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Introduction

In this thesis one will find definitions of integrals for functions with values in
a Riesz space. The idea for this subject started when I began to learn about
the Bochner integral (which is an integral for functions with values in a Banach
space) and about Riesz spaces. The purpose of this thesis was to find a useful
definition of integration for functions with values in a Riesz space that may not
be a Banach space.

The first attempt for a definition of an integral for functions with values in a
Riesz space came from the Riemann integral. The idea is to approximate a func-
tion f by certain functions from above and from below. Quickly it became clear
that using simple functions to approximate a function f would lead to fewer
integrable functions then the classical Lebesgue integral for R-valued functions
(the classical Lebesgue integral, see Conventions and Notations). This is due
to the fact that simple functions are bounded, so that a function f is bounded
if there exist simple functions s,t with s > f > ¢. Therefore I wanted to try
other functions for the approximation. For this, the concept of a o-simple func-
tion is introduced in paragraph There are more o-simple functions than
simple functions because a o-simple function has countably many values. Ap-
proximating a function f with o-simple functions seems to work better. In this
thesis I call the integral that arises this way the R-integral (R due to Riemann
(integral) and Riesz (space)). This works better since R-valued functions are
integrable in the classical sense if and only if they are R-integrable. In section
some examples of R-integrable functions with values in a space of continuous
functions will be given.

The second idea for a definition of an integral for functions with values in
a Riesz space was also inspired by the Riemann integral. But now a function
will be approximated in a sort of uniform way. The integral that arises this
way is called the U-integral (because of the uniform approximation and because
U-integration only makes sense if the Riesz space is uniformly complete). This
integral is introduced in paragraph The definition is formulated in terms
of the Bochner integral. One will see in Theorem [2.66] that a function is U-
integrable if and only if it can be uniformly approximated.

For the rest I looked at the Bochner and Pettis integral. In section [2| the
Bochner integral is considered for functions with values in a Banach lattice. And
in paragraph the strong and weak Pettis integrals are introduced. These are
slightly adapted versions of the Pettis integral for Banach spaces (in such way
that it is suitable for certain Riesz spaces).

In section [3] I compare the different definitions of integrals. There one will
see that some sorts of integrability imply other ones. But on the other hand
there are also examples of functions which are integrable in the one sense and
not in the other. For example there is a function that is Bochner integrable but
not R-integrable, but there also is a R-integrable function that is not Bochner
integrable. In this case I proved that if a function is integrable in both senses,
then the integrals coincide. I didn’t completely manage in this thesis to com-
pare the R-integral with the strong Pettis integral. For this case there also
are functions which are integrable in the one sense and not in the other. In
case a function is both strongly Pettis integrable and R-integrable, the question
whether the integrals agree is still open. In case a function is positive and both
strongly Pettis integrable and R-integrable, then the integrals coincide (as will



be shown in Theorem . But because the strongly Pettis integrable func-
tions -in general- do not form a Riesz space (see Example , it is not clear
how this result could be used to compare the integrals for the general case.

In section [ there will be more results for R-integrable functions. For all
integrals I tried to prove statements similar to the ones that are true for the
classical integral for R-valued functions. In this section I tried to find a defini-
tion of measurability, so that the R-integrable functions would form Riesz ideal
in the space of this kind of measurable functions. Here one could still do a lot
of work. I will give a definition of measurability, called R-measurability. For
this definition of measurability the question whether the space of R-measurable
functions is a Riesz space is still open.

Finally I want to thank my supervisor A.C.M. van Rooij for his guidance, which
was very useful. Also his criticism and comments on my written documents have
made a lot of things in this thesis easier and better to read.



Conventions and Notations

We assume the reader to be familiar with the notions Riesz space, Riesz sub-
space, Riesz ideal, principal ideal, Archimedean, o-Dedekind complete etc.. For
an introduction to the theory of Riesz spaces, one could look in the books [JR77]
and [LZ7I].

We also assume the reader to be familiar with the notions o-algebra, measure,
measure space, measurable function, integrable function and integral (of func-
tions X — R, where (X, A, 1) is a measure space). For theory on integration,
one could look in the books [Hal50] and [Zaa67].

We give an example of a construction of an integral for R-valued functions, that
we will refer to as the classical integral:

First, one defines the integral on nonnegative simple functions (Definition .
Then one defines the integral of a nonnegative measurable function f: X — R
by

/f dp := Sup{/ sdu:s < f, sisa nonnegative simple function}.

A measurable function f : X — Ris then called integrable if [ f+ dy, [ f~ du <
oo and the integral of f is then defined by

/fdu=/f+du—/f_du~

We will write £(X, A, u) for the space of integrable functions X — R.
We also assume the reader to be familiar with the following results in the theory
of integration:

e L(X,A, pn)is a Riesz ideal in the Riesz space of measurable functions and
[ dp: L(X, A, pn) — R is linear and positive.

e [|f] du =0 implies f =0 p-a.e. for all measurable functions f : X — R.

e The Monotone Convergence Theorem and Lebesgue’s Dominated Conver-
gence Theorem.

Troughout the whole document, (X, .4, 1) is a complete measure
space and p : A — [0,00] is a positive measure.

We will use the following convention:
00:-0=0=0"o00.

This convention is made so that we can write -for example- 0 = [0 dA = 0-A(R),
where A is the Lebesgue measure on R.

With “Let V' be a normed vector space”, so without mentioning the norm, we
mean “Let V' be a normed vector space with norm || - || : V' — [0,00)”. Thus
when the norm is not mentioned, we write || - || for the norm.



We use the following notations:

e N=1{1,2,3,4,...}. Theletters ¢, j,n, m and k are usually used for natural
numbers.

e (N,P(N), 110) denotes the measure space N with the o-algebra P(N) (the
power set of N) and pg is the counting measure.

e (> is the subspace of RN that consists of bounded sequences, equipped
with the supremum norm.

e c is the subspace of > that consists of the converging sequences.
e g is the subspace of ¢ that consists of sequences that converge to zero.

® ¢ is the subspace of ¢y that consists of sequences with only finitely many
nonzero values.

e /1 is the subspace of £>° that consists of the absolute summable sequences.

e ¢, will denote the function 1y, for all n € N. This will be a commonly
used notation in sequence spaces.

e Let E be a Riesz space. We use the following notations for a net (a,),er

in E:
a, b, for 1>/ =,a,<ay, a, i, a for a |, and ing a, = a,
Le
a, T, for 1>/ =,a,>a,, a 1, a for a,1, and supa, = a.
el

Let X is aset and f,g: X — E. We use the following notations

f<g for f(x) <g(z) (ze€X),
fr for the function z e (f(x)T,

f- for the function x— (f(z))”,

|f] for the function x| f(2)]

For a net of functions (f,),c; in EX we write:

fod, (in EX) for f.(x) ), (ze€X), f Ll ffor f(x)], f(z) (z€X),
Jo (in EX) for fb($) T (QL‘EX), Jo 1. f for fb(x) T f(ﬂ?) (JZEX)

We will sometimes write | or 1 instead of |, or 1, (for example in case
there is only one index).

e Let E be a Riesz space. We say that a statement about functions X — F
(like f > g) holds p-almost everywhere (abbreviated by p-a.e.), if the set
for which the statement doesn’t hold, has measure zero. For instance,

[ < g pra.e. means that p({z € X : f(z) £ g(x)}) =0.

e For p > 1, LP(X, A, ) is the vector space of all measurable functions
f + X — R for which |f|P is integrable. | - | z» is the semi-norm on
LP(X, A, 1) given by

e = ( [1rean)” (7 e 200 A W),

Details can be found in chapter 7 of [PRI.



e For p > 1, LP(X, A, 1) is the Banach lattice £LP(X, A, p) /NP, where
P={felP(X,Au):fllcr =0} ={f € LP(X, A pu): f=0 pae}l
|| - |l is the norm on LP(X,A,u) given by ||f + NP|e = ||f|lze for
f e Lr(X, A pn). Details can be found in chapter 7 of [PR].

e We define the integral of f + N* for some f € LYX, A, pu) by [f+
Nt dp == [ fdp (this can be done since f = g p-a.e. in LY(X, A, p)
implies [ f dp= [g du).

o L°(X, A, ) is the vector space of all measurable functions f : X — R for
which there exists an M € [0, 00) such that |f(x)] < M for p-almost all
x € X. ||| ge is the semi-norm on £>(X, A, 1) given by

[fllzoe = inf{M > 0: |f(x)| < M for y-almost all z € X},

for f € L>®(X, A, p). Details can be found in chapter 7 of [PR].

o L°(X, A, ) is the Banach lattice £L>®(X, A, u)/N°°, where
N© = {f e L%X, A pn) : [|[flece =0} ={f € L : f =0 p-ae.l.
I e s the norm given by [l + N[l = [[f]le= for f € £(X, A, o).
Details can be found in chapter 7 of [PRI.

o If f € LP(X, A, ) for some p € [1,00], then for the element f + NP of
LP (X, A, p) we will also write f.

e For Lebesgue measurable subsets X of R (for example [0, 1] and R) we will
use the notation (X, B, A) for the space X with o-algebra B consisting of
the Lebesgue measurable subsets of X and A the Lebesgue measure.



1.1

1.2

1.3

1.4

1 Preliminaries

1.1 The Riesz dual of a Riesz space

Definition. Let E be a vector space (over R). Then E¥ is the vector space of
all linear functions £ — R.

For a Riesz space E, the Riesz dual of E, E~, is the set of all functions ¢ in
E# with the property:

For all a € E™ the set {¢(b) : |b| < a} is bounded.
For ¢,v € E~ we define
¢ <) <= 1 — ¢ is increasing.
It is not hard to see that E™ is an ordered vector space.
Theorem. Let E be a Riesz space. E™ is a Dedekind complete Riesz space.
Proof. See Theorem 83.4 in Chapter 12 §83 of [Zaag3) O

Theorem. Let E be a Riesz space. Let ¢ € E™~. Then |¢|(a) = sup{¢(b) : |b] <
a} fora € ET.

Proof. See Theorem 83.6 in Chapter 12 §83 of [Zaa83] O

Example of an Archimedean Riesz space with trivial Riesz dual.
Consider the measure space ([0, 1], B, A). For a Lebesgue measurable function
f:10,1] — R let [f]x be the set of all Lebesgue measurable functions that are
A-almost everywhere equal to f, let M = {[f]x : f is Lebesgue measurable}. It
is not hard to see that M is a Riesz space under the ordering given by:

fIx<lgly <= f<g Mae.

M is Archimedean:
Suppose that a,b € M7T are such that na < b for all n € N. So for all
f € a,g € bwe have nf < g Mae. so A\({z € [0,1] : nf(z) > g(x)}) =
M{z € 0,1] : f(z) > 1g(z)}) = 0. But then A({z € [0,1] : f(z) > 0}) =
AUpend® € 10,1 £(2)> Lg(2)}) < X Az € 0,1]: £(2) 3 Lg(2)}) = 0,
ie. \({z €0,1]: f(z) >0}) =0and f =0 Aa.e. and thus a = 0.

M~ ={0}:
Suppose M~ # {0}. Then there are ¢ € M~ and a Lebesgue measurable func-
tion f with o([f]x) # 0. Because ¢ = o™ — ¢~ and f = fT — f~, we may
assume ¢ > 0 and f > 0. Then o([f]x) = o([fLp, y]x) + @([fLz ylx) > 0,
so @([f1g,11]x) > 0 or ©([f11 1y]x) > 0. Let I € {[0, 31,[3. 1]} be such that
©([f1r,]x) > 0. Inductively one proves there exists a sequence I; D I[o D

- where I,, is a closed interval of length 27" for which ¢([f1,]x) > 0.

Let a € [0,1] be such that {a} = (,cnyIn. Let J, := I, \ {a}. Then
Ji1DJ2 D, NpenJn = 0 and J, is a Lebesgue measurable set for which
©([f1s,]x) > 0 for all n € N. Then for each sequence (ay)nen in [0, 00),
the sum ) _yanf(x)ly,(z) exists for all z € [0,1]. So > yanfly, is a
measurable function on [0, 1] (because it is the pointwise limit of the sequence



1.5

1.6

1.7

1.8

1.9

1.10

(Zﬁ;l angly,)nen). Thus 3 yan[fly,]x € M. Because ) _yanfly, >
arfly, for all kK € N and because ¢ is increasing we have

P(Y_ anlf1s,]0) = are([f1s]5)  (k€N).

neN

By letting «;, = m we get (>, ey anlfly,]x) >k for all k € N, which
leads to a contradiction.

Definition. A Riesz space F is called a normed Riesz space if there is a norm
|| - || for which the following holds:

lall = llalll, 0<a<b=|al|<|b] (a,be€E).

A norm for which this holds is called a Riesz norm .
We call a normed Riesz space F a Banach lattice if E is complete with respect
to the metric defined by the norm.

Lemma. Let E be a normed Riesz space. If ||an, —al| — 0 and a,, > b for all
n €N, then a > b.

Proof. See Lemma 83.11 in Chapter 12 §83 of [Zaa83] O

Lemma. Let E be a normed Riesz space. Suppose a, 1 and ||a, — al| — 0.
Then a, T a.

Proof. By Lemma [1.6] it is clear that a > a, for all n € N, because a is the
limit of the sequence (a;)$2,, for all n € N. Suppose h > a, for all n € N, so
h —a, >0 for all n € N. Then with Lemma [1.6| we have h —a > 0, i.e. h > a.
Thus a = sup,,cy an- O

Theorem. Let E be a normed Riesz space. Then E’ is a Riesz ideal in E™.
E’ with the operator norm is a normed Riesz space. Moreover if E is norm
complete, i.e. E is a Banach lattice, then E' = E™.

Proof. See Theorem 85.6 in Chapter 12 §85 of [Zaa83)]. O

Definition. Let FE be a Riesz space. We call a function ¢ € E~ order contin-
wous if u, | 0 implies |¢|(u,) | 0 for all nets (u,),c; in E. In the same way a
function ¢ € E~ is called o-order continuous if u, | 0 implies |¢(u,)| | O for
all sequences (uy,)nen in E. The following notations are used:

E :={¢ € E~ : ¢ is o-order continuous },
E; :={¢ € E™ : ¢ is order continuous }.

Comment. Let E be Riesz space. Notice that E}’ and E; are both Riesz
ideals of E~. Let ¢ € EZ". Then u, | 0 implies ¢(u,) L 0 ((un)nen C E).
Suppose u,, | u; then of course also ¢(uy,) | ¢(u) by linearity of ¢. In the same
way up T u implies ¢(up) T ¢(u).



1.11

1.12

1.13

1.14

1.15

1.16

Example: The (classical) integral is o-order continuous.

Let E be the Riesz space £(X, A, n). The map [ - du: £(X, A, pn) — R is posi-
tive and therefore an element of E~. We show that [ - du is order continuous.
Suppose fp, 4 0 in L(X, A, u). Then for all x € X and A > 0, there exists
an € Nsuch that f, 2 Ay, ie. fu(z) < A This means that f,(z) | 0
for all x € X. Then by Lebesgue’s Dominated Convergence Theorem we have
[ fn dp L 0. Note that even if f,(z) } 0 for p-almost all z € X, then also

J fndulo.

Definition. Let ||-|| be a Riesz norm for a normed Riesz space E. ||-|| is called
an order continuous norm if u, | 0 implies |lu,|| { O for all nets (u,),ecr in E.

| |l is called a o-order continuous norm if w, | O implies |ju,| J 0 for all
sequences (Un)nen in E.

Theorem. The norm ||-||L» for the Banach lattice LP (X, A, u) is o-order con-
tinuous.

Proof. Suppose (fn)nen is a sequence in LP(X, A, ) such that f,, | 0. This
means (in LP(X, A, u)) fo(z) } 0 for p-almost all z € X. But then also
(fn(2))? 1 0 for p-almost all x € X. By Example we have

/Ifnlp du:/fﬁ dp . 0.

Therefore || fn|» 4 0. Thus || - ||z» is o-order continuous. O

Example: ¢y is a Banach lattice with o-order continuous norm.
Suppose (ap)nen I8 a sequence in ¢y with a, | 0. Then a,(m) |, 0 for all
n,m € N. Let € > 0 and M € N be such that |a;(m)| < e for all m > M. Then
we have

‘an(m” <e (nGNvaM)a

because 0 < a,, < ap for all n € N.
Since a,(m) J, 0 for all m € N, there exists an N € N such that n > N implies
|an(m)| < e for all m < M. Then for all n > N we have

”anHCo = Sup |an(m>‘ <e.
meN

S0 ||anlle, 4 0 and thus || - ||, is o-order continuous.

Theorem. Let E be a Banach lattice with a o-order continuous norm || - ||.
Then E~ = E7.

Proof. Let T € E~. We show that T is o-order continuous. By Theorem [I.8 we
have E' = E~ and thus T € E’. Let (uy)nen be a sequence in E with w, | 0.
Because || - || is o-order continuous, we have |T'f,,| < || T|||| fnll 4 O. O

Corollary. (1)~ = (1), e = (c§)e and IP(X, A p)~ = LP(X, A, ) for
all (p € [1,00)).



1.17 Example; the Riesz duals of ¢ and cy.

First we introduce a notation:

We will write /(N U {oco}) for the space of all functions b : NU {0} — R for
which } {[b(n)| : n € NU {oo}} = > [b(n)] + [b(co)| < co. For elements b
of /H(N U {co}) we will write b,, for b(n) for all n € NU {oco}. We consider ¢!
to be the subspace of £}(N U {oo}) consisting of all b € £1(NU {oo}) for which
boo = 0.

By 8.16 and 8.19 of [PR] the formula

op(a) = Z anby, + ILm anboo (a €c,be M (NU{o0}),
neN

determines linear isometries both from ¢! onto ¢, and from ¢*(N U {cc}) onto
d. So

g =co={gp:bell}
¥ =c ={gp:bel!(NU{oc})}

Note that b > 0 implies ¢ > 0. If ¢, > 0, then b, = ¢p(e,,) > 0 for all n € N
and b = My 00 Do v On + boo = IMn 00 #6(3 - x €n) > 0. Thus

= {¢b :be £1+}
T ={gp:be ('(NU{oo})T}

By Corollary oy cog — R is o-order continuous for all b € £'. We will
show

= {¢p:be '}
Suppose (U )men is a sequence in ¢ for which we have w,, J 0 (u,, is written for

the sequence (U, (n))nen). Let n € N. Suppose A € R is such that w,,(n) > A
for all m € N. Then u,, > Ae,, for all m € N and thus A < 0. Thus

Um L 0= up(n) L0 (neN).
Let b € £**. Then bu,, = (b(n)um(n))nen is an element of ¢! for all m € N
and buy, | 0 in 1, therefore ¢y (um) = Y, cn b(n)un (n) L 0. Thus ¢y is o-order
continuous for all b € £1.
Let b € (}(NU {oo})™. Let

:Zei (m € N).

Then vy, | 0, but vy, (00) =1 for all m € N. So ¢p(vim) = >, ey b(n)vm(n) +
boo = boo for all m € N. So ¢, is o-order continuous if and only if b, = 0, i.e.
if and only if b € /1.

10



1.18 Example; the o-order continuous functions in C[0,1]".

Let ¢ € C[0,1]. Suppose ¢ # 0. So there exists an f € C[0,1]" such that
©(f) > 0. Then also ¢(1) > 0 (because there exists a A € (0,1) for which
Af <1). We assume (1) = 1.

Let g € [0,1]. For k € Nlet fi : [0,1] — R be the continuous function given
by fr(z) = (1 — k|lz — gq|)* (see Figure . Then 0 < fr <1 and fr(q) =1 for
all k € N. And fy, | and fr(x) | 0 for all z € [0,1] \ {¢}. Thus f; J 0 in C0, 1]
and @ (fy) 1.0,

Figure 1: f1, fa, f3, fa

Let q1, g2, -+ € [0,1] be such that {q1,¢2,...} = QN[0,1]. By the above, for
all n € N there is a g, € C[0,1] with 0 < g, <1, gn(g,) =1 and p(g,) < 37™.
Let hy,:=1— (g1 V--+Vgy). Then h, | in C[0,1] and

= 1
—1 -2 —-n —n __
ohp)>p(l—gg —++—gp)>1-3"7"-3"°—-...3 >1an=13 =3

But h,(gn) < (1 — gn)(gn) =0 for all n € N. So hy,(z) ] 0 for all z € QN [0,1]
and thus h,, | 0 in C]0,1]. This leads to a contradiction, since we assumed ¢ to
be g-order continuous. We conclude

cf0,11; = {o}.

11



1.19

1.20

1.21

1.22

1.23

1.2 Integrals for functions with values in a Banach space

Definition. Let E be a vector space. A function s : X — F is called a step
function if it can be written as

N
s = E a;la,,
=1

for some N € N, A; € Aand a; € E for i € {1,..., N} (note that we may as-
sume that the A;’s are disjoint). Such a step function is called a simple function
(with the “i” of “integrable”) if u(4;) < oo for alli € {1,..., N}.

IS aila, = Y07, bjlp, forsome N, M € N, A;, B; € Awith pu(A;), u(B;) <
oo and a;,b; € E fori € {1,...,N},j € {1,..., M}, then Zf;lp(Ai)ai =
Y02, i(Bj)b; (see also [2.13).

We define the integral of a simple function s as above by

N
/s dp = Z,u(Ai)ai.
i=1

A linear combination, As + ¢, of simple functions s,t and A € R is a simple
function and its integral is the linear combination of the integrals: [ As+t du =
Afsdu+ [tdp.

If E is a Riesz space and s and t are simple functions, then also s At and sV ¢
are simple functions.

1.2.1 The Bochner integral

Notation 1
In case V is a normed vector space and f : X — V|| f|| will be written for the
function x — || f(z)]|.

Definition. Let V' be a Banach space. A function f : X — V is called strongly
measurable if there exists a sequence (s, )nen of step functions such that s, — f
J-a.€..

Definition. Let V be a Banach space. A function f: X — V is called weakly
measurable if ¢ o f: X — R is (strongly) measurable for all ¢ € V.

Definition. Let V' be a Banach space. A function f : X — V is called Borel
measurable if f~*(U) € A for all open sets U C V.

Definition. Let V be a Banach space. A function f : X — V is called u-
essentially separably valued if there exists a Y € A such that (X \Y) =0 and
such that f(Y) is separable.

12



1.24

1.25

1.26

1.27

Theorem. Let V be a Banach space.
I. The set of strongly measurable functions X — V is a vector space,
II. The set of weakly measurable functions X — V is a vector space,

III. The set of p-essentially separably valued measurable functions X — V is
a vector space.

Proof. For all the sets in the statement it will be clear that if f: X — V is an
element of the set, then Af is also an element of the set for A € R. Therefore
we only prove that the above sets are closed under addition.

I Suppose f,g : X — V are strongly measurable. If (sp)nen and (¢p)nen
are sequences of step functions with s, — f p-a.e. and t, — g p-a.e. then
Sp +tn = f+ g pae..

II. Suppose f,g: X — V are weakly measurable. Then ¢o(f+g) = ¢of+dog
is (strongly) measurable for all ¢ € V.

III. Let f,g : X — V be u-essentially separably valued. Let Y; C X and
Y2 C X be such that u(X \ Y1) = 0 = p(X \ Y2) and such that f(Y7) and
g(Y3) are separable. Then p(X \ (Y1 NY2)) = p(X\ Y1) U(X \Y3)) =0 and
(f+9)(Y1NYs) = f(Y1NY2)+g(Y1NY3) is separable. Thus f+ g is p-essentially
separably valued. O

Theorem. (Pettis’ Measurability Theorem)

Let V' be a Banach space. Suppose f: X — V is supported by a set of o-finite
measure, i.e. there exists a o-finite Y € A with {x € X : f(x) #0} CY. Then
the following are equivalent:

1. f is strongly measurable,
II. f is weakly measurable and p-essentially separably valued,

III. f is Borel measurable and p-essentially separably valued.
Proof. See Proposition 2.15 in §2.3 of [Ryal0)]. O

Theorem. Let V' be a Banach space. Let f : X — V be a function. Suppose
(frn)nen is a sequence of strongly measurable functions that converges pointwise
to f, i.e. fn(x) = f(x) for x € X. Then f is strongly measurable.

Proof. Let ¢ € V'. Then ¢ o f,, converges pointwise to ¢ o f. So therefore ¢ o f
is (strongly) measurable. By Theorem fn(X) is p-essentially separably
valued for all n. So for all n, there exists a A,, € A with p(A,) = 0, such that
fn(X\Ap) is separable. Let A =|J A,. Then u(A) =0and f,(X\A) C fn(X\
Ay) is separable for all n. Then J, oy fn(X \ A) is separable. Since f(X \ A)
is a subset of |J, oy fn(X \ A), we conclude that f is u-essentially separably
valued. With Theorem [I.25] we conclude that f is strongly measurable. O

Comment. Notice that if f is strongly measurable and s is a simple function,

then f — s is strongly measurable and therefore Borel measurable. Because
|- 1] : V= [0,00) is continuous, the map ||f — s|| : X — [0, 00) is measurable.
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1.28

1.29

1.30

1.31

1.32

Definition. Let V' be a Banach space. A strongly measurable function f :
X — V is called Bochner integrable if there exists a sequence (s, )nen of simple
functions such that s, — f u-a.e. and

i (17 = 5] du = 0.
n— oo

Theorem. (Bochner’s Theorem) Let V be a Banach space. Then a function
f: X — V is Bochner integrable if and only if f is strongly measurable and || f||
is integrable.

Proof. See Proposition 2.16 in §2.3 of [Ryal0]. O

Proposition. Let V' be a Banach space. Suppose that f : X — V is a Bochner
integrable function and (Sp)nen, (tn)nen are sequences of simple functions such
that s,, — f p-a.e. and t, — f p-a.e. and

i (17 sl dn=0.  tim [17 -t d=0,
n— oo n— o0

Then both ([ sy dp)nen and ([ t, dp)nen converge and

lim [ s, dp= lim [ ¢, du.
n— oo

n—0o0

Proof. Let (r,)nen be the sequence given by 79, = s,, r2n41 = t,. Then
|| f — rnll is integrable and lim,, oo [ || f — 7yl du = 0.
For m,n € N we have

| [rm = [ du) < [rm = rall < 15 =l e [0 =rall di

Therefore ( f Tn d,u)n en is a Cauchy sequence in V. Hence this sequence and
thus also ([ s, dp)nen and ([, du)pen converge and have the same limit. O

As the name “Bochner integrable” suggests, there is an integral for Bochner
integrable functions. Due to Proposition we can define an integral:

Definition. Let V be a Banach space. Let f : X — V be Bochner integrable.
We define the Bochner integral of f by:

/f dp = lim /sn du,
n—oo

where (s, )nen is a sequence of simple functions such that s, — f p-a.e. and
JIf = snl dp — 0.

Proposition. Let V be a Banach space. Let f,g: X — V be Bochner integrable
functions.

I \f + g is Bochner integrable for all X € R and [Af+gdp=X[fdu+
[gdp.

I || f]| is integrable and H i duH < [1IfIl dp.

14



1.33

1.34

1.35

III. Let W be a Banach space. Suppose T : V — W is continuous and linear.
Then T o f is Bochner integrable and

T(/fdu):/Tofd,u.
In particular, for W =R we have ¢([ f du) = [¢o f du for allp € V.

IV. Let V.= R. Then a function f : X — R is Bochner integrable if and
only if it is integrable in the classical sense and the Bochner integral f
coincides with the classical integral of f.

Proof. See Appendix B §6 of [DEQ9] O

Notation 2
We use the following notations:

L(X, A pu,V)={f:X — V: fis Bochner integrable},
NXApV)={f: X —=>V:f=0pael,
Lp(X, A u,V)=Lp(X, A uV)/N(X, A V).

Comment. The function || - ||z, (x,4,u,v) : LB(X, A, 1, V) = [0,00) given by

1l en ey = / 1l die (f € La(X, A V),

is a seminorm on Lp(X, A, u, V). Notice that f € N(X, A, u, V) < | f|l =

0 prae. <= |fllzpx,apv) =0.
The space Lp(X, A, p, V) then carries a norm, given by

Hf +N(X? A?/’L7V)HLB(X,A,M,V) = Hf”L',B(X,.A,p,,V) (f S [’B(Xv -A7/J/7V)

If f,g € Lp(X, A, p, V) are such that f = g p-a.e., then [|f — s,| du — 0
implies [ ||lg — s, du — 0 and thus [ f du = [ ¢ du. Thus we can and do
define the Bochner integral of an element f + AN (X, A, u, V) in Lp(X, A, u, V)
by

[reneeany)dn= [ fap
Notation 3
As is done for the R-valued function mentioned in Conventions and Notations:

If f € Lp(X, A, u, V), then for the element f+N (X, A, i, V) of Lg(X, A, 1, V)
we will also write f.

Theorem. Let V be a Banach space. Then
(Le(X, A V), | lesxamv))
18 a Banach space.
Proof. See Theorem 3 in Chapter 6 §31 of [Zaa67] O

Theorem. LetV be a Banach space. Suppose f,, : X — V is Bochner integrable
for allm € N and || fo(2)]| < g(z), (x € X,n e N) for some g € L(X, A, p).
And suppose that f.(x) — f(x) p-a.e.. Then f is Bochner integrable and
lim, o0 [ || fn — fIl du =0, and thus [ f dp =lim, s [ fn dp.

Proof. See Theorem 4 in Chapter 6 §31 of [Zaa67] O

15



1.36

1.37

1.38

1.39

1.40

1.2.2 The Pettis integral

Definition. Let A and B be sets. We say that a subset F' of B4 separates
the points of A, if for ay,as € A with a; # as there is an f € F such that

flar) # f(az).

Lemma. Let V be a Banach space. V' separates the points of V, i.e. for
u,v € V with uw # v there exists a ¢ € V' with ¢(u) # ¢(v).

Proof. Tt is sufficient to prove that for v # 0 there is an ¢ € V' such that
¢(v) #0. Let v € V' \ {0}. Define g : Ruv — R by g(Av) = A||v||. Then we have
lg(Av)] < ||\w||. By the Hahn-Banach theorem (see I11.6.4 of [Con07]) there
exists a ¢ € V' such that ¢|r, = ¢g. And thus ¢(v) = ||v|| # 0. O

Definition. Let V' be a Banach space. A function f : X — V is called Pettis
integrable if there is a v € V such that for all ¢ € V":

sof€LXAp) and  o(w)= [oof du

There is only one v with this property, because V' separates the points of V' (by
Lemma|1.37). This v we call the Pettis integral of f, denoted by (P)-f f du (or
fd

simply ).

Comment. Note that all simple functions are Pettis integrable and that the
Pettis integral of a simple function coincides with the integral of a simple func-
tion defined as in [[.19

Comment. Comparing the Bochner integral with the Pettis integral.
Let V be a Banach space. By Theorem [1.32]it is clear that a Bochner integrable
function is Pettis integrable and the Bochner integral coincides with the Pettis
integral. The converse doesn’t hold:

Consider the measure space ([0, 1], B, A). Consider the Banach lattice c¢y. Let
f:]0,1] = ¢o be the function

2n
f = Z ;6n1[2—n72—n+1).
neN

Let ¢ € ¢ = ¢ (by Theorem [1.8). Because ¢ = ¢™ — ¢, we assume ¢ > 0.
Then by the monotone convergence theorem and by continuity of ¢, we have

pofdu= 3 Zolea)lpr ooy di=3 2 ben) [ 1porpmrer) dp
n n

neN neN
2m 1 1
= gﬁﬁ(@n)(rn“ -2 =) ﬁ¢(€n) =o(> ﬁen)-
neN neN neN

So we see that f is Pettis integrable with [ f du =3, oy ten. Because [e,| =1
for all n € N, we have

2’(7,
£l = Z zl[zfmszl)-

neN
| £]| is not integrable since ) .\ %)\([2’", 27" =% oy + = oo. Therefore

f is a Pettis integrable function which is not Bochner integrable.

16



2.1

2 Integrals for functions with values in a Riesz
space

Before defining integrals for functions with values in a Riesz space, there will
already be shown that in general a Monotone Convergence Theorem does not
hold. This is done for an integral that is defined on simple functions as in
Definition (for all integrals in this thesis the integrals of simple functions
agree):

Example. Let X be the direct product group {0, 1}. Then there exists a Haar
measure p on X (see Theorem 1.3.4 of [DE0Y]). Let A denote the associated o-
algebra. Let E be the Riesz space C(X). We will show that there is a sequence
of simple functions (s, )nen in EX such that

1
sn 0, /sn du2§lx (n € N).

The following notations will be used in this example:
For ay,...,a, € {0,1}:

(a1,...,an)={z € X 21 =0a1,...,Tn = an},
(a1y...,an)" ={x € X : Tpy1 = a1,...,Ton = ap}.
A set of the form (aj,...,a,) is called a cylinder. For this cylinder we have

w({a,...,an)) = 27" Notice that the set of cylinders forms a basis for the
topology of X.

Notice also that {{a1,...,a,)* : a1,...,a, € {0,1}} is a set of disjoint sets that
cover X for all n € N.

* For n € N define t,, : X — E, by

(bn () (y) = {1 if (U1, om) = (@1, 2),

0 otherwise.

Let ay,...,a, € {0,1}. Then t,(z) = 1,
t, is a simple function with

/tn d/.//: Z /,L(<a1,-.-,an>)1<a1,...,an>*

ai,...,an€{0,1}

any+ forall z € (a1,...,a,). Thus

,,,,,

* For n > 2 let s,, be the simple function given by s,, = 1—(t2V--- V), where
1 represents the function x — 1x (x € X). We have s, | and s, > 0 for all
n€N. Then [s, dp> [1—(to+-+t,) dp=1x —(27%1x +---27"1x) >
$1x.

i Finally we show s, | 0, i.e. sp(z) | 0 (in E) for all + € X. For this
it is sufficient to prove that {y € X : (s,(2))(y) | 0} is dense in X for
all x € X. Let ¢ € X. We will even show that the set S = {y € X :
In [(sn(x))(y) = 0]} is dense in X. Let ai,...,a, € {0,1} for some n € N.
Then y = (a1,...,an,21,-..,2Tpn,0,0,...) is an element of (ay,...,a,) and also
an element of S, because (t,(x))(y) = 1.

17



2.2

2.3

2.4

2.5

2.1 The Bochner integral on Riesz space valued functions

Comment. Let E be a Banach lattice. Note that the Bochner integral for
Bochner integrable functions f : X — F is an integral for functions with values
in a Riesz space.

Theorem. Let E be a Banach lattice. [-dp : Lp(X, A pn,E) — E, f —
[ f du is a positive linear map.

Proof. Linearity is shown in Suppose f € Lp(X, A, pn, E)T. Because
|f(z) —sp(x) V0| = |f(x) VO —s,(x) VO| < |f(z) — sp(x)| for all z € X we have
JIf = st dp — 0 and thus [ f dp = lim,, o0 [ s dp > 0. O

Theorem. Let E be a Banach lattice.
1. The set of strongly measurable functions X — E is a Riesz space,

1. The set of u-essentially separably valued measurable functions X — E is
a Riesz space.

Proof. By we already know that the sets in the statement are (ordered)
vector spaces. We prove that |f| is an element of one of the above sets as soon
as f is an element of that set.

I Suppose f : X — E is strongly measurable. Let (s,)nen be a sequence of
step functions with s, — f p-a.e.. Then |s,| is a step function for all n € N
and |s,| — |f| p-a.e..

II. Suppose f : X — FE is p-essentially separably valued. Let Y € A be such
that (X \Y) =0 and f(Y) is separable. Let D be a countable dense subset of
f(Y). Then |f|(X)={la|: a € f(Y)}. Let |D| ={|d| : d € D}. Let b € |f|(Y)
and € > 0. Then b = |a] for some a € f(Y'). Let d € D be such that |a—d| < e.
Then |d| € |D| and |||a| —|d||| < |la—d|| < e. Therefore |D| is a countable dense
subset of | f|(Y). Thus f is u-essentially separably valued. O

Theorem. Let E be a Banach lattice. Then (Lp(X, A, i1, E), ||| 15(x,A,u,5)) 5
a Banach lattice which is a Riesz ideal in the Riesz space of strongly measurable
functions.

Proof. Suppose f is Bochner integrable and (s,)nen is a sequence of simple
functions such that lim, e [ [|f = sl du = 0. [||f] — |sn||| is measurable
because |f| — |s,| is strongly measurable. Because || f ()| — [sn(2)|| < |f(z) —
sn(x)] (x € X,neN), |||f] —|snll| is integrable for all n € N and

S~ sall i< [ 15 = sall du
Because |s,| is a simple function for all n € N, |f| is Bochner integrable. There-

fore Lp(X, A, u, E) is a Riesz space. Lg(X, A, u, E) is a normed Riesz space
since

1A acxame = [ A1 = [ 171 d = 17 oxam

and 0 < f < g implies || f(z)|| < |lg(z)| for all z € X, and therefore

I llLsx,am) = / Il dp < / lgll i = 1lgllLs(x.anB)

18



2.6

By Theorem [1.29| it follows that Lp(X, A, u, E) is a Riesz ideal in the Riesz
space of strongly measurable functions. O

With Theorem we conclude that Lg(X, A, i, E) is a Banach lattice.
1.29)

Proposition. Let E be a Banach lattice. Suppose that the norm is o-order
continuous. Let (fn)nen be a sequence of Bochner integrable functions and f :
X — E, with f, T f p-a.e. and sup,cy [ || fnll dp < oo. Then f is Bochner

integrable and
sup/fndu:/fdu'
neN

Proof. Because f — f, | 0 p-a.e., we have || f(z) — fn(x)| 4 0 for p-almost all
x € X (since || - || is o-order continuous). So f,, converges u-a.e. to f. By

[ is strongly measurable. Because || f,,|| 1 ||f|] and sup,cy [ | /2] dp < oo,

[l £l is integrable by the Monotone Convergence Theorem. By Theorem we
conclude that f is Bochner integrable. Then || f — f,|| is integrable for all n € N,
and | f(z) — fu(z)|| L O for all z € X. Therefore we have [ ||f — f,| du — 0.
So [ fn du — [ f dp. Because ([ f,, dp)nen is an increasing sequence, we thus

have [ f, dpu 1 [ f du (by Lemma [1.7). O
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2.7

2.8

2.9

2.10

2.11

2.2 o-simple functions

Definition. Let F be a Riesz space. A function p : X — E for which p(X) is
countable and p~1(a) € A for all a € E, is called a o-step function.
Note that the set of o-step functions is a Riesz space.

Notation 4

If p is a o-step function, (an,)nen is a sequence in E such that p(X) = {a, : n €
N} or such that p(X)\ {0} = {a, : » € N} and (4, )nen a sequence of disjoint
sets in A such that p(z) = a,, for all z € A,, and all n € N, then we write

p= ZanlAn.

neN

Definition. Let F be a Riesz space. A (o-step) function p : X — ET is called
a positive o-simple function if it can be written as

pP= Z anlay,,,

neN

for a sequence (a,)nen in ET and a disjoint sequence (A,),en in A, such that
the set {Zgzl w(Ap)ay, : N € N} has a supremum in E (so in particular we
have pu(A,) < oo for all n for which a,, # 0). Note that we may assume that
Unpen 4n = X.

A function o : X — E is called a o-simple function if o™ and o~ are positive

o-simple functions.

Comment. Consider the measure space (N, P(N), ug). Let E be a Riesz space.
Then a function h : N — E (so h is a sequence in E) for which h = (h,)nen, is
a o-simple function if and only if the sets {Zﬁ;l ht : N € N} and {25:1 h,
N € N} have a supremum in E.

Comment. We will use Lemma and Theorem to conclude Corollary
And by Corollary 2.14] we can define an integral for o-simple functions, as
will be done in Definition [2.15]

Lemma. Let E be a Riesz space. Let (an)nen, (bn)nen be sequences in E and
a,b € E. Then we have

anta, b,T0 = a,+b,Ta+b

Proof. 1t is clear that a,, + b, < a+ b. Suppose h € F is such that h > a,, + b,
for all n € N, then h > a,, + b, for all n,m € N. For this reason one has
h>a+b. O
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2.12 Lemma. Let E be a Riesz space. Let (Ap)nen and (Bp)nen be disjoint se-
quences in A with | J, .y An = X = U,y Bn and let (cn)nen be a sequence in
E*. Then the sets

«
i
WE

w(Ap)en : N € N},

3
I
—

|

i
i[9
M= I

w(A, N By)e, : N, K € N},

|
M=

U: w(A, N B)e, : N € N},

Il
s
~
Il

1
have the same upper bounds in E.

Proof. For all n, K € N we have p(A,) > Zk 1 (A, N By). Therefore

N

Z ZZ (A, N By)e (N,K €N).

n=1 n=1k=1

So every upper bound of S is an upper bound of T
For all n € N we have (J; .y An N By = Ay and thus ), o (A, N By) = pu(Ay).
Therefore for all N € N we have (by Lemmau for K — o0):

ZZ,LLA N By ch Zu

n=1k=1

Thus every upper bound of T is an upper bound of S. It will be clear that T
and U have the same upper bounds. O

2.13 Theorem. Let E be a Riesz space. Let (Ap)nen and (By)nen be disjoint se-
quences in A with |J,cny An = X = U, ey Bn and let (an)nen and (bn)nen be
sequences in ET.

o If>  enanla, >3 cnbnlg,, then an upper bound of {25:1 w(Ap)an
N € N} is an upper bound of {Zszl w(By)by : K € N}.

o If > enanla, = > ,cnbulB,, then {ij:l w(Ay)a, : N € N} and
{Zle w(By)by : K € N} have the same upper bounds.

Proof. Incase ), cyanla, >, cnbnlBp,, then u(A,NBy)ay, > u(A, N By)by
for all n, k € N. By Lemma @ an upper bound for {Zf:;l w(Ay)ay, : N € N}
is an upper bound for {25:1 Z;;l (A, NBy)ay, : N, K € N} and thus also for
(N S (A, N By)by, : N, K € N} and thus for {31, u(Bg)by, : K € N}.
The second statement is a consequence of the first one. O

2.14 Corollary. Let E be a Riesz space. If o is a positive o-simple function, then
there exists an a € E such that the following holds:
Ifo =3 en bilp, for some sequence (by)ren in ET and some sequence (By)pen
of disjoint sets in A, then {Zszl w(By)b : K € N} has a supremum and

K

supZu By)b, = a.
KENk 1

21



2.15

2.16

2.17

2.18

2.19

Definition. Let E be a Riesz space. Let 0 : X — E* be a positive o-simple

function with
o= Z anla,,
neN

for a sequence (a,)nen in ET and a disjoint sequence (A, )nen in A. We define

the integral of o by
N
odp=sup y u(Ap)an.
J o an= s St

Let 0 : X — F be a o-simple function. We define the integral of o by

/Udﬂ:/0+d}£*/07du.

Comment. In general it is not true that the supremum (or a linear combina-
tion) of two o-simple functions is again o-simple function, as will be shown in
the following example.

Example. Consider the measure space (N, P(N), 119). Let E be the Riesz space
c. Let f:N—=cand g: N — ¢ be given by

f: (61,62,63,..-),
g=1(0,e1 +e2,0,e3+eq,...).

Then f and g are o-simple functions (by Comment , both with integrals 1.
But then

fVvg=(er,e1+ezez,e3+es,...),
f—g=(e1,—e1,e3,—e3,...),
(f—9)" =(e1,0,e5,0,...).

So fVgand f — g are not o-simple functions.

Comment. So the supremum of two o-simple functions and the difference of
two o-simple functions don’t have to be o-simple (but for some Riesz spaces
they do, as we will see in Theorem . But the sum of two positive o-simple
functions is a positive o-simple function (as will be shown in Theorem .

Lemma. Let E be a Riesz space. Let 0,7 : X — E be o-step functions. Then
there exist sequences (an)nen, (bn)nen and a sequence (A )nen of disjoint sets

in A such that
0:Zan1A" T:anlA".
neN neN

Proof. Suppose 0 = Y _yanla, and 7 = ) b,1p, for some sequences
(an)nen, (bp)nen in ET and sequences (A, )nen, (Bn)nen of disjoint sets in A
with U,ex4n = X = U,uen Bn. Define apny, = a, and by, = by, and
Cpm = A, N By, for all n,m € N. Then o = vameN anmlc,, and 7 =

> nmen bnm1c,,,. Let ¢ : N — N x N be a bijection. Then

o= Z Aq(n)LCyem) T= Z by(m)Ly(m-
neN neN
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2.20

2.21

2.22

Comment. Let E be a Riesz space. Suppose (A, )nen is a sequence of disjoint
sets in A with 0 < p(A,) < oo for all n € N. Let X((A,)nen) be the Riesz
space of o-step functions p for which there exists a sequence (a,)nen in E such

that
p= Z anla,.
neN

Then there exists a bijection X((A,)nen) — EY, given by

(R Z apla, — Z ;L(An)anl{n}.

neN neN

A o-step function ) -y a,la, is o-simple if and only if } . p(An)anlyy) is

o-simple. If }°  _anla, is o-simple then

/ZanlA” du :/Zu(An)anl{n} dp.

neN neN

Notice that v is a Riesz isomorphism. This (in combination with Lemma [2.19)
will be used to simplify the proofs of theorems that will follow.

Theorem. Let E be a Riesz space. Let o and T be positive o-simple functions
X = FE. Let A > 0. Then Ao + 7 is a positive o-simple function and

/)\O’—I-Td/L:)\/O'd/L—‘r/Td/L.

Proof. By Comment it is sufficient to prove this for positive o-simple func-
tions 0,7 : N — F. Let ¢ and 7 be given by

0:(a1;a2;a3a"')a T:(bl,b27b3a"')a
for some sequences (an)nen, (bn)ney in ET. Then

U+T:(a1+b1,a2+b2,a3+b37...)

By Lemma m 25:1 an +bp = 25:1 an + 25:1 bn T supyen 25:1 an +
SUpyen Son_ by = [ du+ [ 7 dp. So o + 7 is o-simple with

/U—i—Td,u:/Ud,u—i—/Td,u.

By definition of a positive o-simple function Ao is a positive o-simple function
and [ Ao dp= A [o dp. O

Theorem. Let E be a Riesz space. Then the following holds for o-simple func-
tions 0,7 : X — E and a o-step function p: X — E:

e If p=0 p-a.e., then p is o-simple and [ p du =0,
e If p=o0 p-a.e., then p is o-simple and [ p dp= [ o dpu,
o Ifo <7 p-ae., then [odu < [T dpu.
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2.23

Proof. If 1 = 7 p-a.e. for o-step functions w,7, then 7 = 7% p-a.e. and
n~ = 77 p-a.e.. Therefore we assume p > 0. Suppose p = > yanla, for
some sequence (a,)nen in E and a sequence (A, )nen of disjoint sets in 4. We
assume a, > 0 for all n € N.

o If p =0 p-a.e., then u(A,) =0 for all n € N and thus Zf:’:l w(Ap)an, =0 for
all N € N. Therefore p is o-simple and [ p dpu = supyey 25:1 w(Ap)a, =0.

e Suppose p = o p-a.e.. And suppose 0 = ) -\b,1a, for some sequence
(bp)nen in ET (see Lemma[2.19). Let Y = {z € X : p(z) # o(z)}. We have

p= Z anla\y + Z anla,ny,

neN neN
o= § anla\y + § bnla,ny.
neN neN

Notice that both »  _ybnla,ny and D cyanla,ny are O p-a.e.. Therefore
these are o-simple functions with integral equal to 0. Because

N

N
Z w(An \Y)an = Z 1(An)an (N eN),

n=1

Y nen @nla,\y is a o-simple function with integral equal to f o du. By Theo-
rem we conclude that p is a o-simple function with integral equal to [ o dpu.
e Suppose that 0 < 7 prae.. Let N = {z € X : o(x) £ 7(x)}. Let
0 = olx\y +71ly. Then 6 = o p-ae. and ¢ < 7. Theorem [2.13| im-

plies [¢ du < [7 dp. And because [o dp = [ du, we conclude [o du <
J T du. O
Theorem. Let E be a Riesz space. Let o and 7 be o-simple functions.

e If0 <7 <0 p-ae theno—1 isc-simple, with [oc —7du= [o du—
[T dp.

e Ifo =0l p-a.e. and 7 = Tlx\ 4 p-a.e. for some A € A, then o + 7 is
o-simple. And [o+7dpu= [odu+ [ du.

Proof. Suppose 0 = Y _yanla, and 7 = > b,1a, for some sequences
(an)nen, (bn)nen in E and a sequence (A, )nen of disjoint sets in A.
e Suppose 0 < 7 < ¢ p-a.e.. By Theorem [2.22] we may assume 0 < 7 < . Then

N N N
Z 1(An)(an —bn) = Z 1(An)an — Z 1(An )by

With Lemma (notice that p(An)(an — bn), w(An)an, p(An)b, > 0 for all
n € N) we conclude that {25:1 w(Ap)(an — by) : N € N} has a supremum in
E that is equal to [ o dp— [ 7 dp.

e Suppose 0 = oly p-a.e. and 7 = Tlx\4 p-a.e. for some A € A By
Theorem we may assume o = ol and 7 = 71x\ 4. Then a, # 0 implies
bp =0 forall n € N. Then (o0 +7)" =3 cn(an +0,)T1a, =3, cyafila, +
Yonenbila, = ot + 77, By Theorem ﬁ (0 + 7)T is a positive o-simple
function. In the same way (o0 +7)” =0~ + 7 is a positive o-simple function.
Thus o +7 =07 4+77 — (67 +77) is a o-simple function, with [ + 7 dp =
Jot+rtdu— [om+7 dp=[odu+ [T du. O
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2.24 Definition. Let F be a Riesz space. E is called R-complete if the following

holds for sequences (ap)nen, (bn)neny in E: If {an + by, : n,m € N} has a
supremum in E than also {a, : n € N} and {b, : n € N} have a supremum in
E.

2.25 Theorem. Let E be a Riesz space. Then the following are equivalent:

2.26

1. E is R-complete.

II. For all sequences (ap)nen, (bn)nen: If {an — by : n,m € N} has infimum
0, then {a, : n € N} has an infimum in E.

III. For all sequences (ap)nen, (bn)nen with ay 1T,by, 0 If {an + b, : n € N}
has a supremum in E, then so does {a, : n € N}.

IV. For all sequences (an)neN, (bn)neny with ay, },b, T and a, > b, for all
m € N: If {an, — by, : n,m € N} has infimum 0, then {a, : n € N} has an
mnfimum in E.

V. For all sequences (an)nen, (bn)nen: If{ZfL1 an\fle an +by : NyM € N}
has a supremum in E, then so does {22[:1 an : N € N}.

VI. For all sequences (an)neN, (bn)nen with a, >0, b, > 0: If{zgzl

N € N} has a supremum in E, then so does {Zivzl an : N € N}

an+b, :

VII. For all sequences (an)nen, (bn)nen with b, > an, > 0: If {Zﬁ[:l b, : N e
N} has a supremum in E, then so does {ZnN:1 an : N € N}.

Proof. Let (an)nen, (bn)nen be sequences in E.
I = II. Suppose I and suppose a,, > b, for n,m € N. If {a,, — b, : n,m € N}
has infimum equal to 0, then {—a, + b, : n,m € N} has a supremum in E.
Thus {—a, : n € N} has a supremum in E, i.e. {a, :n € N} has an infimum in
E.

II = 1. Suppose II and suppose {a,, + by, : n,m € N} has supremum z in E.
Then z — a,, > by, for all n,m € N and {(z — an) — by, : n,m € N} has infimum
0. Therefore {(z — a,) : n» € N} has an infimum in E and thus {a,, : n € N} has
a supremum in F.

I < I & II <= 1V. Note that III and IV are special cases of I and II,
respectively. Then III implies I (and similarly IV implies IT) because of the fact
that {a, : n € N} has a supremum in F if and only if {sup,,« a, : N € N} has
a supremum in F. B

I = V. Note that V follows from I, by writing cy = ZN

ne1@n and dy =
25:1 by, and then applying I to the sequences (¢y)nen and (dy)nen-

V = VI. Trivial.

VI = III. Suppose VI and a,, T,b, 1. By switching to sequences (a, — a1)nen
and (b, — b1 )neny We may assume ai, by = 0. Write ¢,, = apy1 — a, and d,, =
bp4+1 — by, for n € N. Then ¢, > 0, d,, > 0 and Zf:;l cn+dy =any1 +bn41-
Then apply VI to the sequences (¢,)neny and (dp)nen-

VI <= VII. Trivial. ]

Definition. Let E be a Riesz space. Then F is said to have the filling property
if for all sequences (a,)nen in E and z € E for which a, 1 and a, < z (n € N)
there exists a sequence (b, )nen with b, 1 such that a, + b, 1 2.
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2.27 Theorem. Let E be a Riesz space. Then F is o-Dedekind complete if and only

2.28

2.29

if E is R-complete and has the filling property.

Proof. “only if”. Suppose E is o-Dedekind complete. It will be clear that E is
R-complete. Let (a,)nen be a sequence in F and z € E be such that a,, 1 and
an < z (n € N). Then {a,, : n € N} has a supremum in F, say a. Let b, = z—a
for all n € N, then b,, 1 and a,, + b, T z.

“f”. Suppose F is R-complete and has the filling property. Let (a,)nen be a
sequence in E and z € F be such that a, 1 and a,, < z (n € N). Let (by)nen
be a sequence in F with b,, T such that a,, + b, 1 z. Because E is R-complete,
{an : n € N} has a supremum in F. Therefore E is o-Dedekind complete. [

Example of a Riesz space that has the filling property, which is not
R-complete.
We will prove (I) that ¢ has the filling property. And we will show (II) that ¢ is
not o-Dedekind complete and (thus by Theorem not R-complete.

(I) Let (an)nen be a sequence in E and z € FE be such that a, 1 and
an < z (n € N). Notice that

Bi := (i) —supa, (i) > 0 (i € N).
neN

Define by, := (81, 82,...,60,0,0...) =Y Bie; for all n € N. Then b,, T and
(an + bp)(m) T z(m) (m e N).

Therefore a,, + b,, 1 z.

(IT) Let a,, := >, es;, thus a; = (0,1,0,0,...), az = (0,1,0,1,0,0,...),
as = (0,1,0,1,0,1,0,0,...) etc. Then a, 1 and a, < 1 for all n € N. But
{an : n € N} has no supremum in c¢. Therefore ¢ is not o-Dedekind complete.

Example of a Riesz space that is R-complete, which is not c-Dedekind
complete and thus does not have the filling property.
We will prove (I) that the lexicographic plane R? is R-complete. And we will
show (II) that the lexicographic plane is not Archimedean (thus not o-Dedekind
complete) and does not have the filling property (by Theorem .

(I) First we examine which sequences in the lexicographic plane have a supre-
mum. Recall that the lexicographic plane is equipped with the ordering <j..
that is defined by

(x1,22) <jew (y1,Y2) < either 21 <y

or r1 = y1, T2 < Yo,

for (z1,2), (y1,y2) € R2. Suppose ((an,bn))nen is a sequence in R?. Suppose
that {a, : n € N} is bounded in R. Let ¢ = sup,cyan. If a, < a for all
n € N, then (a, ) is an upper bound for {(an,b,) : n € N} for all A € R.
So {(an,bn) : n € N} has no supremum if a, < a for all n € N. Therefore
{(an,by) : n € N} can only have a supremum if there exists n € N for which
a=ap.

Suppose ((@n,bn))nen and ((cn,dn))nen are sequences in R? with (ay,,b,) 1,
(cn,dn) 1. Suppose {(an,bn) + (cn,dn) : n € N} = {(an + n,bp +dy) 1 €
N} has a supremum in E. Then there exists a N € N such that a, + ¢, =

26



2.30

2.31

SUP,,en @m + Cm for all n > N. Because a, 1 and ¢, T, there exists a,c € R
such that a,, = @ and ¢,, = ¢ for n > N. Then

sup{(an + ¢n,bn + dp) : n € N} =sup{(a+¢,b, +d,) :n> N}
= (a+c¢, sup b, +d,).
n>N
Let b = sup,,> y bn and d = sup,,~ y d,,. Then (a,b) is a supremum for {(a,, by,) :
n € N} and (c, d) is a supremum for {(c,,d,) : n € N}. We conclude that the
lexicographic plane is R-complete.

(IT) The element (0, 1) is infinitesimal, because (0,1) <je, (1,0) for alln € N.
Therefore the lexicographic plane is not Archimedean. Because o-Dedekind
complete spaces are Archimedean, the lexicographic plane is not o-Dedekind
complete.

Theorem. Let E be an R-complete Riesz space. Let o : X — E be a positive
o-simple function and p : X — E be o-step function. Suppose that |p| < o
p-a.e.. Then p is a o-simple function.

Proof. By Theorem we may assume |p| < o. Then by Comment it
is sufficient to consider o, p : N — E. We prove that pT is a positive o-simple
function. Suppose p* and ¢ are given by

=

14 alaa/2aa3a"')a 0:(b17b27b37"')5

for some sequences (@, )nen, (bn)nen in ET. Because {ZN: b, : N € N} has a
supremum in E, so does {ij:l ap, : N € N} by Theorem [2.25( (I < VII). O

Theorem. Let E be an R-complete Riesz space. Then the set of o-simple func-
tions is a Riesz space. And for o-simple functions o,7 and X\ € R we have:

/A0+TdM:A/odu+/Tdu.

Proof. By definition ¢t and o~ are positive o-simple functions for a o-simple
function o.

We will show that o —7 is a o-simple function with [o—7 du = [o dpu— [ 7 dp
for all positive o-simple functions ¢ and 7. By Comment it is sufficient to
prove this for positive o-simple functions o, 7: N — E.

So suppose 0,7 : N — E are positive o-simple functions. Let (an)nen and
(bn)nen be sequences in ET such that

0':((11,0,2,0,3,...) T:(bhbz,bg,...),
Then
o —7=(a1—bi,az —bz,a3 —bs,...).

Because |0 — 7| < o+ 7, by Theorem o — 7 is o-simple (0 + 7 is o-simple by
Theorem [2.21)). Because (6 —7)"+7=(0—7)" +0oand (6 —7)",7, (6 —7)",0
are positive o-simple functions, by Theorem [2:2I] we have

/(J—T)+ d,u—i—/Td,u:/(a—T)’ d,u+/0du.
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2.33

Therefore

/O’*Td,u:/(O'*T)+ duf/(JfT)* d/L:/(Td‘u*/Td,LL.

Let ¢ and 7 be o-simple functions and A € R. Observing that Ao + 7 =

(Ao)T + 7% — ((Ao)™ +77), by Theorem we then conclude that Ao + 7 is
a o-simple function with [Ao+7du= X [o dp+ [T dpu. O

Theorem. Let E be a Riesz space. Suppose there exists a sequence (An)nen
of disjoint sets in A with 0 < u(A,) < oo for all n € N. Then the space of
o-simple functions X — FE is a Riesz space if and only if E is R-complete.

Proof. By Theorem [2.31] we only have to show the “only if” part. So suppose
the space of o-simple functions X — E is a Riesz space. Let (A, )nen be a
sequence of disjoint sets in A with 0 < p(A,) < oo for all n € N.

The set of o-simple functions o for which there exists a sequence (a,)nen in E
such that o = ) _yanla, then is a Riesz subspace of the space of o-simple
functions. Then by Comment [2.20] the o-simple functions N — E also form a
Riesz space.

Suppose (ay)nen and (by)nen are sequences in ET such that {Zﬁf:l ap + by,
N € N} has a supremum in E. Then

g = ((11, b1,07(127 bg,o, as, bg,O, e ), T = (al, O,bl, as, 0, bg,ag,o, bg, e ),
are positive o-simple functions. But then
o AT =(a1,0,0,a2,0,0,a3,0,0,...),

is also a postive o-simple function. So then {ZnN:1 ap, : N € N} has a supremum

in E. With Theorem we conclude FE is R-complete. O
Corollary. Let E be an R-complete Riesz space. Then the space of o-simple

functions is a Riesz ideal in the Riesz space of o-step functions.

Proof. This is a consequence of Theorem [2:30] and Theorem [2.31] O
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2.35

2.36

2.3 The R-integral on Riesz space valued functions.

Definition. Let E be a Riesz space. A function f : X — F is called R-
integrable if there are sequences (0, )nen, (Tn)nen of o-simple functions such
that

on>f>1, pae (neN),
the sequence ([ oy, dp)nen has an infimum in E,
the sequence ([ 7, dp)nen has a supremum in E and

inf /O’n du = sup/Tn du.
neN neN
Notation 5

In the sequel we will sometimes avoid writing that a sequence has a supremum
or an infimum if there follows a statement about the supremum or infimum. So
for example, let (ay)nen be a sequence in a Riesz space E and b € E. Then we
write “inf,eya, = b7 instead of “the sequence (a,)nen has an infimum in F
and inf,eya, =07

Proposition. Let E be a Riesz space. Suppose f: X — E is R-integrable and
(0n)nen; (Tn)nen, (00 nen, (T} )nen are sequences of o-simple functions such that

O’n,O';L Z f Z 7—an7,1, H-a.e. (n S N)}

inf [ o, dp= sup/Tn dy,
neN neN

inf [ o dj= ! dp.
i f 7= f o
Then inf,en [0y dp = sup,ey [ 7 dp = infen [0, dp = sup, ey [ 75 dp.

Proof. Because o, > 7}, p-a.e. and o], > 7y, p-a.e., we have [ o, dp > [ 7/ dp
and [o], du > [ 7, du for all n,m € N (by Theorem [2.22)). Thus

inf /O’;L dp > sup/Tn dp = inf /O’n dp > sup/T,'L du.
neN neN neN neN
O

Comment. We are now ready to give a definition of an integral of an R-
integrable function. For o-simple functions we already have an integral (see

Definition [2.15)).

Let F be a Riesz space. Let 0 : X — E be a o-simple function. Note that o
is an R-integrable function. Let (0, )nen and (7,,)nen be sequences of o-simple
functions such that

On>0>1, p-ae. (neN),

inf /an du = sup/Tn du.
neN neN
Then by Proposition Jodp = infpen [0, du = sup,,cy [ 7o dp. As one

will read in the next definition, this proves that the R-integral of a o-simple
function agrees with the integral that we already had for a o-simple function.
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2.38

2.39

2.40

Definition. Let E be a Riesz space. Let f : X — E be R-integrable. We define
the R-integral of f, denoted by (R)- f du (or simply [ f du) by:

(R)_/f dp = inf /an dp = sup/Tn du,
neN neN

where (0, )nen, (Tn)nen are sequences of o-simple functions with

on>f>1, pae (neN),

inf /O’n dp = sup/Tn dy.

neN neN
Notice that if ¢ : X — FE is a function for which ¢ = f p-a.e., then g is
R-integrable with [ g du = [ f dp.

Comment. As will be proved in Theorem A function f : X — R is
R-integrable if and only if f is integrable in the classical sense. In case f is
R-integrable then the R-integral coincides with the classical integral.

Comment. Let f : X — E and (7,)nen, (0n)nen be sequences of o-simple
functions with o, > f > 7, p-a.e. for all n € N. Suppose the sets {f on dp:
n € N} and {[ 7, dpt : n € N} have a supremum and infimum in E, respectively.
Then we have

inf Op —Tm dp =10 — ian/Jn dp = sup/Tn du.
ne

n,meN neN

Note that if E is R-complete and (0,)nen, (Tn)nen are sequences of o-simple
functions with o,, > f > 7, p-a.e. for all n € N, then inf, nen f Op—Tm dp =20
implies that f is R-integrable. Indeed if inf, men [ 05 — T dpp = O then by
Theorem [2.25] the sets {[ o, dpu : n € N} and {[7, du : n € N} have a
supremum and infimum in F, respectively.

Theorem. Let E be a Riesz space. Suppose f: X — EV is R-integrable. Then
there exists a sequence (tn)nen of simple functions with 0 < t, < f up-a.e. such
that the supremum of { [ t, dp: n € N} exists and is equal to [ f dp.

Proof. Suppose (7, )nen is a sequence of positive o-simple functions with 7,, < f
p-a.e. for n € N with sup,,cy [ 7, du = [ f dp. Suppose 7, = >, o b 1an
for a sequence (b7, )men in ET and a sequence (B?,)men of disjoint sets in A for

all n € N. Then

M

sup / 7o dpp = sup sup Y u(Bp)br,
neN neN MeN S

N
= sup sup{ Z w(Bp )b, in € {1,...,N}}.
m=1
Let ty = sup { erle w(BIbE in e {1,..., N}} Then ¢ is a simple function
for all N € N and supyey [tn dpp =sup,ey [ 7 dp= [ f dp. O



2.41

2.42

2.43

Comment. We have shown in Comment that if a o-step function is o-
simple, then it is R-integrable and the R-integral coincides with the integral
that we defined for a o-simple function in Definition The converse holds
for positive o-step functions, as we will see in Theorem [2.42] However, as we will
see in Example there exists a o-step function (N — ¢) that is R-integrable
and not o-simple.

Theorem. Let E be a Riesz space. Let p : X — ET be a positive o-step
function. If p is R-integrable, then p is o-simple.

Proof. Suppose p is R-integrable and suppose p = ), -yaxrla, for some se-
quence (ag)ren in E1 and a sequence of disjoint sets (Ay)gen in A with X =

UkeN A
Let (0p)nen and (75,)nen be sequences of o-simple functions with

Opn 2 p 2Ty p-ae.,

inf /Un dp = sup/Tn dp = (R)—/p dpu.
neN neN

By Theorem we assume T, is simple for all n € N. Then for all K € N the
function Tnlui_i1 4, 1s simple. Because X = Uren Ar we have

o [y, 0, = [ 7 an

Because p < g, p-a.e. for all n € N, we have

K
ZH(Ak)ak < /O’n dpe (K,n € N).
k=1

And thus (R)f p du > S | u(Ax)ay for all K € N.

Suppose h € E is such that A > Eszl w(Ag)ag for all K € N. Because 7, < p
p-a.e. for all n € N, we have anluleAk dp < Zle w(Ag)ar < h for all
K,n € N. Then

(R)—/p dp = sup/Tn dp = sup sup /T"1Uf:1 4, dp < h.
neN neN KeN

So {Zle w(Ag)ag : K € N} has supremum (R)-[ p dpin E, i.e. pis o-simple.[]
Example. Recall Example f and g are o-simple functions for which

f—g=(e1,—e1,e3,—e3,...),
(f _g)+ = (6170763707"‘)7
are not o-simple. Because (f — g)T is a positive o-step function that is not
o-simple, by Theorem [2.42] it is not R-integrable. By this we see that the set

of R-integrable functions N — ¢ is not a Riesz space.
We will show that f — g is R-integrable as a function X — ¢, see however
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Example [3.13
Let (0,)nen be the sequence of o-simple functions given by

o1 = (e1,—e1, ez +eq, e3+eq, €5+es, €5 +es, er+eg, erteg, ...
02:(617_617 €3,

03 = (617 —€1, €3,

—e3, es +eg, €5+ eg, €7 +eg, €7 +eg,...

— e3, €5, — €5, €7+68,67+68,...

Then o, > f — g for all n € N. In the same way let (7, )nen be the sequence of

o-simple functions given by

71 = (€1, —e1,— €3 — €4, — €3 — €4, — €5 — €5, — €5 — €5, —€7 — €8, — €7 — €8, ...
T2 = (617_613 €3,

T3 = (617—61, €3,

— €3, — €5 — €, — €5 — €, €7 —€8, — €7 —€8,...

— €3, €5, — €5, —€7 —€g, —€r —€8,...

Then 7,, < f — g for all n € N. We have

/01 dp = (0,0,2,2,2,2,2,2,... 7 dp = (0,0,-2,-2,-2,-2,...

-
/02 dp = (0,0,0,0,2,2,2,2,...), /
-

(
75 dp = (0,0,0,0,—2, -2, -2, . ..
(

/0—3 dp = (0,0,0,0,0,0,2,2, ... 5 dp = (0,0,0,0,0,0, -2, 2, ...

So infpen [0, dp = 0 = sup, ¢y [ 7 dp. Therefore f — g is R-integrable.

Theorem. Let E be an R-complete Riesz space. Let f : X — E be R-integrable.
Then f and f~ are R-integrable.

Proof. Let (0p)nen, (Tn)nen be sequences of o-simple functions with

on > f>1, prae. (neN), inf,en [0, du=sup,cy [ 7 dp.
Then
ofr > ft>7" pae (neN),
. >f" >0, pae (neN),
0<of -7t 7. —0, <on—7m pae (n,meN).

Then (see Theorem[2.23) 0 < [of —7.} du, [ 7, —0, du < [0y — T dp for all
n,m € N. Therefore inf,, ,,en [0 =78 dp =0 and inf,, en [ 7, —0, du=0.
As is noted in Comment this implies that f™ and f~ are R-integrable. [J

Corollary of Theorem Let E be an R-complete Riesz space. Then a
o-step function p: X — E is R-integrable if and only if it is o-simple.
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Proof. If p is R-integrable then so p™ and p~ are R-integrable by Theoremm
Then by Theorem pt and p~ are o-simple and thus p is o-simple. O

Theorem. Let E be an R-complete Riesz space. A function f: X — F is R-
integrable if and only if there are sequences (0 )neN, (Tn)nen of o-simple func-
tions such that o, |, 7, T and

on>f>1 p-ae (neN),

inf /on dp = sup/Tn du.

neN neN
Proof. The “if” part will be clear.
Let (0n)nen, (Tn)nen be sequences of o-simple functions such that o, > f >
7, prae. (neN), and inf,en [0, dp = sup, ey [ 7o dp.
Let p, = inf;,<p o and m, = sup,,<, Tm. Then (pn)nen, (Tn)nen are se-
quences of o-simple functions (by Theorem and p, > f > m, p-a.e. for
all n € N. Then by Theorem [2.22]

/Und,uz/pnduzsup/rmdu (n €N),

meN
/Tnd,ug/wnd,ugian/amdu (n € N).
me
So we conclude inf, ey p, dp = sup,, ey [ 7 dp. O

Theorem. Let E be an R-complete Riesz space. The R-integrable functions
X — E form a Riesz subspace of EX. We call this space

Eld)(wAwﬂvﬁn'
Then [-du: Lr(X, A pu, E) = E, f— [ fdu is a positive linear map.
Proof. Suppose f and g are R-integrable and (o, )nen, (05,)nen; (Tn)nens (75, ) nen

are sequences of o-simple functions such that

on>f>1 pae (neN), o,l,7mT, inf | o,du=sup | 7, du,
neN neN

o,>g>1, pae (neN), o |7, 1 inf /a; du = sup/T,’L du.
neN neN

Then (o, + 0, )nen and (7, + 7}, )nen are sequences of o-simple functions (by

Theorem [2.31)) with
onto,>f+g>1n+71, pae (neN), o,+o, LT+, T

The sequences ([ 7, dp)nen and ([ 7} dp)nen are increasing by And
the sequences ([ o, dp)nen and ([ o), dpu)nen are decreasing. Therefore with

Lemma .11l we have

sup/Tn—l—T?’1 du:sup/Tn d,u—l—sup/ﬂ’1 du,
neN neN neN

inf n ! dp = inf n d inf ! dp.
i f o+ =t fon et f
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2.48

2.49

And because

inf/an d,u—&-inf/afI du:/fd,u—l—/gd,u:sup/Tn du—i—sup/T,’l du,
neN neN neN neN

we then have

inf/a,ﬁ—ail duzsup/r,ﬁ-n’b du:/fdu-l-/gdu-
neN neN

Thus f + g is R-integrable with [ f+ g du = [ f dp+ [ g du. It is easy to see
that f € Lr(X, A, u, F) implies \f € Lr(X, A, p, E), with [Af dp= X[ f du
for A € R. Withwe conclude that Lz (X, A, i, E) is a Riesz subspace of EX.
If f € Lr(X, A, pu,E)T then 7, > 0 for all n € N and thus sup,,cy [ 7, dpe > 0
since [ 7, dp > 0 for all n € N. Therefore [ - du is a positive linear map. O

Corollary of Theorem Let E be a Riesz space. Suppose there exists
a sequence (Ap)nen of disjoint sets in A with 0 < p(A,) < oo for all n € N.
Then the space of R-integrable functions X — FE is a Riesz space if and only if
FE is R-complete.

Proof. By Theorem [2:47| we only have to show the “only if” part. But the “only
if” part follows from Theorem [2:42] combined with the proof of Theorem [2.32|0J

Theorem. Let E be a Riesz space. Let f : X — E. Suppose that (gn)nen,
(hn)nen are sequences in Lr(X, A, u, E) and

gn > f>h, p-ae. (n€N) inf /gn duzsup/hn dp.
neN neN

Then f € Lr(X, A 1, E) and [ f dp =infpen [ gn dp = sup,cy [ hn dp.

Proof. For n € N, let (07)men, (T )men be sequences of o-simple functions
such that

or > gn pae. (meN), inf /aﬁT dp = /gn dp,
meN

hpn > 717 p-ae. (m€N), sup /T,:‘I dp = /hn dp.
meN

Then the sets {0}, : n,m € N}, {7 : n,m € N} consist of countably many
o-simple functions (and therefore we are able to “turn them in to sequences”),
for which

inf " dp=inf inf [ o7 du= inf
ot fon =it it o dp= e [ o d

:sup/hn dp = sup sup/Tffl dp = sup /TZ,Z du.

neN neNmeN (n,m)eN?
We conclude f is R-integrable and [ f du = inf,en [ gn dpp = sup,,ey [ hn dp.O

We will now look at R-integration for functions with values in the Riesz space
E=R.
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2.50 Lemma. A positive o-simple function o : X — R is integrable (in the classical
sense) and its integral coincides with the R-integral, i.e. (R){ o dp= [o du.

Proof. Suppose 0 =y anla,, for a sequence (ay)nen in RT and a disjoint
sequence (A, )nen in A, such that the sequence (22;1 w(Ap)an) Nen is bounded
in R. Then sy := Zﬁf:l an1 4, are simple functions for N € N and therefore in-
tegrable. Because the sequence (sy)nen is increasing and o(z) = sup yey v (2)
for all x € X, we conclude with the Monotone Convergence Theorem that o is

integrable and [ o dpu = supyey [ sy du = (R)f o dpu. O

In the proof of the next theorem, the following is used to make certain
o-simple functions:

n

2 . .
1 1 2 2 3 2m —1 1—1 14
0.1 = (0.5 U (575 ) U (Grogn) UV (Tt = U ()

i=1

A picture of this partition for n = 1,2, 3 is given in Figure
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2.51 Theorem. A function f: X — R is R-integrable if and only if f is integrable
in the classical sense. The R-integral of such a function f coincides with the
integral of f, i.e. (R){ fdu=[fdu.

Proof. Because L(X, A, p) and Lr(X, A, 1, R) are Riesz spaces and both [ - du
and (R)- - dp are linear, we may assume f to be positive.

Suppose f : X — [0,00) is integrable. So f is measurable and [ f du < co.
ForneNandie{l,...,2"},k €N, let

i — 1+ 2"+ i—1427F
——— < f(#) £ ——

I, = e X:
i,k {3? on )= on

.

And for n € Nand i > 2" + 1, let

I=freX: 1< f@) < o)

Note that {I}% : 1 <i<2" k€ Ny U{I[': 7> 2" + 1} is a set of disjoint sets
in A (by measurability of f) for all n € N. Let

2" oo i1 27k 00 .
zzz%hyﬁ 3 %m

i=1 k=0 i=2n+41

z—1+2<“ﬂ =
Sy, oy oy
i=1 k=0 1=2"+1

Then o, and 7,, are measurable functions and 0 < 7, < f < o,,. Therefore 7, is
integrable, which implies (by Theorem that 7, is a o-simple function. Since
0 <o, < 27,, also o, is integrable and thus a o-simple function. And o, | f,
Tn T f, because 0 < o, (x) — f(z) <277, 0 < f(z) — m(x) < 27" (n € N).
Therefore by Lebesgue’s Dominated Convergence Theorem we have

mf/an d,u:/infan du:/fd,uz/suprn du—sup/rn du.
neN neN neN neN

So f is R-integrable and [ f du = (R)- f du.

Conversely, suppose f : X — [0,00) is R-integrable. Let (04, )nen, (Tn)nen
be sequences of o-simple functions with

T < f<o, pae (neN), inf /O’n dp = sup/Tn dp.
neN neN

Because ¢, and 7, are integrable for all n € N, the functions inf,cny 0, : X — R;
x > infey on(x) and sup,en T 1 X — R; @ — sup,, oy 7o (x) are integrable by
Lebesgue’s Dominated Convergence Theorem and:

/ inf o, du = inf /an dp = sup/Tn dp = /suan dy.
neN neN neN neN

Because infpeno, > sup,ey7n we have f\infneN On — SUP, ey Tn| du = 0.
Therefore inf, ey 0y = sup,,ey 7 p-a.e.. Because inf,enon > f > sup,en Tn,
f =inf,enoyn = sup,,ey T p-a.e.. Therefore f is integrable and

/fd/J:/lnfo—ndﬂ—ilég/TndN:(R):/fdM'
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2.52

2.53

2.54

2.4 The U-integral on Riesz space valued functions

Definition. A sequence (an)nen in a Riesz space F is said to converge relative
uniformly to an element a € E if there exists a u € ET such that for all e > 0
there is a N € N such that n > N implies |a,, — a| < eu. The notation

Tuw
an — a,

is used to denote that the sequence (a,)nen converges relative uniformly to
a. We call a sequence (ap)nen relative uniformly convergent if there exists an
a € E such that (a,)nen converges relative uniformly to a.

Theorem. Let E be a Riesz space. Let ay,b,,a,b € E for alln € N.
(i) Suppose E is Archimedean. If a, —= a, a, — b, then a = b.
(ii) Let o, B € R. If ap, — a, b, —= b then

aa, + Bb, — aa + Bb, an Vb, —5 a Vb, an A by 2 a AD.

(iii) Suppose E is Archimedean. If a,, | and a, —= a then a, | a and if by, T,
b, — b then b, 1.

Proof. (i) Let € > 0. Let u,e € E* and N, M € N be such that
n>N=la—a,| <eu, m>M=|b—a,|<ce.

Then |a — b| < |a — ay| + |ap, — b < e(e+wu) for all n > NV M. Thus for all
e > 0 we have |a — b] < e(e + u). Because F is Archimedean, we have a = b.
(i) Let € > 0. Let u,e € ET and N, M € N be such that

n>N=la—a,| <eu, m>M=|b—by,|<ce.

Then |aa+Bb— (aan+5by)| < |alla—an|+|8]1b—bn| < e(|alu+]|5]e). Therefore
aan, + Bb, — aa + Bb. Because a Vb = ‘ITH’ + @ and a A b= “TH’ — |a;b‘,
we only have to show |a,| — |a|, but this follows from n > N = ||a| — |a,|| <
la — ay,| < eu.

(iii) Because E is Archimedean and a,, — a, we have |a,, —a| | 0. a,, } implies
(an,—a)” 1. Then (a, —a)” = 0for all n € N because 0 < (a, —a)” < |ap,—al |
0. Therefore a,, — a = |a, — a| | 0, and thus a,, | a. O

Notation 6
For E a Riesz space and v € E*, we will write E, for the principal ideal
generated by u. Thus E, = {J,, cy[—nu, nu], where [a,b] = {d € E': a < d < b}.

Definition. Let E be an Archimedean Riesz space. Let u € ET. For a € E,,,
define
|all := inf{\ € [0,00) : |a|] < Au}.

Because E is Archimedean |a| < ||a||,u for all a € E and || - ||, is a Riesz norm
on E,. Notice that if F is a normed Riesz space, with norm || - ||, then because
la| < ||al|,u we have

lall < llullllall. (o € Eu). (%)
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2.55

2.56

2.57

Definition. An Archimedean Riesz space E is called uniformly complete if for
all u € ET, the principal ideal generated by u, E,, is complete with respect to
the metric defined by the norm || - ||,. Because | - ||, is a Riesz norm for all
u € ET, E is uniformly complete if and only if (E,, | - ||.) is a Banach lattice
for all w € ET. If the norm is not mentioned, then F, is equipped with the
norm || - |-

Theorem. Let E be a Banach lattice. Then E is uniformly complete.

Proof. Let u € E* and (ay)nen C Ey be a || - [|,-Cauchy sequence. We have to

show that this sequence has a limit with respect to || - ||, in E,. By inequality
(%), mentioned in Definition (an)nen is also a || - ||-Cauchy sequence. So

there exists an a € E, such that ||a, —a|| — 0. Let € > 0. By assumption there
exists a N € N such that n,m > N implies |a, — a,,| < eu. By Lemma we
therefore have |a, — a| < eu for n > N (notice that thus a € E,). And thus
lan, — all, — 0. O

Theorem. Let E be an Archimedean R-complete Riesz space. Then E is uni-
formly complete.

Proof. Let w € ET. Then E, is Archimedean. Let (an)nen and (by)nen be
sequences in E,, such that {a,, + by, : n,m € N} has a supremum in F,. Then
{an : n € N} has a supremum in E. Because sup,,cy an < sup{a, + by, : n,m €
N}, even sup,,cyan € E,. So E, is Archimedean and R-complete.

We prove that E, is complete with respect to the norm || - ||,,. This is the case
if the following holds for all sequences (ay)nen in Ey, (see 10.2 of [PR]):

If > en llanllu < 0o, then (an)nen is summable in E,,.

So suppose (an)nen is a sequence in E, with }° _yllan|le < co. Because

llanlll = |lan|| for all n € N and a;}, a;,; < |a,|, we have
Z llad Il Z llaz, [lu < oo
neN neN

So if both the sequences (a;} )nen and (a,, )nen are summable in E,,, then (a,)nen
is summable in F,. Therefore we may assume a,, > 0 for all n € N. Because
an = |ayp| < ||an||wu for all n € N, we have

N
0< Zan < Z lan | wu (N eN).
n=1

neN

Let b, = |lan|lwu — a, for n € N (notice that b, > 0 for all n € N). Then
S en lanluu is the supremum of {30 a, + b, : N € N} = {XN [lanuu :
N € N} in E,,. Because E, is R-complete, {Zgzl an : N € N} has a supremum
in E,. For all M € Nand N > M + 1 we have, ZQLM an <D s llanlluu

and thus supy> 41 Zi\,]:M an <Y s g llanllwu. Therefore

N M N
M—oo
sup g an — E anll = sup E anl| < E llan|le —— 0,
NeN, 3 n=1 llu NzM+1l, = llu >4t
i.e. (ap)nen is summable in F,. O
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2.58

2.59

2.60

2.61

2.62

Definition. Let E be a uniformly complete Riesz space. A function f: X —
E is called U-integrable if there is a u € ET such that f(X) C F, and the
function f : X — E,, is Bochner integrable. Thus f is U-integrable if there are
u € E* and a sequence of simple functions (s, )nen with values in E,, such that
Ilf = snllu = 0 prae. and [ ||f — splle dp — 0.

Lemma. Let E be an Archimedean Riesz space. Let u,e € ET and k > 0. If
u < ke then || |le < &l ||u and E,, C E.. Moreover if u = ke then ||-|le = & ||«
and B, = E,.

Proof. Suppose u,e € ET and x > 0. By definition of the principal ideal we
have E,, C E.. For a € E, we have |a|] < |||l u < |la]|uke, so ||a|le < ||a|l.x by
definition of || - ||¢.

Theorem. Let E be a uniformly complete Riesz space. Let u,e € EV and
k > 0. Suppose u < ke. Let f: X — E. Suppose f(X) C FEy and f : X — E,
is Bochner integrable. Then f : X — E. is Bochner integrable and the Bochner
integrals agree.

Furthermore, if f,g: X — E are U-integrable, then there exists a u € ET such
that f(X),9(X) C E, and f,g: X — E, are Bochner integrable.

Proof. Suppose (8, )nen i a sequence of simple functions with values in E,, such
that ||s,,— |l = 0 pra.e. and [ ||s, — f|]» dpe — 0. Then by Lemma[2.59| we also
have [|s, — f|le = 0 p-a.e. and [ ||s,, — f|lc du — 0. Let a € E,, be the Bochner
integral of f : X — E,. Then a € E, and |la — [ s, dulle < &lla — [ sn dpllu,
so the Bochner integrals agree.

Suppose f,g: X — E are U-integrable. Let w € ET and v € ET be such that
f(X)C E, and g(X) C E, and such that f : X — F,, g : X — E, are Bochner
integrable. Then e = uVwv € ET and u < e, v < e and thus f,g: X — E, are
Bochner integrable. O

Proposition. Let E be a uniformly complete Riesz space. Let f : X — E,
u,v € ET. Suppose f(X) C E, and f(X) C E, and suppose f : X — E, is
Bochner integrable with integral a and suppose f : X — E, is Bochner integrable
with integral b. Then a = b.

Proof. Let e = u Vv. Then by Theorem f X — E. is Bochner integrable
and if ¢ is the Bochner integral of this f, then a = cand b = c. O

Definition. Let E be a uniformly complete Riesz space. Let f : X — E be
U-integrable. We define the U-integral of f by:

/f dp = lim /sn dy,
n—oo

where (s, )nen is a sequence of simple functions for which there is a u € ET
such that f(X) C Ey, ||sn — fllu — 0 p-a.e. and [ ||f — sp|lu dp — 0 (the limit
lim,, oo [ 85, dp is taken in the Banach lattice (Ey, |- ||.)). Thus the U-integral
of f is the Bochner integral of f : X — E,,.

If F is a Banach lattice, a U-integrable function f : X — F is Bochner integrable
(this is a consequence of the inequality (x), mentioned in Definition see
also Theorem [3.9)).
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2.63 Theorem. Let E be a uniformly complete unitary Riesz space, with unit e €
ET. Let f: X — E. Then f is U-integrable if and only if f : X — E, is
Bochner integrable (here E. is the space E equipped with the norm | - ||.). For
such integrable f we have

(B)-[ f du=(U)-[ f du.

Proof. The only if part will be clear by definition of U-integrability.

If f is U-integrable, there exists a u € ET such that f : X — E, is Bochner
integrable. Because e is a unit, there exists a k > 0 such that v < ke. By
Theorem f: X — FE. is Bochner integrable and the integrals agree. O

2.64 Corollary. A function f : X — R is U-integrable if and only if f is integrable
in the classical sense. For such integrable function f, the U-integral and the
classical integral coincide.

Proof. This is a consequence of Theorem and Theorem because R is
uniformly complete with unit 1. O

2.65 Theorem. Let E be a uniformly complete Riesz space. The set of U-integrable
functions X — E forms a Riesz space. We call this space

EU(X,.A,M,E).
Then [-dp: Ly(X, A u, E) = E, fw [ fduis a positive linear map.

Proof. Suppose f,g : X — E are U-integrable and let v € E* be such that
f: X — FE, and g: X — E, are Bochner integrable (see Theorem . Then
also A\f + ¢ : X — E, is Bochner integrable for A € R. Therefore \f + g is
U-integrable and [Af +gdpu=A[ fdp+ [gdufor X e R.

If f : X — Eis U-integrable, then | f| is U-integrable by T heorem Therefore
Ly (X, A, u, E) is a Riesz space.

Positivity of the map f +— [ f du follows by O

2.66 Theorem. Let E be a uniformly complete Riesz space. Let f : X — E be a
function. Then the following are equivalent:

(1) f is U-integrable.

(II) There are u € ET, a sequence of simple functions X — E, (sy)nen and a
sequence of positive o-simple functions X — [0,00), (pn)nen, such that

Sp —upp < f < sy +up,  p-ae., /pn dp — 0,
/f d,u:sup/sn—upn dp = inf/sn—i—upn dp.
neN neN

(III) There are uw € E*, a o-simple function m: X — [0,00) and a sequence of
simple functions X — E, (Sn)nen such that

1 1
Sp— —urm < f < s, +—ur p-a.e.,
n

n

1 1

/fd,uzsup/sn—fmrd,u: inf s, + —um dp.
neN n neN n
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Proof. (I) = (II). Assume f is U-integrable. Let u € E and (s,)nen be a se-
quence of simple functions such that ||s, — f|l, = 0 p-a.e. and [ ||f—sp /o dp —
0. By Theorem for all n € N there is a o-simple function p, : X — R with

1
If = snllu < pn p-ae.  and /Pn dp — / [f = snllu dp < n (n € N).

So [ pn dpp — 0. Then we have |f(z) — s,(z)| < upn(z) (z € X,n € N) and
thus
Sn —upp < f < sy + upy (n €N).

And because s, is simple and up,, is o-simple, s,, —up,, and s,,+up,, are o-simple
functions. We have

| [ £an= [ supnanll, <1 7= s0 dullu+ [ pu
§/||f—8n||u du+/pn dp — 0.

By Lemma, [I.7] we conclude

/f d,uzsup/sn —up, dp = inf /sn—l-upn du.
neN neN

I = (IH) Assume (IT). By switching to subsequences we may assume that
[ pn A < — for all n € N. Then the sequence (vazl ip;)Nen is an increasing
sequence of mtegrable functions X — R (see Theorem [2.31]) for which

N
Z/ipidugl (N eN).
i=1

By the monotone convergence theorem there is an integrable function a such
that a = Y2, ip; p-a.e.. Therefore p, < %a p-a.e.. By Theorem there is
a o-simple function 7 with @ > a. We have ||f — s,[l, < 27 p-a.e. and thus
Sn— 2um < f < sp, + 2ur  prace.. In a similar way as in (I) = (II):

H/fd,u /sn:I: uwdu” <H/f—snd/¢||u+1u/7rdu—>0

and thus (by Lemma

1 1
/fdp:sup/snffwrdp:inf/anrfuwdu.
neN n neN n

(III) = (I). Assume (III). Because [ f=snllu < 17 p-a.e. wehave ||f—sp[lu — 0
prace. and [||f —spllu dp < L [7dp—0. So f is U-integrable. O
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2.67

2.68

2.69

2.70

2.71

2.5 The Pettis integral on Riesz space valued functions

Recall the definition of the Pettis integral of In Lemma [1.37] we have
seen that V' separates the points of a Banach space V. For a Riesz space E,
E~ doesn’t have to separate the points of E as we have seen in Example [T.4]
But by assuming that E~ or a subset of it separates te points, we can give a
similar definition of the Pettis integral for functions with values in E:

Definition. Let E be a Riesz space, with the property that E~ (E7’) separates
the points of E. A function f : X — FE is called strongly Pettis integrable
(weakly Pettis integrable) if there is a v € F such that for all ¢ € E~ (for all
¢ € E7):

sofeLXAp and o) = [oof du

There is only one v with this property, because E~ (E) separates the points of
E. This v we call the strong Pettis integral (weak Pettis integral) of f, denoted

by (sP) f du ((WP)-ff d,u) or simply [ f du.

Notation 7
We use the following notations:

Lop(X, Apu, E)={f:X — E: f is weakly Pettis integrable},
Lip(X, A u, E)={f:X — E: f is strongly Pettis integrable}.

Comment. In the above definition we could replace “for all ¢ € E~” respec-
tively “for all ¢ € EY” by “for all ¢ € E~1” respectively “for all ¢ € EXT7,
because E~ and E7’ are Riesz spaces.

Comment. Note that all simple functions are strongly /weakly Pettis integrable
and that the strong/weak Pettis integral of a simple function coincides with the
integral of a simple function defined as in [1.19

Comment. (Comparing the Pettis integrals)

It will be clear that if E_’ separates the points of E, then a strongly Pettis
integrable function is weakly Pettis integrable and the weak Pettis integral co-
incides with the strong Pettis integral. There are spaces for which E~ separates
the points of E and for which £y = {0} (Example[L.18). If E;" (and thus E~)
separates the points of F, then a weakly Pettis integrable function doesn’t have
to be strongly Pettis integrable as we will see in Example

Also notice that if E is a Banach lattice, then E' = E~ (by Theorem [1.8)).
Therefore a function f: X — FE is Pettis integrable if and only if it is strongly
Pettis integrable and the strong Pettis integral is equal to the Pettis integral.

Lemma. Let E be a Riesz space. Suppose that E~ (EY') separates the points
of E. Let a € E. Suppose ¢p(a) > 0 for all p € E~T (for all ¢ € E). Then
a>0.

Proof. Suppose E™ separates the points of E. Suppose a 2 0. Then a= > 0
and therefore there exists a ¢ € E~T with ¢(a™) > 0. Let p : E — [0,00) be
defined by

p):=¢(")  (z€E).



2.72

2.73

Then p(Az) = ¢((A\x)") = Ap(zT) = Ap(z) for all z € E and A > 0. And
plx+y) = o((z+y)") < o@™ +y") = ¢a¥) + d(y™) = p(z) + p(y) for all
z,y € E. Thus p is sublinear. Let D := Ra* + Ra~. Then D is a linear
subspace of E. And for A\, x € R we have (using that a™ L a™)

et +ra )t =WTat =N "at +rta —kTa)T

=Atat +kTa.
Therefore

PO + ra~) = d((ha* + ra~)h)
=¢(A\Tat +rta") > ko(a).

By Hahn-Banach (see I11.6.2 of [Con07]) there exists a linear function ¢ : E — R
with

Yv(AaT +KaT) = ko(aT) (A k €R),

¥(z) < p(x) (z € E).
So z < 0 implies ¥(z) < p(z) =0, i.e. v € E~T. But ¢¥(a) = —¢(a™) < 0. So
for a # 0 there exists a ¢ € E~T such that ¢(a) < 0. Thus if a € E is such
that ¢(a) > 0 for all ¢ € E~T, then a > 0.
Suppose E7’ separates the points of E. Suppose a 2 0, i.e. a~ > 0. Then there

exists a ¢ € EXF with ¢(a™) > 0. We are done when we can prove that the 1

obtained as above is g-order continuous. Let (u,)nen be a sequence in E for
which u,, } 0. Then 0 < ¥(u,) < p(u,) = é(u}) = é(uy,) J 0. So ¢ is indeed
an element of £ 1. 0O

Corollary. Let E' be a Riesz space for which E~ respectively E separates the
points of . The maps

(sP)—/~d,u:£sp(X,A,,u,E)—>E, fl—)(sP)—/f du,

and

(WP)-/- dp: Lyp(X, A u, E) — E, fe (WP)-/f dp,
respectively, are positive linear maps.

Example of a Riesz space, even a Banach lattice for which the strongly
and the weakly Pettis integrable functions do not form a Riesz space.
Consider the measure space (N, P(N), uo).

Recall Example (we will use notation introduced in this example). Let
f N — ¢y be given

f - (fn)nEN - (617_613627_627837_637' . )
Then for n € N and i € N:

1 if2i —1=mn,
fa(i) =< -1 if2i=n,
0 otherwise.
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2.75

Let b € ¢1. Then

/|¢b0f| dpo =Y |épo f(n)| = Z’Zbifn(i)

<IN [bifald)]

neN neN  ieN neN ieN
:Zz‘bifn(i)‘ 222|bi| < 00 (%)
iEN neN ieN

Thus ¢ o f is integrable for all ¢ € ¢j. Of course also [ |¢y o |f|| duo <
> nen Doien 1bifn(i)] for all b € €', thus also ¢ o |f| is integrable for all ¢ € cf’.
Let b € /1. By (%) we can apply Fubini’s Theorem:

JETIZTTED 39 STAUED 3D SUTAUED SO

neNieN 1€EN neN €N

Thus [¢o fdug = 0 for all ¢ € ¢§. Thus f is (strongly and weakly) Pettis
integrable with [ f dug = 0.

Suppose v € co is such that ¢y(v) = [¢p o [f| duo = D, en Doien bil ful(@)] =
ZiEN Z’nEN bz|fn(l)| = Zieri + bz = 2Zieri for all b € 61, then Up =
¢e, (v) = 2 for all n € N, which leads to a contradiction with v € ¢o. So |f] is
not (strongly or weakly) Pettis integrable.

Comment. A strongly Pettis integrable function is weakly measurable. We
have seen that the strongly Pettis integrable functions do not have to form a
Riesz space. As one might have noticed, in Theorem [2:4] we did not prove that
the space of weakly measurable functions is a Riesz space. This is because this
does not have to be true, as will be seen in the next example.

Example of a weakly measurable function f, for which |f| is not
weakly measurable.
This is a more detailed version of Example 1.1 of Chapter II in [Jeu82].
Consider the measure space ([0, 1], B, A). Let D be a subset of [0, 1] that is not
Lebesgue measurable (see [Hal50] Chapter III, 16D). Let X be the direct prod-
uct group {—1,1}%. Then there exists a Haar measure y on X (see Theorem
1.3.4 of [DEQY]). Because X is compact, y is finite. Let E be the Banach lattice
and Hilbert space L?(X, B(X), ). Let {f, : w € [0,1]} be the set of coordinate
functions on X, i.e. f,(z) = x(w) for z € {~1,1}%1. Because f,, is continuous
and bounded for all w € [0,1] and y is finite, f,, € L*(X, B(X), u).
Suppose w1, wy € [0,1] and w; # wy. Let y € {—1,1}%1 be given by y(w) = 1
for all w # w; and y(wy) = —1. Let A = {z € X : z(w1) = z(w2)} and
B={z€ X :z(w)=—x(ws2)}. Then B = yA and thus p(A) = u(B). Because
I.Jiwl () fun () = 1{9:6X:9:(w1):w(w2)}(33) - 1{16X:w(oJ1):—w(w2)}(‘T) for all z € X we
ave

o ) = [ For @) () ) = (4) = u(B) = .

Let w € [0,1]. Then f,(z)?> = 1 for all z € X, therefore (f,, f,) = 1. We
conclude {f, : w € [0,1]} is an orthonormal set in L*(X,B(X), u1).
Define f : [0,1] — E by

fw)=1pw)fo  (wel0,1)).

Let ¢ € E'. f w € D and (¢, f,,) # 0, then ¢ o f(w) = (&, f(w)) # 0. Because
{fw : w € 0,1]} is an orthonormal set, by Corollary 1.4.9 of [Con07], we have
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(@, fo) # 0 for at most countably many w € [0,1]. Therefore ¢ o f = 0 p-a.e.

and thus ¢ o f is measurable for all ¢ € E’.

Note that for all w € [0,1] and = € X, |f,|(z) = |fu(xz)] = 1. Therefore

|fl = 1p. So for ¢ = 1 in E’, then ¢ o |f|(w) = (1,1) = 1 for w € D and
o|f|(w) =0 for w e [0,1]\ D. Thus ¢ o |f| = 1p. Therefore |f]| is not weakly

measurable.

Comment. We have L?(X, A, u)> = L*(X, A, u)~ = L*(X, A, 1)’ by Theorem
Therefore by Example we also see that the set of functions f for which
¢ o f is measurable for all ¢ € E’ does not have to be a Riesz space.

Theorem. Let E be a Riesz space. Suppose that E separates the points of E.
Let f,, be a sequence of weakly Pettis integrable functions with0 < f1 < fo <
Suppose for all x € X, sup,cy fn(x) exists in E and also that supnefon d,u
exists in E. Then the function f : X — E given by f(z) = sup, ey fn(x) is
weakly Pettis integrable and

J 1 auw=s [ 52 an

Proof. For all ¢ € ETT, (¢ o fn)nen is an increasing sequence of u-integrable
functions. By Comment we have

supgo fr=¢osup fy=¢of  (¢p€ET).

neN neN

Let ¢ € E’". By the monotone convergence theorem of Levi, we have

pof= sggqﬁofn € L(X,A,u) and
/¢Ofdu=/sup¢ fn du—sup/¢0fn dp.
Writing vy, = [ f, dp we have by o-order continuity of ¢
ot rr.) = spotos,) =sup [ o5 dn

So for all ¢ € EX'" we have
pofel(X, A p) and supvfn /qbof dp.

So we see that f is weakly Pettis integrable and [ f du =sup,cy [ fn dp. O
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3.1

3.2

3.3

3 Comparing the integrals

3.1 Comparing the R-integral with the Bochner integral

Lemma. Let E be a Banach lattice. All o-step functions p : X — E are
strongly measurable.

Proof. Suppose p = > yanla, for some sequence (a,)nen in E and a se-
quence (Ap)nen of disjoint sets in A. Define s, := > a;14, for all n €
N. Then s, is a step function for all n € N. And for all z € X we have
[lp(x) — sn(x)|| = 0. Therefore p is strongly measurable. O

Example of an R-integrable function, even a o-simple function, that
is not Bochner integrable.
Consider the measure space ([0,1],8,A). Let E be the Banach lattice C,(R) of
bounded continuous functions on R. For n € N let a,, € Cp(R) be the function
given by

an(z) = (1 =2z —n|) V0.

And let A, =[n,n+1) forn € N. Then o0 =}
R — E.

nen @nla, is a o-step function

a a as ay

Cy(R)

0 I

Figure 4: A picture of o

We have ||an[|oc = 1 for all n € N, therefore [|o]|oc = >, cy1a
|lo]lco is not integrable. But the set {Zgﬂ w(Ap)an : N € N} has a supremum
in Cy(R), because ) yan € Cp(R). So o is a o-simple function and thus R-
integrable, but ||o] is not integrable and therefore o is not Bochner integrable.

= 1[1’00). So

n

Theorem. Let E be a Banach lattice. Let 0 : X — E be a o-step function. If
lell + X — [0,00) is integrable (and thus o is Bochner integrable by Theorem
and Lemma , then o is o-simple and thus R-integrable.

Proof. Because 0 = o7 — 0~, with o7 and o~ positive, we assume ¢ to be
positive. Suppose that ¢ : X — E can be written as ) yanla,, for a
sequence (an)nen in BT and a sequence (A, )nen of disjoint sets in A. If ||o]| is
integrable then we have [ |o|| du = Y,y 11(An)|lan|| < co. By completeness
of E, > cni(An)a, exists. Therefore the sequence (Zﬁ;l w(Ap)an)Nen is
increasing and has limit ) u(An)a,. By Lemma the sequence has a
supremum in £, which is ) p(An)an. O
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3.4

3.5

Example of a Bochner integrable function with values in a Banach
lattice that is not R-integrable.

Consider the group (0, 1] with addition modulo 1, which is isomorphic to the
circle group T (i.e. the multiplicative group of complex numbers of absolute
value 1). Consider the measure space (T, B(T), ), where T is the circle group,
 is the Haar measure on T and B(T) the associated o-algebra (u(zA) = p(A)
for all z € T and A € B(T) and u(T) = 1). The Haar measure on T coincides
with the Lebesgue measure on (0, 1], in the following way:

Let ¢ : (0,1] — T be given by ¢(t) = e*™. Then u(A) = M\(¢~1(A)) for all
A e B(T).

In this example we write T for the space (0, 1] with addition modulo 1, equipped
with the Lebesgue measure on the Lebesgue measurable subsets of (0,1].

Let E be the Banach lattice L!(T, B(T), ). Then E is isomorphic in a natural
way to the Banach lattice L'([0,1],B[0,1],A). This E is separable (see 9.6 of
[PR])

e The function h : (0,1] — R given by h(z) = ﬁ is integrable. So there
is a sequence of simple functions (hy,)nen such that h, 1 h and thus (by the
Monotone Convergence Theorem) [ h,, dA 1 [ h dA.

o Let f: T — LYT,B(T), 1) be the map given by f(z) = L,h, where L h :
y +— h(y — ). Let (z,)nen be a sequence in T that converges to some x € T.
Then || Ly, h — Lyh||p1(ry — 0 by Lemma 1.4.2 of [DE09]. Thus f is continuous
and hence Borel measurable. Because L!(T,B(T), u) is separable we conclude
with Theorem that f is strongly measurable. And because ||f]| : = —
| Leh|l 1 ery = Rl L1 (), we see that || f|| is integrable. Then with Theorem m
we conclude that f is Bochner integrable.

e We show that f is not R-integrable. This we do by showing that there is
no o-simple function o with f < o A-a.e.. And this is a consequence of the
following (which will be proved):

If a € LY(T,B(T), n) and A € B(T) are such that f(z) < a for all z € A, then
A(A) =0.

Suppose a € L*(T) and A € B(T) are such that f(x) < a for all z € A. Then
for all z € A and p-almost all y € T:

—_

aly) > (f(x)(y) =h(ly—z) = .

(y) = (f(2))(y) = h(y —z) N

Let K € N. Then for y-almost all z € A we have a(7z + x) > K. Therefore
M{y e T:aly) > K}) > M7z + A) = A(A). Because a € L'(T, B(T), n), we
have limg 00 A({y € T : a(y) > K}) = 0 and thus A(A) = 0.

Corollary of Theorem Let E be an R-complete Banach lattice. Suppose
f: X — FE is R-integrable and Bochner integrable. Then

®)-f 1 du=(B)- £ dn.

Proof. By Theorem and Theorem fT and f~ are R-integrable and
Bochner integrable. Therefore we may assume f > 0.
Then the proposed identity is a corollary of Theorem and Theorem [1.32

(see Comment |1.40)). O
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3.7

3.2 Comparing the U-integral with the R-integral

Theorem. Let E be a uniformly complete Riesz space. Suppose that a function
f X — FE is U-integrable. Then f is also R-integrable and

(®)-f £ du=()-[ £ an

Proof. By Theorem there are u € ET, a o-simple function 7 : X — [0, 00)
and a sequence (S, )nen of simple functions X — E such that

1 1
Sp——unr < f < s, + —um p-a.e.,
n n

1 1
/f dp = sup/sn — —um dp = inf s, + —ur du.
neN n neN n

Because s, and 7 are simple and o-simple respectively, s,, — %mr and s, + %uﬂ
are o-simple for all n € N. Thus f is R-integrable and the R-integral of f
coincides with the U-integral. O

Example of an R-integrable function, even a o-simple function, that
is not U-integrable.

Consider the o-simple function o : R — Cp(R) of Example We have already
seen that o : X — Cp(R) is not Bochner integrable (Cy(R) is equipped with
I “llec = Il - ll1, where 1 € Cy(R) is the function = — 1). Because Cp(R) is
unitary and uniformly complete, we conclude by Theorem [2.63] that o is not
U-integrable.
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3.9

3.3 Comparing the U-integral with the Bochner integral

Example of a Bochner integrable function that is not U-integrable.
Consider the measure space (N, P(N), uo). Let E be the Banach lattice ¢1. Let
f:N — FE be given by

1 1 1 1
f = (fn)nen = (€1, —€2, —€3, —e4, —e€5,...).

47797716 7725
|| £1l is the function given by n — n=2. So because Y, .y =z < 00, f is Bochner
integrable. f is U-integrable if and only if there exists a v € FE such that
f(X) C E, and || f||,, is integrable by Theorem (because for all u € ET for
which f(X) C E,, f: X — E, is strongly measurable by Lemma [3.1)). And

[fllu = > nen | fulluliny, where

I fllu = inf{A > 0: fn(k) < Au(k) for all k € N}
1

=inf{A>0: % <Jdu(n)} = g

So f is U-integrable if and only if there exists a w € ET such that

J 180 = Sl = 3 s < .

neN neN

Suppose || f||, is integrable for some u € ¢'. Then for all n € N, u(n) < 1 im-

plies #(n) > L. Hence for all n € N we have #(n) +u(n) > 1. But because

both the sequence (u(n)),en and the sequence (ﬁ(n))"GN are summable, the

sequence (u(n) + should be summable. But this leads to a contra-

1
n2u(n))neN
diction with #(n) +u(n) > L for all n € N. So we see that f is a Bochner
integrable function which is not U-integrable.

Theorem. Let E be a Banach lattice (which is uniformly complete by Theorem
. Suppose that a function f: X — E is U-integrable. Then f is Bochner
integrable and

®)-f 1 du= (V) £ dp.

Proof. Let ||-|| denote the norm of the Banach lattice E. Then this theorem is a
consequence of the following inequality, metioned in Definition foru ¢ E+:

lall < llullllall. (o€ Eu).

This theorem is also a consequence of Theorem m (IIT), by considering the
inclusion map T : E,, — F. O
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3.4 Comparing the U-integral with the strong and weak
Pettis integral

As we have seen in Comment a Bochner integrable function is Pettis inte-
grable and the integrals coincide. And the converse doesn’t have to hold. In this
paragraph we will see that -for suitable Riesz spaces- a U-integrable function is
strongly (weakly) Pettis integrable. And the converse doesn’t have to hold.

Theorem. Let E be a uniformly complete Riesz space. Suppose that E~ (E7)
separates the points. Let f : X — E be U-integrable. Then f is strongly
(weakly) Pettis integrable and the strong (weak) Pettis integral coincides with
the U-integral.

Proof. Let u € ET be such that f : X — FE, is Bochner integrable. Let ¢ € E~
(¢ € EZ). Then ¢|g, € (E,)~ and thus ¢ € E/, (by Theorem [L.8).
As we have seen in Proposition [.32] we have

o[ £ am =ole.([ 1 aw= [oleof du=[oordu

So f is strongly (weakly) Pettis integrable and the strong (weak) Pettis integral
coincides with the U-integral. O

Example of a strongly and weakly Pettis integrable function with
values in the Banach lattice ¢y that is not U-integrable.

Consider the measure space ([0,1],58,)). Let E be the Banach lattice ¢y (for
which ¢ = (co)™ = (¢)2’) and the function f as in Comment

C
=3 e
= n n [2—7172—714—1).
neN

Then f is U-integrable if and only if there exists a u € ¢ such that f(X) C E,

and || fllu = > nen %”en”ul[z—n’z—n#»l) is integrable, i.e. when >, 1 lenllu <

oo (because for all w € ET for which f(X) C E,, f: X — E, is strongly
measurable by Lemma [3.1)). We have u(n) > 0 for all n € N, because f(X) C
E,,. We also have

1
||€nHu = inf{)\ € [0,00) te, < )\u} —

u(n)

So f is U-integrable if and only if there exists a u € car such that

3 #(n) =3 ealhu < ox.

neN neN

But for all u € ¢, u is bounded, say u(n) < M for some M > 0 and all n € N.

Thusﬁzﬁand
1 1 1
— > =N -
Znu(n)_MZn
neN neN

So f is a (strongly and weakly) Pettis integrable function (see Comment [2.70)
which is not U-integrable.
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3.5 Comparing the R-integral with the weak Pettis inte-
gral

Theorem. Let E be a Riesz space. Suppose that E separates the points. Let
f X — E be an R-integrable function. Then ¢o f is integrable for all ¢ € E.
In particular f is weakly Pettis integrable and the weak Pettis integral coincides
with the U-integral.

Proof. Suppose ¢ € EXt. Let o = ZnEN anl4, be a positive o-simple function.
Then because ¢ is o-order continuous and linear, we have

¢(/Udﬂ SUPZM n)an —supr

Thus ¢ o o is integrable (using Theorem [2.51)) and

o([odn) = [éo0du

Let (07)nen, (Tn)nen be sequences of o-simple functions with

T < f<o, pae (neN), ing/an dp = sup/Tn dp.

ne neN

Then we have ¢o1, < po f < oo, pae (necN) because ¢ is positive.
And because ¢ is o-order continuous we have

neN

o(int, [ o dp) = inf o [ o ap) = int [ 600, du
o(sup [ 7 d) = sup o [ 7, dp) = Sup/¢07n .

neN neN
Therefore ¢ o f is integrable and ¢([ f du) = [¢o f du. O
Example of a weakly and strongly Pettis integrable function with

values in the Banach lattice ¢y that is not R-integrable.
Recall Example 2.73] where f: N — ¢q is given by

f - (61) —€1,€2,—€2,€3, —€3,... )
We have seen that f is (weakly and strongly) Pettis integrable. Because f is a o-
step function and ¢y is R-complete, by Corollary it is R-integrable/o-simple
if and only if fT and f~ are R-integrable/o-simple. We have
f+ = (6170762,0,63,0, .. ')a
!fi ::(0,61,0,62,0,63,...)

Because {ij:l en : N € N} has no supremum in ¢g, both f* and f~ are not
o-simple and thus f is not R-integrable.

So there exists a o-step function that is weakly and strongly Pettis integrable,
but not R-integrable. The o-step function of Example is not positive (or
negative), this is essential as we will see in the next theorem.

52



3.14

3.15

3.16

Theorem. Let E be a Riesz space. Let p be a positive o-step function. Suppose
E™~ separates the points of E. If p is strongly Pettis integrable, then p is R-
integrable.

Suppose that even E7 separates the points of E. If p is weakly Pettis integrable,
then p is R-integrable.

Proof. Suppose p = Y _ya,la, for some sequence (a,)nen in Et and a se-
quence (Ap)nen of disjoint sets in A.

Suppose E~ separates the points of E and suppose p is strongly Pettis inte-
grable. By definition (and with Theorem we have for all ¢ € E~T:

o[ pam = [o0pdu= [T olata, d

neN
N ) N
= i}é%; #(An)é(an) = sup ¢>(ng1 p(An)an)

Therefore (Lemma [2.71)) (sP)-f p dp > Zﬁrzl w(Ap)ay, for all N € N. Suppose
h € E is such that h > Zﬁle w(Ayn)ay, for all N € N. Then for all ¢ € E~T:

N

o(h) > sup &> p(An)an) = ¢<<sP>-/ p du).

NeN n=1

And thus h > (sP)[ p dp, i.e. (sP)f p du is the supremum of {3V | u(A,)ay :
N € N}. Therefore p is a o-simple function and thus R-integrable.

If £ separates the points of E' and p is weakly Pettis integrable, the proof as
above can be copied except E~ has to be replaced with ES* . O

Corollary. Let E be a Riesz space for which E. separates the points of E. Let
p: X — E be a positive o-step function. Then p is R-integrable (o-simple) if
and only if p is weakly Pettis integrable.

Example. Consider the measure space (N, P(N), ug). Let E be the Banach
lattice L' (X, A, y1). Then E = E~ = E’ (see Theorem[L.16)). Let f : N — E*.
Then (by Corollary f is R-integrable (o-simple) if and only if f is Pettis
integrable (which is the same as weakly and strongly Pettis integrable here).
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3.19

3.6 Comparing the R-integral with the strong Pettis in-
tegral

Example of a strongly and weakly Pettis integrable function that is
not R-integrable.
By Corollary [I.16] Example [34] also yields us a strongly and weakly Pettis
integrable function that is not R-integrable as we have seen in Comment
and Comment 2701

Lemma. Let E be a Riesz space. Let o be a positive o-simple function. Then
¢ o o is integrable for all € E~ and

[ocoanzo[oan ©er),
[ocodu=o(foan) @eE).

Proof. Let ¢ € E~*. Suppose 0 = ), -y anla, for a sequence (an)nen in ET
and a sequence (A, )nen of disjoint sets in A. Then for all N € N:

N N N
Z w(An)p(an) = ¢(Z (An)an) < ¢(sup Z w(An)an) = ¢(/O' dp).
n=1 n=1 NeNn:l

Therefore {ZnN:1 p(An)p(an) : N € N} has a supremum in R and thus ¢ o o
is integrable (by Theorem [2.51)) with [ ¢ oo du = supyey 25:1 w(An)d(an) <
¢([ o du) (this is an equality if ¢ € E-). O

Theorem. Let E be a Riesz space for which E~ separates the points of E.
Suppose f : X — ET is R-integrable and strongly Pettis integrable. Then

®)-f £ dn=(P)-f 1 .

Proof. Suppose (7, )nen and (0, )nen are sequences of positive o-simple func-
tions with 0 < 7,, < f < 0, p-a.e. for all n € N and with inf,ey [0, dp =

sup,ey [ 7 dp. By ¢ o o, is integrable for all n € N and [ ¢ oo, du <
#((R)of oy, dp) for all ¢ € E~F. Then for all ¢ € E~T and n € N we have

o(6PY[ 1w = [0 dn< [o00m < o((R)f o )

Therefore by Lemma [2.71] we have (sP)f f du < (R)f 0, du for all n € N. We
thus have (sP) f dp < inf,en(R)-[ 0 d = (R)of f dpe.

We assume 7, is a simple function for all n € N (see Theorem. Because all
simple functions are strongly Pettis integrable, 7, is strongly Pettis integrable.
Because 0 < 7, < f, we have (sP)- 7,, dp < (sP)+ f du by Corollary for
all n € N. Therefore (R)-[ f dp = sup,en [ 70 dpe < (sP)o f du. We conclude
(R f dpu = (sP) £ . 0
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3.20 Example of an R-integrable (even a o-simple) and weakly Pettis in-
tegrable function that is not strongly Pettis integrable.
Consider the measure space (N, P(N), o).
Recall Example Let f : N — ¢ be given by

f = (fn)neN = (61762763,. )

Then 25:1 f(n) = EnN:1 en. Thus {anzl f(n) : N € N} has a supremum in
E, namely the sequence 1 = (1,1,1,...). So f is a o-simple function and thus
R-integrable (thus also weakly Pettis integrable because ¢}’ separates the points
of ¢) with

®)-f 1 duo = (wP)-[ £ dpo = 1.

Let b € (*(NU {cc}) be given by b, = 0 for all n € N and by, = 1. Then
$b(fn) = dp(en) = 0 for all n € N. So

/¢>b o fdpo =Y ¢(fa) =0.
neN
And of course ¢, ((R)—ff d,uo) = ¢b((WP)—ff duo) = 1. As is mentioned in
Comment if f were strongly Pettis integrable, then (because ¢’ separates

the points of ¢) f would also be weakly Pettis integrable and the integrals would
agree. So we see that f is not strongly Pettis integrable.
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4.1

4.2

4 Further properties of the R-integral

Theorem. Let E be an R-complete Riesz space. Let g : X — R be a bounded
measurable function. Let f : X — E be an R-integrable function. Then gf :
X = E, gf : x> g(x)f(x) is an R-integrable function.

Proof. By Theorem and we may assume f > 0.
e Let B € A. Suppose (0, )nen and (7, )nen are sequences of o-simple functions

with (see Comment and Theorem [2.46)):

on>f>1 pae (neN) o, |, 7T

TllIellf\I/Un—Tn du = 0.

Since F is R-complete, (0,1p)nen and (7,1p5)nen are sequences of o-simple
functions by Theorem And

1go, > ]-Bf > 1p7, p-a.e. (TL € N)7 1po, \Lv 1p7, Ta

0< inf/lBJnleTn dup < inf/anan dp = 0.
neN neN

So 1gf is R-integrable for all B € A. Then for a step function s : X — R, sf
is R-integrable by Theorem [2.47}
e Let g be a bounded measurable function. Then there are sequences of step
functions (Gy)nen, (gn)nen with

Gn Zngn p-a.e., Hg_gn”oo < %7”9_6'71”00 < % (nEN), Gn »l/a dn T
Then 5
J@—asan<? [1auo

So (G f)nen and (g, f)nen are sequences of R-integrable functions with
Gnf>9f>gnf pae (nEN),Gufl, guf 1,
inf /anfgnf dp = 0.
neN
Then by Theorem we conclude that ¢gf is R-integrable. O

Lemma. Let E be an R-complete Riesz space. Let f : X — ET be an R-
integrable function. Let (Bp)men be a sequence in A with By D By D ---.
Suppose ((Bpm) 1 0. Then

[1msduio, [romrant [1dn

Proof. Let 0 : X — ET be a o-simple function with 0 > f. Suppose o =
Y nen @nla,. Foralln,m € N we have ju(A,,) — u(Bm) < p(An \ Bn) < pu(Ay).
Therefore

1(An \ Bin) T p1(An) (n € N).

We have (using Theorem 4.1

/U dy:/lgma d/l,+/lx\3m0' dp (m e N).
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By Lemma [2.11] we have
N

sup / 1x\5,,0 di=sup sup  _ u(A, \ By)an
meN meN NeN n—1

N

= sup 3 sup (4, \ B)a,
NeN_ — meN

N
= sup Y p(Ap)ay, = /o dp.
n=1

Therefore — [1x\p,, 0 dul — [ o dp and thus

/led du:/a d[l,*/lx\BmO' dp | 0.

Because 0 < f < o we have

0< [ 18,5 du< [1n,0duto,

[ tan=[1du- [1n,ant [ an

O

4.3 Theorem. Let E be an R-complete Archimedean Riesz space. Let f : X —

ET be an R-integrable function. Let g : X — R be a bounded measurable
function. Let (gn)nen be a sequence of bounded measurable functions with g, T ¢
(respectively gn | g) p-a.e.. Then

/ gnf dp / gf du (respectively / gnf dpd / gf dp).

Proof. We may assume ¢ and g, are positive for all n € N. Suppose g, 1 g (the
proof for the case that g, | g is done in a similar way). Let M > 0 be such that

g(z) < M, gn(x) <M (x € X,n eN).

Let € > 0. Let By, :={x € X : g(z) — gn(x) > €}. Because g, | g p-a.e., we
have (), ey Bn) = 0 and thus p(B,,) | 0. Then for all n € N:

/gf du—/gnf du=/(9—gn)f dMSM/anf dﬂ+5/1X\an du
<M [ s dute [

We show [ g, f dp 1 [ gf dp by showing that the set { [ gf du— [gnf dp:n €
N} has infimum 0 in E. We already know [ gf du— [ g, f dpp > 0 for all n € N.
So suppose h € E is such that h < [ gf du— [ gnf dp. We have to show h < 0.
And by the above inequality we must have

th/anfdu—ks/fdu (n € N).
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4.4

Then with Lemma [1.2] we have
thing/anfduan/fd,u:s/fdu.
ne

So for all e > 0 we have h < e [ f du. Because E is Archimedean, we conclude
h < 0. And thus sup,,cy [ gnf du = [gf du. O

Theorem. Let E be an R-complete Archimedean Riesz space. Let (Ap,)men be
a sequence of disjoint sets in A with |J,,cy Am = X. Let f : X — Et. Suppose
there exists a o-simple function o such that 0 < f < o p-a.e.. Suppose f14
is R-integrable for all m € N. Then f is R-integrable and

[ ron= g > e o

m=1

m

Proof. We may and do assume 0 < f < o. Suppose (77" )nen and (o) ey are
sequences of o-simple functions for all m € N with:

TS fla, <on e (mEN) T ol b
sup/Tfl” dp = /flAm dp = inf /a;” du (m € N).
neN neN

We may and do assume that 0 < 77*, o] < ¢ for all n,m € N. We also may
and do assume 7, =714, , 00 =01y, forall n,m e N.
Define

m?

Tp 1= ZT,T, Op = Za,’;"‘.
meN meN
Thus 7,(x) = 77"(z) and o,(z) = ol*(z) for all x € A,, and n,m € N. Then
we have
T < f<on p-a.e. (n €N), T T, ond.
Suppose that (a?™);en, (b2™);en are sequences in E and (AX™);en, (B )ien
are sequences of disjoint sets in A for all n,m € N such that

= E a;™ 1 gnm, oy = E ;" 1gpm (n,m € N).
i€N ieN

Because 7)'14,, = 70 and 0]'1 4, = o) for alln,m € N we assume A7™, BI'™ C
Ay, for all i,n,m € N. Then {A?" : 4 € N,m € N} and {B}"" :i € N,m € N}
are sets of disjoint sets in A for all n € N and

D I S S ol 2
meN 1eN meN ieN

Because F is R-complete and 0 < 7, < 0, < o for all n € N, 7, and o,, are
o-simple functions for all n € N (by Theorem [2.30)).

We will show that inf,ey [ 0y, — 7, dpu = 0. We already know 0 < [ o, — 7, dp
for alln € N. Solet h < [0, — 7, du for all n € N. We proof h < 0.
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For all n, M € N we have:
h < /O’n — T dp = /(O’n 77-”)1U%=1Am dp + /(O’n — T")lUfff=M+1 a,, du
M
< Z /O'Zl -7 dp+ /01U?§:M+1Am dp,
m=1

because 0, — 7, < o for all n € N. Then h < inf,cyn Zn]\le Jomr — 1 dp +
Jo1y=_ A A= falUf,?:MH A,, dp. And because 1y 4, | 0 by The-
orem we have

h < inf 1 e dpu = 0.
< inf / o1y s Am A =0

Thus

inf n— Tn du = 0.
it f on =

So (see Comment [2.39)) f is R-integrable. By Lemmam

M I M

[ dn= s 3 Y parar = sup 3 [
MeNIeN = MeN =
Then
M M
/fdﬂzsup/fndlu:supsup Z/T:L” dp = sup Zsup/T,’L" du
neN nENMENmzl MENle neN
M
= sup » /flAm dp.
MeN =

O

4.5 Lemma. Let E be an R-complete Riesz space. Let s : X — E be a simple

function. Let 0 : X — R be o-simple. Then os : x +— o(z)s(x) is a o-simple
function. Suppose s = Zle a;14, for some a; € E and A; € A with p(4;) < oo
forallie{l,...,k}. Then

k

/Us dp = Z(/ o1, du)a;.

i=1

Proof. 1t is sufficient to prove that cal 4 is integrable for alla € E and A € A
with (A) < co. By Theorem 1, is measurable and bounded so g1,4 is a
o-simple function X — R. But then of = acly is o-simple with [acls dp =
(Jola dp)a. O
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4.6

4.7

4.8

4.9

Corollary. Let E be an R-complete Riesz space. Let f : X — E be R-integrable.
Suppose there exist a,b € E and an A € A with u(A) < oo such that

aly < f<bly p-ae.

Then there exist sequences (tp)nen, (Sn)nen of simple functions with t, < f <

S, such that
inf/tn d,u:sup/sn du:/fd,u.
neN neN

Consequently the function x — g(x)f(z) is R-integrable for all integrable func-
tions g : X — R.

Proof. Tt will be clear that the first statement follows from the Theorem
by looking at the functions b14 — f and f —aly.

Suppose E is R-complete. We may assume f and g to be positive (by Theorem
5.17).

Let g : X — R* be integrable and let o be a o-simple function with o > g p-a.e..
Suppose (An)nen is a sequence in R and (Cy,)nen is a sequence of disjoint sets
in A such that 0 =3 .y Aulc,. Then glg, is a bounded measurable function
for all n € N. By Theorem fglc, is R-integrable for all n € N. Let s be a
simple function with s > f. Then os is a o-simple function X — ET (Lemma
with s > gf. By Theorem {4.4| we conclude that gf is R-integrable. O

Definition. Let E be a Riesz space. A subset D of E is called order dense in
E if for all a € E with a > 0 there exists a d € DT such that 0 < d < a.

Definition. Let F be a vector space over Q. We call E a Q-vector space. If E
is endowed with an ordering, then we call E an ordered Q-vector space if

z+a<y+a (a€kE),

) EE; S -
pYES =Y {)\x <y (A e Q).

We call E a Q-Riesz space if E is an ordered Q-vector space that is a lattice.
Let E be a Riesz space (or a Q-Riesz space). Let D be a Q-vector subspace of
E. Then D is called a Q-Riesz subspace if

z,y€ D == zVy, Ay € D.

Theorem. Let E be a Riesz space. Suppose there exists a countable order dense
subset of E. Then there exists a countable order dense Q-Riesz subspace of E.

Proof. Suppose D is a countable order dense subset of E. Then the following
sets are countable:

Dy :={\d: X€Q,de D},

D, = {dl +do,dy —do,dy Ndy,d1 Vdy :dy € Dpy_q,ds € Dm,1} (m > 2)
Therefore the set C' := J,,cy Dm is countable. Notice that D,, C Dy,41. And
for a,b € D,,, we have Aa + ub, aVb, a ANb & Dy,4q for all A\, u € Q. It will be

clear that this implies that C' is a Q-Riesz subspace of E. Since D is contained
in C, C is order dense in E. O
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4.10 Theorem. Let E be an Archimedean Riesz space. A Q-Riesz subspace D of E
is order dense if and only if for alla € E*:

a=sup{de€ D:d<a}.

Proof. The “if” part follows by sup{d € D : d < a} = sup{d € D" : d < a} for
all a > 0.

Suppose D is order dense in E. Suppose a € E7T is such that there exists an
h € E with h < a and with h > d for all d € D with d < a. Then there exists a
e€ D with0<e<a—h. For all d € D with d < a we have

d+e<h+a—h=a.
By induction we have for all d € D with d < a and for all n € N:
d+ne < a.

Since E is Archimedean, this leads to a contradiction. We conclude that a is
the supremum of {d € D : d < a}. O

4.11 Definition. Let E be a Riesz space. FE is called countably generated if E
possesses a countable order dense subset (or, equivalently, a countable order
dense Q-Riesz space).

4.12 Example The Riesz spaces RN,/ ¢, ¢y, 0" and ¢y are countably gen-
erated.
Let E be one of the Riesz spaces RN, £, ¢, cg, /1, coo. Let D = {Xe, : A € Q,n €
N}. Notice that D C E. Let a = (ap)nen € E. Suppose a > 0. Then there
exists an n € N such that a,, > 0. Let A € Q be such that 0 < A < a,. Then
0 < Xe,, < a. Thus D a countable set that is order dense in E.

4.13 Theorem. Let Y be a separable metrisable space. Then C(Y) is a countably
generated Riesz space.

Proof. Let d: Y xY — [0,00) be a metric. Let (y,)nen be a sequence in Y such
that {y, : n € N} is dense in Y. Define hy s, for ¢,s € Q" \ {0} and n € N by

1
Pasn Y SRy hgsn(®) = a( (1= ~d(ya,y) V0).

S

-q

Yn—S8 Yn yYyn+s

Figure 5: hg sn for Y =R.

y) =0 for y € Y with d(y,,y) > s. We

NOte that h‘]»sa"(y) C [qu] and hq,s,n(
={hgsn ¢ s € QF\{0},n € N} is order

will show that the countable set D
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4.14

4.15

4.16

dense in C(Y).

Let f € C(Y). Suppose f > 0. Then there exists an € > 0, an ¢ € Y and
an r > 0 such that the ball with centre z and radius r, denoted by B(x,r),
is contained in f~!(e,00). Let ¢ € Q be such that 0 < ¢ < &. Let n € N be
such that y, € B(z,r) and let s € Q, s > 0 be such that B(y,,s) C B(z,r).
Then hgsn(y) < g <e < f(y) for all y € B(yn, s) and hgsn(y) =0 < f(y) for
y € Y \ B(yn,s). Therefore 0 < hyspn < f in C(Y). Thus the set D is order
dense in C(Y). O

Definition. Let E be a Riesz space. We call a function f : X — E left-order
measurable if {x € X : f(z) < a} € Afor all a € E. We call f right-order
measurable if {x € X : f(x) > a} € Aforall a € E. We call f order measurable
if f is both left-order measurable and right-order measurable.

Lemma. Let E be a Riesz space. Suppose o : X — E is a o-step function.
Then o is an order measurable function.

Proof. Suppose 0 = ) yanla, for a sequence (a,)nen in E and a sequence
of disjoint sets (A, )neny in A. Let a € E. Let K = {n € N: a, < a}. Then
{xe X :0(x) <a} =,cx An € A. The same can be done with —o and —a
instead of o and a. Then {r € X :0(z) >a} ={z € X : —0(x) < —a} € A. O

Notation 8
For subsets A, B of X we write A" =° B if uw((A\ B)U(B\ A))=0.

Theorem. Let E be a Riesz space. Let f: X — E be a function.

e Suppose there are sequences of o-step functions (pp)nen such that p, | f
u-a.e.. Then f is right-order measurable.

e Suppose there are sequences of o-step functions (mp)nen such that m, 1 f
p-a.e.. Then f is left-order measurable.

Let E be a countably generated Archimedean Riesz space. Suppose f > 0.

o Suppose f is left-order measurable. Then there are sequences of step func-
tions (7 )nen such that m, 1 f p-a.e..

Proof. e Let a € E. Let Y C X be the set for which
zeY = pn(@) L f(2).
Then Y “ 2% X and thus
{eeX:fl@)2a}"="{zeY: f(x) 2 d}

= B n >
{z€Y: inf pn(z) > a}

= ﬂ{xeY:pn(az)Za}

neN

e ﬂ {z € X :pp(x) > a}.
neN

By Lemma we have {x € X : p,(2) > a} € A. Because the measure space
(X, A, p) is complete, {z € X : f(z) > a} € A.

63



4.17

p—a.e.

In a similar way we have {z € X : f(z) <a} " = [, cniz € X : mp(7) < a}.
e Let F be a countably generated Riesz space. Suppose {z € X : f(z) <a} € A
for all a € E. Let D = {d,, : n € N} be a countable order dense Q-Riesz space.
Define

To(z) =sup{d; : 1 < j <n,d; < f(x)}.

Because D is order dense, by Theorem [4.10] we conclude 7, 1 f. O

Lemma. Let E be a countably generated Riesz space. Let (0,)nen be a sequence
of o-simple functions with o, > 0 for all n € N. Suppose that inf, cn f op dp =
0. Then for almost all x € X, the infimum of {on(x) : n € N} exists and is
equal to 0 (however, see Example .

Proof. Let D be a countable order dense Q-Riesz space.
Let A be the set for which

xeA @VaeE*[VnEN[agan(I)} ;sa:O]

So A consists of all x € X for which the infimum of {o,(x) : n € N} exists

and is equal to 0. We have to prove that this set is almost equal to X, i.e.
u(X \ A) = 0. We have

r€X\A < 3Jac ETVneN[0<a<o,(z)].

Let € X. Suppose there exists an a > 0 is such that a < o, (z) for all n € N.
Then there exists a d € D such that 0 < d < a, so we have

re€X\A < 3deDVneN[0<d<o,(z)].

Let By = \,enir € X 1 d < 0,(x)}. Then

X\A= U E,.
deD+\{0}

Because D is countable, we have X\ A € A by Lemma For alld € DT\ {0}
we have:

du(Ey) = /dlEd dp < /Jn du (n eN).

So therefore du(Eq) = 0, i.e. u(E4) = 0. But then

pX\NA) S Y (Bl =0.
deDt\{0}
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4.18

4.19

4.20

Theorem. Let E be a countably generated Riesz space. Let f be an R-integrable
function. Suppose (0n)neny and (Tn)nen are sequences of o-simple functions
with:

on > f>7, p-ae (neN),

inf /an du = sup/Tn du.
neN neN
Then for almost all x € X

inf on(z) = f(z) = sup ().

Consequently (by Theorem , f is order measurable.

Proof. o, — T is a o-simple function for all n € N (see Theorem [2.23). And
inf,, men [0 — T dpt = 0 (see Comment [2.39). So by Lemma (we may

assume o, — 7, > 0 for all n,m € N) follows that for almost all z € X the
infimum of {0, (z) — T (x) : n € N} exists and is equal to 0. For such z € X:

Vn,m € N[k < o,(x) — ()] implies £ <0 (k€ E).

So because 0 < o, () — f(2) < op(x) — T () for all n,m € N and almost all
zeX,

Vn € N[k < o,(z) — f(z)] implies k<0 (ke E).

Le. the set {on(z) — f(x) : n € N} has an infimum for almost all z € X, which
is equal to 0. So for almost all z € X we have inf, ey op(x) = f(z). Because
0 < f(z) = mm(z) < op(x) — T (z) for all n,m € N and almost all z € X, we
also have sup,, ey 7o () = f(2) for almost all z € X. O

Corollary of Lemma Let E be a countably generated Riesz space. Let
f: X — ET be an R-integrable function. If [ f dp =0, then f =0 p-a.c..

Example. We will give an example of a Riesz space E and an R-integrable
function f : X — E7T for which [ f du = 0 and for which f(z) # 0 for all
x € X (so E is an example of a Riesz space that is not countably generated).
Let X = (0,1]. Consider measure space ((0,1],5,)) and let E be the Riesz
space L((0,1],8,)). Let f: X — E be given by

f(l‘) = 1{1} (.T S X)

Then f(z) > 0 for all z € X. _ ‘
Forn € Nand i € {1,2,...,2"} let I,,; be the interval (12]1 , 5. And for n € N
let 0, : X — E be given by

on(x) :=1; (x € Ini,n € Nyi € {1,2,...,2"}).

ni

Then o is simple and 01 > 05 > -+ and o, > f for all n € N. And

/gn dp= > Al = Y 27", =2"1x |0

i€{1,2,...,27} i€{1,2,...,27}

Because f > 0 we conclude f is R-integrable with [ f du = 0.
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4.21

4.22

4.23

Theorem. Let E be a Banach lattice. Let f : X — E be a strongly measurable
function. Then f is order-measurable.

Proof. By Theorem f is Borel measurable and pu-essentially separably val-
ued. The set {b € E : b < a} is closed by Lemma So because f is Borel
measurable, we have {r € X : f(z) <a}=f'({be E:b<a}) € A O

Theorem. Let E be a countably generated Banach lattice, with o-order con-
tinuous norm || - ||. Let f : X — E be order measurable. Then f is strongly
measurable (however, see Example .

Proof. We show that f* is strongly measurable. In the same way f~ then is
strongly measurable and therefore so is f = f* — f~ (by Theorem .

f7 is also order measurable. By Theorem there are step functions (7, )nen
with 7, 1 fT p-a.e.. Because ||-|| is o-order continuous, we have |7, — f || — 0
p-a.e.. Therefore f is strongly measurable. O

Example of an order measurable function that is not strongly mea-
surable.
Let X = L'(R, B, )\) and let A be given by

Ae A e Ais m.eager,
X \ A is meager.

() is meager, thus an element of A. Let (A,)nen be a sequence in A. If A,
is meager for all n € N, then (J, .y An is meager. If X \ A, is meager for
some m € N, then X \ (U, cy An) is meager since it is a subset of the meager
set X \ 4. So A is a o-algebra on X. Equip X with this o-algebra. Let

u: A—[0,00) be the measure given by

0 if A is meager,
p(A) = . .
1 if X\ A is meager.

Because a subset of a meager set is meager, (X, A, u) is a complete measure
space. We consider this measure space.

Let E be the Banach lattice L'(R,B,\). Let I : X — E be the identity
map, I(f) = f. Then I"}(B) = B ¢ A, for B a nonempty ball. So I is not
Borel measurable and thus not strongly measurable.

Let B = {f € LY(R,B,)\) : f > 0} (notice B is closed). We will show
B € A by showing that B has empty interior. Let f € B, e > 0. Let I' € B
be a subset of f~1([0,£]) with 0 < A(T') < 1. Then g = f — elr is integrable.
And g(z) < =5 <Oforallz € I'. So g #0in L'(R,B,\). And |lg — fll,r =
llelr|lzr = eA(l') <e. So for all f € B and € > 0 there exists a g € L'(R, B, \)
with || f — gl|z1 < e and g ¢ B. Therefore B has empty interior. And thus B is
meager.

Then also the sets {f € LY (R,B,\) : f > a} = B+a and {f € L'(R,B,)) :
f < a} = a— B are elements of A for all a € L'(R,B,)). And so I is order
measurable.

Notice that by Theorem and Theorem now follows that L*(R, B, \) is
not countably generated.
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4.24

4.25

4.26

Example of an positive order measurable function that is bounded
by a o-simple function, which is not R-integrable.

Recall Example (and Example [2.43). f and g are o-simple functions for
which

f—-9g= (61,—61,63,—637...),
(f —9)" = (e1,0,e5,0,...),

And (f — g)* is not o-simple and not R-integrable (this is also mentioned in
Example [2.43)). But it is order measurable and f is a o-simple function with

0<(f-g)t<f.

Definition. Let F be a Riesz space. We call a function f : X — E R-
measurable if for every positive R-integrable function h : X — E7 holds that

(fV—=h)Ah
is R-integrable.

Comment. The set of R-measurable functions is a lattice, just as the set of
order measurable functions. But the question whether a linear combination of
R-measurable functions is R-measurable, is still open (also the case for order
measurable). But if F is R-complete and the set of R-measurable functions is
a Riesz space X — F (under some assumptions on E), then the space of R-
integrable functions is a Riesz ideal in the space of R-measurable functions by
definition of R-measurability.
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5.1

5.2

5.3

5.4

5 Examples

Theorem. Let f: R — R. Then f is uniformly continuous if and only if there
exists a sequence (n)nen in (0,00) with €, L 0 and for which

[s —t| <27" = |f(s) — f(¥)| <en (s,t e R,n eN).

Proof. The “if” part is trivial.

Suppose g is uniformly continuous. We first show that {|f(s) — f(t)| : s,¢ €
R,|s — t| < 1} is bounded. Let § > 0 be such that |s — ¢| < ¢ implies that
If(s) = f(¥)] < 1. If 1 < 4, then the set {|f(s) — f(t)| : s,t € R,|s —¢t] < 1}
is bounded by 1. In case 6 < 1, assume that m € N is such that % < 4. Let
s,t € R with t > s and t — s < 1. Then there are s1,...,8,+1 € [s,t] with
s=81<--<sgpmr1=tand s;41 —8; < % for i € {1,...,m}. And thus

m

> flsivn) = flsi)

=1

Therefore {|f(s) — f(t)] : s,t € R, |s —t| < 1} is bounded.
Notice that {|f(s) — f(¢)| : s,t € R,|s —t] < 27"} is bounded for all n € N. Let

m

< Z |f(si41) = f(si)] < m.

i=1

1f(s) = f(B)] =

e 1= sup{|f(s) — f(1)] : 5.t €R,|s — 1] <27}

Let ¢ > 0 and N € N such that |s — | < 27" implies |f(s) — f(t)| < ¢, then
n > N implies ¢, <e. So e, | 0. O]

Definition. Let f : R — R be a uniformly continuous function. We call a
sequence (€, )nen in (0,00) with €, | 0 and for which

s—t| <2 = |f(s) = JO| Sen (st €RneN),

a continuity sequence for f.

Notice that if (¢, )nen is a continuity sequence for f, and (0, )nen is a sequence
in (0, 00) with d,, | 0 and 6,, > &, for all n € N, then (0, ),cn is also a continuity
sequence for f.

Lemma. Let FE be a Riesz space. For a,b,c,d € E we have
lavb—cVvd <la—c|VI]b—d|
Proof. Let a,b,c,d € E. Then

a=a—c+c<l|la—c+cVd<la—c|V|b—d|l+cVd,
b=b—d+d<|b—d|+cVd<|a—c|V|[b=d|+cVd

Therefore we have a Vb < |a —¢|V |b—d| 4+ ¢V d and thus
aVb—cvd<la—c|VI|b—d|.
And in the same way cVd—aVb<|a—c|V|b—d|. O

Lemma. Let f,g : R — R. Suppose f and g are uniformly continuous with
continuity sequence (€, )nen. Then fV g is uniformly continuous with continuity
sequence (€n)neN-
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5.5

5.6

5.7

5.8

Proof. This is a consequence of Lemma [5.3

[V g(s) = fVag@® <I[f(s) = FOIVIg(s) — g(B)].
O

Theorem. Let G be a subset of R¥ that is bounded from above (respectively
from below) in R®, ie. the set {g(s) : g € G} is bounded from above (re-
spectively from below) for all s € R. Suppose that G is a set of uniformly
continuous functions with continuity sequence (€,)nen. Then f 1= sup,cqg
(respectively f := infoeq g) is a uniformly continuous function with continuity
sequence (£4)neN-

Proof. Assume that G is bounded from above. Let f := sup,cqg in RE. Let
s,t € R. Let ¢ > 0. Let g1, 92 € G be such that

[f(5) —qu(s)l <&, [f() = g2(t)] <e.

Suppose G is a collection of uniformly continuous functions with continuity
sequence (€, )nen. Let n € N. Then

ls—t] <27 = |f(s) = fO) < |f(s) — g1V g2(8)| + |91 V g2(s) — g1 V g2(2)]
+ g1V g2(t) — f(1)]
S25+€n~

This can be done for all € > 0 and all s,t € R. Therefore f is uniformly
continuous with continuity sequence (&, )nen.
In case G is bounded from below, then —G = {—g : ¢ € G} is bounded

from above and thus f = infgeq g = —supyec_ ¢ is uniformly continuous with
continuity sequence (&, )nen- O
Lemma. Let g1,...,9m : R — R be uniformly continuous functions with con-

tinuity sequence (en)nen. Let Ai,..., A € R. Then > 1% Nig; is a uniformly
continuous function with continuity sequence (aey)nen, where a =Y |Ai].

Proof. Let s,t € R with |s —¢t| < 27™. Then

> Aigi(s) — Z)\igi(t)’ < llgi(s) — g0 <D ilen.
i=1 i=1 i=1 i=1

O

Definition. Let g : R — R. The left translation of g with respect to an element
s € R, denoted by Lsg is defined by:

Lg(t)=g(t—s)  (t€R).
Comment. Let g : R — R be a continuous function. For a bounded set A C R,

the set g(A) is bounded. Therefore {Lsg(t) : s € [(i — 1)27™,i27 ")} = {g(u) :
ue{t—s:se(t—1)27",927™)}} is bounded for all ¢ € R.
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5.9

5.10

Lemma. Let g : R — R be a uniformly continuous function in C(R) with
continuity sequence (ex)gen. For n € N and i € Z define (see Comment@

S sup Lgg,
s€[(i—1)2— 7,52~ ")
bni = inf Lgg.

s€[(i—1)2-n,i2—n)

Then an; and by; are uniformly continuous with continuity sequence (ex)ken for
alli € N and n € N.
For all € > 0 there exists an N € N such that

Qni — bp; < elg (n>N, i€Z).

Proof. Let (ex)ren be a continuity sequence for g. Then L,g is uniformly con-
tinuous with continuity sequence (e )ren for all z € R. By T heoremam- and
byi are uniformly continuous with continuity sequence (eg)gen for all ¢ € N and
n €N. Let ¢ >0 and N € N be such that ey <e. Then for n > N and z € R:

Api(T) — bpi(x) = sup Lsg(z) — inf Lsg(x
(=) (@) s€[(i—1)2-m,i2- ") (@) s€[(i—1)27m,i27") (=)
= sup Lsg(z) — Lig(x)

s,tel(i—1)2-n 2= n)

A

sup lg(u) — g(v)| < ep <en <e.
u,vER:|lu—v|<2— "

O

Comment. Let E be a Riesz space. Let f,g : X — E be R-integrable func-
tions. Let () nen, (T )nen, (Pn)nen and (m, )nen be sequences of o-simple func-
tions with

on > f>1, pae., Pn > g > T, prae.,
inf [ o, dp = sup/Tn dp, inf /pn dp = sup/wn d.
neN neN neN neN

We will show that if there exists an A € A such that
op =0pla p-ae., f=14 p-ae. Tn = Tnla p-a.e.,
Pn = pan\A p-a.e., 9= ]-X\A H-a.e. Tn = 7rn1X\A p-a.e.,

then f + g is R-integrable and [ f+ g dp= [ f du+ [ g dpu.

Suppose there exists such an A € A as above. We may assume o, = 0,14,
Tn = Tala, pn = pnlx\a and m, = m,1x\ 4 by Theorem m By Theorem
2:23 oy + pm and 7, + m,, are o-simple with o, + py, > f+ g > T + T prace.
for all n,m € N,

/crnermdu:/andqu/pmdu (n,m € N),
/Tn+7rmdu:/7ndu+/7rmd,u (n,m € N).

Then inf, men [ on + pm dp = infpen [ on dp + infren [ pm dp = [ f dp+
J g du=sup,cy [ 70 dptsupey [T dp = sup,, e [ 7o+ mm i So f+g
is R-integrable with [ f+g¢g du= [ fdu+ [g du.
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5.11

5.12

Definition. Consider the measure space (X, B, A) where X is a Lebesgue mea-
surable subset of R. A measurable function f : X — R is called u-essentially
compactly supported if there exists a compact set K C X such that f(z) =0
for p-almost all z € X \ K.

Lemma. Let g : R — R be a uniformly continuous function in C(R) with
continuity sequence (ex)ren. Let p: R — R be a A-essentially compactly sup-
ported o-simple function. Then pLg : R — C(R) given by x — p(x)L,g is
R-integrable. Also [ pLg d\ is uniformly continuous with continuity sequence
((J ol dNer)ren and

((R)-/ pLg dX) (5) = / p(#)Lag(s) dz (s €R).

Proof. Let K be a compact set such that p(x) = 0 for A\-almost all z € R\ K.
We may assume that p(z) =0 for all x € X \ K, i.e. p=plk.

Let A={xz € R: p(xz) > 0}. Then p* = pT14.

Let a,; and b,; be defined as in Lemma for all n € N and ¢ € Z. Define

Op 1= Zanil[(i71)2*",i2*")7 Tn = mel[(iq)z%,iz%)-
i€Z i€z

The functions 1 40, and 147, are simple functions, because A is a subset of the
compact set K. We have p™7,, < pTLg < pTo,. By Lemmald.5| pT o, and p*7,
are o-simple functions (because pTo, = pT1la0, and pT7, = pT147,).

Let n € N. There exists a M € N such that K C Uf\ifM[(z —1)27",427") and

M
On = Z Anili(i—1)2-n i2-n)-
i=—M

Then

M

/p+0'n d\ = Z (/p+1[(i_1)27n7i27n) d/\)am

i=—M

Note that ([ pTo, dN)(s) = [pTon(s) dX for all s € R. By Lemma
J pTon dX is uniformly continuous with continuity sequence (([ p* d)ek)ren,

because
M
Z ’/p+1[(i71)2*",i2*") dA‘ :/P+ dA.
i=—M

In the same way [ p*7, dX is uniformly continuous with continuity sequence

((J P dN)er)ken.
By Theorem [5.5] the functions

S rllrelfN(/ pTo, dN)(s) = inf [ pT(2)o,(2)(s) dz,

neN
5 :lég(/ o1, dN)(s) = ilég/p"‘(m)m(x)(s) dz.

are the infimum and supremum, of the sets { [ pTo, d\:n € N} and { [ pT7,, dX:
n € N}, respectively. In particular those functions are uniformly continuous with

72



5.13

continuity sequence (( [ p* d\)eg)ken-
We prove that p* Lg is R-integrable by showing that [ p* (o, — 7,,) dX L 0 (see
Comment [2.39)). We have (by Lemma

M

/p+(an ) dd= Y (/p+1[(i_1)2_n7i2_n) AX) (ani — bni)-

i=—M

Let ¢ >0 and NV € N as in Lemma, Then n > N implies
([ o (on=m) V(@) < ([ 7 Ve (z € R).

Soinf,en( [ pt(on—74) dA)(x) = 0 for all z € R. Therefore [ pT (o, —7,) dA L0
in C(R). By Theorem [5.5) . J pTLg dX is uniformly continuous with continuity
sequence (([ p* dN)eg)ken.

C(R) is countably generated by Theorem Therefore by Theorem we
have sup,,cy p* 7, = pTLg = inf ey pT o, A-a.e.. Therefore for all s € R:

sup(/ ptr, dN)(s) = sup/p+(a:)7n(x)(s) dz < /p+(a?)ng(s) dA

neN neN
< ilélf\l/ p(x)on(x)(s) do = 71161{”\1(/ pto, d\)(s).

So we conclude
(@ p2ga0)5) = [ o @Lagls) de (€ ) 1)

In the same way p~ Lg is R-integrable and [ p~Lg d\ is uniformly continuous
with continuity sequence (( p~ dA)ex)ken and

(®-f o Lgan)s) = [ 5 @Lag) de (s R), (2)

By Commentthen ptLg—p~ Ly is integrable and [ pLg d,u [ pTLg du—
J p~Lg dp is uniformly continuous with continuity sequence (([ |p| d\)eg)ren

by Lemma And by and we have

(R o9 a\)s) = [ po)Logls) do (s € R).
O

Theorem. Let g : R — [0,00) be a positive uniformly continuous function in
C(R). Let f : R — R be a A-essentially compactly supported integrable function.
Then fLg:R — C(R) given by x — f(x)L,g is R-integrable. Moreover:

/ng d)\ /f L.g(s d:cf/ f(x)g(s—x) d (s € R).

Proof. As in the proof of Lemma we may assume there exists a compact
set K C R such that f = flk.
Let (¢)ken be a continuity sequence for g.
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Because f is integrable (by Theorem and Theorem [2.66)) there exist a
sequence of simple functions (s,)nen and a o-simple function 7 : R — [0, 00)
such that

1
sp——nm < f<s,+ i A-a.e. (n e N).

1
n"
Then o, := (s, — f7r)1K and 7, := (sn + %7‘()1[( are o-simple functions for all
n € N. Then 7, < f < 0, Ma.e. for all n € N. By Lemma onLg and
7,Lg are integrable, and [o,Lg d\ and [ 7,Lg d\ are uniformly continuous
with continuity sequence (([ |0y, | dA)ek)ken respectively ([ |7,] dA)eg)ren for
all n € N. Because

51— <1 <op < (514 7) (n €N),

J onLg dX\ and f 7o Lg dX\ are uniformly continuous with continuity sequence
2([ |s1] + 7 dX)eg)ken for all n € N. And because g (and thus Lg) is positive,

TnLg < 0,Lg (n € N).

Therefore the sets {[o,Lg d\ : n € N} and {[7,Lg d\ : n € N} have an
infimum respectively a supremum in C(R) by Theorem and:

(}lrelg/onLg d)\) (s) = %relfN (/anLg d)\)(s) = inf [ o, (x)L.g(s) du,

neN
(sup/TnLg d)\) (s) = sup (/TnLg d)\) (s) = sup/Tn(m)LIg(s) dz.
neN neN neN
Because )
0<o,—1T < —7 A-a.e.,
n

we have [(0, —7,)Lg dX < 2 [wLg dX | 0. Then

0 < inf /(O’n —Tm)Lg du < ing/(an —1n)Lg du =0,
ne

n,meN

ie. inf, men [(07 — Tim)Lg du = 0.

By Theorem [2.49| we conclude that fLg is R-integrable. By the Monotone
Convergence Theorem (or by Lebesgue’s Dominated Convergence Theorem) we
have sup,,cy 7 = f = inf,eny 0 A-a.e.. Therefore for all s € R:

(sup/TnLg d)\) (s) = sup/Tn(x)ng(s) dz < /f(x)Lxg(s) dz

neN neN

< 1nf/ on(x)Lyg(s) do = (TiLIelfR’I/URLg d/\)(S).

neN

We conclude

([ 129 a06) = [ f@)Lagts (s € R).

74



References

[Con07]
[DE0Y]

[Hal50]
[Jeul2)

[JR77]

[LZ71]

[PR]

[Ryal0]

[Zaa67)

[Zaal3)

John B. Conway. A Course in Functional Analysis. Springer, 2007.

Anton Deitmar and Siegfried Echterhoff. Principles of Harmonic Anal-
ysis. Springer, 2009.

Paul R. Halmos. Measure Theory. Springer, 1950.

G.A.M. Jeurnink. Integration of functions with valued in a Banach
lattice. PhD thesis, Katholieke Universiteit Nijmegen, 1982.

E. de Jonge and A.C.M. van Rooij. Introduction to Riesz spaces. Math-
ematisch centrum, 1977.

W.A.J. Luxemburg and A.C. Zaanen. Riesz Spaces I. North-Holland
Publishing Company, 1971.

B. de Pagter and A.C.M. van Rooij. An Invitation to Functional Anal-
ysis. Epsilon.

Ray Ryan. Introduction to Tensor Products of Banach Spaces. Springer,
2010.

A.C. Zaanen. Integration. North-Holland Publishing Company - Ams-
terdam, 1967.

A.C. Zaanen. Riesz Spaces II. North-Holland Publishing Company,
1983.

75



(X, B, ), |§| R-integrable,

(10,1], B, A), R-integral,

(N, P(N), po), [ R-measurable, [67]

EZ, relative uniformly convergence,
Ey B relative uniformly convergent, [37]
Q-Riesz space, [6]] Riesz dual, [7]

Q-Riesz subspace, Riesz norm,

Q-vector space, right-order measurable,
(NU{s)),

p-a.e., o] separates the points,
p-almost everywhere, [ simple function,

p-essentially compactly supported, step function,

u-essentially separably valued, strong Pettis integral,
o-order continuous, strongly measurable, [[2]

o-order continuous norm, [9] strongly Pettis integrable, [12]

o-simple function, [20]

o-step function, U-integrable,

U-integral, [39]

Banach lattice, uniformly complete,

Bochner integrable, [14] o

Bochner integral, weak Pettis integral,
Borel measurable, weakly measurable, [12]

weakly Pettis integrable,

classical integral, []
continuity sequence, [69]
countably generated,

filling property,
integral of a o-simple function,

left translation, [70]
left-order measurable,
lexicographic plane, [26]

normed Riesz space,

order continuous,

order continuous norm, 9]
order dense,

order measurable,
ordered Q-vector space, [61]

Pettis integrable,
Pettis integral,
positive o-simple function, [20]

R-complete,
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