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Abstract

We consider the stochastic differential equation on R? given by
dXt == b(t7 Xt) dt + dBt,

where B is a Brownian motion and b is considered to be a distribution of regularity > —%.
We show that the martingale solution of the SDE has a transition kernel I'; and prove upper
and lower heat-kernel estimates for I'; with explicit dependence on ¢ and the norm of b.
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1 Introduction and main results
In this paper we consider the stochastic differential equation on R given by
dXy = b(t, Xy) dt + dBy, (1)

where B is a Brownian motion and b is a distribution of regularity > — % Such singular diffusions
(diffusions with distributional drift) appear as models for stochastic processes in random media
(then b would also be random, but independent of B), for example in [4}16,5]. They also appear as
“stochastic characteristics” in Feynman-Kac type representations of singular SPDEs, for example
in [[13,15,[17]. In non-singular SPDEs, the stochastic characteristics would be formulated in terms
of the Brownian motion, and they may be useful tools to infer information about the long-time
behavior of the SPDE. For example, the asymptotic behavior of the total mass of the parabolic
Anderson model is typically derived via the Feynman-Kac formula [16], and for that purpose it
is important that we understand the Brownian motion and its transition probabilities very well.
When studying singular variants of the parabolic Anderson model, where the Brownian motion in
the Feynman-Kac representation is replaced by a singular diffusion, we thus need to understand
the transition probabilities of this singular diffusion. Moreover, since we are interested in the
long-time behavior, we need quantitative control of the transition probabilities on arbitrarily long
time intervals. This motivates our present work.

We show that the solution to (I)) possesses a transition kernel I'; : R x R4 — Rforallt > 0.
This means that under the measure IP,, such that Xy = = we have for all ¢ € C’b(Rd)

B6(X)] = | o)T.)dy

The following theorem represents the main result of our paper, in which we show that the
above transition kernel satisfies heat-kernel estimates.

For any Banach space X and ¢ > 0 we write || - ||¢,x for the norm on C([0, ¢], X), which is
defined for f € C(0,t], X) by

[fllcix = sup |l f(s)]|x-

s€[0,t]

A_1b denotes the first Littlewood-Payley block and A>¢b the sum of the positive Littlewood-
Payley blocks (see Section @) B; , denotes a Besov space, see [2]].

Theorem 1.1. Let o € (0, 2) and ¢ > 1. There exista C > 1 and a k € (0,1) such that for all
b= (bt)r>0 € C(]0,00), (Rd R9)), u € Nd with |u| < 1, and forall t > 0, z,y € R%:

1]

B
|OETy(x,y)| < Cexp <Ct[HA 1b||CtLoo + ||A>0b\ e, B N }) (t7z V1)plct,x —y), (2)

Tu(e,) > & oxp (~C[IA b1, + 182005 5 ])mnt,x—y), 3)

where p(t, x) = (27rt)_%e*‘“|2/2t is the standard Gaussian kernel.



As a corollary, we obtain the following estimate on the escape probability of the diffusion X
to leave a ball.

Corollary 1.2. Let o € (0, 3). There existsa C > 0 such that for allb € C([0, 00), B (R4, R%)),
r€RL K >0and T > 1, and for X solving (1) with P,.(Xo = x) = 1:

Px( sup |X; — x| > K)
te(0,7

KZ

=) )

2
< Coxp (CT A 1blE 1o + 820155 ) exp (-
Remark 1.3. At least for constant b the heat-kernel estimates are sharp: If A\ € R% and b = ),
then I'y(z,y) = p(t,y — x — A\t) and a simple computation shows that sup,cpa 2 (te—A)

p(ct,x)
i . p(t,z—At) g —satA? -
c2e2=D"" and inf  cpd Ttz = fze 27w Since in that case A>ob = 0, this corre-

sponds exactly to our bounds (]Z[) and (3)) (for u = 0).

Indeed, if X} is the solution of
dX; = \dt + dBy,

then X; = X+ At + B; and thus for P being the probability such that B; is a standard Brownian
motion and P, the probability under which X satisfies the SDE with Xy = x a.s.,

P (X; € A)=Plz+ M+ B €A = /

p(t,y)dy = / p(t,y —x — At)dy.
JA—xz—M\t JA

We have

Li0,y) _plt.y—Xt) _ 4 {@\,p (yl2 ly — MIQH

plet,y) — plet,y) 20t 2t

We calculate

sup |y|> — cly — At
y€ER?

The function over which we take the derivative is concave, so we calculate the point at which the
gradient equals zero. The derivative equals 9;|y|? — cly — A\t|*> = 2y; — 2¢(y; — A\it). This equals

‘(i’f and thus

zero for y; =

: : c—1 ‘ : 5
sup [y]? — cly — AP = S y? = T |APe
yERd : c—1

and thus

[i(0y) 4 ( A2t )
sup =czexp| ——— ).
yERd p(ct,y) 2(c—1)



Remark 1.4. As we consider a time inhomogeneous drift, we could have also formulated the
heat-kernel estimates for I's ; (with 0 < s < t), which is the transition kernel from time s to
time ¢: If P , is the probability measure under which X, = 2 and (I)) holds (for ¢ > s), then
Esolo(Xt)] = Jga@(y)Ts,(x,y) dy. However, to simplify notation we only consider the case
s = 0 and we write I'; for T'g ;. The heat-kernel estimates for I' ; follow by applying Theorem|T.T]
with b; = bt-l—s’ t> 0.

1.1 Literature

Diffusions with a distributional drift were first considered by Bass and Chen [3]] and Flandoli,
Russo and Wolf [8], both in the one-dimensional time-homogeneous setting. More recently,
Delarue and Diel [6] used Hairer’s rough path approach to singular SPDEs [[14} [15] to extend
the results of [[8] to the time-inhomogeneous case, and they applied this to construct a random
directed polymer measure. Flandoli, Issoglio and Russo [7] were the first to consider multidi-
mensional singular diffusions, but they require more regularity than in the previous works on the
one-dimensional case (they consider the “Young regime”, i.e., the distributional drift has regu-
larity better than —1/2). Zhang and Zhao [22] study the ergodicity and they derive heat-kernel
estimates for singular diffusions in the Young regime. Cannizzaro and Chouk [5]] use paracon-
trolled distributions to extend the approach of [6] to higher dimensions and the results of [/]]
to more singular drifts. They apply this to construct a random polymer measure that is closely
related to the parabolic Anderson model.

In this paper we follow the approach of Cannizzaro and Chouk, although we restrict our
attention to the more regular Young regime. This is crucial for our arguments.

As already mentioned, Zhang and Zhao [22] also prove heat-kernel estimates for SDEs with
distributional drifts in the Young regime. More precisely, they prove that there exist ¢, C > 1
such that for all t € (0,7] and z,y € R?

Sp(t,x—y) < [Dy(z,y)| < Cplet,z —y).

Moreover, they give an upper bound on the gradient of the transition kernel, VI';. Here, the
constant C' implicitly depends on 7" and ||b||—a.

If b is the gradient of a function that does not dependent on time, then there is classical heat-
kernel estimates for I', see for example Stroock [20, Theorem 4.3.9]. In that theorem we have
b = VU for a smooth and bounded function U, but the estimate only depends on max U —min U,
so by an approximation argument it extends to continuous and bounded U. This result is uniform
in time, but also here the dependence of the constants on max U — min U is implicit.

In another work by the authors together with W. Konig [[17], our heat-kernel estimates are
applied to derive the asymptotic behavior of the total mass of the parabolic Anderson model.
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In that application it is crucial to understand how the constant grows with ¢ and the norm of b.
Therefore, we need our “quantitative version” of the heat-kernel estimates.

1.2 Notation and conventions

We write N = {1,2,...},Ng = {0} UNand N_; = {—1} U Ng. For the whole paper, d is an
element of N and will denote the dimension of the space. For families (a;);er, (b;)ier in R for
an index set I, we write a; < b; to denote the existence of a C' > 0 such that a; < Cb; for all
i € I. We write Cy, for the space of continuous bounded functions and CY° for the space of C*°
functions for which all their derivatives are bounded functions. We abbreviate function spaces
and Besov spaces by omitting “(R%)” in the notation, for example we abbreviate Bf;q(Rd) to
Bﬁ 4- Moreover, we write ¢ for Bfo,oo and %pﬁ for Bg,oo. We write u © v for the paraproduct
between u and v (with the low frequencies of u and the high frequencies of v), and u ® v for the
resonance product; we adopt the notation from [19] and refer to [2]] as background material.

In the rest of the paper (p;)ien_, is a dyadic partition of unity, meaning that p_; is supported
in a ball around 0, py is supported in an annulus, p;(z) = po(2~"z) for i € N, dien, Pi=1,

% < Zz’eN,l p? < 1 and supp p; Nsupp p; = O if |i — j| > 2. Fori € N_; we write A; for the
corresponding Littlewood-Payley blocks (% denotes the Fourier transform)

Aif =piD)f =F Y piZ (f) = F H(pi) * f-

Moreover, we define A f to be the sum of all the positive Littlewood-Payley blocks:

Asof = Z Aif.

i€Np

2 Diffusions with distributional drift and their heat-kernel estimates

Throughout this section we fix 7 > 0. Let o € (0,3). Forb € C([0, 7], B (R, RY)) we
consider the stochastic differential equation

dX; = b(t, X;) dt + dB,. (5)
For t > 0 let .Z; be the operator
L =31A40b,- V. (6)
We consider the following Cauchy problem for u: [0,7] x R? — R with terminal condition ¢:

= T) x R4
{8tu+.$tu 0 on [0,T) x R%, o

uw(T,-)=¢ on R%.

The solution theory for the Cauchy problem will be given in Proposition We write u? for
the solution to (7). But let us first discuss how to interpret (3) in terms of a martingale problem.



Definition 2.1. We say that a stochastic process X = (X¢);e[o,7] on a probability space (€2, P)
is a solution to the SDE (8) on [0, T with initial condition X, = x if it satisfies the martingale
problem for ((-Z})e (0,1, 0z)- i-e., if P(Xo = ) = 1 and for all f € C([0,T], L>*(R)), all
$ € C(R?) and for u = u? being the solution to the Cauchy problem (7)), the process

(utt. 1) - /Ot F(s.X,) ds)

te[0,7
is a martingale.
The martingale problem has a unique solution:

Theorem 2.2. 5, Theorem 1.2] Let o € (0, 3). Forall z € R and b € C([0,T], ¢~ *(R%,R?))
there exists a unique solution to the martingale problem for ((£;)ie(0,1), 0z ), in the sense that
there is a unique probability measure P, on Q = C([0, T], R?) such that the coordinate process
Xi(w) = w(t) satisfies the martingale problem for ((<£1):c(0,1],0z). Moreover, X is a strong
Markov process under P,, and the measure P, depends (weakly) continuously on the drift b.

Remark 2.3. The continuity of the solution P in terms of the drift is not mentioned in [5, Theo-
rem 1.2], but it can be extracted from their proof.

Observe that Theorem [2.2]also implies that there exists a unique probability measure PP, ; on
C([s, T], R?) such that the coordinate process satisfies the martingale problem for (L) re(s,) 0x)-
This can be obtained by applying Theorem to a shift of the drift, as is mentioned in Re-
mark [[.4

Next, our aim is to show that X admits a transition density I'; ; for 0 < s < ¢t < T' (Proposi-
tion , which means that for ¢ € C’C(Rd) and z € R? and with Ps . asin Remark

Beale(X0] = | eTuten)dy ®

We do this by showing that T'; 7(z,y) = u%(t,x) for the solution u’ to (7) with terminal
condition u(7, -) = 6.

In order to construct the solution ©°¥ we have to slightly extend the results of [5]. Indeed, in
[5, Theorem 3.1 and 3.2] the well-posedness of the Cauchy problem is shown for ¢ € € with
B € (14 a,2— a),and J, is not in this space. The solution theory in [5] is formulated in terms

of mild solutions: A mild solution of (7)) is a fixed point v of ®, i.e., Pu = u, where ® is defined
on C((0,T],.7") 1 [Uyeq o) CUI0. 7). 65 (RY)] for 5> 1+ by

0

T
(Pu)s = Pr_s¢ A+ / P._s(by - Vu,)dr, 9)

where P;¢ := p(t,-) * ¢ for t > 0 and Po¢p = ¢ (that @ is well-defined follows by [2.6).



[l.  In order to allow J, as a terminal condition, we will consider a
different space that “allows a blowup as ¢t 1 7”°. However, for notational elegance, we instead
consider a space with “a blowup at 0” and mention that « is a fixed point of ® if and only if v
given by v(t,-) = u(T —t,-) is a fixed point of ©, given by

(Ov)s = P + /S Ps_(bp—y - Vv, ) dr, (10)
0

so that we call v a mild solution of

o — Lr_v=0 on (0,T] x R?, (1)
v(0,-) =¢ on R%.

We will show that © has a fixed point in the following space (for suitable ¢, 3). For > 0,
B € Randt > 0 we define

|l o = sup 8°||ug]|, s,
M ey O
0
MPe) = {u € C((0,1], %)) : [lull 58 < 00}

The following proposition is a slight extension of [5, Theorem 3.1 and 3.2].

Proposition 2.4. Let o € (0,3), p € [1,00] and v > o — 1. For ¢ € €, b € C([0,T), BY),
€ (1+a,2—a)and e > 0 the Cauchy problem has a unique mild solution u®in
c([o, T],C@S’Y‘ew) NC([o,7), ‘Kpﬁ) such that u®®(t) € €° forall t € [0,T). Moreover, for all
t > 0 the map ¢, x C([0,T], B.%)) — 6P given by (¢,b) — u®®(t,-) is locally Lipschitz.



Another difference with [S] is that we consider b € C([0, 77, B, instead of b € C([0, 7], €~).

Since B, "} C €~ C B © (as continuous embeddings), this does not make much of a differ-
ence. But our heat-kernel estimates depend on the B -norm and for their derivation it is more

convenient to work with B_ .

Before we prove Proposition [2.4] we present two auxiliary facts, Lemma [2.5]and [2.6]

We write B for the beta function (see e.g. [L, Section 1.1]), which is the function B :
(0,00)% — (0, 00) given by

1
B(8,v) = /0 r7_1(1 — 1")’8_1 dr. (12)

Lemma 2.5. Letp € [1,00], k > 0,6 € [0,1), a,y € Rand € [—,2 — «).
There exists a C > 0 such that for all t € (0, 1],

Is = Psg <Clollgy,  1Bp—¢

K
2oV tR —
M= p

S
sr—>/ P,_,w,dr
0

w2 < Ct°||8lley (13)

_atB
< O ul g (14

MPE)

Proof. In [12, Lemma A.7] it is proven (for p = oo, but can be caried on mutatis mutandis for
general p € [1, o0] ) that for
all K > 0 and v € R there exists a C' > 0 such that for all ¢ € (0, 1]

1Pl < CE 2|01y, (15)

which implies the first bound in (I3). The second bound in follows by as

t t
1P — Bl = y/o 0P ds] g2 g/o PG a5 i

.
ﬁp

t _2-2¢6 5
S [ 57 dslndlly e S o
0
The bound in (T4)) is also proven in [12, Lemma A.9], we give the proof to be self-contained. By

applying we obtain for
t € (0,1]

< tt —3P =04
e 0( —5)" 2 s ds|wllyp o

atpB
< t—5+1—%B (1 — Lw, 1- 5) ||wHMg<g;°" (16)

t
’ / Pi_swsds
0

2

This proves (14). O



2.6. Let« > Oandlet 8 > 14+ o and € > 0 be such that 1 + o« + ¢ < . Then we have by
Theorem [A.T] together with Bernstein’s inequality ([2, Lemma 2.1 or 2.78]):

la- Vwlpoa < llallp_o IVl pgte < lallp_ lwlls -

Proof of Proposition[2.4} If v > (3, then the statement follows directly from [5, Theorem 3.2].
Therefore, we assume that v < S and it is sufficient to show that the statement holds for “¢y”
instead of “T™, where t( will be chosen small, as we can extend the solution to [to, 7] by [5
Theorem 3.2].

As mentioned before, it is sufficient to consider the fixed point problem for © as in (10)
instead of ®. Let us write @f for © as in (T0) but with “T™ replaced by “t”. We will show that
there exists a tg such that

B
(a) @2) has a unique fixed point in M, * %pﬁ ,

(b) @fz) has a unique fixed point in the space C'([0, to], €, ") N M, * %’133, which is equipped
with the norm that is the sum of the norms of the individual spaces,

B
(©) 6?; maps C((0,to], €7 ) and thus M, ? %7 into C([0,to], €, ), so that the fixed point

B—xy
in C([0, o], 6, ") agrees with the fixed point in M, > G

(d) forall t > 0 the map €, x C([0,T], B."}) — (fp'g given by (¢,b) — u®®(t, ) is locally
Lipschitz,

(e) the fixed point v satisfies v(t) € € for t € (0, o] and the continuity in can be shown
for p = oo, by showing that we can “increase the integrability parameter p to co”.

First, we assume that v > —a and show After that we show how one can treat
v € (a— 1, —a] too.

By combining the observation in with Lemma ﬁ with k = f —~and § = 5%7
(observe that by assumption x > 0 and § € (0,1), because 0 < f — v < 2 — a + «); for
t e (0,1]

S
1020] 5a S 11l + l1s / Per(beer - Vo) dr|| ss
M, 2 &° P 0 M

t 2 i 2 %”1’?
1_atb
Sl + 1 s = by - Voull s
MtT p*Dé
< _atB . -
S Wl +6= % Wlloyzs, Il o2, (a7
and, moreover
167v — 7| sy (18)

M, 2 ¢

< 1_atB ~ =

SO oy nze 0 =0 o (19)



That @fv forms an element of C'((0,1], %pﬁ ) follows by Lemma Therefore, with (T7) it
By
follows that @? maps M, > %”pﬁ to itself. By (I8) then follows that for sufficiently small ¢ the

By
map @f; is a contraction on the Banach space M, * %pﬁ and it has a unique fixed point in that

5

(b){When tg i ove, then That @ﬁ) has a unique fixed pointin C'([0, to], €} 78)0]\1,;% €Y
for some sufficiently small ¢y which follows from the following estimates which follow simi-
larly as the above ones (observe that as v < [3, we have v < 2 — a, furthermore, we may
assume that & > 0 is small enough such that v — ¢ > —q, furthermore we use (I3) again

use that v > (8 and i = —qaand § = 0)

”@fv”C([O,t},(&)pgiE) g H()HY/",Ti: + ‘ S /() ]—)g ,‘(Z)/ r- V[‘,‘)(]/'HA\[;)//[Tf:

< @]l v—< + sup | Ps—r(bt—r - V) || r—e dr
o s€[0,t] JO °

S
. Y—eta
S [|llgr—< + sup / (s—=7)" 2 |[bt—r - Vur|lg-adr
v sel0,t] Jo /

S |@llv—c + sup / (s—) 5y %H/H bi—r - Vor| s dr
v sel0,t] Jo M, 2 %,
vmeta  p—y [T v—eta 1
S [@ll oy + sup s 2 2 / (I—r)""2 r~ 2 drlls—b_s-Vus|| 5~
v se0,t] Jo M, Z &y °
}—e+a ) v — & )) — 7y
Nllgrme + 1B - LT P sy by V]| s
& 2 2 M, 2 %, °
< - 17(1+{st - -
Solgge+ 0 Wl Il s
where we used that B(1 — 1=St¢ 1 — ’}.)A ) is finite because y —e + a < f — e+ a < 2 and

B—v<B+a<?2(for which we used the assumption y > —q),

1870 — OF 3 oo .45 = €V (v — )

C([0,8),6, )
atpB—¢
2

. i
<t Blly pme, 10 = Bl oo, .65

m That @f:) maps C((0, to], %)) into C([0, %], %, ), which means that @f; (v)(t) con-

verges to ¢ in 6, " ast | 0 for any v € C((0,to], %f ), follows from the second bound in (13)
and the following estimate (by [2.6] which follows similarly to (T7))

_atB
105, (0)(8) = Bllz—e < 1Pd = lly— + =5 [bllc, o oo o0y -

[(d)| Let us write v for the solution of (TT) (with .%; as in (). To see the continuity of the
solution with respect to b and ¢, let b1, b € C([0, %0}, B.))) and ¢1, ¢z € . Let v; = vPibi

10



for i € {1,2}. By Lemmal[2.5|and by [2.6| we have

1—otB
lor —vall o2, Slr = dally + 872 lIbillg,pa, llor — w2l soa

2 2({)5

t “p t “p

_atB
+ 1= lb1 — b2||CtBo_oa1 HUQHMﬁ%y%ﬁ .
’ t ’p

. atf
Hence there exists a § € (0, to) (small enough, e.g., 61~ s |61 HC,sB;al < 3) such that

|v1 — UzHM;%v%ﬂ S o1 = é2llgy + b1 = b2ll, B, \|Uz||Mﬁ%v<gﬂ : (20)

to p
So for t € (0, d] we obtain the desired continuity. By an iteration argument we can obtain the
continuity for all ¢ € (0, to], as for example for ¢ € (8, 26] we have v;(t) = v%(O)(t — §).

It remains to show that we can increase the integrability from p to 0o, i.e., that v; € €7 for
all t > 0 and that also as an element of €7 the solution v; for fixed ¢ > 0 depends continuously
on b and ¢. First we show that if ¢ > 0, then v, € € for all s > ¢. To simplify notation we only
consider the most extreme case p = 1, but the argument for general p is essentially the same. Let
n € Ny be such that

n(B-n)<d, (n+1)(B-v)=d

Write po = 1 and fori € {1,...,n}

d
pi=-——— € (1,00).
d—i(B—7) (1, 00)
Thenﬂ—p%ZyandB—d(pil_l—p%):'yforallie{l,...,n—l},

hence the Besov embedding theorem [2, Proposition 2.71] gives %Ig_l C %pz for all © €
{1,...,n—1},and 6}, C €7. Wehave v: € ‘516 C %, . By considering the equation (TT)) with

initial condition v: we obtain that v, is in ‘Kpﬂl for s > %, in particular vz, € %}),. Repeating the

argument we obtain vi, € CKIZ. foralli € {1,...,n— 1} and v; € %P, so indeed v, € €P for
all s > t. As t was arbitrary, we have shown that v; € € for all t > 0. As all the inclusions C
above are given by continuous embeddings, the continuity of the solution with respect to ¢ and b
follows from the continuity shown in[(d)]

We are left to show that we can also treat v € (o — 1, —a]. Let y be as such. We choose
B e (1+a,2—a)suchthat 3 —~ < 2. Then we have 5 > ~ and % € (0,1), so that
the conditions of observation [2.6) and Lemma [2.5] are satisfied. Hence we obtain also and

11



(18) with “3” instead of “4”. So then we find a fj € (0,%o) such that @f{) has a fixed point v in
b=y 3 =7 B=8 -

M 502 ‘Kpﬁ . Let w be the fixed point of @Z)(tfgo in M toi 7,» Which exists by |(a) because B> —a.

Then v(t) := o(t) for t € (0,%o] and v(t) := w(t —to) for t € (o, to] is a fixed point of q)ﬁ) such

that (Zo, to] — %pﬁ , t + v(t) is continuous. As #( can be taken arbitrarily small, we conclude

that v € C((0, o], %”pﬁ ). Similarly, we can obtain the continuity of the solution by using (20)

with “(3,~)” replaced by “(8, 3)” and using with “(3,~)” replaced by “(/3,~)”. O
2.7. A direct computation using that A;0,(z) = .F " 1(p(27%))(x — 2) = 214771 (p)(2/(x — 2))
1

—d(1-1%
fori > 0 shows that the Dirac delta d, is in ¢, (=) forall p € [1, 00}, so in particular §, € €7.
Moreover, .% ! p; 1s a Schwartz function for fixed ¢« > —1, and therefore R? > 2+ Ao, € LP
is continuous. This easily yields that for ¢ > 0 the map R¢ 3 z — §, € ¢, °© is continuous.

Corollary 2.8 (of Proposition . Leta € (0,3) and b € C([0,T], B;% (R?, RY)).

Fort € [0,T) and n € N let bgn) = 3" Aiby € CRRYLRY) and let Ty p(x,y) =
ulvP(t, x) and FETLT) (z,y) = ubub™ (t,z) (notation as in Proposition 2.4). Then 'y 1 and FEZZ
are continuous on R? x R? and we have for all t € [0,T) and ji € N with |p| < 1:

n—o0

sup |05 [Cyr(x,y) — Fﬁ,”T)(m, Ol 0.

z,ycRd

Proof. The continuity follows from Proposition [2.4
Because there exists a C' > 0 such that Hbgn) — ™ ||B—a1 < Cllbs — bTHB_a1 foralln € N,

s, € [0,00) and Hbg") - bSHBw1 — 0 for all s € [0, 00) we obtain by a “3¢ argument” that

16 = bllgy s, =0

12



As moreover supcgd [|dyllge < 1. Propositionyields

sup [Ter(y) — DR C,y)llgs — 0,
yeR?

forall 5 <2 —a. O

Proposition 2.9. Let a € (0, 3) and b € C([0, T, B (R%,RY)). Fort € [0,T) let Ty r: RY x
R? — R be defined by Ty 7(z,y) = u® (t,x). Let Py . be the unique probability measure
on C([t, T],R?) such that the coordinate process X is a solution to the SDE (3) on [t, T with
initial condition Xy = x. Then I'yr(x,-) is the density of X1 under Py 4, i.e., By 5 [¢(X7)] =
fRd (y)Trr(x,y) dy for all ¢ € C(RY).

Proof. For b with values in C° this is classical, see for example [10, Theorem 6.5.4]. So let
b and FEY}) be as in Corollary and for 2 € R? let ]P)ET;) be the unique probability measure
on C([t, T], R?) such that the coordinate process X is a solution to the martingale problem for
((.Zg(n))se(tﬂ, ), where L = A+ bg@s - V. Using that Pg’? weakly converges to IP;
(Theorem and the uniform convergence in Corollary 2.8 we obtain for ¢ € C.(R%):

Ero[o(Xr)] = lim E{[o(Xr)] = lim [ 6(y)T {7, y)dy = /R $W)Tur () dy.

n—oo Jpd

O

3 Heat-kernel upper bounds

Here we prove the upper bound (2) of the heat-kernel estimates. We follow the “parametrix”
approach from Friedman’s book [9] to prove the heat-kernel estimates presented in Theorem|1.1
This means that we write I'; as a series (see Lemma [3.3) and bound each term in that series to
obtain a bound for the whole series and thus for I';. Usually the point of the parametrix is to deal
with non-constant diffusion coefficients, but the approach is still useful for us despite the fact that
we deal with constant diffusion coefficients.

Because of Corollary we can restrict our attention to b in C([0, 7], C2°(R%, R?)) and then
extend the bounds to bin C([0, T, B, (R4, R%)) by a limiting argument.
For the rest of this section we fix o € (0, %), and ¢ > 1 as in Theorem u and b ¢
C([0,00), C2 (R, RY)). (Instead of [0, 7] we consider [0, 0o) for notational convenience.)

3.1. Let g € LY(R4 RY) and a € C°(RY, RY). Let (f;)ien_, be another dyadic partition of
unity, but such that supp p_1 N supp p; = 0 for i € Ny so that

13



and thus

[ @s0a)@g2)ds = [ (As0a)()(Bs09)(2)
R4

Rd

By duality and Bernstein’s inequality, see [2, Proposition 2.76 and Lemma 2.1], we have

_l’_

‘ /]Rd a(z)-g(z) dz’ < » A_qa(z) - g(z)dz » Asoa(z) - g(z)dz

S 1A-vallz= (gl + [Asoall g |As09l B¢

,1

S sallzo lgllzr + 1800l 5o (sgg {||Ajg||;a<2fHAjguL1>a}>
’ Jj=z
S 1A sallze gl + 1As0al o, g1Vl 1)

We will apply the above bound for functions g that are Gaussian, therefore we will need
estimates for derivatives of Gaussian functions. So we recall the following bound:

3.2. Let p(t,z) = (27rt)_%e_%|x|2 for (t,z) € (0,00) x RY be the standard Gaussian kernel.
For the space derivatives 0*p we have the following estimate:

Ve NE3C > 0Y(ta) € (0,00) x RY:  |0¥p(t,2)| < Ct~ 5 plet,z),  (22)

The proof of the upper bound (2) essentially follows by iterating the previous two observa-
tions. To carry out the argument we need the following result, which allows us to write I as an
infinite series.

Lemma 3.3. Lett > 0 andy € R% For s € [0,t) and v € R? we define
Ul (2) = =b(t — s,2) - Vp(s,z — ). (23)

Then for all k € N the map s — \I'?;’”f is in L'([0,t), L' (RY)), where

\I/ng(x) = —/0 /]Rd b(t —s,z) - Vp(s —r,x — z)\Iffftk(z) dzdr. (24)

14



Moreover, (with T's s as in Proposition[2.9)
o0 t—s &
Lsi(z,y) =plt—s,z—y) + Z/ / p(t —s—r,x—2)0)0 (2)dzdr. (25)
k=170 JR

Proof. By we know that |]\If§’;}||L1(Rd) SAVe(s, ey S 52 and therefore s \Il?;’tl
is in L1([0,t), L*(R%)). Observe that ng“ equals the inner product of —b(t — s, x) with
a convolution in space and time. Therefore, by applying the L' inequality for convolutions
(Young’s inequality) for the space as well for the time convolution, we obtain

S
k1 k
92 s S [ 190 =)« By
° _l ° yuk l ! ny
S ) e @y dr S sz |l e dr
from which we conclude that fot H\Ilfftk | L1 ey dr is finite (actually itis S t%) forall k € N.
It remains to show @23). As I's;(z,y) = u®(s,2) where u® being the fixed point of the
map ® as in (O) with ¢ = §,, that is, with u = udv,
t
(Pu)s = Py — / Py_s(bg - Vug) dg
St—s
= Pt—say - / iDt—s—'r(bt—r : vut—r) dr.
0
From a Picard iteration it follows that T is the limit of the sequence 'Y = 0,
Lot (@, y)
t—s
—pt-so—9)- [ [ plt-s—ne- 2 -ne)- VOk, ) dsdn
0 R4

Therefore, I'} ;(x,y) = p(t — s,z — y) and we obtain recursively

15



(see also [9} Chapter 1.4])

k t—s
Flscjl(l’7 y) =p(t—sxz—y)+ E / / p(t—s—ro— z)\I'%’f(z) dzdr.
=170 JRI

This proves (23). 0

3.4. Now let us get back to Remark[I.4] Observe that in the right-hand side in the dependence
on t is in the U¥* functions, and we see that the rest is a function of ¢ — s. This allows us to
take the first time variable, s, equal to zero, and proof the heat-kernel bounds as in Theorem
From now on we write “I';” for “T'g ;”

Note that the first term appearing in the right-hand side of (23) is already bounded by the
right-hand side of (2). Therefore, we will recursively estimate

¢
/0 /Rd p(t — s,z — z)\Ilgf(z) dzds.

This will be done with the help of some auxiliary lemmas, which follow below.

35 Letpu € Nj.t >0,k € N,y € R?and g € L'(R?). As we write Pig = p(t, ") * g (see
@), we have 0" P,g = 0'p(t,-) * g.

For any given norm || - || we will write ||V f|| = S0, [|0; f]| and | V2 f]| = 327, |

10:0; f1)-
Lemma 3.6. There exists a C' > 0 (independent of b) such that for all u € N with |u| < 2,
y € RYandt,s,r € (0,00) witht > s > rand all f € L*(R?), with g s,(2) = b(t — s, 2) -

fRd Vp(s =1,z —w)f(w)dw

_lul
0Py () < Ot ) < (T e 555 Hm
_a vpb . VPb . VQP “

Proof. We abbreviate g; ;» by g. Observe that g(z) = ( — s, z) : VPS,Tf(z). Then, with
h:RY = R h(z) = 0tp(t — s, 2 — 2)VPs_,.f(2), by CI)

|O*Py—_sg(x)| = ‘/ Hp(t —s,x — 2)b(t — s,2) - VPs_ f(2)dz

S [A—1be—s | Lee [[All Ly + [[A>0bt— sHB o [l IVRIE

We estimate both ||| 1 and || VA| 1. Weuse 22) and [pq p(c(t—s), z—2)p(cs, z—y) dz =
plc(t —s),-) xp(cs,-)(x —y) = p(ct,z —y) to obtaln

Il = [ 109t = 5.0~ VP £(2)] 0

VP f

dz
—y) L

S d(t—s)f%p(C(t—s),x—z)p(cs z—y
J IFe
|l H VP,_ rf

=(t—s)" 2 p(ct,x —

s
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Similarly, in combination with Leibniz’s rule, we obtain

HVhHL1 = Hv(aup(t —S5T = ‘)vps—rf) HLI

d
< Z Ha'uaip(t — 5T — ')VPS—TfHLl + Ha“p(t — ST = ‘)VZPs—rf“Ll
i=1
Ps—y *Pr
S ) P I e WL
ples, = y) || e =Yl
Using the above and that (¢ + b)* < a® + b* for a,b > 0
we obtain (26)).

O

3.7. Now we apply the above lemma to our setting. But first, let us introduce some notation. For
keN,t>0,i€{0,1},and 8 € {0, a} we write

. 1—
vip_ el |
p<Ct7 T y)

; B
VP (W]
p(Ct7 t y)

t
ﬂfk(t) = sup/o ds.

y€ER4

L L

We are interested in the bounds for f & only. But in order to describe a recursive relation for
them, as we will see in the next lemma we also need the .7 ’s.

Lemma 3.8. Let C > 0 be as in Lemma[3.6] Forallk € N, ¢ >0, i € {0,1} and 8 € {0, a}

Fa® <€ [0 % (150l 5040

180l e [(E = 5) 7520 (5) + I (3)] ) ds. - @T)
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Proof. We claim that the following holds. Forall k € N,y € R% and i € {0, 1,2}

ViP [t i S|l wp, vk
W SC(t—S) 2 ||A—1bHCtL°° I)(T—yjt dr
Lo 0 -
_a s VPS—T[‘IIg’k}
18200l ¢, e, [ (£ = 9) 2/0 e || I
SNvpwf || w2 ||
+/ ﬂ W dr} , (28)
0 . Loo

From this follows by definition of f,f . Now let us prove (28). Let g; 5 » be as in Lemma
with f = \Ilfff . Observe that by definition of \Ifls/f 1 @4) we can write

s

S
V) = b= 52 VPG ar = [ ()
so that (one can verify the interchange of integrals by Fubini’s theorem and using Lemma 3.3))
i y,k+1 ° i
VP @) < [ 9 P g @]
0

With this, (Z8)) follows from (26). O

In the proof of Lemma[3.10| we will use the following bound for the beta function (see (12)).

Lemma 3.9. Let § € (0,1]. Then Ms := sup{B(8,7)7® : (8,7) € [§,1] x [0,00)} < oo.
Hence, for all (3,7) € [0,1] x [0, 00),

B(B,7) = B(v,B8) < Msy™".
Proof. By [1l Theorem 1.1.4 and Theorem 1.4.1] we have for v, 5 > 0

I'(y)r T
B(B,v) = M, and lim # =1.
L(v+5) V=00 [Ty 56—
From this we deduce the following. Let /3,, — (3 for some 3 € [, 1] and ,, — oc. Then
_1
: B(ﬁna ’Yn)fygn . \/ﬂfy,zn 2 e*'Yn,ygn
lim —————"—— = lim :
n—>00 F(ﬁn) n—00 27.[.(7” + 6n)’yn+,3n—§e_(,yn+5n)

= lim (1 + &)7(7714”511*%)6571
Tn

n—oo

= lim (1 + &)77"65" = e Pnehn = 1.

Y—00 ’yn

Therefore
Jim BBy, )" =T(B),

so that from the continuity of T it follows that (3,7) + B(3,7)7” is a bounded function on
[0,1] x [0, 00). O
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Let us now use the recursive relation for ff A and the bounds on the beta function to obtain

estimates for ff L

Lemma 3.10. Let C' > 0 be as in Lemma “and let M = 8M1 o, With M5 as in Lemma
There exists a K > 0 (independent of b) such that forall k € N, t > O B € {0,a}andi € {0, 1}

K _18 (CM[|A bl rot2 (CM[[Ax0bll¢, go 5 )n
JSK D 12 ’J?ﬁL = e .9
m,nENp: (NL!) (nl) 5
m+n=~k

A_1bl|c," and “||A20b"ctB;"1,’ we will
write “X”” and “Y”, respectively. ’

e The induction start, k = 1:

We have for 1 € N& with |u| < 2

P g[U0 () = | OMp(t— s,z —2) 0¥/ ()dz = | b(2)- gu(z)dz
3 Rd ’ Rd

with g, (z) = Vp(s,z — y)o'p(t — s,z — z). By (22)) there exists a K > 0 such that for all
p,v € Nd with || < 2and |v| < 1:
902 < K(t = 5)7 % s 2p(es,z = y)p(e(t — s),x — 2),
0" gu(2)| < K (t =) "5 572 [(t— )72 + 5 2]ples, 2 —y)plelt — ). x — 2).
Therefore, by (1)), for j € {0,1,2}

N

VI P[0
p(Ctv T y)

LOO
so that for i € {0,1}

o

A<k [ A (X vie- 0t 4 1) as

N

<t FK(BERL DXt + (BT L) + B, 150 ve'E").

Hence, for k = 1, the inequality (29) follows by applying Lemma [3.9for the beta functions and
using that § — M is decreasing:

BEL Ly < M%(ﬁ)_ < 2My_o < M,




e The induction step, from & to k + 1:
Let k € N and assume that (29) holds. Then by Lemma

Fn® <0 [[(0= )5 (XA0) + Y= T506) + A0
MX)" (CMY )
<KC =
mZN < )= ()T
m+n=~k

t .
X / (t—s)~ ERL RS By <X +Y[(t—s)"2 + 57%]> ds.
0

We bound the latter integral, for which we have the following identity:

t .
/(ts) Fe T (X Y[ -5 F +578)) ds
0

_ t_igﬁt%_t,_nl_Ta <Xt%B(%, m+1+gz(1—o¢))

+ YtlfTa [3(173757 m+1+g(1—a)) T B(%, m+(n+21)(1—a))]).
This shows that the power of ¢ is the right one. We bound the beta function terms to finish the
proof. By Lemma (3.9 we have

ISy .
B(%j%ﬂu*a)) < M¥ (W) 2 < 4M%—a (m+ 1)—7

l—a—p
— - - 5=~
B(iza=8 mtltn(za)y < pr (W) 2 < AM;_, (n+1)" 2
2

1-8

—B m+(n —« m+(n —a)\ _1-a-8
B(L;8, mtntl)-a) < Mis (%) CcaM, ()T E

O
Remark 3.11. The restriction o € (0, %) in Lemma is necessary since M = 4M;

7«
diverges as o 1 % (see see the definition of My in Lemma . This is not unexpected, since for
a > % we are no longer in the Young regime and we would need techniques like paracontrolled

distributions or regularity structures to solve the equation for I'.

Lemma together with the following basic inequality constitutes the proof of Theo-
rem [l

Lemma 3.12. Let § € (0,1). Then there exists an L > 0 such that for z > 0




Proof. Let § > 0. By writing 2% = ((1 + 8§)2)*(1 + 6)~* we get with Holder’s inequality

Xk 00 14 5)2)k % 00 1-8 o
> (k1B = (Z (W) ) (Z (1+6)" ) ~ exp(B(1+0)727).

O

Lemma 3.13. There exists a C > 0 (independent of b) such that for all p € N& with || < 1,
and forallt > 0, x,y € R4

DTy (2, y) = Dplt. 2 — g +Z/ / it — s,z — )T (2)dzds,  (30)
Rd ’
05Ty (2, y) — OFp(t, z — y)

1 l1-a
< Ct 5 plet,m — y)(|A_1b]lcypot? v ‘|A>0b”CtB;a1t >

X exp <C’t[|A 1b||CtLoo + [|Asob|| T e B N }) . (31)

Proof. To show both and it is sufficient to estimate the series with the modulus of each
term in the series in the right-hand side of (30) by the right-hand side of (31).

Let K, C, M be as in Lemma[3.10] Again, we will write “X” and “Y™” instead of “||A_1b||¢, o7
and “||A20b\|CtB;a1”. With i = |y

Z/ ds < (Z f&(ﬂ) plct,z —y)
k=1

1 e
i MXt2)" (CMYt =2 )"
< Kt 2p(ct,x —y) Z © t2)" (CMYE2 )

1 1—o
m,nENp: (m') 2 (’I?,') 2
m+n>1

/]Rd Ep(t — s, x — )‘l’i’:tk(z)dz

< Kt_%p(ct, T — y)CM(Xt% + YtliTa)

1 l1—«
CMXtz)™ CMYt 35"
o[ 3o LT 5 (A
meNy (m)2 neNp (n) 2
Indeed, for a,b > 0
a™ pn am+1 pn a™ bn—i—l
Z ' 1 l-o < Z 1 l-a + Z | 1 1-a
m,neNp: (’I?’L)2 (n'> 2 m,nENp ((m+ 1) )2 ( ) 2 m,nENg (m)2 ((n + 1)') 2
m+4n>1
m pn
<@+b) Y o

1 Tl-a
m,ne€Np (m')2 (n') 2

Now by applying Lemma
we obtain the desired bound. O
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Proof of the heat-kernel upper bound (2)) of Theorem[I.1] This is a direct consequence of Lemma|[3.13]
as there exists a K > 0 such that for all ¢ > 0

CHXt: VY3 < exp (Kt[X2 + Y%]) ,

4 Heat-kernel lower bounds

The lower bound follows from Lemma together with the next result, which is a small varia-
tion of [20, Lemma 4.3.8].

Lemma 4.1. Let g, : R x R — [0,00) for all t € [0,00). Suppose that (@t)tef0,00) Satisfies
the Chapman-Kolmogorov equations, i.e., qi+s(z,y) = fRd qt(x, 2)qs(z,y)dz. Let a,b > 0.

Suppose that q;(x,y) > bt—% forallt € (0,a] and z,y € R% with |x — y| < /L. Then there
exista s € (0,1) and an M > 1, which only depends on b and d, such that for all t € [0, c0)
and z,y € R?

11
a(z,y) > M~ "ap(kt,z —y).

Proof. By following the first step of the proof of [20, Lemma 4.3.8] we find a x € (0,1) and a
M > 1 which depend only on b and d such that for all ¢ € (0, a] and z,y € R?

q(z,y) > M p(kt,z —y).

Lett > aandn = [L]. Then forall z,y € R?

t
n

Qt(:Z:?y) :/ qi(x,zl)qi(zl,ZQ)"‘q (zn—hy)dz
(Rdyn—1 "7 n

> anp(f@%, T — Zl)p(lﬁ%, z1 — 29) - ‘p(fi%, Zn—1—y)dz
(Rd)n—l

> M~ ap(st,x —y).

Now we can prove the heat-kernel lower bounds:

Proof of the heat-kernel lower bound (3) of Theorem[I.1] We want to apply Lemma [4.1] There-
fore we will find an a such that the condition is satisfied. Once more we will write “X” and
“Y” instead of “||A_1b||¢,r" and “”A20b||ctB—a1”~ Let us also take X = |[|[A_1b||¢,~ and

Y = ||A20b\|Ctha1. Let o € (0,3), ¢ > 1 and C' > 0 be as in Lemma 3.13| Then (1) gives
fora > 0,t € (0,a] and 2,y € R? with |z — y| < Vt:

Li(z,y) > plt,z —y) — C’(Xt% v YtliTa) exp (Ct[X2 + Y%D p(ct,z —y)

11—« d
2

> (21t)"2e73 — O((X2a)? V (Y 5 a) 3% exp (ca[X2 + Y%]) 2 (2mt)" .
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. 1 _d _ 1.
Therefore, it holds that 'y (z,y) > 5(27t) " 2e” 2 if

D=

_d e
2 <

C((X2a)? V (Y T0a)'3% ) exp (ca[xuyﬁ]) 5

Hence there exists a K € (0, 1) (which only depends on ¢, C' and «) such that the choice a =
2
K[X? +Y1=]"! works.

So by Lemmathere existax € (0,1)anda M > 1suchthatforallt € [0,00) and z,y € R,

1 log M
Di(x,y) > M~ (Ht x—y):Mexp(— O—gK [X? 4+ YT a]) (kt,x —y).

This proves that (3]) holds for a large enough C. O

5 Proof of Corollary[1.2]

As before, we consider b € C([0,T], B.%) for some o € (0, 3) and we let X = (X¢)ic(07)
be the solution to the martingale problem for (L )ie(0,175 0z)- We prove Corollary which
means that we estimate the probability that X escapes a box of size K before time 7. The
estimate is a consequence of our heat-kernel estimates (Theorem [I.T), Markov’s inequality and

the Garsia-Rademich-Rumsey inequality. By the latter (see [>-1]or [21, Theorem 2.1.3])
we have for £ > 0
t—s 1 _ T2)
k| Xy — Xs| < 4/ T2 log 1 + ) du, (32)
0
where

Xr*r
o [ (o) o
o — 12
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Theorem 5.1 (Garsia-Rademich-Rumsey inequality). [Z1] Theorem 2.1.3] Let p and ¥V be con-
tinuous and strictly continuous functions on [0, c0) such that

p(0) = ¥(0) =0, lim ¥(t) = oc.

t—00

LetT > 0and ¢ € C([0,T],R?). Thenfor0 < s <t <T

6(t) — P(s)| < 8/ yl <” / / ( ol f()s(yﬁ>> dsd/) p(du).
0 :

In the proof of Corollary [5.3| we will bound the right-hand side of (32)) in terms of a function
(. In the next lemma we start by gathering some auxiliary facts about (.

Lemma 5.2. Let (,: (0,00) — (0,00) be given by
C(r) = /0 u b (Vios@ v v) du, w(r) = f(log(H) v ).

There exist m, M > 0 such that m((r) < 1(r) < M{(r) for all r > 0. Moreover, ¥ (rs) <
V20(r)(s) for all v, s > 0 and v is strictly increasing.

Proof. That v is strictly increasing on (%, oo) will be clear, whereas on [0, %) it follows by

calculating its derivative. Since ¢ and ( are continuous and bounded away from 0 and oo on
compact subintervals of (0,00), the existence of such m and M follows once we show that

lim, o % and lim, % exist and are in (0, c0). By applying L’Hospital’s rule we obtain

fim ) _ gy Jo 2 V9ogE AT du
r—0(r)  r—0 . /10g< )

Indeed

. Jy w2 log(1 + u=2) du

lim :

r—0 rs ]()g(]l)
. r2 V1og(1+r=2) . log(1 4+ r—2)

- hm 1 : — 11111 1
r—0 %I’ 2, /log(L) — %,31()%,(%) zp—1 7 m% log(1) — Llog(1)~3

= lim ' l()g(l +(12) = 24/ lim log(1 +(12) = = 22
a—00 " log a — log(a) 3 \awee  loga a0 L4a? 7T

And also for 7 — oo we have

_’\/lo 1—|—u ) du + u 2du
i <) i Gl Jve

r—oo )(r)  r—oo

= lim r2 / w2 du = lim 17?‘2[” —\/Ve—1 =2€(0,00).
i \// r—00

r—00
- e—1

t\.’)\»—‘
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Furthermore

0(r3) = (r9)* (y/log(h) + lou(H) v1)

and forall z,y € Rwehave (r +y)V1<zVvV14+yVv1<2(zVI1)(yV1). Therefore,

W(rs) < V2(rs)h <\/10g > (\/h)g(;) v 1) = V20 (1) (s).

O

Corollary 5.3. Let ) be as in Lemmal[5.2land let C' > 0 be as in Theorem[I.1) Then there exists
an M > 0 such that for all T > 1

o (7 (o, ) )]
‘ M\ sic0m) Y(t—s)

s<t

< Mexp (CT[|A-1bl/%, 1 + HA>0byC - D (34)

Proof. The proof is inspired by [11) Corollary A.5]. Unfortunately we cannot directly apply that
result, because the constant they derive depends on the time interval [0, 7] (even though this is
not explicitly stated).

Let us define G, := 2,/Fr, V 4, where Frr . is as in (33)). Let ¢ be as in Lemma By
(32) and using 4(Fr, — T 2) < G% .. We have by a substitution and by Lemma (observe that
Grx>4>e)thatforT > 1,k > 0,s,t € [0,7] with s < ¢ and by writing G = G,

H|Xt — XS’

u_%\/log( #)du<\/>C(t%s)
SVGY(IE) SVGU(t — s)p(E) St — s)y/1ogG.

Let M > 0 be such that k| X; — Xs| < VMy(t — s)\/logGr, forall T > 1, k > 0 and
s,t € [0,T] with s < t. Then

2

K2 | X — X
E, |exp | — sup ———— E.|Gr k).
’ M\ siefor) ¥(t—s) w1l
s<t

As by Jensen’s inequality E;[Gr ] = 2E,[\/Fr. V4] < 2y/E;[Fr ]+ 4 we will obtain a
bound of E;[Gr,], by estimating E,[Fr . Let ¢ € (0,1) and £ > 0 be such that £ < o-. Then
for all ro, 71 > 0 with ro #£ rq

2 d
/ p(elra —r1l,y) exp(m(%) )dy = (ﬁ)i < 00. (35)
Rd |7“2 — r1|2
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Hence, by Theorem

Ex [FTW}

e -\’
T
= / / E, / Ljry—ry (45 Xpy) exp(s | ———"1 | )dy| dridry
o Jo R¢ |re — r1|2

<O 5/ / exp <C|r2—r1][HA 103, 1 + HA>0bHCB D dry drs.

The proof is completed by observing that for A > 1

T T T ot
/ / exp (Alrg —rq|) dry drg = 2/ / M9 dsdt < et
0 0 0 0

O

Proof of Corollary[I.2} AsT > 1 > e~ we have (T) = V'T. Therefore, by Markov’s in-
equality for all M, K > 0 and the fact that ¢ is strictly increasing:

K2
P:c( sup |X; — x| ZK> SEx[exp (7 sup | X¢ — x| )}exp(—m>

t€[0,T] MT t€[0,T
<o (s, B (- )
M\ e, »(t—s) MT
s<t
So (@) follows from Corollary O

A Appendix

Theorem A.1. Suppose o < 0 and 3 > 0 are such that « + 3 > 0. Let p, p1, p2, q1,q2 € [1, <]
be such that

= -+ L. (36)
Forallr > q;

- vllg, S lullsg, , el 55 37)
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Proof. For the proof see also Corollary 2.1.35]. By slightly adapting [2, Theorem 2.82] and
by using the Holder inequality and [2, Theorem 2.79] (for (39))), we obtain implies the following
two estimates.

@ vl gosa < lullzg, , Iolzp (38)

luovlsg, S llvllcellullsg , < llvllgs  llullsg (39)
’ p2,92

p1,r P11

As [2, Theorem 2.52] implies [|[u®v|| gats < [|ullps  |lvllgs , combining the above inequal-
... P, P1:91 D2,42
ities proves (37). OJ

Lemma A.2. Let X be a Banach space and f : [0,00) x [0,00) — X be continuously dif-
ferentiable and be such that s — f(t — s, s) is Bochner integrable on [0,t]. Define F(t) :=
/(f f(t —s,s)ds. Then F is differentiable and

ot
O F(t) = f(0,t) + / Dy f(t —s,s)ds.

Jo ; Y

Proof. F(t) = G(t,t), where G(t,u) = /l; f(u — s,s)ds. By the Lebesgue dominated con-

vergence theorem for Bochner integrals, 0,G(t,u) = '/(] Dif(u — s,s)ds. The rest follows
by the Fundamental law of Calculus and the chain rule (one may also want to use that Bochner
integrable functions are Pettis integrable and their integrals agree). Ll
B Errata

In formula () the minus should be a plus.

In b) of the proof of Proposition 2-4] a correction has been performed wrongly (in German:
eine Verschlimmbesserung): “y > (" should be “y > —a”. Moreover, we added the red part to
“B = —a=~ — &” for a better explanation.
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