)‖2

Lq(0,τ ;L4(Ω)) + 3β‖θ̃‖Lq(0,τ ;L4(Ω))‖ε(u̇)‖Lq(0,τ ;L4(Ω))

+ ‖B‖‖ż‖2
Lq(0,τ ;L4(Ω)) +CΨ‖ż‖Lq/2(0,τ ;L2(Ω))

≤
(
‖A‖+‖B‖

)
(Cq

u,z(τ))
2
(
‖u0‖W1,4(Ω)+‖z0‖L4(Ω)+β‖θ̃‖Lq(0,τ ;L4(Ω))+1

)2

+
(
3β‖θ̃‖Lq(0,τ ;L4(Ω))+C

Ψ|Ω|
1
4 τ

1
q
)
Cq

u,z(τ)
(
‖u0‖W1,4(Ω)+‖z0‖L4(Ω)+β‖θ̃‖Lq(0,τ ;L4(Ω))+1

)

≤ C
q

f eθ
(τ, ‖u0‖W1,4(Ω), ‖z

0‖L4(Ω))
(
1+β2‖θ̃‖2

Lq(0,τ ;L4(Ω))

)
,

where Cq

f eθ

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖L4(Ω)

)
is given by

C
q

f eθ

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖L4(Ω)

) def
= max

(
2
(
‖A‖+‖B‖

)
(Cq

u,z(τ))
2+3Cq

u,z(τ)+1,

2
(
‖A‖+‖B‖+9

4

)
(Cq

u,z(τ))
2
(
‖u0‖W1,4(Ω)+‖z0‖L4(Ω)+1

)2
+1

2

(
CΨ|Ω|

1
4 τ

1
qCq

u,z(τ)
)2

+CΨ|Ω|
1
4 τ

1
qCq

u,z(τ)
(
‖u0‖W1,4(Ω)+‖z0‖L4(Ω)+1

))

for any q > 8. It follows that θ = Φ
eθ,θ
τ (θ̃) can be estimated as

‖θ‖L∞(0,τ ;W1,2(Ω)) ≤ Cθ exp( τ
cc )

(
‖θ0‖W1,2(Ω)+‖f

eθ‖L2(0,τ ;L2(Ω))

)

≤ Cθ exp( τ
cc )

(
‖θ0‖W1,2(Ω)+τ

q−4
2q ‖f

eθ‖Lq/2(0,τ ;L2(Ω))

)

where Cθ is the constant, independent of τ and of the initial data, introduced in Proposition 3.1 (see

(3.4)). Since θ ∈ C0([0, τ ]; L4(Ω)) and W1,2(Ω) →֒ L4(Ω), we obtain

‖θ‖C0([0,τ ];L4(Ω)) ≤ C1Cθ exp( τ
cc )

(
‖θ0‖W1,2(Ω)

+ τ
q−4
2q C

q

f eθ

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖L4(Ω)

)(
1+β2‖θ̃‖2

Lq(0,τ ;L4(Ω)

)

≤ Cq
(
τ, ‖θ0‖W1,2(Ω), ‖u

0‖W1,4(Ω), ‖z
0‖L4(Ω)

)(
1+β2τ

2
q ‖θ̃‖2

C0([0,τ ];L4(Ω))

)

where C1 is the generic constant involved in the continuous embedding of W1,2(Ω) into L4(Ω) and

Cq
(
τ, ‖θ0‖W1,2(Ω), ‖u

0‖W1,4(Ω), ‖z
0‖L4(Ω)

)

def
= C1Cθ exp( τ

cc )
(
‖θ0‖W1,2(Ω) + τ

q−4
2q C

q

f eθ

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖L4(Ω)

))
.

We can not expect to get a global existence result without further assumptions on β. This is not very

surprising since f
eθ behaves as a quadratic coupling term if β > 0. But the mapping

γq : Rθ 7→ Cq
(
T, ‖θ0‖W1,2(Ω), ‖u

0‖W1,4(Ω), ‖z
0‖L4(Ω)

)(
1+β2T

2
q (Rθ)2

)
−Rθ

admits a minimum for Rθ = Rθ
q,min

def
= 1

2Cq(T,‖θ0‖
W1,2(Ω)

,‖u0‖
W1,4(Ω)

,‖z0‖L4(Ω))β
2T

2
q

and

γq(Rθ
q,min) = Cq

(
T, ‖θ0‖W1,2(Ω), ‖u

0‖W1,4(Ω), ‖z
0‖L4(Ω)

)
−

Rθ
q,min
2 .
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Hence γq(Rθ
q,min) < 0 if Rθ

q,min > 2Cq
(
T, ‖θ0‖W1,2(Ω), ‖u

0‖W1,4(Ω), ‖z
0‖L4(Ω)

)
, i.e.

0 < β < 1

2Cq(T,‖θ0‖W1,2(Ω),‖u
0‖W1,4(Ω),‖z

0‖L4(Ω))T
1
q
. (4.12)

Let us fix now q > 8 and assume that this condition on β holds. We choose Rθ = Rθ
q,min. We may

observe that, since β satisfies condition (4.12), we have

Rθ
q,min = 1

2Cq(T,‖θ0‖
W1,2(Ω)

,‖u0‖
W1,4(Ω)

,‖z0‖L4(Ω))β
2T

2
q

> 2Cq
(
T, ‖θ0‖W1,2(Ω), ‖u

0‖W1,4(Ω), ‖z
0‖L4(Ω)

)

> C1Cθ exp
(

T
cc

)
‖θ0‖W1,2(Ω).

Thus we can apply the results of Corollary 3.5: there exists τ ∈ (0, T ] such that Φ
eθ,θ
τ possesses a fixed

point in C0([0, τ ]; L4(Ω)). But the previous estimate implies also that

‖Φ
eθ,θ
τ (θ̃)‖C0([0,τ ];L4(Ω)) = ‖θ‖C0([0,τ ];L4(Ω))

≤ Cq
(
τ, ‖θ0‖W1,2(Ω), ‖u

0‖W1,4(Ω), ‖z
0‖L4(Ω)

)(
1+β2τ

2
q ‖θ̃‖2

C0([0,τ ];L4(Ω))

)

≤ Cq
(
T, ‖θ0‖W1,2(Ω), ‖u

0‖W1,4(Ω), ‖z
0‖L4(Ω)

)(
1+β2T

2
q (Rθ

q,min)
2
)

= γq(Rθ
q,min) +Rθ

q,min < Rθ
q,min

for any τ ∈ (0, T ] and any θ̃ ∈ B̄C0([0,τ ];L4(Ω))(0, R
θ
q,min). Hence we can consider τ = T and

the closed convex bounded set C
def
= B̄C0([0,T ];L4(Ω))(0, R

θ
q,min). We have Φ

eθ,θ
T (C) ⊂ C, and using

Schauder’s fixed point theorem, we infer that Φ
eθ,θ
T admits a fixed point θ in C0([0, T ]; L4(Ω)). Then

we define (u, z) as the unique solution of (2.12)–(2.14) with θ̃ = θ and τ = T . By definition of Φ
eθ,θ
T ,

(u, z, θ) is a global solution of the coupled problem (1.6)–(1.8) on [0, T ].

Now let us consider the case α > 0.

Lemma 4.4 ([PaP11a, Lemma 4.4] and [PaP11c, Lemma 3.4]). Let τ ∈ (0, T ]. Assume that (2.1), (2.2),

(2.4), (2.5), (2.6), (2.7) hold. Let θ̃ ∈ Lq(0, τ ; Lp(Ω)), with q > 8 and p ∈ [4, 6], u0 ∈ W1,p
Dir(Ω) and

z0 ∈ W2,p
Neu(Ω) be given and denote by (u, z) the unique solution of (2.12)–(2.14). Then, there exists a

non-decreasing positive mapping τ 7→ C
q
u(τ), independent of the initial data, such that

‖u‖C0([0,τ ];W1,p(Ω)) + ‖u̇‖Lq(0,τ ;W1,p(Ω))

≤ Cq
u(τ)

(
‖z‖Lq(0,τ ;W1,2(Ω))+β‖θ̃‖Lq(0,τ ;Lp(Ω))+‖u0‖W1,p(Ω)+1

)
.

Let u0 ∈ W1,4
Dir(Ω), z0 ∈ W2,4

Neu(Ω) and θ0 ∈ W1,2
κ, Neu(Ω) and let θ̃ ∈ C0([0, τ ]; L4(Ω)) with

τ ∈ (0, T ]. With similar computations as in Lemma 3.3 and Proposition 4.2, we can obtain

Lemma 4.5 Let τ ∈ (0, T ]. Assume that (2.1), (2.2), (2.4), (2.5), (2.6), (2.7), u0 ∈ W1,4
Dir(Ω) and

z0 ∈ W2,4
Neu(Ω) hold. Let θ̃ ∈ C0([0, τ ]; L4(Ω)) be given and denote by (u, z) the unique solution of

(2.12)–(2.14). Then

‖u‖2
L∞(0,τ ;W1,2(Ω)) + ‖z‖2

L∞(0,τ ;W1,2(Ω))

≤ C
(
‖u0‖W1,2(Ω), ‖z

0‖W1,2(Ω)

)
(X+1) exp(c0(X+1)τ),
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where X
def
=

(
β2+(CH2

z )2
)
‖θ̃‖2

C0([0,τ ];L4(Ω)), c0 > 0 is a constant independent of the initial data and

τ , and C
(
‖u0‖W1,2(Ω), ‖z

0‖W1,2(Ω)

)
is a non decreasing positive function of each of its arguments.

Proof. Let CH1 > 0 and define

δ(t)
def
= 1

2

∫

Ω
E(ε(u)−Qz):(ε(u)−Qz)dx− α

2

∫

Ω
∆z.zdx+ CH1

2

∫

Ω
|z|2 dx

for all t ∈ [0, τ ]. As in Proposition 4.2 we can check that, for any λ ∈ (0, 1), we have

1
2

∫

Ω
E(ε(u)−Qz):(ε(u)−Qz)dx+ CH1

2

∫

Ω
|z|2 dx ≥ 1

2(1−λ)cE‖ε(u)‖2
L2(Ω)

+
(
1− 1

λ

)
‖E‖L∞(Ω)

(
‖Q̃‖2‖z‖2

L2(Ω)+|Q|2|Ω|
)

+ CH1

2 ‖z‖2
L2(Ω).

Thus we may choose λ ∈ (0, 1) such that

1 > λ >
‖E‖L∞(Ω)‖eQ‖2

‖E‖L∞(Ω)‖eQ‖2+ CH1
2

,

and we obtain

δ(t) ≥ Cδ

(
‖u(·, t)‖2

W1,2(Ω)+‖z(·, t)‖2
W1,2(Ω)

)
− C̃δ

for all t ∈ [0, τ ], with

Cδ
def
= min

(
1
2(1−λ)cECKorn,

(
1− 1

λ

)
‖E‖L∞(Ω)‖Q̃‖2+CH1

2 , α
2

)
and C̃δ

def
=

(
1
λ−1

)
|Q|2|Ω|.

Moreover δ is absolutely continuous on [0, τ ] and, by similar computations as in Lemma 3.3, we get

δ̇(t)+cA‖ε(u̇)‖2
L2(Ω)+c

B‖ż‖2
L2(Ω) ≤ CH1

∫

Ω
z.żdx−β

∫

Ω
θ̃I:ε(u̇)dx

−

∫

Ω
∂zH1(z).ż dx−

∫

Ω
θ̃∂zH2(z).ż dx+

∫

Ω
f.u̇dx

for almost every t ∈ [0, τ ]. We estimate the right hand side of this last inequality by using (2.3), we

obtain

δ̇(t) + cA‖ε(u̇)‖2
L2(Ω) + cB‖ż‖2

L2(Ω) ≤ (CH1+CH1
z )

∫

Ω
|z||ż|dx+ CH1

z

∫

Ω
|ż|dx

+ 3β

∫

Ω
|θ̃||ε(u̇)|dx+ CH2

z

∫

Ω
|θ̃|(1+|z|)|ż|dx+

∫

Ω
|f ||u̇|dx.

Then, with Cauchy-Schwarz’s inequality

δ̇(t) + cA

2 ‖ε(u̇)‖2
L2(Ω) + cB

4 ‖ż‖2
L2(Ω)

≤
( (CH1+C

H1
z )2

cB
+

2C2
1

cB
(CH2

z )2‖θ̃‖2
C0([0,τ ];L4(Ω))

)
‖z(·, t)‖2

W1,2(Ω)

+ (C
H1
z )2

cB
|Ω| +

(9β2

cA
+2(C

H2
z )2

cB

)
|Ω|

1
2‖θ̃‖2

C0([0,τ ];L4(Ω)) + 1
cACKorn ‖f‖

2
L∞(0,T ;L2(Ω))

for almost every t ∈ [0, τ ], where we recall that C1 is the generic constant involved in the continuous

embedding of W1,2(Ω) into L4(Ω). Since

‖z(·, t)‖2
W1,2(Ω) ≤

δ(t)+ eCδ

Cδ
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for all t ∈ [0, τ ], we may define c0 and C
(
‖u0‖W1,2(Ω), ‖z

0‖W1,2(Ω)

)
by

c0
def
= 1

Cδ
max

( (CH1+C
H1
z )2

cB
,

2C2
1

cB

)
,

C
(
‖u0‖W1,2(Ω), ‖z

0‖W1,2(Ω)

) def
=δ(0)+ eCδ

Cδ
+ (C

H1
z )2

cBCδ
|Ω|T +

(
9

cA
+ 2

cB

) |Ω|
1
2

Cδ
T

+ 1
cACKornCδ

T‖f‖2
L∞(0,T ;L2(Ω)),

and the conclusion follows with Grönwall’s lemma. �

Now we rewrite (2.12b) as follows

ż − αB−1∆z = B−1f z,

with f z def
= Q̃

T

E(ε(u)−Qz) − ∂zH1(z) − θ̃∂zH2(z) − ψ and ψ ∈ ∂Ψ(ż). With assumption (2.1c)

we infer that ψ ∈ L∞(0, τ ; L∞(Ω)) with ‖ψ(·, t)‖L∞(Ω) ≤ CΨ almost every t ∈ (0, τ). Furthermore,

we can estimate f z as

|f z| ≤ ‖Q̃‖‖E‖
(
|ε(u)|+‖Q̃‖|z|+|Q|

)
+(CH1

z +CH2
z |θ̃|)(1+|z|) + CΨ.

Thus, using Lemma 4.5, we infer first an estimate of f z in L∞(0, τ ; L2(Ω)) given by

‖f z‖L∞(0,τ ;L2(Ω)) ≤ C
(
C

(
‖u0‖W1,2(Ω), ‖z

0‖W1,2(Ω)

)
(X+1) exp(c0(X+1)τ)+X+1

)
, (4.13)

where C is a constant independent of the initial data and τ . Hence, for any q > 8, we have

‖z‖Lq(0,τ ;W2,2(Ω)) ≤ Cq
z (τ)

(
‖f z‖L∞(0,τ ;L2(Ω))+‖z0‖W2,2(Ω)

)
, (4.14)

with a non decreasing positive mapping τ 7→ C
q
z (τ) (see [HiR08, PrS01]). It follows that

‖f z‖Lq(0,τ ;L4(Ω)) ≤ ‖Q̃‖‖E‖L∞(Ω)

(
‖ε(u)‖Lq(0,τ ;L4(Ω))

+C1τ
1
q ‖Q̃‖‖z‖L∞(0,τ ;W1,2(Ω))+τ

1
q |Ω|

1
4 |Q|

)

+ CH1
z τ

1
q
(
C1‖z‖L∞(0,τ ;W1,2(Ω))+|Ω|

1
4
)

+ CH2
z ‖θ̃‖C0([0,τ ];L4(Ω))

(
τ

1
q +C2‖z‖Lq(0,τ ;W2,2(Ω))

)
+ CΨτ

1
q |Ω|

1
4 ,

(4.15)

whereC1 and C2 are the two generic constants involved in the continuous embeddings of W1,2(Ω) into

L4(Ω) and W2,2(Ω) into L∞(Ω), respectively. By combining Lemma 4.4 and Lemma 4.5, we have

‖u‖C0([0,τ ];W1,4(Ω)) + ‖u̇‖Lq(0,τ ;W1,4(Ω))

≤ Cq
u(τ)

(
τ

2
q

2 C
(
‖u0‖W1,2(Ω), ‖z

0‖W1,2(Ω)

)
(X+1) exp(c0(X+1)τ)+ τ

2
q

2 X+‖u0‖W1,4(Ω)+2
)
,

and gathering (4.13), (4.14) and (4.15), we infer that

‖f z‖Lq(0,τ ;L4(Ω)) ≤ C
q
fz

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,2(Ω)

)
(X+1)2 exp(c0(X+1)τ),

where Cq
fz

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,2(Ω)

)
is a non decreasing positive function of each of its argu-

ments.

Using classical maximal regularity results for parabolic equations ([HiR08, PrS01]), we obtain an anal-

ogous estimate for ‖ż‖Lq(0,τ ;L4(Ω)). More precisely, there exists Cq
u,z

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω)

)
,

which is a non decreasing positive function of each of its arguments, such that

‖ż‖Lq(0,τ ;L4(Ω)) ≤ Cq
u,z

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω)

)
(X+1)2 exp(c0(X+1)τ),
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and

‖ε(u̇)‖Lq(0,τ ;L4(Ω)) ≤ Cq
u,z

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω)

)
(X+1) exp(c0(X+1)τ).

Finally, we have

‖f
eθ‖Lq/2(0,τ ;L2(Ω)) ≤ ‖A‖‖ε(u̇)‖2

Lq(0,τ ;L4(Ω)) + ‖B‖‖ż‖2
Lq(0,τ ;L4(Ω))

+ ‖θ̃‖C0([0,τ ];L4(Ω))

(
3βτ

1
q ‖ε(u̇)‖Lq(0,τ ;L4(Ω))

+CH2
z

(
τ

1
q +C2‖z‖Lq(0,τ ;W2,2(Ω))

)
‖ż‖Lq(0,τ ;L4(Ω))

)
+ CΨ|Ω|

1
4 τ

1
q ‖ż‖Lq(0,τ ;L4(Ω))

≤ C
q

f eθ
(τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω))(X+1)4 exp(4c0(X+1)τ),

where once again C
q

f eθ

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω)

)
is a non decreasing positive function of each of

its arguments. It follows that

‖θ‖C0([0,τ ];L4(Ω)) = ‖Φ
eθ,θ
τ (θ̃)‖C0([0,τ ];L4(Ω))

≤ C1Cθ exp
(

τ
2

)(
‖θ0‖W1,2(Ω)+‖f

eθ‖L2(0,τ ;L2(Ω))

)
≤ C1Cθ exp

(
τ
cc

)(
‖θ0‖W1,2(Ω)

+Cq

f eθ

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω), ‖θ
0‖W1,2(Ω)

)
τ

q−4
2q (X+1)4 exp(4c0(X+1)τ)

)

≤ Cq
(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω), ‖θ
0‖W1,2(Ω)

)
(X+1)4 exp(4c0(X+1)τ),

(4.16)

where
Cq

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω), ‖θ
0‖W1,2(Ω)

)

def
= C1Cθ exp

(
τ
cc

)(
‖θ0‖W1,2(Ω) + τ

q−4
2q C

q

f eθ

(
τ, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω)

))
.

Let us fix now q > 8 and define the mapping γq by

γq : Rθ 7→ gq((β2+(CH2
z )2)(Rθ)2) −Rθ,

with

gq(X)
def
= Cq

(
T, ‖u0‖W1,4(Ω), ‖z

0‖W2,4(Ω), ‖θ
0‖W1,2(Ω)

)
(X+1)4 exp(4c0(X+1)T ),

for all X ≥ 0. Observing that X 7→ gq(X) is a continuous function, we can check that for any Rθ >

gq(0), there exists εq > 0 such that γq(Rθ) < 0 if

0 < β2 + (CH2
z )2 <

εq

(Rθ)2
.

Then, assuming that this condition holds, (4.16) shows that C
def
= B̄C0([0,T ];L4(Ω))(0, R

θ) is a closed

convex bounded subset of C0([0, T ]; L4(Ω)) such that Φ
eθ,θ
T (C) ⊂ C. By using once again Schauder’s

fixed point theorem we may conclude that problem (1.6)–(1.8) admits a global solution (u, z, θ) on [0, T ].

5 Examples

In this concluding section, we present two classes of materials which fit our modelization, namely visco-

elasto-plastic materials and SMA undergoing thermal expansion.
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Indeed, in the both cases, an internal variable z belonging to a finite dimensional real vector space is

introduced to describe the inelastic strain due to plasticity or to phase transitions via the relation

ε
inel = Qz

where z 7→ Qz is an affine mapping. The Helmholtz free energy is given by

W (ε(u), z, θ)
def
= 1

2E(ε(u)−Qz):(ε(u)−Qz) + α
2 |∇z|

2 +H(z, θ) − c(θ ln(θ)−θ) + βI:ε(u),

where H(z, θ) is a hardening functional that may depend on the temperature, βI, with β ≥ 0, is

the isotropic thermal expansion tensor and α ≥ 0 is a coefficient that measures non local interaction

effects for the internal variable. As usual E denotes the elasticity tensor, ε(u)
def
= 1

2(∇u+∇uT) is the

infinitesimal strain tensor, and c and κ are the heat capacity and conductivity.

For visco-elasto-plastic models Q is linear, H does not depend on θ and α = 0 while Q may be

linear or affine as well, α > 0 and H depends on θ for SMA. Thus, by replacing H(z, θ) by an affine

approximation H1(z) + θH2(z), we may split W (ε(u), z, θ) as

Wmech(ε(u), z) −W θ(θ) + θW coup(ε(u), z)

with
Wmech(ε(u), z)

def
= 1

2E(ε(u)−Qz):(ε(u)−Qz) +H1(z) + α
2 |∇z|

2,

W θ(θ)
def
= c(θ ln(θ)−θ),

W coup(ε(u), z)
def
= βI:ε(u) +H2(z).

Let us illustrate this general setting with more precise modelizations. In the case of thermo-visco-elasto-

plasticity, we can consider the Melan-Prager model corresponding to a linear kinematic hardening, i.e.

we have

H(z, θ)
def
= H1(z) = 1

2Lz.z and H2(z) ≡ 0,

with a symmetric positive definite tensor L ∈ L(Z,Z), or the Prandtl-Reuss model for whichH(z, θ) ≡
0 = H1(z) = H2(z) (see [Mau92]).

In the case of SMA, we can consider the 3D macroscopic phenomenological model introduced by Souza,

Auricchio et al. ([SMZ98, AuP02, AuP04], or so-called mixture models (see [MiT99, Mie00, HaG02,

GMH02, MTL02, GHH07]). In the former case, z ∈ Z
def
= R

3×3
dev = {z ∈ R

3×3
sym : I:z = 0} and

ε
inel = Qz = z. Moreover the hardening functional is given by

HSA(z, θ)
def
= c1(θ)|z| + c2(θ)|z|

2 + χ(z),

where χ is the indicator function of the ball {z ∈ R
3×3
dev : |z| ≤ c3(θ)}. This coefficient c3(θ) corre-

sponds to the maximum modulus of transformation strain that can be obtained by alignment of martensitic

variants while c1(θ) > 0 is an activation threshold for initiation of martensitic phase transformations and

c2(θ) measures the occurrence of hardening with respect to the internal variable z.

In order to fit our regularity assumptions for the hardening functionals, which were assumed to be of class

C2, we consider the regularization of HSA given by

Hδ
SA(z, θ)

def
= c1(θ)

√
δ2+|z|2 + c2(θ)|z|

2 + ((|z|−c3(θ))+)4

δ(1+|z|2)
,

with 0 < δ ≪ 1, (see also [MiP07] for another regularization of HSA).
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In the latter case, i.e. in so called mixture models, z ∈ Z
def
= R

N−1 where N ≥ 2 is the total number of

phases and ε
inel = Qz is the effective transformation strain of the mixture, given by

Qz
def
=

N−1∑

k=1

zkεk +
(
1−

N−1∑

k=1

zk

)
εN ,

where εk is the transformation strain of the phase k. Then z1, . . . , zN−1 and zN
def
= 1−

∑N−1
k=1 zk can

be interpreted as phase fractions and

Hmixt(z, θ) = w(z, θ) + χ(z)

where χ is the indicator function of the set [0, 1]N−1. Once again we may consider a regularization of

Hmixt given by

Hδ
mixt(z, θ) = w(z, θ) +

N−1∑

k=1

((−zk)+)4+((zk−1)+)4

δ(1+|zk|2)
,

with 0 < δ ≪ 1.
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