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Abstract. We investigate a model of continuous-time simple random walk paths in Zd undergoing two

competing interactions: an attractive one towards the large values of a random potential, and a self-repellent
one in the spirit of the well-known weakly self-avoiding random walk. We take the potential to be i.i.d. Pareto-

distributed with parameter α > d, and we tune the strength of the interactions in such a way that they both
contribute on the same scale as t → ∞.

Our main results are (1) the identification of the logarithmic asymptotics of the partition function of the

model in terms of a random variational formula, and, (2) the identification of the path behaviour that gives
the overwhelming contribution to the partition function for α > 2d: the random-walk path follows an optimal

trajectory that visits each of a finite number of random lattice sites for a positive random fraction of time.

We prove a law of large numbers for this behaviour, i.e., that all other path behaviours give strictly less
contribution to the partition function. The joint distribution of the variational problem and of the optimal

path can be expressed in terms of a limiting Poisson point process arising by a rescaling of the random

potential. The latter convergence is in distribution and is in the spirit of a standard extreme-value setting for
a rescaling of an i.i.d. potential in large boxes, like in (KLMS09).

This version has some additional explanations and calculations in this colour.
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1. Introduction and main results
In the last decades, there was a significant interest in the study of random motions that are attracted to certain
regions defined by a surrounding random medium. The most-studied type of models is called a random motion
in a random potential, which appears in the study of the parabolic Anderson model (PAM). The methods have
been refined and extended significantly in recent years, and a number of specific models have been successfully
treated in detail. The present paper makes a contribution to this line of research by studying a model that
combines attraction with repulsion and shows, as a result, a much more pronounced behaviour.

We explain the model and the main purpose in Section 1.1. The crucial rescaling that we take explained in
Section 1.2, in which we also introduce our main objects of interest. The key variational formula and the main
results are presented in Section 1.3. In Section 1.4 we provide some heuristic explanations for our results.
The remainder of the paper is described in Section 1.5. Remarks on the literature are given in Section 1.6.

1.1 The model and main purpose
Let d ∈ N and ξ = (ξ(z))z∈Zd be a random potential with distribution P that consists of i.i.d. random
variables. Let P be the law of a continuous-time simple random walk X = (Xs)s≥0 on the lattice Zd with
generator the discrete Laplacian ∆ starting from the origin. We take into account two types of microscopic
interactions. The random walk interacts with the random field ξ and undergoes a self-repulsion of strength
β. This leads us to associate with every trajectory X the Hamiltonian

H(ξ,β)

t (X) =

∫ t

0

ξ(Xs) ds− β

∫ t

0

∫ t

0

1{Xs=Xu} ds du, (1.1)

where β ∈ [0,∞) is the intensity of the self-repulsion. The first term is the interaction with the random
potential ξ, the second is the self-intersection local time (SILT), the amount of time pairs at which the
random walk is at the same site. We introduce a polymer measure P(ξ,β)

t that is absolutely continuous with
respect to P (more precisely, to its restriction to paths on [0, t]) with Radon-Nikodym derivative given by

dP(ξ,β)

t

dP
(X) =

eH
(ξ,β)
t (X)

Z(ξ,β)

t

, (1.2)

where the normalizing constant Z(ξ,β)

t = E[eH
(ξ,β)
t ] is the partition function of the model. We call this model

the weakly self-avoiding random walk in a random potential. We want to study its large-t behaviour.
When β = 0, the Feynman–Kac formula shows that Z(ξ,0)

t equals the total mass U(t) =
∑

x∈Zd u(t, x) of
the solution u to the parabolic Anderson model (PAM), the heat equation with random potential ξ:

∂tu(t, x) = ∆u(t, x) + ξ(x)u(t, x), x ∈ Zd,

with localised initial condition u(0, 0) = 1 and u(0, x) = 0 for x ∈ Zd \ {0}. On the other side, with ξ = 0 and
β > 0, P(0,β)

t is the law of a weakly self-avoiding walk in continuous time. Since the SILT is not an additive
functional, there is no obvious connection between this model and any partial differential equation.

It is clear that the Hamiltonian is a function of the walker’s local times ℓt, given by

ℓt(z) = ℓ(X)

t (z) =

∫ t

0

1{Xs = z} ds, z ∈ Zd. (1.3)

Indeed,

H(ξ,β)

t (X) =
∑
z∈Zd

ξ(z)ℓt(z)− β
∑
z∈Zd

ℓt(z)
2 = ⟨ξ, ℓt⟩ − β∥ℓt∥22, (1.4)

where we wrote ⟨·, ·⟩ for the standard inner product on Zd and ∥ · ∥2 for the standard ℓ2-norm on Zd.
In earlier work on the PAM, it turned out that the model is the easier to analyse and the resulting picture

is more pronounced for heavy-tailed potentials. Here we will assume that the potential variables ξ(z) at all
sites z ∈ Zd are independently Pareto-distributed with parameter α > d, i.e., have the distribution function

F (r) = P[ ξ(z) ≤ r ] = 1− r−α, r ≥ 1. (1.5)
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In particular, we have ξ(z) ≥ 1 for all z ∈ Zd, almost surely. This is the most heavy-tailed distribution for
which the PAM is well defined; indeed, (GM90, Theorem 2.1) says that α > d is necessary and sufficient
for the partition function for β = 0 to be finite. Hence, by positivity of the self-interaction our model is
well-defined for any β ≥ 0.

In (KLMS09), it turned out that the typical behaviour of the random walk in the polymer measure for
β = 0 is to rush quickly to one of the peak points of the potential and to spend the remainder of the time
in it, and the highest peak sites form a rescaled Poisson point process in the spirit of spatial extreme-value
theory. Now we add a self-repellent force and show that the picture is much more pronounced. Indeed, the
typical path in our polymer model visits not only one of these peak sites, but several of them after each other,
spending a specified amount of time in them each. We will describe this behaviour in terms of a random
variational problem, defined on a Poisson point process that we introduce below.

1.2 Rescaling and point measures
It is the purpose of this paper to study the counterplay between the effects coming from the two terms in the
Hamiltonian and the underlying probability distribution of the walk. To make sure that these three effects
(i.e., attraction by the potential, self-repulsion and entropy – see the heuristics in Section 1.4) all run on the
same scale, we take β depending on t as follows. Fix a parameter θ ∈ (0,∞) and set

βt := θ
tq−1

(log t)q
, where q =

d

α− d
. (1.6)

Note that q and the large-t behaviour of βt are increasing in α; for α ≤ 2d, we have that βt → 0 as t → ∞.
To reduce the amount of parameters, in the following we write

H(ξ)

t := H(ξ,βt)

t , Z(ξ)

t := Z(ξ,βt)

t , P(ξ)

t := P(ξ,βt)

t . (1.7)

We denote by

rt :=
( t

log t

)1+q

(1.8)

an important characteristic spatial length scale. More precisely, rt will turn out to be the typical distance
of the relevant islands from the origin at which we will find (Xs)s∈[0,t] with high probability under P(ξ)

t .

Furthermore, it will turn out that the largest potential values in boxes of radius ≈ rt are of order r
d/α
t . It

is convenient to express statements like these in terms of point processes, i.e., random variables with values
in the set Mp((0,∞) × Rd) of Radon measures on (0,∞) × Rd with values in N0 ∪ {∞}, also called point
measures since they are of the form

∑
n∈N δxn with xn ∈ (0,∞)× Rd. The crucial point is that the rescaled

point process

Πt =
∑
z∈Zd

δ( ξ(z)

r
d/α
t

, z
rt

) (1.9)

converges as t→∞ , weakly with respect to the vague topology inMp((0,∞)×Rd), towards a Poisson point
process (PPP) Π with intensity measure αf−1−α df ⊗ dy:

Π ∼ PPP
(
(0,∞)× Rd, αf−1−α df ⊗ dy

)
. (1.10)

This is a basic result from spatial extreme-value analysis; see Lemma 2.4 for the precise statement. We will
often write the points in (0,∞) × Rd as (f, y). The process Π may also be seen as a standard Poisson point
process in Rd with Fréchet-distributed i.i.d. marks. We will write the probability with respect to Π also by
P.

In order to formulate the path behaviour of the walk in terms of the local times ℓt(x) = ℓ(X)

t (x) =∫ t

0
1{X(s) = x} ds, we need to rescale them in time by t and in space by rt. Those rescaled local times

are considered as a density with respect to Πt of the measure W (ξ,X)

t defined by

dW (ξ,X)

t

dΠt
(f, y) =

ℓt(yrt)

t
, (f, y) ∈ (0,∞)× Rd, (1.11)
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where we have extended the local times to a function ℓt : Rd → [0, t] satisfying ℓt = 0 on Rd \ Zd. Note that

W (ξ,X)

t =
∑
z∈Zd

ℓt(z)

t
δ( ξ(z)

r
d/α
t

, z
rt

)
We will often omit the superscripts and write simply Wt for W

(ξ,X)

t . It does not encode the number nor the
order of the visits of the random walk to the sites. Wt lies in the set W of all measures µ on (0,∞)×Rd with
total mass µ((0,∞) × Rd) ≤ 1. Our main object of study will be Wt. Certainly the rescaled local times are
an object of high interest themselves, but their behaviour may be deduced from that of Πt and Wt.

By using the identities

r
d/α
t t = rt log t ( dα = 1− 1

1+q ) and βtt
2 = θrt log t, (1.12)

from (1.4) it is easily seen that

H(ξ)

t (X) =
∑
z∈Zd

ξ(z)ℓt(z)− βt

∑
z∈Zd

ℓt(z)
2 =

∑
z∈ Zd

rt

tξ(zrt)
ℓt(zrt)

t
− βtt

2
∑
z∈ Zd

rt

(ℓt(zrt)
t

)2
= rt log t

∫
(0,∞)×Rd

[
fw(f, y)− θw(f, y)2

]
dΠt(f, y), with w =

dWt

dΠt
,

(1.13)

i.e., the Hamiltonian is an explicit functional of the rescaled local times and the point process Πt. This is the
starting point of our analysis.

1.3 Main results: convergence towards a variational formula
In this section we formulate and comment on the main results of our paper. In Theorem 1.2 (a) we prove the
asymptotic behaviour of the partition function Z(ξ)

t defined in (1.2) in terms of a limiting variational formula
Ξ, which we define in Definition 1.1 in terms of an energy and entropy functional. In Theorem 1.2 (b) we
show that for α > 2d, the rescaled local times measure Wt of a typical trajectory sampled from the mixture
of P and P(ξ)

t converges in distribution to the maximizer of the variational formula.
Contrary to the parabolic Anderson model, which corresponds to θ = 0, this maximizer is – with probability

larger than 0 – not a Dirac measure. However, which may be quite unexpected, the support of this maximizer
is still finite. More precisely, the number of points in the support is a random variable which attains any value
of N with positive probability. Interestingly, the behaviour of this variational formula changes for α ∈ (d, 2d),
we comment on this in Remark 1.9.

We introduce a few definitions of functionals and notation as a preparation for the statements of our main
result, Theorem 1.2.

Definition 1.1. Let P ∈Mp((0,∞)× Rd). We define

(a) the energy functional ΦP : W → [−∞,∞] by

ΦP(µ) :=

{∫
(0,∞)×Rd

[
fw(f, y)− θw(f, y)2

]
dP(f, y) if µ≪ P, w = dµ

dP ,

−∞ otherwise,
(1.14)

(b) the entropy functional DP : W → [0,∞] by

DP(µ) :=

{
supY⊂suppRd µ,#Y <∞ D0(Y ) if µ≪ P,
∞ otherwise,

(1.15)

where D0(∅) = 0 and D0(Y ) for a finite nonempty set Y ⊂ Rd is the smallest possible | · |-length of a

path from the origin that reaches all points in Y ; i.e., the minimum over
∑N

i=1 |σi−σi−1| of bijections
σ : {0, . . . , N} → Y ∪ {0} with σ0 = 0, where N = #(Y \ {0}). We wrote

suppRd µ = {y ∈ Rd : ∃f > 0, (f, y) ∈ suppµ}, (1.16)



WEAKLY SELF-AVOIDING WALK IN A PARETO-DISTRIBUTED RANDOM POTENTIAL 5

for the support of the projection of µ on Rd.
(c) the functional ΨP : W → [−∞,∞) by

ΨP(µ) :=

{
ΦP(µ)− qDP(µ) if ΦP(µ) <∞,

−∞ otherwise.
(1.17)

For P ∈Mp((0,∞)× Rd) we define

Ξ(P) = sup
µ∈W

ΨP(µ). (1.18)

Because ΨP(0) = 0, (1.18) defines a function Ξ :Mp((0,∞)× Rd)→ [0,∞].
3

We write P⋊ P(ξ)

t for the mixture of the laws of P and P(ξ)

t , i.e.,

P⋊ P(ξ)

t [A×B ] = E
[
1A(ξ)P(ξ)

t [X ∈ B ]
]
. (1.19)

We equip W, the space of all measures on (0,∞) × Rd with total mass ≤ 1, with the vague topology. By
(Kle08, Corollary 13.31) and (Kal83, Theorem 15.7.7), W is a compact Polish space, which will be convenient
for the formulation of our results and proofs. Therefore, by (Kle08, Corollary 13.30) (corollary of Prohorov’s
theorem) and (Kal83, Theorem 15.7.7), the set of probability measures on W forms a compact Polish space.

Theorem 1.2. Fix θ ∈ (0,∞) and α ∈ (d,∞). We have the following convergences in distribution:

(a) partition function:
1

rt log t
logZ(ξ)

t
t→∞
=⇒ Ξ(Π), (1.20)

and,

P
[
Ξ(Π) ∈ [0,∞)

]
= 1.

(b) law of the rescaled local times: Let α ∈ (2d,∞). Then the following hold:

(i) There exists a random variable µ∗ with values in W that maximizes ΨΠ, in the sense that P-
almost surely,

ΨΠ(µ
∗) = Ξ(Π). (1.21)

(ii) This maximizer µ∗ is P-almost surely unique in the sense that, P-almost surely, ΨΠ(ν) < ΨΠ(µ
∗)

for any ν ∈ W \ {µ∗}. Furthermore,

• P-almost surely, µ∗ is a probability measure with finite support and µ∗ ≪ Π. In particular,
P[µ∗ = 0 ] = P[ # suppµ∗ = 0 ] = 0.
• For all k ∈ N, P[ # suppµ∗ = k ] > 0.

Consequently,

P
[
Ξ(Π) ∈ (0,∞)

]
= 1. (1.22)

(iii) Under the mixed measure P⋊ P(ξ)

t as in (1.19), Wt = W (ξ,X)

t converges in distribution to µ∗;

Wt
t→∞
=⇒ µ∗ in W, (1.23)

more precisely, for all g ∈ Cb(W),

E
[
E(ξ)

t [g(W (ξ,X)

t )]
]
→ E[g(µ∗)]. (1.24)

The proof of Theorem 1.2 is given in Section 5 conditionally on crucial assertions for the lower bound part
of the convergence in (a) (which are proved in Section 6) and crucial assertions about the upper bound in (a)
and for (iii) (which are proved in Section 7).
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Remark 1.3 (The appearance of the energy and entropy functionals). We will later (in Section 1.4 on the
heuristics) see that qDΠ plays the role of the large-deviation rate functional for the rescaled local times on
the scale rt log t; hence we called it an entropy functional. Observe that, see for example (1.13),

H(ξ)

t (X) = (rt log t) ΦΠt
(W (ξ,X)

t ), (1.25)

and, therewith,

Z(ξ)

t = E
[
e(rt log t) ΦΠt (Wt)

]
. (1.26)

This says that the random walker gains on the exponential scale rt log t the potential reward that is given for
w = dWt

dΠt
by
∫
(0,∞)×Rd fw(f, y) dP(f, y) and it pays the self-repellence price that is given by the expression∫

(0,∞)×Rd θw(f, y)
2 dP(f, y). See Section 1.4 for a more precise heuristic explanation. 3

Remark 1.4 (Interpretation of Theorem 1.2 (b)). Since µ∗ has finite support and is absolutely continuous
with respect to Π, there exist (random) k∗ ∈ N and (f∗

1 , y
∗
1), . . . , (f

∗
k∗ , y∗k∗) ∈ supp(Π) and w∗

1 , . . . , w
∗
k∗ ∈ (0, 1]

satisfying
∑k∗

i=1 w
∗
i = 1 such that

µ∗ :=

k∗∑
i=1

w∗
i δ(f∗

i ,y
∗
i )
.

Hence, if we interpret the convergence in (1.23) as almost sure convergence, the typical path under P(ξ)

t spends

∼ w∗
i t time units in the site ∼ ⌊y∗i rt⌋ with value ξ(⌊y∗i rt⌋) ∼ f∗

i r
d/α
t for any i ∈ {1, . . . , k∗} and elsewhere

only o(t) time units
(or does not even reach them).
The above is an informal interpretation. More formally, we obtain the following consequence from Theo-

rem 1.2 (b). Given h ∈ Cc((0,∞)×Rd), observe that the function g :W → R defined by g(µ) =
∫
(0,∞)×Rd hdµ

is continuous and bounded on W, i.e., g ∈ Cb(W). Because

g(W (ξ,X)

t ) =

∫
(0,∞)×Rd

h(f, y)
ℓt(rty)

t
dΠt(f, y) =

∑
z∈Zd

h
( ξ(z)
r
d/α
t

,
z

rt

)ℓt(z)
t

,

g(µ∗) =

∫
(0,∞)×Rd

hdµ∗ =

k∗∑
i=1

w∗
i h(f

∗
i , y

∗
i ),

and since Wt =⇒ µ∗ in W, see (1.24), we obtain

E

[ ∑
z∈Zd

E(ξ)

t [ℓt(z)]

t
h
( ξ(z)
r
d/α
t

,
z

rt

)]
−→ E

[ k∗∑
i=1

w∗
i h(f

∗
i , y

∗
i )

]
.

3

Remark 1.5. [Generalization of Theorem 1.2 (b) (iii)] Actually, we are able to prove a slightly more general
but more abstract convergence than in Theorem 1.2 (b) (iii). Indeed, let us write L(ξ)

t for the law of Wt under
P(ξ)

t , so that for a Borel set A ⊂ W we have

L(ξ)

t (A) = P(ξ)

t ({X : W (ξ,X)

t ∈ A}) = E(ξ)

t [1{W (ξ,X)

t ∈ A}] =
∫
1{W (ξ,X)

t ∈ A} dP(ξ)

t (X). (1.27)

Then for µ∗ as in Theorem 1.2, we can show the following convergence in distribution with respect to the
weak topology (see Remark 5.6),

L(ξ)

t
t→∞
=⇒ δµ∗ . (1.28)

More precisely, for all continuous bounded functionals f defined on the set of probability measures on W,

E
[
f(L(ξ)

t )
] t→∞

=⇒ E
[
f(δµ∗)

]
. (1.29)
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The convergence in Theorem 1.2 (b) (iii) follows from this by taking f(ν) =
∫
g dν in (1.29) for g ∈ Cb(W)

so that f(L(ξ)

t ) = E(ξ)

t [g(W (ξ,X)

t )] and f(δµ∗) = g(µ∗), implying (1.24). 3

Remark 1.6 (Large-deviations explanation). Standard ideas from the theory of large deviations applied to the
formula in (1.26) already suggest that the statements in Theorems 1.2 are true. Indeed, if (Wt)t∈(0,∞) would
satisfy a large-deviations principle (LDP) on the scale rt log t with rate function qDΠ, and if the limit Πt =⇒ Π
could be combined with this LDP, and if the energy functional ΦΠ would have appropriate continuity and
boundedness properties, then Varadhan’s lemma would imply the validity of our main statement. Roughly,
this is also our strategy for proving the theorems, but a lot of technicalities need to be overcome along the
way. 3

Remark 1.7 (Traveling Saleman Distance). Observe thatD0(Y ) in the definition ofDP (see (1.15)) represents
the Travelling Salesman Distance of a path connecting 0 to all the points of Y but without returning to 0.

Remark 1.8 (A particular case: d = 1). In dimension 1, both the expressions of the energy functional ΦΠ

in (1.14) and of the entropy functional DΠ in (1.15) turn out to be much easier. To be more specific, we
consider x, z ∈ [0,∞)2 and µ ∈ W such that µ ≪ Π and min suppR µ = −x and max suppR µ = z. Then,
DΠ(µ) = (x + z) − min{x, z} since it is the shortest distance that one has to travel so that starting from
the origin both sites −x and z are visited (here we can of course say that the path first visits x and then
z if x < z and the other way around if x > z). Moreover, by screening effect in dimension 1, that is since
every site in [−x, z] is visited by a trajectory that reaches both −x and z, any (f, y) belonging to suppΠ
with y ∈ [−x, z] may be in the support of such µ ∈ W without increasing the entropy. Note that, P-a.s.
Π((0,∞) × {0}) = 0 and therefore, it is sufficient to consider (x, z) that are not simultaneously null. We
introduce the order statistics (f (i)

[−x,z])i∈N of the field inside [−x, z] such that for a sequence (y(i)

[−x,z])i∈N

suppΠ ∩
[
(0,∞)× [−x, z]

]
= {(f (i)

[−x,z], y
(i)

[−x,z]) : i ∈ N}.
Because every µ ∈ W with suppµ ⊂ (0,∞)× [−x, z] and µ≪ P is of the form µ =

∑∞
i=1 wiδ(f(i)

[−x,z]
,y

(i)

[−x,z]
)

for a sequence (wi)i∈N in [0,∞] with
∑∞

i=1 wi ≤ 1, we have the following identity by definition of ΦP (1.14),

sup
µ∈W : suppµ⊂(0,∞)×[−x,z]

ΦΠ(µ) = sup
w1,w2,···≥0,

∑∞
i=1 wi≤1

∞∑
i=1

(
f (i)

[−x,z]wi − θw2
i

)
. (1.30)

As the f (i)

[−x,z] are chosen decreasingly in i, it turns out that for large i, it is not worth taking wi positive, or in

other words, that there exists a k for which one may restrict to those sequences (wi)i∈N with wk+1 = wk+2 =
· · · = 0. This is made precise in Proposition 3.1: This finite k is given in terms of a formula of the the order

statistics (f (i)

[−x,z])i∈N, let us call it k⋆ here (see (3.3)). By writing φk⋆

(
f
(1)
[−x,z], . . . , f

(k⋆)
[−x,z]

)
for the right-hand

side of (1.30) with the restriction wi = 0 for i ≥ k⋆+1 (which agrees with the definition of φk given in (3.2)),
we then have the following description of Ξ(Π) in terms of the leftmost and rightmost points in suppµ:

Ξ(Π) := sup
x,y∈[0,∞)2\{(0,0)}

φk⋆

(
f
(1)
[−x,z], . . . , f

(k⋆)
[−x,z]

)
− q(x+ z)− qmin{x, z}. (1.31)

3

Remark 1.9 (Suggested scenario for α ∈ (d, 2d)). In the course of our proof for Theorem 1.2 we in particular
show that the characteristic variational formula Ξ(Π) is finite almost surely for α > d and positive for α > 2d.
The latter assertion seems crucial for the behaviour of the path in the random potential. It is not easy to give
a short argument for that; apparently the PPP possesses sufficiently many sufficiently high potential values
with not too large distances between them, such that trajectories exist for which it is worth paying the travels
in order to profit from spending time in those large potentials.

This is different for α ∈ (d, 2d). Indeed, in a forthcoming paper we will show that both {Ξ(Π) = 0} and
{Ξ(Π) > 0} have positive probability here. This can be roughly explained as follows: With positive probability
the PPP, like for α > 2d, possesses sufficiently many high potentials with not too large distances. Also, the
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complement has positive probability, leading to no such preferable locations as it is not worth travelling
that far to profit from the large potential. We conjecture that the intermediate order statistics need to be
considered to reflect the true behaviour of the random path. A closer description of this scenario will be given
in a future work. 3

1.4 Heuristic explanation
Let us give here an explanation of the main result, Theorem 1.2. In Section 6 we will turn the following
heuristics into a proof of the lower bound (however, the proof of the upper bound in Section 7 is very
different).

We need to understand the large-t behaviour of the partition function Z(ξ)

t defined in (1.7), i.e., the ex-

pectation of eH
(ξ)
t with βt defined in (1.6) and the Hamiltonian as in (1.13). The first step is to understand

the scales on which the probability from the simple random walk and the contribution from the potential ξ
run, where we first ignore the self-intersection term and concentrate on the potential-interaction term. Hence,
this part of the heuristics is the same as for the behaviour of the PAM with Pareto-distributed potential in
(KLMS09); let us give an overview now. Note that there is a competition for the random walk between a
reward (called ‘energy’) from staying much time in sites with extremely large values of the potential and the
probabilistic cost (called ‘entropy’) to reach such preferable sites quickly: travelling far and fast, the walker
finds a larger potential value where it can stay longer, but this is more costly. We need to find an optimal
balance.

As in (KLMS09), we obtain a lower bound by inserting the indicator on the event Az,s
t that the walker

wanders on some fixed shortest path to a site z during the time interval [0, st) and stays at z during [st, t].
The probability of this event is (recall that the jump rate of our random walk is 2d)

P(Az,s
t ) = Poi2dst(|z|)(2d)−|z|e−(1−s)2dt#{ shortest paths 0←→ z}.

Taking |z| ≫ t, using Stirling’s estimation for the term |z|! that appears in the Poi-term, we see that the
dominating terms in the exponent are |z| log |z| and |z| log(st), so that, dropping all lower-order terms,

P(Az,s
t ) ≈ exp

{
|z|
[
log

t

|z| + log s

]}
.

Now let us examine the contribution from the potential ξ. In order to obtain a preferably large lower bound,
we pick z as a maximizing point of the potential ξ within a box of radius r. According to the Pareto-tails,
we are able to pick z such that ξ(z) ≈ rd/α, and this site will be approximately of the order r, i.e., |z| ≈ r.

Hence, from the stay at z during [st, t], the potential contributes ≈ et(1−s)rd/α . The potential values that the
random walk experiences on the fast rush during [0, st] are negligible. Hence, we have the lower bound

Z(ξ)

t ≥ exp

{
r

[
log

t

r
+ log s

]}
etr

d/α

e−strd/α ,

and we have still the freedom to optimize over small s and large r. The optimal choice of s ∈ [0, 1] for the
second and the last term is s ≈ 1

t r
1−d/α, which implies the lower bound

Z(ξ)

t ≥ exp
{
r log

t

r
+ trd/α − log

(
trd/α−1

)}
= exp

{
trd/α − d

α
r log r

}
. (1.32)

The maximal r satisfies trd/α−1 = 1+ log r, and this is asymptotically satisfied by r = rt = (t/ log t)1+q as in
(1.8) with q = d

α−d as in (1.6). Then both the energy term trd/α and the entropy term − d
αr log r ≈ −qrt log t

are on the scale rt log t. Interestingly, the latter comes exclusively from the probability of the crucial eventAz,s
t ,

after optimizing on s ≈ 1/ log t, whose choice depends on the potential value. This explains the appearance
of the prefactor q in (1.17) and the notion of an ‘entropy functional’ in Definition 1.1.

So far, this was the first part of the explanation, which applied also to (KLMS09), since we considered
only the potential interaction. Now let us become specific to our model, where an additional self-intersection
term in the Hamiltonian appears and makes the path paying an extra energy price when staying a long time
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in a single site. If this time is of order t, then the price is of order βtt
2 = θrt log t (see (1.12)) i.e., it is

on the same scale. Therefore, the strategy has to be improved by not only visiting one site, but several
after each other and staying in each of them some time ≍ t. Standard assertions from spatial extreme-value

theory guarantee that there are not only one, but many sites with potential values ≍ r
d/α
t , and they are

homogeneously distributed over a centered ball with radius ≈ rt, so there are many good candidates for sites
to be visited. One needs to make a choice of the number of the visited sites and the order in which they are
visited during the time interval [0, t]. The travel between them costs an additional price of the same order as
the first travel from the origin to one of them since the distances of all these travels are on the same scale.
The functional ΦP(µ) in (1.14) describes the energetic gain (staying ≈ w(f, y)t time units in a site ≈ yr with

potential value fr
d/α
t for all the (f, y) in P and paying θw(f, y)2 for the self-intersections), and the functional

qDP in (1.15) describes the exponential probabilistic cost payed by the simpe random walk. Hence, the rate
functional ΨP = ΦP − qDP in (1.17) gives the entire exponential cost of this path strategy on the scale rt
for P = Πt, as we explained in Remark 1.3. Then the exponential behaviour of the partition function Z(ξ)

t

is given by the maximum of µ 7→ ΨΠ(µ), as in Varadhan’s lemma. An additional technical difficulty is the
combination of the large-deviation arguments with the point process convergence Πt → Π; see Remark 1.3.

1.5 Organization of the paper
The remainder of the paper is organized as follows. In Section 2, we explain our strategy for proving The-
orem 1.2 and formulate two types of intermediate results: the first comprises a deterministic version of
Theorem 1.2 for point measures that possess certain properties, while the second states that Πt and Π possess
these properties. This version of Theorem 1.2 is proved in Section 3 along with fundamental compactness
and continuity properties of the energy functional ΦP and the entropy functional DP , as well as the exis-
tence and main properties of the maximizer. The proof that Πt and Π have the good properties is given in
Section 4. Hence, Sections 2–4 derive all the properties of the variational formula for Ξ(Π) as formulated in
Theorem 1.2. In Section 5 we start the proof of the large-t analysis of the model, Theorem 1.2, by formulating
two main ingredients for the proof for the lower respectively upper bound (Propositions 5.2 resp. 5.4). The
two propositions are proved in Sections 6 and 7, respectively.

1.6 Literature remarks
Let us give some survey on the literature on random motions in random potential and localisation properties.
First examples appeared in work by Sznitman on Brownian motion among Poissonian obstacles in the early
1990s, see his monograph (Szn98). Among many other things, he proved almost-sure attraction to one island,
but did not identify this island. An analogous localization result (i.e., for the solution of the PAM rather than
for the random motion) in the space-discrete setting with an i.i.d. doubly-exponentially distributed potential
was (GKM07). Around 2010, it turned out that the strongest attraction to the intermittent islands is present
for potentials with heavy tails, since they have a particularly pronounced profile: indeed, the islands are just
singletons here. This has been observed for the first time for the most heavy-tailed potential distribution,
the Pareto distribution, in (KLMS09) and has been investigated in great detail in (MOS11) and also for the
exponential distribution in (LM12); see the survey (Mör11). For double-exponentially distributed potential,
localization (and much more) was proved in (BKdS18). Most of these localization results are formulated and
proved for the solution of the PAM rather than for the random walk in the Feynmna–Kac formula. See (Ast16,
Sect. 6) and (Kön16, Sect. 6.3) for two comprehensive survey texts on such localization results up to 2016.

These two survey texts triggered interest in localization of discrete-time random walks among Bernoulli
traps, the (time and space) discrete version of Brownian motion among Poisson obstacles. Deep localization
properties were derived in (DFSX20b, DFSX20a, DFSX21) in this setting in dimension d ≥ 2. Similar results
for a correlated random potential in d = 1 (with i.i.d. gaps between the obstacles) have been derived recently
in (PS24).

Earlier work (OR16, OR17, OR18) analysed the strongly related model of a spatial random branching
walk in a Pareto-distributed random field of branching rates. For this model, this series of papers derives
a description that resembles our model and results quite strongly. It turns out there that the main bulk of
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the particles is highly concentrated in a number of sites that are defined in terms of a Poisson point process
(essentially the same as our Π); more precisely, the branching process subsequently visits points of this point
process that are step for step extremal with respect to a compromise between high potential values and short
distances. This precise mechanism is different from the one that is detected in the parabolic Anderson model
(PAM) in (KLMS09); the main difference to that model being that the branching process is consistent and
has no finite time horizon, like the PAM. With respect to our model, an additional difference is the repellent
effect from the second part of our Hamiltonian.

The second feature in our model is the Hamiltonian of the famous weakly self-repellent random walk, the
negative exponential of the self-intersection local time. It is here only a side-remark that the behaviour of the
weakly self-repellent walk is poorly understood in dimensions d ∈ {2, 3, 4}, and it was a substantial challenge
to investigate it in the other dimensions. See (MS13, Sla11) for surveying texts. Generally, it is expected that
the typical behaviour is a more or less uniformly spread-out behaviour in space on a scale tγd that is much
larger than the scale t1/2 of the free walk (at least in d ≤ 4), but much less than the scale t of a ballistic walk
(at least in d ≥ 2). However, all these effects will not be seen in our model, because of the presence of the
random potential. We will necessarily be working on a much rougher scale than those scales that are believed
to be responsible for this spread-out behaviour, and the resulting behaviour will be much more spread-out,
but for reasons that have to do with the potential and not with the self-repulsion.

1.7 Notation
We write N = {1, 2, . . . } and N0 = {0, 1, 2, . . . , }. For the rest of the paper, we fix d ∈ N, θ, α ∈ (0,∞). We
set QR := [−R,R]d for R ∈ (0,∞). We write =⇒ for convergence in distribution. We abbreviate ‘Poisson

point process’ by ‘PPP’. For y = (y1, . . . , yd) ∈ Rd we write |y| = ∑d
i=1 |yi| for the ℓ1 norm and for a ∈ Rd,

r > 0 we write B(a, r) = {y ∈ Rd : |y − a| < r} the open ℓ1 ball in Rd around a of radius r.

2. Preparation

In the present section, we prepare for the proof of Theorem 1.2 by analysing the variational formula Ξ in
(1.18). On the way, we need to extract several continuity and compactness properties of the energy and
entropy functionals ΦP and DP as functions of P ∈ Mp((0,∞) × Rd). For this, we keep P deterministic
in this section, but restrict to a subclass of such P’s for which we can prove all needed assertions and for
which we can prove that the processes Πt and Π satisfy them. We define in particular a class of good point
measures, see Definition 2.7, with the characteristic that if P is good then ΨP has at most one maximizer.
In Theorem 2.8 we formulate all the necessary properties for deterministic good point measures, among other
things the uniqueness of the maximizer and its continuous dependence on P. Furthermore, in Lemma 2.9 we
state that Πt and Π are almost surely good. The proofs are deferred to later sections.

It will be convenient for us to compactify specific subsets of (0,∞)×Rd as described next. For h, s > 0 we
define the cone-shaped set (see also Figure 1) with height h and slope s by

Hs
h :=

{
(f, y) ∈ (0,∞)× Rd : f > s|y|+ h

}
. (2.1)

h

f

0

s

Hs
h

y

Figure 1. Illustration of Hs
h.
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We can embed (0,∞) × Rd continuously and openly into a locally compact Polish space E with certain
properties, mentioned in the lemma below. For a locally compact metric space E, we write Mp(E) for the
set of point measures on E, i.e., N0 ∪ {∞}-valued Radon measures, or equivalently, due to the fact that the
support of each such measure is countable and locally finite, the set of Radon measures that can be written
as
∑

n∈N δxn
for a sequence (xn)n∈N in E. We equipMp(E) with the vague topology, i.e., Pn → P inMp(E)

if and only if
∫
φ dPn →

∫
φ dP for each continuous compactly supported φ : E → R. When E = E we

will simply write Mp =Mp(E). We denote by M◦
p the set of point measures in Mp that are supported in

(0,∞)× Rd and equip it with the topology fromMp.

Lemma 2.1. There exists a locally compact Polish space E, with (0,∞)× Rd ⊂ E, such that

(i) for every h, s > 0, the open set Hs
h is relatively compact in E, and for every compact subset K in E

there exist h, s > 0 such that K ∩ [(0,∞)× Rd] ⊂ Hs
h,

(ii) the map ι : (0,∞)× Rd → E given by ι((f, y)) = (f, y), (f, y) ∈ (0,∞)× Rd is open and continuous.
In other words, (0,∞)× Rd is continuously and openly embedded in E.

Moreover,

(a) M◦
p can be viewed as a subspace of Mp((0,∞)× Rd), in the sense that for P ∈ M◦

p, P ◦ ι defines a

point measure on (0,∞)× Rd.
(b) Let P ∈Mp((0,∞)×Rd). Define P on E by P(A) = P(ι−1(A)) for Borel sets A ⊂ E. Then P is an

element ofM◦
p if and only if P(Hs

h) <∞ for all s, h > 0.

Proof. The proof is given in Appendix A, below Lemma A.1. □

Remark 2.2. Observe that by the Portmanteau theorem (Kle08, Theorem 13.16), Pn → P in Mp(E)
implies that Pn(A) → P(A) for all measurable relatively compact A ⊂ E with P(∂A) = 0. And hence by
Lemma 2.1 (b), in particular for all measurable A with P(∂A) = 0 that are a subset of Hs

h for some h, s > 0.

Lemma 2.3. For all t > 0, P(Π ∈M◦
p) = P(Πt ∈M◦

p) = 1 (with P as in Lemma 2.1 (b)).

Proof. Let h, s > 0. We show that E(Π(Hs
h)) < ∞ and E(Πt(Hs

h)) < ∞, so that, e.g., P(Π(Hs
h) < ∞) = 1,

and therefore P(
⋂

s,h∈(0,∞)∩Q{Π(Hs
h) < ∞}) = 1. Because Hs

h ⊂ Ht
j for t ≤ s and j ≤ h, this implies

P(
⋂

s,h∈(0,∞){Π(Hs
h) <∞}) = 1 and thus, by Lemma 2.1 (b) that Π ∈Mp.

We have

Πt(Hs
h) =

∑
z∈Zd

δ( ξ(z)

r
d/α
t

, z
rt

)(Hs
h) =

∑
z∈Zd

1

{ ξ(z)

r
d/α
t

> s
∣∣∣ z
rt

∣∣∣+ h
}
.

We calculate

P
( ξ(z)
r
d/α
t

> s
∣∣∣ z
rt

∣∣∣+ h
)
=
(
r
d/α
t

(
s
∣∣∣ z
rt

∣∣∣+ h
))−α

= r−d
t

(
s
∣∣∣ z
rt

∣∣∣+ h
)−α

.

Therefore, because α > d,

E
(
Πt(Hs

h)
)
≤
∑
z∈Zd

r−d
t

(
s
∣∣∣ z
rt

∣∣∣+ h
)−α

<∞.

Note that Π(Hs
h) is a Poisson distributed random variable with parameter∫

Rd

∫ ∞

0

1Hs
h
(f, y)

α

fα+1
df dy =

∫
Rd

1

(s|y|+ h)α
dy,

which is finite for α > d, so that E(Π(Hs
h)) <∞. □

From here on, we will make abuse of notation and write Π also for Π and Πt for Πt.
In the following lemma we state the convergence of Πt towards Π, as mentioned between (1.9) and (1.10):
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Lemma 2.4 (Πt =⇒ Π). Let α ∈ (d,∞). Let t1, t2, · · · ∈ (0,∞) and tn → ∞. We may view Πtn and Π as
elements ofM◦

p for all n. Then Πtn → Π inM◦
p as n→∞.

Proof. That we may view Πtn and Π as elements ofM◦
p follows by Lemma 2.3.

The convergence follows by (BKdS18, Lemma 7.4) (the fact that we have (0,∞) × Rd instead of R × Rd

does not change the validity of the lemma, as the proof builds on (Res87, Proposition 3.21) can be carried
out in our situation in the same way). For this we have to check the two conditions, namely (7.17) and (7.18)

of that lemma (we take the N̂t in that lemma to be equal to zero, furthermore let us mention that in (7.17)

there should be “ td

(2N̂t+1)d
” instead of “ td

(2N̂t)d
”). The first condition, (7.17), follows by

lim
r→∞

rdP
( ξ(0)
rd/α

> s
)
= lim

r→∞
rd(rd/αs)−α = s−α.

The second condition, (7.18), follows by the fact that for all s, h > 0

∑
x∈Zd:|x|>rn

P
( ξ(0)
rd/α

> s
|x|
r

+ h
)
≤

∑
x∈Zd:|x|>rn

P
(
ξ(0) > s|x|r d

α−1
)

≤ s−α
∑

x∈Zd:|x|>rn

|x|−αrα−d ≤ s−α

∫ ∞

rn
2

u−αrα−dud−1 du

= s−αrα−d u
d−α

d− α

∣∣∣∞
rn
2

= s−αrα−d (
rn
2 )d−α

α− d
= s−α 2α−d

α− d
nd−α n→∞−−−−→ 0.

So that indeed,

lim
n→∞

lim sup
r→∞

∑
x∈Zd:|x|>rn

P
( ξ(0)
rd/α

> s
|x|
r

+ h
)
= 0.

□

For P ∈M◦
p and R > 0, define

MR(P) := sup {f : (f, y) ∈ P and y ∈ QR} . (2.2)

Lemma 2.5. Let P,P1,P2, . . . be inM◦
p such that Pn → P inMp. Then

sup
n∈N

MR(Pn) <∞ for all R > 0 and lim
R→∞

sup
n∈N

MR(Pn)

R
= 0. (2.3)

In particular, limR→∞
MR(P)

R = 0.

Proof. Fix ε ∈ (0, 1). First observe that for any Q ∈ Mp and any h > 0, Q(Hε
h) < ∞ since Hε

h is relatively
compact (in E), and thus V (Q) := sup{f : (f, y) ∈ suppQ ∩Hε

h} <∞. Fix h ∈ (0, ε) such that P(∂Hε
h) = 0.

By (Res87, Proposition 3.13), there exists an n0 ∈ N such that V (Pn) ≤ V (P) + 1 for all n ≥ n0, implying
M = supn∈N V (Pn) < ∞. For R > 0, note that (0,∞) × QR = A ∪ B where A ⊂ (0, ε(R + 1)] × Rd and
B ⊂ Hε

h (see Figure 2), so that
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f

y

Hεh

(0,∞)×QR

(0, ε(R+ 1)]× Rd

Figure 2. Illustration (0,∞)×QR ⊂ Hε
h ∪ (0, ε(R+ 1)]× Rd.

sup
n∈N

MR(Pn) ≤ max{ε(R+ 1),M} <∞,

implying the first statement in (2.3). For the second statement, divide the above inequality by R, take the
lim sup as R→∞ and then the limit as ε→ 0. □

Recall that W denotes the set of subprobability measures on (0,∞)× Rd with total mass ≤ 1. For R > 0
and P ∈Mp((0,∞)× Rd) define the sets

F(P) := {µ ∈ W : µ≪ P and supp(µ) is finite} , (2.4)

F1(P) := {µ ∈ F(P) : µ is a probability measure}. (2.5)

In the following lemma we show that if a point measure P has sufficiently many points, then one may restrict
to take the supremum over elements in F1(P) in the variational formula for Ξ(P) (1.18). Then, we introduce
the notion of a good point measure, under which we will prove a conditional version of Theorem 1.2 (b) (ii).

Lemma 2.6. Let P ∈M◦
p. Suppose that

∀δ > 0 ∃m ∈ N ∃ distinct (f1, y1), . . . (fm, ym) ∈ suppP,
m∑
i=1

fi ≥ 2θ, D0(y1, . . . , ym) < δ. (2.6)

Then

Ξ(P) = sup
µ∈W

ΨP(µ) = sup
µ∈F1(P)

ΨP(µ). (2.7)

The proof of lemma is given at the end of Section 3.2.

Definition 2.7 (Good point measure). We say that a point measure P ∈M◦
p is good if ΨP possesses at most

one maximizer in F(P) in the sense that there exists at most one ν ∈ F(P) such that supµ∈F(P) ΨP(µ) = ΨP(ν),
and if it satisfies at least one of the two following conditions:

(i) There exists a β > 2 such that for all R,C > 0 there exists a εR,C > 0 such that for ε ≤ εR,C and for
all y ∈ QR the set [(Cε,∞)×B(y, εβ)] ∩ suppP is nonempty.

(ii) P((0,∞)×QR) <∞ for every R > 0.

Now we can formulate a deterministic version of Theorem 1.2 (b) (ii) (and more) for good processes.

Theorem 2.8 (Analysis of ΨP for good P). If P,P1,P2, · · · ∈ M◦
p are good in the sense of Definition 2.7,

then the following statements hold.

(a) Maximizer: There exists a unique µ∗ ∈ W such that

ΨP(µ
∗) = sup

µ∈W
ΨP(µ). (2.8)

This maximizer µ∗ has finite support, is a probability measure and satisfies µ∗ ≪ P, i.e., µ∗ ∈ F1(P).
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(b) Multisupport maximizer: Let k ∈ N, ε := θ
4qk4 and L > 2θ + (q + 1)ε. With Bε = B(0, ε), define the

regions of (0,∞)× Rd (see also Figure 3)

G =

[
L,L+

2θ

k

]
×Bε, E1 = (ε, L)×Bε, E2 =

(
L+

2θ

k
,∞
)
×Bε,

E3 =
{
(f, y) ∈ (0,∞)× Rd : |y| > ε, f > ε ∨ (|y| − 3θ)

}
.

(2.9)

If P satisfies

P(G) = k and P(E1) = P(E2) = P(E3) = 0, (2.10)

then #suppµ∗ = k.
(c) Stability: For any open neighbourhood O ⊂ W of µ∗,

sup
Oc

ΨP < sup
W

ΨP = ΨP(µ
∗). (2.11)

(d) Continuity of maximizer: If Pn → P inM◦
p, then the maximizers µ∗

n of ΨPn converge towards µ∗ as
n→∞ in the vague topology.

Bε

L

L+ 2θ

ε

|y| − 3θ

E3E3

E1

E2

G

Figure 3. Illustration of the regions G, E1, E2 and E3 as in (2.9).

The proof of Theorem 2.8 is given in Section 3.4.
In order to be able to apply Theorem 2.8 to the point processes Πt defined in (1.9) and its limiting PPP

Π defined in (1.10), we use the following lemmas, whose proofs are given in Section 4.

Lemma 2.9 (Goodness of Π and Πt). Fix α ∈ (2d,∞). Then, for any t ∈ (0,∞), with probability one, Π
and Πt are good.

Lemma 2.10. Let α ∈ (d,∞). Let k ∈ N and G,E1, E2, E3 be as in (2.9). Then

P
[
Π(G) = k,Π(E1 ∪ E2 ∪ E3) = 0

]
> 0.

Proof. Since the regions in (2.9) are disjoint and each of them has finite and positive intensity measure, the
random variables Π(G), Π(E1), Π(E2), Π(E3) are independent and have non-trivial Poisson distributions, so
that P[Π(G) = k,Π(E1) = Π(E2) = Π(E3) = 0] has positive probability. □

It is clear that Theorem 1.2 (b) (ii) directly follows from Theorem 2.8, combined with Lemma 2.9 and
Lemma 2.10.

For the proof of the lower bound in Section 6, we use the following lemma so that we can apply Lemma 2.6
to Π.
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Lemma 2.11. Let α ∈ (d,∞). With probability one, Π satisfies (2.6).

3. Analysis of the variational formula
Here we give the proof of Theorem 2.8; that is, we analyse the maximum of ΨP and its maximizer for an
arbitrary point measure P that is good in the sense of Definition 2.7.

Let us first give a short outline of the proof. In Section 3.1 we analyse the maximization of the energy
functional ΦP(µ) over µ when the number of points of P is fixed; this involves only the maximization over
the potential values. In Section 3.2, we introduce the crucial tool for handling variational problems, namely
the Gamma-convergence, and derive Γ-continuity properties of P 7→ ΦP and P 7→ DP and consider the
compactness of the objects appearing in the variational formula supµ∈W ΨP(µ) (the right-hand side of (2.8)):
if P is good, then one can restrict the variational formula to measures in W that have a compact support
with respect to Rd. Then we give the proof of Lemma 2.6. In Section 3.3 we show that any maximizer of
ΨP is necessarily of finite support. In Section 3.4 finally we prove Theorem 2.8 (a), putting together the
results derived in the preceding sections, namely the Γ-continuity of P 7→ −ΨP , and the fact that we need to
optimize ΨP only over compact subsets of W. Recall that by our definition of “good”, the uniqueness of the
maximizer is guaranteed for good P.

3.1 Maximization of ΦP with fixed number of points

In this section we derive, for a given point measure with finite support, P =
∑k

i=1 δ(fi,yi), explicit information
about the maximization of ΦP(µ) over µ. We need slightly adapted notation. Since we optimize here only
ΦP(µ) over µ, we can also drop the points y1, . . . , yk; see Definition 1.1. We obtain explicit information about
the maximising vector w = (w1, . . . , wk) = (µ(fi, yi))

k
i=1.

Fix θ ∈ (0,∞) as always. Furthermore, we fix k ∈ N, assume that P =
∑k

i=1 δ(fi,yi) and therefore may

restrict our maximization problem to µ of the form µ =
∑k

i=1 wiδ(fi,yi). Then a comparison to Definition 1.1
shows that

sup
µ∈W

ΦP(µ) = φk(f1, . . . , fk), (3.1)

where φk : (0,∞)k → [0,∞) is defined as

φk(f1, . . . , fk) = sup
w1,...,wk≥0∑k

i=1 wi≤1

k∑
i=1

(
wifi − θw2

i

)
. (3.2)

We are going to analyze the function φk in this section.
Since φk(f1, . . . , fk) does not depend on the order of the fi, we may assume them to be ordered in a

decreasing way. The following is the main result of this section; it identifies the optimal w1, . . . , wk and thus
the optimal µ, provides some of its properties and shows its uniqueness.

Proposition 3.1 (Analysis of φk). Fix k ∈ N and f1 ≥ f2 ≥ · · · ≥ fk > 0.
Case 1: f1 + · · ·+ fk ≥ 2θ. Let k⋆ = K⋆(f1, . . . , fk), where

K⋆

(
f1, . . . , fk

)
:= inf

{
j ∈ {1, . . . , k − 1} : jfj+1 ≤

j∑
i=1

fi − 2θ
}
∧ k, (3.3)

where we interpret inf ∅ =∞. Then the unique maximizer in (3.2) is given by

wi :=

{
1
2θ

[
fi − 1

k⋆
(
∑k⋆

j=1 fj − 2θ)
]

if i ≤ k⋆,

0 otherwise.
(3.4)
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Moreover, wi > 0 for i ∈ {1, . . . , k⋆}, w1 + · · ·+ wk∗ = 1 and

φk(f1, . . . , fk) = φk⋆
(f1, . . . , fk⋆

) =
1

4θ

( k⋆∑
i=1

f2
i −

1

k⋆

( k⋆∑
i=1

fi − 2θ
)2)

. (3.5)

In particular,
k⋆−1∑
i=1

f2
i

4θ
< φk(f1, . . . , fk) ≤

k⋆∑
i=1

f2
i

4θ
. (3.6)

Case 2: f1 + · · · + fk < 2θ. Then the unique maximizer is given by wi = fi/2θ, 1 ≤ i ≤ k. Moreover,
w1 + · · ·+ wk < 1 and

φk(f1, . . . , fk) =

k∑
i=1

f2
i

4θ
. (3.7)

The proof of Proposition 3.1 builds on the following lemma, and is given below the proof of Lemma 3.2.

Lemma 3.2. Let k ∈ N and f1 ≥ f2 ≥ · · · fk ≥ 0.

(a) The map

(w1, . . . , wk) 7→
k∑

i=1

[wifi − θw2
i ] (3.8)

is maximized over [0,∞)k precisely for wi =
fi
2θ .

(b) Suppose
∑k

i=1
fi
2θ ≤ 1. Then (3.8) is maximized over (w1, . . . , wk) ∈ [0,∞)k under the constraint∑k

i=1 wi ≤ 1 precisely by wi =
fi
2θ .

(c) Let γ ∈ R. Then (3.8) (as a function on Rk) is maximized over (w1, . . . , wk) in Rk under the constraint∑k
i=1 wi = γ by

wj =
fj
2θ

+
1

k

(
γ −

k∑
i=1

fi
2θ

)
, j ∈ {1, . . . , k}. (3.9)

(d) Let γ ∈ [0,∞) and suppose that kfk+2θγ−∑k
i=1 fi ≥ 0. Then (3.8) is maximized over (w1, . . . , wk) ∈

[0,∞)k under the constraint
∑k

i=1 wi = γ by (3.9), and we have

k∑
i=1

wifi − θw2
i =

1

4θ

k∑
i=1

f2
i −

θ

k

(
γ −

k∑
i=1

fi
2θ

)2
. (3.10)

(e) Suppose
∑k

i=1
fi
2θ ≥ 1 and kfk + 2θ −∑k

i=1 fi ≥ 0. Then (3.8) is maximized over [0, 1]k under the

constraint
∑k

i=1 wi ≤ 1 by (3.9) with γ = 1.

(f) Suppose kfk + 2θ −∑k
i=1 fi ≤ 0 or equivalently

(k − 1)fk + 2θ −
k−1∑
i=1

fi ≤ 0. (3.11)

Then, if (3.8) is maximized by (w1, . . . , wk) ∈ [0, 1]k with
∑k

i=1 wi ≤ 1, then wk = 0.

Proof. (a) follows by the fact that wi 7→ wifi − θw2
i is concave for all i, so that the maximum is attained

where its derivative equals zero (or at the boundary, i.e., for wi = 0, but this gives an outcome that is clearly

less than for wi =
fi
2θ ).

(b) follows immediately from (a).
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(c) is proved by using the Lagrange multiplier method: Define L : Rk+1 → R by

L(w1, . . . , wk, λ) :=

k∑
i=1

wifi − θ

k∑
i=1

w2
i − λ

( k∑
i=1

wi − γ
)
, w1, . . . , wk, λ ∈ [0,∞).

(w1, . . . , wk, λ) is the extremal point for L if ∇L(w1, . . . , wk, λ) = 0, which is the case if

fi − λ− 2θwi = 0 for all i, and

k∑
i=1

wi = γ.

Combining gives λ = 1
k

∑k
i=1 fi − 2θγ and (3.9). This extremal point for L is the maximizer for L over Rk as

L is concave and because lim|x|→∞ xfi − θx2 = −∞ for all i.

(d) follows from (c) as the condition implies that kfj + 2θγ −∑k
i=1 fi ≥ 0 (remember fj ≥ fk) for all j

and thus wj ≥ 0 for wj as in (3.9), i.e.,

wj =
fj
2θ

+
1

k

(
γ −

k∑
i=1

fi
2θ

)
≥ 0.

As furthermore,

fj
θ
− wj =

fj
2θ
− 1

k

(
γ −

k∑
i=1

fi
2θ

)
,

we have obtain (3.10) by the following equality:

k∑
i=1

wifi − θw2
i =

k∑
i=1

wi(fi − θwi) = θ

k∑
i=1

(( fi
2θ

)2
− 1

k2
(
γ −

k∑
i=1

fi
2θ

)2)
.

(e) follows from (d) as one observes that (3.10) is maximal when γ is closest to
∑k

i=1
fi
2θ .

(f) Suppose w̃1, . . . , w̃k ∈ [0, 1] for k ≥ 2 are such that
∑k

i=1 w̃i ≤ 1 (we may assume k ≥ 2 as θ > 0 so that
(3.11) cannot be satisfied for k = 1). Let us define w1, . . . , wk by wk = 0 and for i ∈ {1, . . . , k − 1}

wi := w̃i +
1

k−1 w̃k.

Then by writing γ =
∑k

i=1 w̃k =
∑k

i=1 wk, we see that

k∑
i=1

w̃ifi − θw̃2
i −

(
k∑

i=1

wifi − θw2
i

)
= w̃kfk − θw̃2

k +

k−1∑
i=1

(w̃i − wi)(fi − θ(w̃i + wi))

= w̃kfk − θw̃2
k −

w̃k

k − 1

( k−1∑
i=1

fi − 2θγ
)

=
w̃k

k − 1

(
(k − 1)fk −

k−1∑
i=1

fi + 2θ − (1− γ)2θ − (k − 1)θw̃k

)

≤ − w̃k

k − 1
((1− γ)2θ + (k − 1)θw̃k) ≤ −θw̃2

k.

This proves that the maximizer has to satisfy wk = 0. □

Proof of Proposition 3.1. Case 2 follows directly from Lemma 3.2 (b).

In Case 1, observe first that jfj+1 ≤
∑j

i=1 fi−2θ for all j > k⋆, and that f1+ · · ·+fk⋆
≥ 2θ. By definition

of K⋆ one has (k⋆−1)fk⋆ >
∑k⋆−1

j=1 fj−2θ and thus fk⋆ > 1
k⋆
(
∑k⋆

j=1 fj−2θ) and so w1 ≥ w2 ≥ · · · ≥ wk⋆ > 0.

By Lemma 3.2 (f) it follows that wi = 0 for i > k⋆ and so by (e) one completes the proof. □
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3.2 Some topological properties of the variational formula
In this section, we prove that the functional P 7→ −ΨP introduced in Definition 1.1 is Gamma-continuous in
the vague topology, which is the crucial property under which we can find later arguments for the existence of
maximizers and continuity properties of the maximizers as a function of P. The main tool of the arguments
is a characterization of the vague convergence of point measures in terms of one-by-one convergence of its
points.

Let us introduce the crucial sense of convergence for variational formulas.

Definition 3.3 (Gamma convergence). Let X be a metric space. Let f, f1, f2, . . . : X → [−∞,∞]. We say

that the sequence (fn)n∈N Gamma converges to f , written fn
Γ,n→∞−−−−−→ f , if

(i) for all x ∈ X and all sequences (xn)n∈N in X with xn → x,

f(x) ≤ lim inf
n→∞

fn(xn),

(ii) for all x ∈ X there exists a sequence (xn)n∈N in X such that xn → x and

f(x) ≥ lim sup
n→∞

fn(xn).

Remark 3.4. Observe that f
Γ,n→∞−−−−−→ f if and only if f is lower semi-continuous. 3

We use the following statements about Γ-convergence, which are sometimes referred to as the Fundamental
Theorem(s) of Gamma convergence:

Theorem 3.5. Let X be a metric space. Let f, f1, f2, . . . : X → [−∞,∞]. Suppose fn
Γ,n→∞−−−−−→ f .

(a) (Bra02, Proposition 1.18) For each compact K ⊂ X

inf
x∈K

f(x) ≤ lim inf
n→∞

inf
x∈K

fn(x).

(b) (Bra02, Theorem 1.21) Suppose there exists a compact set K ⊂ X such that infx∈X fn(x) =
infx∈K fn(x) for all n ∈ N. Suppose that x1, x2, · · · ∈ X are such that fn(xn) = infx∈X fn(x)
for all n ∈ N. Then there exists a subsequence of (xn)n∈N that converges to an y ∈ X for which
infx∈X f(x) = f(y).

The main result of Section 3.2 is the following proposition. Part (a) will allow us to restrict the search for
a maximizer µ∗ of ΨP to those µ whose Rd-support is within some box in Rd. Recall that W is the set of
subprobability measures on (0,∞)×Rd with total mass ≤ 1, and QR = [−R,R]d. Furthermore, we introduce

WR = {µ ∈ W : suppµ ⊂ (0,∞)×QR}, R > 0. (3.12)

Proposition 3.6. Let P,P1,P2,P3, . . . be inM◦
p such that Pn → P inMp. Then

(a) Compactness

lim
R→∞

sup
µ∈W\WR

sup
n∈N

ΨPn
(µ) = −∞.

(b) Gamma convergence of −Ψ

−ΨPn

Γ,n→∞−−−−−→ −ΨP .

The proof of this proposition is at the end of this section. We prepare for the proof by citing a well-known
result from point-process theory about a characterization of vague convergence by point-wise convergence.
For P ∈ Mp and L > 0, recalling that QL = [−L,L]d, we denote by P (L) the point measure 1[L−1,∞)×QL

P,
which means dP(L)

dP = 1[L−1,∞)×QL
, i.e.,

P (L)(A) = P
(
A ∩

[
[L−1,∞)×QL

])
(3.13)
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for any Borel measurable A ⊂ E. For µ ∈ W we also write µ(L) = 1[L−1,∞)×QL
µ.

Observe that as [L−1,∞) × QL ⊂ Hs
h for some h, s > 0 (e.g. s = 1

4 and h = L
2 ), and Hs

h is relatively

compact in E, P([L−1,∞)×QL) ∈ N0 for all P ∈Mp.

Lemma 3.7. Let P,P1,P2, · · · ∈ Mp and L > 0 be such that Pn → P inMp and P(∂([L−1,∞)×QL)) = 0.

(a) Put k = P([L−1,∞) ×QL) ∈ N0. Then there exist (fi, yi), (f
n
i , y

n
i ) ∈ [L−1,∞) ×QL, for n ∈ N and

i ∈ {1, . . . , k} such that, for all large enough n ∈ N (with empty sums interpreted as zero),

P (L)

n =

k∑
i=1

δ(fn
i ,yn

i ), P (L) =

k∑
i=1

δ(fi,yi), (fn
i , y

n
i )

n→∞−−−−→ (fi, yi), i ∈ {1, . . . , k}.

(b) Suppose µ, µ1, µ2, . . . are in W such that µn → µ in W and µn ≪ Pn for all n ∈ N. Then µ ≪ P
and, with k, (fi, yi), (f

n
i , y

n
i ) as above, there exist (wn

1 , . . . , w
n
k ), (w1, . . . , wk) ∈ [0, 1]k such that, for

all large enough n,

µ(L)

n =

k∑
i=1

wn
i δ(fn

i ,yn
i ), µ(L) =

k∑
i=1

wiδ(fi,yi), wn
i

n→∞−−−−→ wi, i ∈ {1, . . . , k}.

Proof. For the first statement, note that [L−1,∞)×QL is a relatively compact subset of E and apply (Res87,
Proposition 3.13). (See also Theorem C.1.) The second statement is a straightforward consequence of the
first. That µ≪ P follows by the fact that from the convergences one obtains µ(L) ≪ P (L) for all L > 0: Let
fL be a density function which equals zero outside [L,∞)×QL. Then µ = limL→∞ µ(L) = limL→∞ fLP (L) =
limL→∞ fLP. Hence f = limL→∞ fL = supL∈N fL is the density for µ with respect to P. □

Here is the main step in the proof of Proposition 3.6.

Lemma 3.8. Let P,P1,P2, · · · ∈ M◦
p be such that Pn → P in Mp, and let µ, µ1, µ2, · · · ∈ W be such that

µn → µ in W. Then

(a) DP(µ) ≤ lim infn→∞DPn
(µn).

(b) If µn ≪ Pn and there exists a R > 0 such that µn ∈ WR for all n ∈ N, then

ΦP(µ) ≥ lim sup
n→∞

ΦPn
(µn).

Proof. (a) If µ ̸≪ P, then by Lemma 3.7 there exists an N ∈ N such that µn ̸≪ Pn for all n ≥ N , and the
conclusion trivially holds. Therefore, we may assume µ≪ P and µn ≪ Pn for all n ∈ N. Moreover, we may
assume that µ ̸= 0. Let L > 0 be such that P has zero measure on the boundary of [L−1,∞) × QL and
DP(µ

(L)) > 0, which implies µ(L) ̸= 0. Let k, fn
i , y

n
i , w

n
i , fi, yi, wi be as in Lemma 3.7, and note that k ≥ 1.

Let i1, . . . , im ∈ {1, . . . , k}, m ∈ N, be the distinct indices such that wij > 0, j ∈ {1, . . . ,m}, and wℓ = 0
otherwise. We may assume that, for all i ≤ k and all n large enough, wi > 0 implies wn

i > 0. Then

DPn
(µn) ≥ DPn

(µ(L)

n ) ≥ D0(y
n
i1 , . . . , y

n
im)

n→∞−−−−→ D0(yi1 , . . . , yim) = DP(µ
(L)).

Therefore, for any L > 0, lim infn→∞DPn
(µn) ≥ DP(µ

(L)). Since DP(µ) = supL>0DP(µ
(L)), the claim

follows.
(b) Let R > 0, µn ∈ WR, µn ≪ Pn for all n ∈ N and µn → µ in W. Note that this implies µ ∈ WR as well

and, by Lemma 3.7 (b), µ≪ P. Let ε > 0. Let us first show that for large L > 0

ΦPn
(µn) < ΦPn

(µ(L)

n ) + ε for all n ∈ N and |ΦP(µ)− ΦP(µ
(L))| < ε. (3.14)

Indeed, take L > R such that L−1 < ε, µ((0, L−1)×QL) < ε/θ and P(∂([L−1,∞)×QL)) = 0. Then

ΦPn
(µn)− ΦPn

(µ(L)

n ) =

∫
(0,L−1)×QL

[
f − θ

dµn

dPn
(f, y)

]
dµn(f, y) ≤ L−1 < ε,
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and the same inequality is valid with Pn, µn replaced by P, µ, for which also

ΦP(µ)− ΦP(µ
(L)) =

∫
(0,L−1)×QL

[
f − θ

dµ

dP (f, y)

]
dµ(f, y) ≥ −θµ((0, L−1)×QL) > −ε,

where we used that dµ
dP ≤ 1. This concludes (3.14). Now it is enough to show that ΦPn(µ

(L)
n ) → ΦP(µ

(L)),
but this follows by Lemma 3.7: with k,fi, f

n
i , yi, y

n
i , wi, w

n
i as therein and n large enough,

ΦPn(µ
(L)

n ) =

k∑
i=1

(
wn

i f
n
i − θ(wn

i )
2
)
→

k∑
i=1

(
wifi − θw2

i

)
= ΦP(µ

(L)).

□

As a by-product of the proof, we obtained:

Lemma 3.9. Let P ∈M◦
p and µ ∈ WR for some R ∈ (0,∞). Then

ΦP(µ
(L))

L→∞−−−−→ ΦP(µ), DP(µ
(L))

L→∞−−−−→ DP(µ), ΨP(µ
(L))

L→∞−−−−→ ΨP(µ).

Proof. This follows by definition of DP and by (3.14). □

Proof of Proposition 3.6. (a) It suffices to show that given any A > 0, there exists an R0 > 0 such that,

ΨPn(µ) ≤ −A for all R ≥ R0, µ ∈ W \WR and n ∈ N.

Recall the definition of MR from (2) and recall that q = d
α−d > 0. By Lemma 2.5, there exists an R0 > 0

such that

max{A, sup
n∈N

MR(Pn)} ≤ 1
2q(R− 1) for all R ≥ R0. (3.15)

Let R ≥ R0, µ ∈ W \WR and n ∈ N. We decompose (0,∞)× Rd into

S(0)

R := (0,∞)×QR, S(k)

R := (0,∞)×
[
QR+k \QR+k−1

]
for k ∈ N.

Observe that ζ := µ((0,∞) × Rd) is in (0, 1]. Write ζ =
∑

k∈N0
ζk with ζk := µ(S(k)

R ) for k ∈ N0. Note that

ζk > 0 implies DPn
(µ) ≥ R + k − 1, so that ζkDPn

(µ) ≥ ζk(R + k − 1) for k ∈ N0. Since ΨPn
(µ) = −∞ if

µ ̸≪ Pn, we may and do assume µ ≪ Pn. Hence we have the lower bound ζDPn
(µ) =

∑
k∈N0

ζkDPn
(µ) ≥∑

k∈N0
ζk(R+ k − 1). Furthermore, we have the upper bound

ΦPn
(µ) ≤

∑
k∈N0

∫
S

(k)
R

f dµ(f, y) ≤
∑
k∈N0

ζkMR+k(Pn).

Together with (3.15) and DPn(µ) ≥ R ≥ R0, this gives

ΨPn
(µ) = ΦPn

(µ)− qDPn
(µ) ≤

∑
k∈N0

ζk
[
1
2q(R+ k − 1)− q(R+ k − 1)

]
− q(1− ζ)R

≤
∑
k∈N0

ζk(−A)− (1− ζ)A = −A.

(b) Let us first show (i) of Definition 3.3. Pick µ, µ1, µ2, · · · ∈ W such that µn → µ. We have to
show that −ΨP(µ) ≤ lim infn→∞−ΨPn(µn), i.e., ΨP(µ) ≥ lim supn→∞ ΨPn(µn). By (a) we may assume
that there exists an R > 0 such that µ, µn ∈ WR for all n ∈ N, because if such R does not exist, then
lim supn→∞ ΨPn

(µn) = −∞. Passing to subsequences if necessary, we may also assume that µn ≪ Pn for
all n ∈ N and, by Lemma 3.7 (b), µ ≪ P. In this case, the desired statement is a direct consequence of
Lemma 3.8.

To verify (ii) of Definition 3.3, let µ ∈ W. Assume first that ΨP(µ) = −∞. Since Pn is countable for each
n, there exists a (f, y) ∈ (0,∞)×Rd \⋃n∈N Pn. Setting µn = (1− 1

n )µ+ 1
nδ(f,y), it is clear that µn → µ and

ΨPn
(µn) = −∞ for every n.
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Assume now that ΨP(µ) > −∞, which implies µ ≪ P. As we will soon see, it suffices to show the
following: for every L > 0, there exists a sequence µn with µn = µ(L)

n such that DPn
(µn) → DP(µ

(L)) and
ΦPn

(µn) → ΦP(µ
(L)). To prove the latter, fix L > 0 and take k, (fi, yi), (f

n
i , y

n
i ) as in Lemma 3.7. Define

wi = µ(fi, yi) for i ∈ {1, . . . , k} and µn :=
∑k

i=1 wiδ(fn
i ,yn

i ). Then

DPn(µn) = D0({ynj : wj > 0})→ D0({yj : wj > 0}) = DP(µ
(L)),

µn → µ(L) and ΦPn
(µn)→ ΦP(µ

(L)) as well, as shown in the last line of the proof of Lemma 3.8.
Now, for each m ∈ N, we can find a sequence (νm,n)n∈N in W with ν(m)

m,n = νm,n such that DPn(νm,n) →
DP(µ

(m)) and ΦPn(νm,n) → ΦP(µ
(m)) as n → ∞. Let (Nm)m∈N be a strictly increasing sequence in N such

that ∣∣∣DPn
(νm,n)−DP(µ

(m))
∣∣∣ ∨ ∣∣∣ΦPn

(νm,n)− ΦP(µ
(m))

∣∣∣ < 1

m
for all n ≥ Nm.

Define mn := max{m ∈ N : Nm ≤ n} and µn := νmn,n. Note that mn → ∞, µn → µ and n ≥ Nmn
, so that

by Lemma 3.9,∣∣∣ΨPn
(µn)−ΨP(µ)

∣∣∣ ≤ ∣∣∣ΨPn
(µn)−ΨP(µ

(mn))
∣∣∣+ ∣∣∣ΨP(µ

(mn))−ΨP(µ)
∣∣∣ n→∞−−−−→ 0.

□

With the convergence of Lemma 3.9 and the compactness in Proposition 3.6 (a), we prove Lemma 2.6:

Proof of Lemma 2.6. By Proposition 3.6 (a) it follows that there exists an R > 0 such that Ξ(P) equals
supν∈WR

ΨP(ν). Then, by Lemma 3.9, it follows that Ξ(P) equals supν∈F(P) ΨP(ν). Let ν ∈ F(P) and

δ > 0. We show supµ∈F1(P) ΨP(µ) ≥ ΨP(ν) − 2δ. Let (f1, y1), . . . , (fm, ym) be distinct elements of P such

that
∑m

i=1 fi ≥ 2θ and D0(y1, . . . , ym) < δ. Let k ∈ N0 and (fm+1, ym+1), . . . , (fm+k, ym+k) be the distinct
elements that form the support of ν (so possibly k = 0). By Proposition 3.1 there exist wi for i ∈ {1, . . . ,m+k}
with

∑m+k
i=1 wi = 0 such that for µ =

∑m+k
i=1 wiδ(fi,yi) one has

ΦP(µ) = φk+m(f1, . . . , fm+k) ≥ φm(f1, . . . , fm) ≥ ΦP(ν), DP(µ) ≤ D0(y1, . . . , ym+k) ≤ 2δ +DP(ν),

and thus ΨP(µ) ≥ ΨP(ν)− 2δ. □

3.3 Maximizers have finite support
In this section we prove that, if P is a good point measure inM◦

p, then every maximizer µ∗ of ΨP has a finite
support. It is this result that needs one of the two conditions (i) or (ii) of Definition 2.7. Indeed, we will use
(i) to construct, from a maximization candidate with infinitely many points, a better one with only finitely
many points, and we will use (ii) for a simple argument that the maximizer has only finitely many points.

Proposition 3.10 (Maximizers have finite support). Let P be a point measure in M◦
p that is good in the

sense of Definition 2.7. Then

(a) ΨP has at least one maximizer,
(b) there exists a R > 0 such that every maximizer of ΨP lies in WR,
(c) every maximizer has finite support,

and, if P satisfies (i) of Definition 2.7, then

(d) every maximizer ν is a probability measure, i.e., ν =
∑k

i=1 wiδ(fi,yi) for some k ∈ N, w ∈ [0, 1]k∑k
i=1 wi = 1, fi ∈ (0,∞), yi ∈ Rd for i ∈ {1, . . . , k}. Moreover,

∑k
i=1 fi > 2θ.

Proof. (a) By Proposition 3.6, see also Remark 3.4, ΨP is upper semicontinuous. W is sequentially compact
by (Kle08, Corollary 13.31). Therefore ΨP has at least one maximizer.

(b) By Proposition 3.6 (a), we may pick R > 0 so large that supµ∈W\WR
ΨP(µ) < 0 ≤ supµ∈WR

ΨP(µ).
This implies that every maximizer lies in WR.
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(c) Let ν ∈ WR be a maximizer of ΨP . Clearly, ν ≪ P (otherwise ΨP(ν) = −∞ < ΨP(0)). Under (ii) of
Definition 2.7, ν has finite support. Therefore we assume instead that (i) of Definition 2.7 holds. Moreover,
without loss of generality we may assume that the supports of P and ν are infinite. We are going to show
that there exists a µ ∈ WR+1 such that suppµ is a finite set and ΨP(µ) > ΨP(ν), which implies the claim.

Let (fi, yi) ∈ (0,∞) × Rd for i ∈ N be distinct and such that {(fi, yi) : i ∈ N} = supp ν. We may assume
that f1 ≥ f2 ≥ f3 ≥ . . . and fk → 0 as k → ∞ (due to the fact that [ε,∞) × QR is relatively compact in
E, because it is a subset of Hs

h for some s, h > 0, and so there are only finitely many i such that fi ≥ ε for
all ε > 0). We separate the proof in two cases, depending on

∑
i∈N fi: Case 1:

∑
i∈N fi ∈ (2θ,∞], Case 2:∑

i∈N fi ∈ [0, 2θ].
Case 1

∑
i∈N fi ∈ (2θ,∞]. The idea is that Proposition 3.1 tells us that DP is maximized using a finite

number of points such that adding points the Φ part will not enlarge, but the D part will increase.

Let δ > 0 be such that
∑

i∈N fi ≥ 2θ + 2δ. Let K1 be such that
∑K1

i=1 fi > 2θ + δ. Let K2 ≥ K1 be such

that fk < δ
K1

for all k > K2. Then for k ≥ K2 we have

ΦP(ν) ≤ φk(f1, . . . , fk) + δ, (3.16)

k∑
i=1

fi − kfk+1 =

k∑
i=1

(fi − fk+1) ≥
K1∑
i=1

(fi −
δ

K1
) ≥ 2θ + δ − δ = 2θ. (3.17)

By (3.16) it follows that (as the above can be done for any δ > 0), for φk as in (3.2),

ΦP(ν) ≤ sup
k∈N

φk(f1, . . . , fk).

By (3.16) it follows that for all δ > 0 there exists a K2 > 0 such that ΦP(ν) ≤ φk(f1, . . . , fk) + δ for all
k ≥ K2 and thus ΦP(ν) ≤ supk∈N φk(f1, . . . , fk) + δ for all δ > 0. By (3.17) it follows that there exists a
ℓ ∈ N such that K⋆(f1, . . . , fk) = ℓ for all k ≥ K2, where K⋆ is as in (3.3). Therefore, by Proposition 3.1, we
have φℓ(f1, . . . , fk) = φm(f1, . . . , fm) for all m ≥ K2 and thus, with wi as in (3.4), for w given by

w(f, y) =

{
wi if i ∈ {1, . . . , ℓ} and (f, y) = (fi, yi),

0 otherwise,

we have for µ = wP that ΦP(µ) = φℓ(f1, . . . , fℓ) = supk∈N φk(f1, . . . , fk) and thus

ΦP(µ) ≥ ΦP(ν), DP(µ) < DP(ν) and therefore ΨP(µ) > ΨP(ν).

Case 2
∑

i∈N fi ∈ [0, 2θ]. Let us first introduce some objects. For k ∈ N, let

ak :=

∑∞
i=k+1 fi

2θ
.

Then ak → 0 as k →∞. Let R1 := inf{s > 0: supp ν ⊂ (0,∞)×Qs} the smallest r such that ν ∈ Wr. Then
R1 ≤ R since ν ∈ WR. Then there exists a function φ : N→ N such that yφ(n) converges to z = (z1, . . . , zd) ∈
∂QR1 as n → ∞. Assume, without loss of generality, that z1 = R1. Let β > 2 and ε = εR1+1,3θ as in the

condition (i) of Definition 2.7 on P. Pick k ∈ N such that θa2k − 8qaβk > 0 and 3aβk ≤ 1 and ak < ε ∧ 1. Then
define

a = ak and z̄ = (R1 + 2aβ , z2, . . . , zd).

Observe that z̄ ∈ QR1+1. By the assumption (i) on P from Definition 2.7 there exists a

(f̃ , ỹ) ∈ [(3θa,∞)×B(z̄, aβ)] ∩ suppP

We observe that (f̃ , ỹ) /∈ supp ν since ỹ /∈ QR1 , but ỹ ∈ QR1+3aβ ⊂ QR+1. Since limn→∞ yφ(n) = z, there

exists a (f̂ , ŷ) ∈ supp ν such that ŷ ∈ B(z, aβ) and therefore (f̃ , ỹ) ∈ (3θa,∞)×B(ŷ, 4aβ).
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f

y

y1 y2 y3

(f̂ , ŷ)

z z

(f̃ , ỹ)

(3θa,∞)×B(z, aβ)

Figure 4. Visualisation of z, z and (f̃ , ỹ) (for d = 1).

We recall Proposition 3.1, Case 2, which tells us that the unique maximizer of φk as in (3.2), is given by

( f12θ , . . . ,
fk
2θ ). Define µ = wP (i.e., dµ

dP = w), where

w(f, y) =


fi
2θ if (f, y) = (fi, yi) for some i ∈ {1, . . . , k},
a if (f, y) = (f̃ , ỹ),

0 otherwise.

(3.18)

Because

k∑
i=1

fi
2θ

+ a =

∑∞
i=1 fi
2θ

∈ [0, 1],

it is clear that µ ∈ WR+1 and that µ has only finite support. We are going to show that ΨP(µ) > ΨP(ν).
Observe that

∞∑
i=k+1

f2
i

4θ
≤ 1

4θ

( ∞∑
i=k+1

fi

)2

=
1

4θ
(2θa)

2
= θa2.

Therefore, by using that
∑k

i=1
f2
i

4θ =
∑∞

i=1
f2
i

4θ −
∑∞

i=k+1
f2
i

4θ , we see that

ΦP(µ) ≥
k∑

i=1

wifi + af̃ − θ
( k∑

i=1

w2
i + a2

)
=

k∑
i=1

f2
i

4θ
+ af̃ − θa2 ≥

∞∑
i=1

f2
i

4θ
+ af̃ . (3.19)

By Proposition 3.1 it follows that

ΦP(ν) ≤
∞∑
i=1

f2
i

4θ
. (3.20)

Moreover, we recall the definition of DP in (1.15) and see that

DP(ν) ≥ D0({y1, . . . , yk, ŷ}) ≥ D0({y1, . . . , yk, ŷ, ỹ})− 8aβ , (3.21)
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where the last inequality holds true since any path starting from 0 and visiting all points in {y1, . . . , yk, ŷ}
can be extended to visit ỹ as well by traveling back and forth along the straight line linking ŷ and ỹ (which
are at most 4aβ apart from each other). Since suppRd µ = {y1, . . . , yk, ỹ},

D0({y1, . . . , yk, ŷ, ỹ}) ≥ D0({y1, . . . , yk, ỹ}) = DP(µ).

Thus, we deduce from (3.21) that

DP(µ) ≤ DP(ν) + 8aβ , (3.22)

and therefore, using (3.19), (3.20) and (3.22) in combination with the fact that f̃ ≥ 3θa we obtain

ΨP(µ)−ΨP(ν) ≥ −
∞∑

i=k+1

f2
i

4θ
+ af̃ − θa2 − 8qaβ ≥ af̃ − 2θa2 − 8qaβ > θa2 − 8qaβ > 0. (3.23)

(d) Suppose that µ =
∑k

i=1 wiδ(fi,yi). If µ is a maximizer and
∑k

i=1 fi ≥ 2θ, then
∑k

i=1 wi = 1 because of
Proposition 3.1 (as, like in Case 1, ΦP(µ) = φk(f1, . . . , fk)), so that µ is a probability measure.

If
∑k

i=1 fi < 2θ and µ maximizes ΦP (observe ΦP , not ΨP), then by Proposition 3.1,
∑k

i=1 wi < 1, i.e., µ
is not a probability measure. Moreover, like in Case 2 above, one can show that µ is not a maximizer of ΨP :

Indeed, one chooses an a ∈ (0, ε∧ 1) with a ≤ 1−∑k
i=1 wi, θa

2− 8qaβ > 0 and 3aβ ≤ 1 and follows the same

lines as in Case 2 to find a (f̃ , ỹ) such that ΨP(µ+ aδ(f̃ ,ỹ)) > ΨP(µ). □

3.4 Proof of Theorem 2.8
In this section, we prove Theorem 2.8 subject to Proposition 3.6 (b) (Gamma-convergence of −Ψ) and Propo-
sition 3.10 (finiteness of support of maximizers).

Proof of Theorem 2.8. The existence for (a) follows directly by Proposition 3.10, whereas the uniqueness is
imposed by the fact that P is assumed to be good. (c) follows by the fact that ΨP is upper-semicontinuous
and W is sequentially compact (see the beginning of the proof of Proposition 3.10), so that, in particular, Oc

is sequentially compact for any open set O ⊂ W. Therefore there exists a maximizer of ΨP on Oc, which by
the uniqueness cannot be equal to the maximizer overW, therefore proving the desired inequality. (d) follows
from Theorem 3.5 (b) and Proposition 3.6 (b).

Let us now prove (b). The idea is that the points in G are all worth visiting because of their large energy
values, but at the same time they are not distinct enough so as to give preference to only a couple of them.
Having no points in E1, E2 and E3 contributes to make points outside of G not worth visiting, because either
their energy values are too low or their distance too large.

Fix P ∈ M◦
p with P(G) = k and P(Ei) = 0, i = 1, 2, 3. Denote by (f1, y1), . . . , (fk, yk) the k points of P

in G, with f1 ≥ f2 ≥ · · · ≥ fk. Take wi as in (3.4) of Proposition 3.1 and let ν∗ :=
∑k

i=1 wiδ(fi,yi). Note that,
since fi ≥ L > 2θ for 1 ≤ i ≤ k, the relevant formulas from Proposition 3.1 will (mostly) be (3.4) and (3.5).
We divide the proof into the following steps:

(Step 1) wi > 0 for all i ∈ {1, . . . , k}.
(Step 2) If ν ∈ W and supp ν ⊂ G then ΨP(ν) ≤ ΨP(ν

∗);
(Step 3) If ν ∈ W and supp ν ̸⊂ G then ΨP(ν) ≤ ΨP(ν

∗).

Steps 2–3 together with (a) will then show that µ∗ = ν∗, and this together with Step 1 implies (b).

Step 1 By Proposition 3.1 it suffices to check that k = K⋆(f1, . . . , fk), where K⋆ is as in (3.3). This follows
as for any j ∈ {1, . . . , k − 1} we have

j∑
i=1

fi − 2θ ≤ j(L+
2θ

k
)− 2θ = jL− (k − j)2θ

k
≤ jfj+1 −

2θ

k
< jfj+1. (3.24)
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Step 2 We can assume that ν ≪ P. We will first show the statement for ν ∈ W which are nonzero. Observe
that by (3.1), for any ν ∈ W with ∅ ≠ supp ν ⊂ G,

ΨP(ν) = ΦP(ν)−DP(ν) ≤ φ|J|((fj)j∈J)− qD0((yj)j∈J),

where J ⊂ {1, . . . , k} is such that supp ν = {(fj , yj) : j ∈ J}. Therefore it suffices to show that for all
J ⊂ {1, . . . , k}, J ̸= ∅, one has

φ|J|((fj)j∈J − qD0((yj)j∈J) ≤ ΨP(ν
∗) = φk(f1, . . . , fk)− qD0(y1, . . . , yk).

Of course for k = 1 the above is clear. Suppose that k ≥ 2. Let J ⊂ {1, . . . , k} with m := |J | ≤ k − 1 and
ℓ ∈ {1, . . . , k} \ J . By an inductive argument on m, it suffices to show that

φm((fi)i∈J)− qD0((yi)i∈J) ≤ φm+1((fi)i∈J∪{ℓ})− qD0((yi)i∈J∪{ℓ}). (3.25)

First of all, a straightforward computation using (3.5) gives setting S =
∑

i∈J fi−2θ and using that 1
m− 1

m+1 =
1

m(m+1) ,

φj+1((fi)i∈J∪{ℓ})− φj((fi)i∈J) (3.26)

=
1

4θ

( ∑
i∈J∪{ℓ}

f2
i −

1

m+ 1

( ∑
i∈J∪{ℓ}

fi − 2θ
)2)
− 1

4θ

(∑
i∈J

f2
i −

1

m

(∑
i∈J

fi − 2θ
)2)

(3.27)

=
1

4θ

[
f2
ℓ −

1

m+ 1

(
fℓ +

∑
i∈J

fi − 2θ
)2)

+
1

m

(∑
i∈J

fi − 2θ
)2)]

(3.28)

=
1

4θ

[
f2
ℓ −

1

m+ 1

(
f2
ℓ + 2fℓS + S2

)
+

1

m
S2
)]

(3.29)

=
1

4θ

[
m

m+ 1
f2
ℓ −

2fℓS

m+ 1
+

1

m(m+ 1)
S2
)]

=
1

4θm(m+ 1)

[
mfℓ − S

]2
(3.30)

=
1

4θm(m+ 1)

[
mfℓ −

(∑
i∈J

fi − 2θ

)]2
≥ 1

4θm(m+ 1)

(2θ
k

)2 ≥ θ

k4
= 4qε, (3.31)

where in the last line we used that ∑
i∈J

fi − 2θ ≤ mfℓ −
2θ(k −m)

k
, (3.32)

which follows similarly as the estimate in (3.24). From this and the observations

D0((yi)i∈J∪{ℓ})−D0((yi)i∈J) ≤ 4ε, 4qε− 4ε > 0,

we deduce (3.25). This basically follows from the observation that

|y1 − y2|+ |y2 − y3| ≤ |y1 − y3|+ 2|y2 − y3| ≤ |y1 − y3|+ 2|y2|+ 2|y3|,
|y1 − y2|+ |y2 − y3| ≤ |y1 − y2|+ |y2|+ |y3.

In order to finish this step, it suffices to observe that (because L > 2θ + (q + 1)ε),

ΨP(ν
∗) ≥ φ1(f1)− qD0(y1) = f1 − θ − q|y1| ≥ L− θ − qε > ε > 0. (3.33)

Step 3 By (a) it suffices to show this step for ν with supp ν ⊂ P finite support. Let (f, y) ∈ supp ν \G be such
that f is maximal among such points. Assume first that f > ε. In this case, our assumptions on P imply
that |y| ≥ f + 3θ. If f ≥ L+ 2θ

k , then ΦP(ν) ≤ f , DP(ν) ≥ |y| ≥ f + 3θ ≥ f , and thus

ΨP(ν) = ΦP(ν)− qDP(ν) ≤ f − qf < 0 < ΨP(ν
∗).
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If instead ε < f ≤ L+ 2θ/k, then ΦP(ν) ≤ L+ 2θ
k and |y| ≥ f + 3θ > ε+ θ + 2θ

k , so (remember (3.33))

ΨP(ν) ≤ L+
2θ

k
− q|y| ≤ L− (q − 1)

2θ

k
− qθ − qε < L− θ − qε ≤ ΨP(ν

∗).

Assume now that f ≤ ε. If supp ν ∩ G = ∅ then ΨP(ν) ≤ ε ≤ ΨP(ν
∗) (because of (3.33) again). Lastly,

suppose supp ν ∩ G = {(fi, yi)i∈J} ̸= ∅ where J ⊂ {1, . . . , k} with |J | = m ≥ 1. Let N ∈ N be the
number of points in supp ν \ G. Denote by (fk+1, yk+1), . . . , (fk+N , yk+N ) the points in supp ν \ G with
f = fk+1 ≥ fk+2 ≥ · · · ≥ fk+N . Observe that

mf ≤ mε < mL− 2θ ≤
∑
j∈J

fj − 2θ,

so that for I = {k+1, . . . , k+N}, K⋆((fi)i∈J∪I) = K⋆((fi)i∈J). The latter equals |J | due to (3.32) and thus
ΦP(ν) ≤ φ|J∪I|((fi)i∈J∪I) ≤ φm((fi)i∈J) ≤ ΦP(ν

∗) and so ΨP(ν) ≤ ΨP(ν
∗). □

4. Goodness of Π and of Πt

In order that we can apply Theorem 2.8 to the rescaled process Πt (for all t > 0) defined in (1.9) and to the
PPP Π defined in (1.10), we show in this section that they are good in the sense of Definition 2.7 for any
α ∈ (2d,∞). Moreover, we prove Lemma 2.11 for α ∈ (d,∞). That is, we prove Lemma 2.9, see Lemma 4.2
and Lemma 4.4. That both Π and Πt can be viewed as elements ofM◦

p, has been shown in Lemma 2.3.

Lemma 4.1. Let s, r > 0 and x ∈ Rd. Let Vd ∈ (0,∞) be the volume of the unit ball in Rd. Then

P
(
Π
(
[s,∞)×B(x, r)

)
= 0
)
= e−Vds

−αrd .

Proof. The random variable Π([s,∞)×B(x, r)) is Poisson distributed with parameter∫
[s,∞)×B(x,r)

αy−(1+α) dy ⊗ dz =

∫
[s,∞)

α

y1+α
dy Vdr

d = Vds
−αrd. (4.1)

□

Lemma 4.2.

(a) For t ∈ (0,∞), with probability one, Πt satisfies (ii) of Definition 2.7.
(b) If α ∈ (2d,∞), then with probability one, Π satisfies (i) of Definition 2.7.

Proof. (a) By construction Πt satisfies (ii) since Πt

(
(0,∞)×QR

)
is simply the cardinality of {x ∈ Zd : |x| ≤

Rrt}, which is Rdrdt .
(b) Let β ∈ (2, α

d ). First observe that QR can be covered by balls B(z, 1
k ) with z ∈ 1

kZ
d and z ∈ QR+1, i.e.,

QR ⊂
⋃

z∈( 1
kZd)∩QR+1

B(z, 1
k ).

Then, observe that therefore, with probability one Π satisfies (i) of Definition 2.7 if (replace ε by k−
1
β )

P

( ⋃
R,C∈(0,∞)∩Q

⋂
N∈N

⋃
k≥N

⋃
z∈( 1

kZd)∩QR+1

{
Π ∩

[
[Ck−

1
β ,∞)×B(z, 1

k )
]
= ∅
})

= 0.

By the Borel–Cantelli Lemma, the above holds if we can show that for any R,C ∈ (0,∞),∑
k∈N

P

( ⋃
z∈( 1

kZd)∩QR+1

{
suppΠ ∩

[
[Ck−

1
β ,∞)×B(z, 1

k )
]
= ∅
})

<∞.
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Let R,C > 0. We may assume R > 2. By estimating the probability of the union by the sum of the
probabilities, and observing that #( 1kZ

d)∩QR+1 ≤ (2k(R+1)+ 1)d ≤ (5kR)d, (indeed, use that R+1 ≤ 2R

and 4kR+ 1 ≤ 5kR) by Lemma 4.1 (with s = Ck−
1
β , r = 1

k , so that s−αrd = C−αk
α
β −d),∑

k∈N
P

( ⋃
z∈( 1

kZd)∩QR+1

{
suppΠ ∩

[
[Ck−

1
β ,∞)×B(z, 1

k )
]
= ∅
})
≤
∑
k∈N

(5kR)de−VdC
−αk

α
β

−d

.

Because β < α
d , we have α

β > d and therefore the above sum is finite. □

Lemma 4.3. Let P ∈ M◦
p. Suppose ν ∈ F(P), ν ̸= 0 and ΨΠ(ν) = supµ∈F(Π) ΨP(µ). Let k ∈ N,

(f1, y1), . . . , (fk, yk) ∈ P be such that supp ν = {(f1, y1), . . . , (fk, yk)}. Then ΦP(ν) = φ̃k(f1, . . . , fk), where

φ̃k(f1, . . . , fk) =
1

4θ

( k∑
i=1

f2
i −

1

k

( k∑
i=1

fi − 2θ
)2)

. (4.2)

Proof. Observe that (for φk as in (3.2))

ΦP(ν) = φk(f1, . . . , fk), DP(ν) = D0(y1, . . . , yk).

By the definition of the support, we have ν =
∑k

i=1 wiδ(fi,yi) for some w1, . . . , wk ∈ (0, 1]. By Lemma 3.2

and (f) we may assume that kmin{f1, . . . , fk}+ 2θ −∑k
i=1 fi > 0 (otherwise wi = 0 for some i). Therefore,

by (e) of that lemma, it follows that ΦP(ν) = φ̃k(f1, . . . , fk) (see also (3.4) and (3.5)). □

Lemma 4.4. Let α ∈ (0,∞) and t ∈ (0,∞). Recall the definition of F(P) in (2.4).

(a) With probability one, ΨΠ possesses at most one maximizer in F(Π).
(b) With probability one, ΨΠt possesses at most one maximizer in F(Πt). Moreover, for L > 0 and

Π(L)

t = 1[L−1,∞)×QL
Πt (see also (3.13)), the function Ψ

Π
(L)
t

possesses at most one maximizer in

F(Πt).

Proof. (a) We show that the event that there exist µ1, µ2 ∈ F(Π) with µ1 ̸= µ2 and ΨΠ(µ1) = ΨΠ(µ2) =
supµ∈F(Π) ΨΠ(µ), has probability zero. For this it suffices to show that P(NL) = 0 for any L > 0, where, with

SL := [L−1,∞)×QL,

NL =
{
∃µ1, µ2 ∈ F(Π): µ1 ̸= µ2, suppµi ⊂ SL,ΨΠ(µ1) = ΨΠ(µ2) = sup

µ∈F(Π)

ΨΠ(µ)
}
.

Let L > 0. We give an explicit almost sure description of Π on SL. Let us write Θ for the intensity measure
of Π, i.e., Θ(d(f, y)) = αf−(1+α) df ⊗ dy. Let N be a Poisson distributed variable with parameter mL, where
mL = Θ(SL). Let (Fj , Yj)j∈N be i.i.d. random variables that are independent from N and whose law is given
by 1

mL
1SL

Θ. Then,

1SL
Π is equal in distribution to

N∑
j=1

δ(Fj ,Yj).

Without loss of generality, we may assume 1SL
Π =

∑N
j=1 δ(Fj ,Yj). Then, by Lemma 4.3 NL is included in the

event (we make abuse of notation and for m = 0 we understand φ̃m(Fj1 , . . . , Fjm) and D0(Yj1 , . . . , Yjm) to be
equal to 0) {

∃k,m ∈ N0 ∃(f1, y1), . . . , (fk, yk), (g1, z1), . . . , (gm, zm) ∈ SL ∩ suppΠ:

{(f1, y1), . . . , (fk, ym)} ≠ {(g1, z1), . . . , (gm, zm)},

φ̃k(f1, . . . , fk) = φ̃m(g1, . . . , gm) +D0(y1, . . . , yk)−D0(z1, . . . , zm)
}
,
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therefore in the event
There exist k,m ∈ N0, distinct i1, . . . , ik, i∗ and distinct j1, . . . , jm in {1, . . . , N}
such that i∗ /∈ {j1, . . . , jm} and
φ̃k+1(Fi1 , . . . , Fik , Fi∗) = φ̃m(Fj1 , . . . , Fjm) +D0(Yi1 , . . . , Yik , Yi∗)−D0(Yj1 , . . . , Yjm)

 . (4.3)

The above event is included in the one where we replace {1, . . . , N} by N. Therefore, it suffices to let k,m ∈ N0,
take distinct i1, . . . , ik, i∗ and distinct j1, . . . , jm in N such that i∗ /∈ {j1, . . . , jm} and show that

P
(
φ̃k+1(Fi1 , . . . , Fik , Fi∗) = φ̃m(Fj1 , . . . , Fjm) +D0(Yi1 , . . . , Yik , Yi∗)−D0(Yj1 , . . . , Yjm)

)
= 0.

Then, it follows that (4.3) has probability zero by Lemma 4.5.
(b) Follows similar as the above argument: Besides replacing Π by Πt, replace Θ by the product measure

of αf−(1+α)
1
[r

−d/α
t ,∞)

(f) df and
∑

z∈r−1
t Zd δz, and N by #(QL ∩ Zd). Then again, one can show that the

event (4.3) has zero probability by applying Lemma 4.5. From this, the “moreover” part immediately follows
too. □

Lemma 4.5. Suppose that F1, F2, . . . are i.i.d. random variables with values in (0,∞) whose law has a
density with respect to the Lebesgue measure. Let Y1, Y2, . . . be i.i.d. random variables with values in Rd. Let
k,m ∈ N0. Suppose that i1, . . . , ik, i∗ are distinct element of N and j1, . . . , jm are distinct elements in N such
that i∗ /∈ {j1, . . . , jm}. Then

P
(
φ̃k+1(Fi1 , . . . , Fik , Fi∗) = φ̃m(Fj1 , . . . , Fjm) +D0(Yi1 , . . . , Yik , Yi∗)−D0(Yj1 , . . . , Yjm)

)
= 0. (4.4)

Proof. We explain the following argument in more detail below. If we condition the above event in (4.4) on
all variables except Fi∗ , that is, on Fi1 , . . . , Fik , Fj1 , . . . , Fjm , Yi1 , . . . , Yik , Yj1 , . . . , Yjm and Yi∗ , then by the
formula for φ̃k (4.2), there exist C1, C2, C3 ∈ R, C1 ̸= 0 or C2 ̸= 0 such that the event in the probability of
(4.4) becomes

C1F
2
i∗ + C2Fi∗ + C3 = 0.

The probability of such event is equal to zero as Fi∗ has a density with respect to the Lebesgue measure.
Indeed, observe that φ̃1(fi∗) =

1
4θ (4θfi∗ − 4θ2) = fi∗ − θ = A0f

2
i∗
+ B0fi∗ − C0, for A0 = 0, B0 = 1 and

C0 = −θ, and for k ∈ N,

Ak =
1

4θ
(1− 4θ2

k + 1
), Bk = Bk(f1, . . . , fk) =

2

4θ(k + 1)

( k∑
i=1

fi − 2θ
)
,

Ck = Ck(f1, . . . , fk) =
1

4θ

( k∑
i=1

f2
i −

1

k + 1

( k∑
i=1

fi − 2θ
)2)

,

that

φ̃k+1(f1, . . . , fk, fi∗) = Akf
2
i∗ +Bkfi∗ + Ck.

So that for C̃k = Ck − (φ̃m(fj1 , . . . , fjm) +D0(yi1 , . . . , yik , yi∗)−D0(yj1 , . . . , yjm)
)
), we have

P

(
φ̃k+1(Fi1 , . . . , Fik , Fi∗) = φ̃m(Fj1 , . . . , Fjm)

+D0(Yi1 , . . . , Yik , Yi∗)−D0(Yj1 , . . . , Yjm)

∣∣∣∣F = f, Y = y

)
= P(AkF

2
i∗ +BkFi∗ + C̃k = 0), (4.5)

where

F = (Fi1 , . . . , Fik , Fj1 , . . . , Fjm), f = (fi1 , . . . , fik , fj1 , . . . , fjm),

Y = (Yi1 , . . . , Yik , Yi∗ , Yj1 , . . . , Yjm), y = (yi1 , . . . , yik , yi∗ , yj1 , . . . , yjm).
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As the law of Fi∗ has a density with respect to the Lebesgue measure, the right-hand side (and thus the
left-hand side) of (4.5) equals zero. □

For the proof of Lemma 2.11, we use the following lemma.

Lemma 4.6. Let λ ∈ (0,∞). Let ζ be a PPP on (0, 1)d with intensity λ. If k ≤ (λ/4)1/d, then

P
(
∃ distinct Z1, . . . , Zk ∈ ζ : D0(Z1, . . . , Zk) < d

)
≥ 1− exp

(
−
(λ
4

) 1
d

)
.

Proof. Let ω be a PPP on Rd with intensity λ. In an almost sure and inductive sense we define sequences
(Ri)i∈N in (0,∞) and (Yi)i∈N in [0,∞)d by setting R0 = 0 and Y0 = 0 and (on the probability one set such
that the following infima are finite)

Ri+1 := inf
{
r > 0: ω(Yi + (0, r]d) > 0

}
,

and by letting Yi+1 ∈ [0,∞)d be the unique point in suppω ∩
(
Yi + (0, Ri+1]

d
)
(see also Figure 5).

0

Y1R1

Y2

R2

Y3

R3

Y4

R4

Figure 5. Illustration of choosing R1, R2, R3, R4 and Y1, Y2, Y3, Y4.

Observe that

P
(
∃ distinct Z1, . . . , Zk ∈ ζ : D0(Z1, . . . , Zk) < d

)
≥ P

(
{Y1, . . . , Yk} ⊂ (0, 1)d,

k∑
i=1

|Yi − Yi−1| ≤ d
)

Note that Yi ∈ QR1+···+Ri
, |Yi − Yi−1| ≤ dRi and (R1 + · · ·+Rk)

d ≤ kd−1(Rd
1 + · · ·+Rd

k). Thus

P

(
{Y1, . . . , Yk} ̸⊂ (0, 1)d or

k∑
i=1

|Yi − Yi−1| ≥ d

)
≤ P

(
k∑

i=1

Ri ≥ 1

)
≤ P

(
k∑

i=1

λRd
i ≥

λ

kd−1

)
.

On the other hand, the random variables λRd
i are i.i.d. Exp(1). Indeed, we haveP(λRd

1 < t) = P(ω((0, ( t
λ )

1
d )d) =

0) = exp(−λ t
λ ) = exp(−t) for all t ≥ 0. Using E[e 1

2 (λR
d
1−2)] = 2e−1 < 1, λk1−d−2k ≥ λ

2 k
1−d, λ

4 k
1−d ≥ (λ4 )

1
d

and the Markov inequality, we obtain

P

(
k∑

i=1

λRd
i ≥ λk1−d

)
≤ P

(
k∑

i=1

(λRd
i − 2) ≥ λ

2
k1−d

)
≤ e−

λ
4 k1−d

E[e
1
2 (λR

d
1−2)]k < e−

λ
4 k1−d ≤ e−(λ

4 )1/d .

□
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Proof of Lemma 2.11. Let δ > 0. For n, k ∈ N let

Qn :=
[
1
n ,∞

)
×Q δ

d
, λn := ( δd )

dnα,

En,k :=
{
∃ distinct (f1, y1), . . . , (fk, yk) ∈ suppΠ ∩Qn such that D0(y1, . . . , yk) < δ

}
.

Then Π(Qn) is Poisson distributed with parameter λn. For n ∈ N let kn := ⌈λ
1
d
n ⌉. Then on the event En,kn

we have

kn∑
i=1

fi ≥
kn
n
≥ δ

d
n

α
d −1,

which is larger than 2θ for sufficiently large n.
Hence, for such large n we have P(Π satisfies (2.6)) ≥ P(En,kn

) and so it suffices to show

P(En,kn)
n→∞−−−−→ 1. (4.6)

Note that the projection of 1Qn
Π onto (0, δ/d)d is a PPP on (0, δ/d)d with intensity λn(δ/d)

−d (because
Π(Qn) is Poisson distributed with parameter λn). Therefore, for a PPP ζ on (0, 1)d with intensity λn, we
have

P(En,kn
) = P

(
∃ distinct Z1, . . . , Zkδ

∈ ζ : D0(Z1, . . . , Zkδ
) < d

)
.

Therefore, by applying Lemma 4.6, we conclude (4.6). □

5. Proof of Theorem 1.2

In the present section we will prove Theorem 1.2 subject to Proposition 5.2 and Proposition 5.4 below, whose
proofs are postponed to Sections 6 and 7, respectively.

In some sense, Proposition 5.2 gives us the lower bound of Theorem 1.2 (b) (iii) whereas Proposition 5.4
gives us the corresponding upper bound, as well as Theorem 1.2 (b) (iii).

Our strategy is the following. We first need to ‘compactify’ the partition function, i.e., to show that the
random walk in the partition function can be restricted to some large box with a diameter on the scale rt.
This is done in Proposition 5.4 (c) in the sense of a convergence in distribution. Furthermore, we derive upper
(in Proposition 5.4 (a)) and lower (in Proposition 5.2) bounds for the compactified partition function that
lead to the right limit, the variational formula Ξ. Finally we need to upper bound the compactified partition
function with Wt outside a neighbourhood of the maximizer against something that has a strictly smaller
exponential rate. Here the stability of the variational formula from Theorem 2.8(c) will be crucial.

The upper and lower bounds for the compactified partition function are proved even in the almost-sure
sense with respect to ξ, using the Skorohod embedding. That is, we do not work with a fixed trajectory

t 7→ Zξ,β
t for a given realization of ξ, but with a sequence of realizations that are constructed jointly on one

probability space. For this, we fix a sequence of times (tn)n∈N. Since this construction is used several times
in the paper, we state it in the following remark.

Remark 5.1 (Skorohod embedding). Let (tn)n∈N be a strictly increasing sequence in (0,∞) such that tn →∞.
By Skorohod’s representation theorem (see, e.g., (Bil99, Theorem 1.6.7)) and Lemma 2.4 we can define on the
same probability space a sequence (Πn)n∈N of point processes and a Poisson point process Π on (0,∞)×Rd

of intensity αf−1−α df ⊗ dy such that Πn is the same in distribution as Πtn (see (1.9)) for every n ∈ N, and
Π is the same in distribution as Π, and

Πn → Π almost surely inM◦
p.
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Without loss of generality we may assume that

Πn =
∑
z∈Zd

δ( ξn(z)

r
d/α
tn

, z
rtn

), (5.1)

for some random variables ξn(z) which are the same in distribution as ξ(z), for any n ∈ N and z ∈ Zd. Fix
a metric d on W that is compatible with the vague topology and write B(ν, δ) = {µ ∈ W : d(ν, µ) < δ} for
ν ∈ W and δ > 0. We introduce the following notation:

rn = rtn , γn = rn log tn,

Zn = Z
ξn,βtn
tn , Hn(X) = H

ξn,βtn
tn (X), PPPn = P(ξn)

tn , W n = W ξn,X
tn ,

(5.2)

and for R, δ > 0 and n ∈ N

ZR,−
n = E

[
eHn(X)

1

{
max

s∈[0,tn]
|Xs| ≤ Rrn

}]
and ZR,+

n = Zn −ZR,−
n , (5.3)

ZR,−,δ
n = E

[
eHn(X)

1{d(W n, µ
∗) ≥ δ}1

{
max

s∈[0,tn]
|Xs| ≤ Rrn

}]
. (5.4)

Recall (1.18). For a good point measure P (see Definition 2.7) on (0,∞) × Rd and ν∗ ∈ F(P) the unique
maximizer of ΨP (the existence is shown in Theorem 2.8) so that Ξ(P) = ΨP(ν

∗), we define

Ξδ(P) := sup
ν∈W:d(ν,ν∗)≥δ

ΨP(ν). (5.5)

For the probability measure on the space where the Π and Πn’s live, we make abuse of notation and write P
and assume this does not lead to confusion. 3

We can now formulate the lower bound for the partition function.

Proposition 5.2 (Lower bound). Fix α ∈ (d,∞). Then, with P-probability 1,

lim inf
n→∞

1

γn

logZn ≥ Ξ(Π). (5.6)

The proof of Proposition 5.2 is given in Section 6. Now we formulate the appropriate upper bounds for
both assertions of Theorem 1.2. What will be crucial for the proof is the following observation:

Lemma 5.3. Let α ∈ (2d,∞). There exists a random variable µ∗ with values in F(Π), such that P-almost
surely µ∗ is the unique element of W such that

ΨΠ(µ∗) = Ξ(Π). (5.7)

Moreover, almost surely

Ξδ(Π) < Ξ(Π). (5.8)

Proof. Because α > 2d, Π is almost surely good by Lemma 2.9. Therefore by Theorem 2.8 (a) such µ∗ exists
(that it is random in the sense that it is a measurable function on the probability space, is not completely
trivial; see Appendix B) and is unique almost surely and by Theorem 2.8 (c), (5.8) holds. □

Proposition 5.4 (Upper bounds). Fix α ∈ (d,∞).

(a) Upper bound for compactified Zn:

P
[
lim sup
R→∞

lim sup
n→∞

1

γn

logZR,−
n ≤ Ξ(Π)

]
= 1. (5.9)

(b) Upper bound for compactified Zn away from maximizer: Assume that α > 2d. Then

P
[
lim sup
R→∞

lim sup
n→∞

1

γn

logZR,−,δ
n ≤ Ξδ(Π)

]
= 1, δ > 0 (5.10)
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(c) Compactification:

lim
R→∞

lim inf
n→∞

P

[
1

γn

logZR,+
n ≤ −A

]
= 1, A > 0. (5.11)

The proof of Proposition 5.4 is given in Section 7. We extract the following lemma from Proposition 5.2
and Proposition 5.4 (c) which will be used for the proof of Theorem 1.2.

Lemma 5.5. For all ε, η > 0 there exist an R > 0 and an N ∈ N such that for all n ≥ N

P

[
ZR,+

n

ZR,−
n

< ε

]
≥ 1− η.

Proof. First, we bound ZR,−
n from below by restricting the expectation to the trajectory that remains at the

origin up to time tn and obtain (because by for example (1.13), for Ys = 0 for all s ∈ [0, tn], Hn(Y ) ≥ −θγn)
Indeed, regarding (1.3), ℓ(Y )

tn = tn and thus

Hn(Y ) =
∑
z∈Zd

ξ(z)ℓ(Y )

tn (z)− βtn

∑
z∈Zd

ℓ(Y )

tn (z)2 ≥ −βtnt
2
n = θγn,

where the latter equality can be found in (1.12).

ZR,−
n ≥ P(ℓtn(0) = tn)e

−θγn = e−2dtn−θγn , n ∈ N, R > 0. (5.12)

Because γn = rn log tn = t1+q
n (log tn)

−q (see (1.8)), we have tn
γn
→ 0 as n → ∞. Let ε, η > 0. Then, by also

using (5.11) with A = 3θ there exists an R > 0 and an N ∈ N such that for all n ≥ N ,

P
[
ZR,+

n ≤ e−3θγn

]
≥ 1− η, ZR,−

n ≥ e−2θγn , e−θγn < ε

so that

P

[
ZR,+

n

ZR,−
n

< ε

]
≥ P

[
ZR,+

n

ZR,−
n

< e−θγn

]
≥ 1− η.

□

Now we prove Theorem 1.2 subject to the above propositions and lemma.

Proof of Theorem 1.2 (a). Let D be the continuity set of the distribution function for Ξ(Π), i.e., the subset
of R containing every continuity point of x 7→ P(Ξ(Π) ≤ x). We will prove

1

γn

logZn
t→∞
=⇒ Ξ(Π), (5.13)

by showing the following two inequalities:

lim sup
n→∞

P

[
1

γn

logZn ≤ h

]
≤ P (Ξ(Π) ≤ h) , h ∈ R, (5.14)

lim inf
n→∞

P

[
1

γn

logZn ≤ h

]
≥ P (Ξ(Π) ≤ h) , h ∈ D. (5.15)

The proof of (5.15) is more involved. Therefore we focus on (5.15), because (5.14) follows in a similar fashion
from Proposition 5.2. Indeed, by Proposition 5.2 it follows that for all η > 0 there exists an N ∈ N such that
for BN = {∀n ≥ N : 1

γn
logZn ≥ Ξ(Π)},

P[BN ] ≥ 1− η.

For η > 0 and N as such, we have

sup
n≥N

P
[ 1

γn

logZn ≤ h
]
≤ sup

n≥N
P
[ 1

γn

logZn ≤ h,BN
]
+P[BcN ] ≤ P[Ξ(Π) ≤ h] + η.
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Therefore lim supn→∞ P
[

1
γn

logZn ≤ h,BN
]
≤ P

[
Ξ(Π) ≤ h

]
+ η for any η > 0. Observe that for any

R > 0, because Zn = ZR,−
n +ZR,+

n (see (5.3)),

1

γn

logZn =
1

γn

logZR,−
n +

1

γn

log
(
1 +

ZR,+
n

ZR,−
n

)
≤ 1

γn

logZR,−
n +

1

γn

ZR,+
n

ZR,−
n

. (5.16)

Pick an η > 0. Let An,R := {ZR,+
n ≤ ZR,−

n }. By Lemma 5.5 there exist an R > 0 and an N ∈ N such that
P(An,R) ≥ 1− η for all n ≥ N .

Fix h ∈ D and pick ε > 0. As 1
γn
≤ ε for large n, we have for sufficiently large n that

P

[
1

γn

logZn ≤ h

]
≥ P

[{ 1

γn

logZn ≤ h
}
∩ An,R

]
≥ P

[{ 1

γn

logZR,−
n ≤ h− ε

}
∩ An,R

]
≥ P

[
1

γn

logZR,−
n ≤ h− ε

]
−P(Ac

n,R)

≥ P

[
1

γn

logZR,−
n ≤ h− ε

]
− η.

(5.17)

At this stage, we use Proposition 5.4 (a), i.e., we use (5.9), to infer that (possibly by choosing R larger)

P
( 1

γn

logZR,−
n ≤ Ξ(Π) + ε

)
= 1, for large n. (5.18)

Indeed, if we have P(lim supn→∞ Yn ≤ A) = 1, then P(
⋂

m∈N
⋃

N∈N
⋂

n≥N{Yn ≤ A + 1
m}) = 1, so that for

all ε > 0 one has P(
⋃

N∈N
⋂

n≥N{Yn ≤ A + ε}) = 1, i.e., by monotonicity, limN→∞ P({Yn ≤ A + ε}) ≥
limN→∞ P(

⋂
n≥N{Yn ≤ A+ ε}) = P(

⋃
N∈N

⋂
n≥N{Yn ≤ A+ ε}) = 1. Combining (5.17) and (5.18) gives

lim inf
n→∞

P

[
1

γn

logZn ≤ h

]
≥ P (Ξ(Π) ≤ h− 2ε)− η, for any η, ε > 0. (5.19)

By letting η and ε converge to zero and by using the continuity at h of x 7→ P (Ξ(Π) ≤ x), this completes the
proof of (5.15).

From (5.13) we deduce that 1
rt log t logZ

(ξ)

t =⇒ Ξ(Π) as we obtained the convergence along diverging

sequences of (tn)n∈N in (0,∞). We are left to show that Ξ(Π) is almost surely in [0,∞). That Ξ(Π) ≥ 0
follows directly by the fact that it is larger than ΨΠ evaluated in the zero measure. That it is finite follows by
the fact that H(ξ,βt)

t ≤ H(ξ,0)

t and thus Z(ξ)

t = Z(ξ,βt)

t ≤ Z(ξ,0)

t . As the limit of 1
rt log t logZ

(ξ,0)

t is almost surely

finite (by e.g. (1.6) in (KLMS09)), so is the limit of 1
rt log t logZ

(ξ)

t , which is Ξ(Π). □

Proof of Theorem 1.2 (b) (iii). Let δ > 0. First we show that PPPn[d(W n, µ
∗) > δ] converges to zero in P-

probability, i.e., for all κ > 0,

P
[
PPPn[d(W n, µ

∗) > δ] > κ
]

t→∞−−−→ 0. (5.20)

Observe that for any R > 0

PPPn[d(W n, µ
∗) > δ] ≤ ZR,−,δ

n +ZR,+
n

Zn
≤ ZR,−,δ

n

Zn
+

ZR,+
n

ZR,−
n

.

Let κ > 0. By Lemma 5.5 it is sufficient to show that there exists an R > 0 such that P[
ZR,−,δ

n

Zn
≤ κ]

n→∞−−−−→ 1.

Let ε > 0. By (5.8) there exists an m ∈ N such that e−
1

3m < κ, and

P[Bm,δ] ≥ 1− ε, where Bm,δ =
{
Ξδ(Π)− Ξ(Π) < − 1

m

}
.
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By Proposition 5.4 (b) and Proposition 5.2 there exists an R > 0 and an N ∈ N such that for all n ≥ N

P
[ 1

γn

logZR,−,δ
n ≤ Ξδ(Π) +

1

3m

]
≥ 1− ε, P

[ 1

γn

logZR
n ≥ Ξ(Π)− 1

3m

]
≥ 1− ε,

so that

1− 3ε ≤ P
[ZR,−,δ

n

Zn
≤ exp

(
− 1

3m

)]
≤ P

[ZR,−,δ
n

Zn
≤ κ

]
.

From this we conclude (5.20). From the convergence in probability we deduce the existence of a strictly
increasing φ : N→ N such that PPPφ(n)[d(W φ(n), µ

∗) > δ]→ 0 P-almost surely. This implies P-almost surely
that W φ(n) =⇒ µ∗ in W, more precisely, EEEφ(n)[g(W φ(n))]→ g(µ∗) for any g ∈ Cb(W). Therefore,

E
[
EEEφ(n)[g(W φ(n))]

]
→ E[g(µ∗)], g ∈ Cb(W).

Therefore, as for each sequence (tn)n∈N with tn →∞ there exists a strictly increasing φ : N→ N such that

E
[
e(ξ)

tφ(n)
[g(Wtφ(n)

)]
]
→ E[g(µ∗)], g ∈ Cb(W),

it follows that for any sequence (tn)n∈N with tn →∞
E
[
e(ξ)

tn [g(Wtn)]
]
→ E[g(µ∗)], g ∈ Cb(W),

and therefore (1.24). □

Remark 5.6. The proof of the more general convergence in distribution L(ξ)

t
t→∞
=⇒ δµ∗ as in (1.28) of

Remark 1.5 can be deduced from the first part of the proof of Theorem 1.2 (b) (iii) as follows.
First we observe that by Portmanteau’s theorem, for probability measures ρ1, ρ2, . . . on W and µ ∈ W,

one has ρn → δµ weakly if and only if for all closed sets C ⊂ W one has lim supn→∞ ρn(C) ≤ δµ(C), which
in turns holds if and only if limn→∞ ρn(Cδ(µ))→ 0 for all δ > 0, where Cδ(µ) = {ν ∈ W : d(ν, µ) > δ}.

Let δ > 0. Let Cδ = {ν ∈ W : d(ν, µ∗) ≥ δ}, i.e., Cδ = B(µ∗, δ)c. We write Ln = L(ξn)

tn . From the fact that

Ln(Cδ) = PPPn[d(W n, µ
∗) > δ],

we deduce from (5.20) that Ln(Cδ) converges to zero in P-probability, i.e., for all κ > 0, P[Ln(Cδ) > κ]
n→∞−−−−→

0. From this we infer the existence of a strictly increasing φ : N→ N such that Lφ(n)(Cδ)→ 0 almost surely.

Therefore, by the above observation, it follows that Lφ(n) → δµ∗ almost surely, and thus L(ξ)

tφ(n)
=⇒ δµ∗ . As

for each sequence (tn)n∈N with tn →∞ there exists a strictly increasing φ : N→ N such that L(ξ)

tφ(n)
=⇒ δµ∗ ,

it follows that L(ξ)

tn =⇒ δµ∗ for any sequence (tn)n∈N with tn →∞, implying (1.28).

6. Lower bound: proof of Proposition 5.2
Our strategy follows the heuristics described in Section 1.4.

Recall the setting introduced at the beginning of Section 5, in particular Remark 5.1 on the Skorohod
embedding and the notations in (5.2). Let µ ∈ F1(Π), i.e., µ ∈ W, µ≪ Π and µ be a probability measure (in
case α ∈ (2d,∞) one may take µ = µ∗ as in Lemma 5.3). By Lemma 2.6 it is sufficient to show that, with
P-probability 1,

lim inf
n→∞

1

γn

logZn ≥ ΨΠ(µ). (6.1)

Our approach to do this is to choose a specific path event An and use the trivial estimate

Zn ≥ E[eHn(X)
1An ]. (6.2)
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We describe the event An in Section 6.1, but first give an idea here after introducing the following objects.
Since µ is in F1(Π), there exist (“P-”random) k ∈ N and (f1, y1), . . . , (fk, yk) ∈ supp(Π) and w1, . . . , wk ∈
(0, 1] with

∑k
i=1 wi = 1 such that

µ =

k∑
i=1

wi δ(fi,yi).

We may assume that the order of the (f1, y1), . . . , (fk, yk) is such that the minimal distance between the

y1, . . . , yk points is given by
∑k

i=1 |yi − yi−1|, where here and in the following we take y0 = 0. Hence,

Ξ(Π) = ΨΠ(µ) =

k∑
i=1

(
fiwi − θ(wi)

2
)
− q

k∑
i=1

|yi − yi−1|.

Because Πn → Π in M◦
p almost surely, there exists an N ∈ N such that for every n ≥ N there exist

distinct (fn
1 , y

n
1 ), . . . , (f

n
k , y

n
k ) ∈ suppΠn such that almost surely

(fn
i , y

n
i )

n→∞−−−−→ (fi, yi), i ∈ {1, . . . , k}. (6.3)

Observe that by (5.1),

fn
i =

ξn(y
n
i )

r
d/α
n

, i ∈ {1, . . . , k}, n ≥ N. (6.4)

We will define the event An, such that on this event the path visits the sites rny
n
1 , . . . , rny

n
k in this order,

staying ≈ witn time units in rny
n
i for any i ∈ {1, . . . , k}. We define An and estimate its probability from

below in Section 6.1. Then, we bound Hn(X) from below on An in Section 6.2. Finally, in Section 6.3 we
combine these bounds and apply them in the framework of the Skorokhod embedding defined above to finish
the proof.

6.1 The path event
Let us introduce some useful notation involving paths that will be used to define the set An.

Definition 6.1. For x ∈ Zd and t ∈ [0,∞) we define the entry time at x after time t, τx(t), and the exit time
from x after time t, σx(t), by

τx(t) := inf{s > t : Xs = x}, σx(t) := inf{s > t : Xs ̸= x}.

Let t ∈ (0,∞),

δ, s ∈ (0, 1), k ∈ N, y0 := 0, y1, . . . , yk ∈ Zd, y = (y1, . . . , yk),

w1, . . . , wk ∈ [0, 1] with

k∑
i=1

wi = 1− s, w = (w1, . . . , wk).
(6.5)

We define Aδ,s
t,k(y, w) to be the event where the random walk X walks from 0 to y1 and then to y2 etcetera.

It takes at most st
k time to reach y1, then it spends at least (1− δ)tw1 and at most tw1 time at y1 before it

jumps, then it spends at most st
k time to reach y2, waits at least (1− δ)tw2 and at most tw2 time at y2 before

it jumps, etc. More precisely, first we define inductively the entry τ iy and exit times σi
y of the yi, after the

time that yi−1 and thus all of 0, y1, . . . , yi−1 are visited

τ 0
y := 0, τ 1

y := τy1(0), τ i
y := τyi(τ

i−1
y ), i ∈ {1, . . . , k},

σi
y := σyi(τ

i
y), i ∈ {0, 1, . . . , k},
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so that (by definition τ 0
y = 0 ≤ τ 1

y ≤ σ1
y ≤ · · · τ k

y ≤ σk
y and)

Aδ,s
t,k(y, w) =

k⋂
i=1

{
τ i
y − σi−1

y 1i≥2 ≤
st

k
, σi

y − τ i
y ∈ [1− δ, 1]twi

}
.

Observe that for i = 1 we have τ i
y = τ i

y − σi−1
y 1i≥2 ≤ st

k , so that the waiting time at 0 plus the “walking

time” to y1 is less or equal to st
k . Furthermore, observe that yk is reached before t, i.e., σk

y ≤ t, because

σk
y = (σk

y − τ k
y) + (τ k

y − σk−1
y ) + · · ·+ (σ1

y − τ 1
y) + (τ 1

y − σ0
y) + (σ0

y − τ 0
y)

≤ twk +
st

k
+ twk−1 +

st

k
+ · · ·+ tw1 +

st

k
= t
(
s+

k∑
i=1

wi

)
= t.

Lemma 6.2. For any t ∈ (0,∞), δ, s ∈ (0, 1), k ∈ N and y and w as in (6.5)

P
(
Aδ,s

t,k(y, w)
)
≥

k∏
i=1

[
Poi 2dst

k

(
|yi − yi−1|

)
e−2dtwi(1−δ)[1− e−2dtδwi ]

( 1

2d

)|yi−yi−1|]
. (6.6)

Proof. By independence we have

P
(
Aδ,s

t,k(y, w
))

=
k∏

i=1

P
(
0 ≤ τ i

y − σi−1
y 1i≥2 ≤

st

k

)
P
(
σi

y − τ i
y ∈ [1− δ, 1]twi}

)
.

By the strong Markov property and the fact that each jump occurs according to an Exp(2d) random variable
(as we assumed our continuous time random walk to have generator ∆), we have

σi
y − τ i

y = σyi(τ
i
y)− τ i

y = σyi(τyi(τ
i−1
y ))− τyi(τ

i−1
y )

(d)
= σ0(0)− τ0(0),

τ i
y − σi−1

y 1i≥2 = τyi(τ
i−1
y )− σyi−1(τ

i−1
y )1i≥2

(d)
= τyi−yi−1(0)− σ0(0)1i≥2,

and thus

P
(
σi

y − τ i
y ∈ [1− δ, 1]twi}

)
= P

(
σ0(0)− τ0(0) ∈ [1− δ, 1]twi}

)
= e−2dtwi(1−δ) − e−2dtwi ,

P
(
0 ≤ τ i

y − σi−1
y 1i≥2 ≤

st

k

)
= P

(
0 ≤ τyi−yi−1(0)− σ0(0)1i≥2 ≤

st

k

)
≥ P

(
τyi−yi−1(0) ≤

st

k

)
.

To estimate the latter probability, we use the following estimate for ρ ∈ (0,∞) and z ∈ Zd, where N(z)
denotes the number of direct paths (i.e., of length |z|) from 0 to z:

P
(
τz(0) ≤ ρ

)
≥ P

(
X makes |z| jumps within ρ time, from 0 to z

)
= Poi2dρ(|z|)(2d)−|z|N(z) ≥ Poi2dρ(|z|)(2d)−|z|.

□

6.2 Energetic lower bound

Now we derive a lower bound of H(ξ)

t on Aδ,s
t,k(y, w).

Lemma 6.3 (Lower bound for H(ξ)

t ). Let t ∈ (0,∞), δ, s ∈ (0, 1), k ∈ N and y and w as in (6.5). Then, on

the event Aδ,s
t,k(y, w),

1

rt log t
H(ξ)

t (X) ≥ (1− δ)

k∑
i=1

ξ(yi)

r
d/α
t

wi − θ

k∑
i=1

w2
i − (k + 5)θ(δ + s). (6.7)
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Proof. We have (see also (1.13))

1

rt log t
H(ξ)

t (X) =
∑
z∈Zd

( ξ(z)
r
d/α
t

ℓt(z)

t
− θ
(ℓt(z)

t

)2)
. (6.8)

Using that ξ ≥ 0 and the basic estimate
∑

z∈Zd a2z ≤
∑

z∈A a2z + (
∑

z/∈A az)
2, which can be used to show that

the total normalized self-intersection local time (SILT) is not larger than the sum of the normalized SILTs in
the y1, . . . , yk plus the square of the remaining total local time, we obtain that

1

rt log t
H(ξ)

t (X) ≥
k∑

i=1

(ξ(yi)
r
d/α
t

ℓt(yi)

t
− θ
(ℓt(yi)

t

)2)− θ
(
1−

k∑
i=1

ℓt(yi)

t

)2
. (6.9)

Observe that the local time at each yi is at least the time the random walk waits before jumping away, i.e.,

ℓt(yi) ≥ σi
y − τ i

y ≥ (1− δ)twi. (6.10)

On Aδ,s
t,k(y, w), in between the times σi−1

y and τ i
y the walker is allowed to visit sites yj for j ̸= i. Moreover,

after σkt time, each of the yi may be revisited. We let mi ∈ [0, 1] be such that mit is the amount of time the
path visits yi after σkt, for all i ∈ {1, . . . , k}. In particular,

(1− δ)wi ≤
ℓt(yi)

t
≤ wi + s+mi, i ∈ {1, . . . , k}, (6.11)

and consequently,

(
1−

k∑
i=1

ℓt(yi)

t

)2
≤
(
1− (1− δ)

k∑
i=1

wi

)2
≤ (s+ δw)2 ≤ (s+ δ)2. (6.12)

Since σyk
is both bounded from below by (1 − δ)tw = t(1 − δ)(1 − s) ≥ t − (s + δ)t, we infer

∑k
i=1 mit ≤

t− σyk
≤ (s+ δ)t and therefore deduce from the upper bound in (6.11) that

k∑
i=1

ℓt(yi)

t

2

≤
k∑

i=1

(wi + s)2 + 2

k∑
i=1

mi(wi + s) +

k∑
i=1

m2
i

≤
k∑

i=1

w2
i + 2sw + ks2 + 3

k∑
i=1

mi

≤
k∑

i=1

w2
i + 2s+ ks2 + 3(s+ δ) ≤

k∑
i=1

w2
i + (k + 5)(s+ δ). (6.13)

Substituting these bounds (6.12) and (6.13) in (6.9) leads to (6.7). □

6.3 Conclusion
We now prove Proposition 5.2, by proving that (6.1) holds Π-almost surely.

Proof of Proposition 5.2. Recall the definition of the approximating sequence of vectors in (6.3). We will
assume that n ≥ N (where N is as mentioned before (6.3)). We set (assuming N is large enough)

δn = sn =
1

log tn
, An := Aδn,sn

tn,k

(
(rny

n
1 , . . . , rny

n
k ) , (w1 −

sn
k
, . . . , wk −

sn
k
)
)
.
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By (6.2) we find a lower estimate for Zn by estimating Hn(X) on An from below and by estimating P(An)
from below. Recalling (5.2) and using Lemma 6.3 we see that on An, by using (6.4),

1

γn

Hn(X) ≥ (1− δn)

k∑
i=1

ξn(y
n
i )

r
d/α
n

wn
i − θ

k∑
i=1

(wn
i )

2 − (k + 5)θ(δn + sn)

≥ (1− δn)

k∑
i=1

fn
i wn

i − θ

k∑
i=1

(wn
i )

2 − (k + 5)θ(δn + sn)

n→∞−−−−→
k∑

i=1

(fi wi − θ(wi)
2).

(6.14)

Due to the above limit, for (6.1) we are left to show

lim inf
n→∞

1

γn

logP
(
An

)
≥ −qD0(y1, . . . , yk). (6.15)

With yn0 := 0, put

dni = rn|yni − yni−1|, i ∈ {1, . . . , k}.

From Lemma 6.2 we obtain

P
(
An

)
≥

k∏
i=1

[
Poi 2dsntn

k

(
dni
)
e−2dtnw

n
i (1−δn)[1− e−2dtnδnw

n
i ]
( 1

2d

)dn
i
]
. (6.16)

Since for n large enough wn
i = wi − sn

k = wi − 1
k log tn

is bounded away from 0 for all i ∈ {1, . . . , k}, since
limn→∞ tnδn =∞ and since limx→∞ ex(1−e−x) =∞, we have that for n large enough - by using that jj ≥ j!

for j ∈ N and that
∑k

i=1(w
n
i + sn

k ) ≤ 1,

P
(
An

)
≥

k∏
i=1

[
Poi 2dsntn

k

(
dni
)
e−2dtnw

n
i

( 1

2d

)dn
i
]

=

k∏
i=1

[ [ 2dsntnk ]d
n
i e−

2dsntn
k

dni !
e−2dtnw

n
i

( 1

2d

)dn
i
]

≥
k∏

i=1

([ 2dsntn
k

dni

]dn
i

e−2dtn(w
n
i + sn

k )
( 1

2d

)dn
i
)
≥ e−2dtn

k∏
i=1

[
sntn
kdni

]dn
i

.

Clearly, as γn = rn log tn = t1+q
n (log tn)

q (see (1.8)) we have γ−1
n log(e−2dtn) → 0. Therefore, because

dn
i

rn
= |yni − yni−1|

n→∞−−−−→ |yi − yi−1| for all i ∈ {1, . . . , k} and n ∈ N and because γn = rn log tn and
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log rn

tnsn
= log rtn − log tn− log sn = (1+ q) log tn− (1+ q) log log tn− log tn+log log tn = q log tn− q log log tn,

lim inf
n→∞

1

γn

logP(An) ≥ lim inf
n→∞

1

γn

log

( k∏
i=1

[
sntn
kdni

]dn
i
)

≥ lim inf
n→∞

1

γn

(
−

k∑
i=1

[
dni log

kdni
sn

+ dni log tn

])
≥ − lim sup

n→∞

k∑
i=1

dni
rn

rn
γn

(
log

dni
rn

+ log
krn
tnsn

)
≥ −

k∑
i=1

|yi − yi−1| lim sup
n→∞

1

log tn

(
log |yi − yi−1|+ log k − q log log tn + q log tn

)
≥ −q

k∑
i=1

|yi − yi−1| = −qD0(y1, . . . , yk),

□

7. Upper bounds: proof of Proposition 5.4

Part (c) of Proposition 5.4 is a kind of ‘compactification’, which we will prove in Section 7.1. Part (a) is
proved in Section 7.2 (using the Skorohod embedding of Remark 5.1), and Part (b) in Section 7.3.

7.1 Compactification
In this section, we prove Proposition 5.4 (c). For this we actually do not need to consider a subsequence
and the objects considered as in Remark 5.1. That is, we prove the following in this section, from which one
directly derives Proposition 5.4 (c):

Proposition 7.1. Let α ∈ (d,∞) and θ ∈ (0,∞). For any A > 0,

lim
R→∞

lim inf
t→∞

P

[
1

rt log t
logE

[
eH

(ξ)
t (X)

1

{
max
s∈[0,t]

|Xs| > Rrt

}]
≤ −A

]
= 1. (7.1)

Let us first state three auxiliary lemmas. In the first one we estimate the P-probability that the random
walk X takes too many jumps before time t (Lemma 7.2) and in the second one we estimate the P-probability
of the maximum of a modified version of the field ξ outside a big box centered at the origin (Lemma 7.3). The
third one (Lemma 7.4) is a classical representation of the joint distribution of leading values in the ξ-field.
The latter is used because it suffices to prove the estimate (7.1) but with H(ξ)

t replaced by the maximum over
the ξ values in a box of radius Mt, where

Mt := max
s∈[0,t]

|Xs|, t ∈ [0,∞). (7.2)

Lemma 7.2. For every R ≥ 1 and all sufficiently large t,

P[Mt ≥ Rrt] ≤ exp
(
− q

2
Rrt log t

)
. (7.3)

Proof. The number of jumps taken by X on the time interval [0, t] is in distribution equal to a Poisson
random variable Z with parameter 2dt. Therefore, P[Mt ≥ Rrt] ≤ P [Z ≥ Rrt]. By using Stirling’s inequality
n! ≥ (ne )

n, the crude bound P [Z ≥ n] ≤ (2dt)n/n! ≤ (2dte/n)n for n ∈ N implies (recall that rt = ( t
log t )

q+1)

P [Z ≥ Rrt] ≤
(4det
Rrt

)Rrt
≤ exp

(
− q

2
Rrt log t

)
. (7.4)

for any large t (we took an additional factor 2 to cover up that Rrt might not be in N). □
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Lemma 7.3. Let A, c > 0 and ε ∈ (0, 1). Then there exists an R > 0 such that for all r ≥ 1

P

(
max

x∈Zd\QRr

( ξ(x)
rd/α

− c
|x|
r

)
≤ −A

)
≥ 1− ε. (7.5)

Proof. Recall that QR = [−R,R]d. We write

QR = QR ∩ Zd.

Pick a C > 0 such that for all r ≥ 1

#(Q(n+1)r \Qnr) ≤ Cnd−1rd, n ∈ N.

Note that 1− x ≥ e−2x for x ∈ [0, log 2
2 ]. It will be clear that 1− x− e−2x ≥ 0 for x = 0. Furthermore,

d

dx
1− x− e−2x = 2e−2x − 1,

which is ≥ 0 if e−2x ≥ 1
2 , i.e., if −2x ≥ − log 2, i.e., x ≤ log 2

2 . Pick R ∈ N large enough such that CR > A

and 1
(cR−A)αrd

< log 2
2 . Then

P
(

max
x∈Zd\QRr

( ξ(x)
rd/α

− c
|x|
r

)
≤ −A

)
=

∞∏
n=R

P
(

max
x∈Q(n+1)r\Qnr

( ξ(x)
rd/α

− c
|x|
r

)
≤ −A

)
≥

∞∏
n=R

P
( ξ(0)
rd/α

− cn ≤ −A
)Cnd−1rd

=

∞∏
n=R

(
1− 1

(cn−A)αrd

)Cnd−1rd

≥ exp
(
− 2C

∞∑
n=R

nd−1−α
( n

cn−A

)α)
.

The exponential term on the right-hand side does not depend on r and converges to 1 as R→∞ as d−1−α <
−1 and as n

cn−A is bounded from above. □

We will use the following classical representation of the distribution of the maximum over the ξ-values.

Lemma 7.4. Let α ∈ (0,∞), n ∈ N and Z1, . . . , Zn be i.i.d. random variables that are Pareto distributed
with parameter α. Then the order statistics Z1:n ≥ · · · ≥ Zn:n of Z1, . . . , Zn is given by(

Z1:n, . . . , Zn:n

)
(d)
=

((Γn+1

Γ1

)1/α
,
(Γn+1

Γ2

)1/α
, . . . ,

(Γn+1

Γn

)1/α)
, (7.6)

where Γi = E1 + · · · + Ei and (Ei)i∈N is a sequence of i.i.d. exponentially distributed random variables with
parameter one.

Proof. It is a standard exercise, see for example (DVJ03, Exercise 2.1.2), to show that the order statistics of
n i.i.d. uniformly distributed random variables in distribution equals E1

E1+···+En+1
, . . . , E1+···+En

E1+···+En+1
. By using

that the Pareto distribution function P(Z ≤ r) = r 7→ 1−r−α is the composition of the uniform distribution

function with Φ(s) := (1− s)−
1
α one finds the order statistics of Pareto distributions and in particular (7.6).

Indeed, the function Φ is increasing. Therefore if U1, . . . , Un are i.i.d. uniformly distributed random variables

and U1:n ≥ · · · ≥ Un:n their order statistics, then Φ(Ui)
(d)
= Zi and thus the order statistics of the Pareto

variables Z1, . . . , Zn, say Z1:n ≥ · · · ≥ Zn:n, satisfies (Z1:n, . . . , Zn:n) = (Φ(U1:n), . . . ,Φ(Un:n)), where

Zi:n
(d)
= Φ(Ui:n)

(d)
=
(
1− E1 + · · ·+ Ei

E1 + · · ·+ En+1

)− 1
α

=
(Ei+1 + · · ·En+1

E1 + · · ·+ En+1

)− 1
α (d)

=
(E1 + · · ·+ En+1

E1 + · · ·En

) 1
α

.

□
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Proof of Proposition 7.1. We write ξ∗(B) = maxx∈B ξ(x) here. We have (recall (1.1))

H(ξ)

t ≤ tξ∗(QMt
). (7.7)

It is then sufficient to prove (7.1) with tξ∗(QMt
) instead of H(ξ)

t . Thus, we set

Ct,R := E
[
etξ

∗(QRrt )1
{
Mt > Rrt

}]
and Dt,R := E

[
etξ

∗(QMt\QRrt )1
{
Mt > Rrt

}]
.

Because ξ∗(QMt
) = ξ∗(QMt

\ QRrt) ∨ ξ∗(QRrt), the proof of (7.1) is complete once we show that for every
A > 0

lim
R→∞

lim inf
t→∞

P

[
1

rt log t
logCt,R ≤ −A

]
= 1, (7.8)

and that

lim
R→∞

lim inf
t→∞

P

[
1

rt log t
logDt,R ≤ −A

]
= 1. (7.9)

Indeed, by writing

Et,R := E
[
etξ

∗(QMt )1
{
Mt > Rrt

}]
,

we have Et,R ≤ Ct,R +Dt,R and so

{Ct,R ≤ exp(−Art log t)} ∩ {Dt,R ≤ exp(−Art log t)} ⊂ {Et,R ≤ 2 exp(−Art log t)}.
Because QMt

\QRrt and QRrt are disjoint, ξ∗(QMt
\QRrt) and ξ∗(QRrt) are independent, and thus so are

Ct,R and Dt,R. Therefore

P[Et,R ≤ 2 exp(−Art log t)] ≥ P[Ct,R ≤ exp(−Art log t)]P[Dt,R ≤ exp(−Art log t)]

It remains to observe that

lim
R→∞

lim inf
t→∞

P[Et,R ≤ 2 exp(−Art log t)] = 1, A > 0,

if

lim
R→∞

lim inf
t→∞

P[Et,R ≤ exp(−Brt log t)] = 1, B > 0.

Let us begin with proving (7.8). Pick A > 0. Recall that tr
d/α
t = rt log t. As Ct,R = etξ

∗(QRrt )P[Mt > Rrt],
from Lemma 7.2 we obtain a T > 0 such that for every R ≥ 1 and t ≥ T

1

rt log t
logCt,R ≤ R

( 1

R1−d/α

ξ∗(QRrt)

(Rrt)d/α
− q

2

)
. (7.10)

Pick R0 such that qR0

4 > A and thus, for t ≥ T

P
[
R
( 1

R1−d/α

ξ∗(QRrt)

(Rrt)d/α
− q

2

)
≤ −qR0

4

]
≤ P

[
1

rt log t
logCt,R ≤ −A

]
and so for R ≥ R0,

P
[
R
( 1

R1−d/α

ξ∗(QRrt)

(Rrt)d/α
− q

2

)
≤ −qR0

4

]
≥ P

[
R
( 1

R1−d/α

ξ∗(QRrt)

(Rrt)d/α
− q

2

)
≤ −qR

4

]
= P

[ 1

R1−d/α

ξ∗(QRrt)

(Rrt)d/α
≤ q

4

]
,

so that for every t ≥ T and R ≥ R0 one has

P

[
1

rt log t
logCt,R ≤ −A

]
≥ P

[
ξ∗(QRrt)

(Rrt)d/α
≤ q

4
R1−d/α

]
. (7.11)
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We apply Lemma 7.4 to ξ∗(QRrt) to obtain

P

[
ξ∗(QRrt)

(Rrt)d/α
≤ q

4
R1−d/α

]
= P

[
Γ#(QRrt )

(Rrt)d
≤
(q
4

)α
Rα−dΓ1

]
.

By the weak law of large numbers (Rrt)
−dΓ#(QRrt )

=⇒ 2d as t→∞, so that

lim inf
t→∞

P

[
Γ#(QRrt )

(Rrt)d
≤
(q
4

)α
Rα−dΓ1

]
= P

[
Γ1 ≥ 2d

(q
4

)−α
Rd−α

]
.

Then, by letting R→∞ we conclude (7.8).
It remains to prove (7.9). Since Dt,R is decreasing in R, it is sufficient to show that for every ε ∈ (0, 1),

there exists a R ∈ N such that

lim inf
t→∞

P

[
1

rt log t
logDt,R ≤ −A

]
≥ 1− ε. (7.12)

We set

x∗
t := argmax{ξ(x) : x ∈ QMt

\QRrt}. (7.13)

Set

BR,r :=
{

max
x∈Zd\QRr

( ξ(x)
rd/α

− q

4

|x|
r

)
≤ −A

}
. (7.14)

We pick ε > 0 and we use Lemma 7.3 with c = q
4 to obtain the existence of an R > 1 such that for every

r ≥ 1,

P(BR,r) ≥ 1− ε. (7.15)

As x∗
t /∈ QRrt , on BR,rt we derive the following estimates

Dt,R ≤ E
[
etξ(x

∗
t )1
{
Mt > Rrt

}]
≤ E

[
exp

(
tr

d/α
t

ξ(x∗
t )

r
d/α
t

− q

4
(rt log t)

|x∗
t |
rt

)
exp

(q
4
|x∗

t | log t
)
1
{
Mt > Rrt

}]
≤ exp

(
rt log t max

x∈Zd\QRrt

( ξ(x)
r
d/α
t

− q

4

|x|
rt

))
E
[
e

q
4 |x

∗
t | log t

1
{
Mt > Rrt

}]
≤ e−Art log t E

[
e

q
4Mt log t

1
{
Mt > Rrt

}]
. (7.16)

Furthermore, by Lemma 7.2, for large t we have P
[
Mt > jrt

]
≤ exp(− q

2jrt log t) for all j ∈ N and so,

E
[
e

q
4Mt log t

1
{
Mt > Rrt

}]
≤

∞∑
j=R

E
[
e

q
4Mt log t

1
{
jrt < Mt ≤ (j + 1)rt

}]
≤

∞∑
j=R

e
q
4 (j+1)rt log t P

[
Mt > jrt

]
≤ e

q
4 rt log t

∞∑
j=R

exp
(
−q

4
jrt log t

)
=

exp
(
q
4 (1−R)rt log t

)
1− exp

(
− q

4rt log t
) .

As R > 1, the latter converges to 0 as t→∞. Therefore, by combining this with (7.16), we assert that for t
large enough, we have

BR,rt ⊂
{

1

rt log t
logDt,R ≤ −A

}
. (7.17)
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Indeed, let

st =
exp

(
q
4 (1−R)rt log t

)
1− exp

(
− q

4rt log t
) .

Suppose that st < 1 for t ≥ T ′ for some T ′ ≥ T . Then for t ≥ T ′,

BR,rt ⊂
{
Dt,R ≤ exp(−Art log t)st

}
⊂
{
Dt,R ≤ exp(−Art log t)st

}
.

It remains to combine (7.15) with (7.17) to derive (7.12). □

7.2 Proof of Proposition 5.4 (a)
We adopt the setting introduced in Remark 5.1; see also (5.2) for abbreviations. Before we start the proof
and state a lemma that we will use for it, let us make the following observations. First observe that by (1.25)
Hn(X) = γnΦΠn(W n). Let us write W ε

n for the restriction of W n to [ε,∞) × Rd. Because for w = dWn

dΠn

one has
∫
(0,ε)×Rd fw(f, y)− θw(f, y)2 dΠn(f, y) ≤ ε, we have

Hn(X) ≤ εγn +ΦΠn
(W ε

n).

Let Πε
n also be the restriction of Πn to [ε,∞)×Rd. As on the event {maxs∈[0,tn] |Xs| ≤ Rrn} the support of

W ε
n is a subset of En := suppRd Πε

n ∩QR, we have

ZR,−
n = E

[
eHn(X)

1

{
max

s∈[0,tn]
|Xs| ≤ Rrn

}]
≤
∑

A⊂En

eεγnE
[
eγnΦΠn (W ε

n)1

{
suppRd W ε

n = A
}]

≤
∑

A⊂En

eεγn exp
(

sup
µ∈WR

suppRd µ=A

γnΦΠε
n
(µ)
)
P
[
A = suppRd W ε

n

]
.

(7.18)

In the proof we will provide a probabilistic argument that allows us to restrict the A in the summand to those
which do not contain elements around zero, i.e., of A that are subsets of suppRd Πε

n ∩QR \Qδ. Then we will
use that {A = suppRd W ε

n} ⊂ {A ⊂ suppRd W n} and the following lemma (for which we do not need the
Skorohod setting, i.e., we do not need to restrict to a sequence of times). To motivate the condition of the
lemma, observe that A ⊂ En implies that A ⊂ suppRd Πε

n ⊂ suppRd Πn ⊂ r−1
n Zd.

Lemma 7.5. Let R > δ > 0. There exists a function γ : (0,∞) → R such that limt→∞ γ(t) = 0, and such
that for all t ∈ (1,∞) and all A ⊂ QR \Qδ with rtA ⊂ Zd,

P
[
A ⊂ suppRd Wt

]
≤ exp

(
− qD0(A)rt log t(1 + γ(t)).

)
. (7.19)

Proof. Let t ∈ (0,∞) and A be as mentioned. Without loss of generality we may assume that A is nonempty

(because D0(∅) = 0). Write Ã = rtA. Observe that suppRd Πt = r−1
t Zd, so that by definition of Wt, see

(1.11), {
A ⊂ suppRd Wt

}
=
{
ℓt(z) > 0 for all z ∈ Ã

}
.

The paths that realise the above event, i.e., that have a strict positive local time at all points of A, they make

at least n = D0(Ã) jumps. By using Stirling’s inequality n! ≥ (ne )
n and that n!

(n+m)! ≤ 1
m! , we obtain

P[ℓt(z) > 0 for all z ∈ A] ≤
∞∑

m=n

Poi2dt(m) =

∞∑
m=n

e−2dt (2dt)
m

m!

=
(2dt)n

n!

∞∑
m=0

e−2dt (2dt)m

(m+ n)!
n! ≤

(
2dte

n

)n

.

(7.20)
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Now we use that n = D0(Ã) = rtD0(A), that n > δrt (because A is nonempty and a subset of QR \Qδ) and
use that rt = t1+q(log t)−(1+q) so that log t− log rt = −q log t+ (1 + q) log log t to obtain(

2dte

n

)n

≤
(
2dte

δrt

)rtD0(A)

= exp
(
D0(A)rt

(
log

2de

δ
+ log t− log rt

)
= exp

(
D0(A)rt

(
log

2de

δ
− q log t+ (1 + q) log log t

))
,

so that by setting γ(t) = −(log t)−1(log 2de
δ + (1 + q) log log t) we obtain the desired inequality. □

Proof of Proposition 5.4 (a). Fix ε > 0 and η > 0 and choose κ > 0 so small that

P
(
Π([ε,∞)×Qκ) = 0

)
≥ 1− η

2
. (7.21)

The P-almost-sure convergence Πn → Π inM◦
p (see Lemma 2.4) entails that, see for example Remark 2.2,

Πn([ε,∞)×Qκ)
P−a.s.−→
n→∞

Π([ε,∞)×Qκ). (7.22)

Therefore there exists an N ∈ N such that P(BN ) ≥ 1− η, where

BN := Bε,κN = {Πn([ε,∞)×Qκ) = 0 for all n ≥ N} .
Henceforth, we will work on the event BN . Let R > 0. Observe that on BN , for any n ∈ N, one has
suppRd W ε

n ⊂ En for

En = En,ε,R,κ = (suppRd Πε
n) ∩ (QR \Qκ).

Therefore, by adapting the last inequality in (7.18) to restricting to subsets A of En, we have on BN , for all
n ≥ N

ZR,−
n ≤

∑
A⊂En

eεγn exp
(

sup
µ∈WR

suppRd µ=A

γnΦΠn
(µ)
)
P
[
A ⊂ suppRd W n

]
. (7.23)

Therefore, by Lemma 7.5 and because D0(A) = DΠn
(µ) for any µ ∈ W with suppRd µ = A, we have

ZR,−
n ≤

∑
A⊂En

eεγn exp
(

sup
µ∈WR

suppRd µ=A

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
.
)

≤ eεγn2#En exp
(
sup
µ∈W

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
.
) (7.24)

Since Πn → Π in M◦
p it follows by Remark 2.2 that for any ε > 0, Πε

n → Πε in M◦
p, where Πε is the

restriction of Π to [ε,∞)×QR \Qκ. Therefore,

#En = #En,ε,R,κ = Πε
n((0,∞)×QR \Qκ) = Πn([ε,∞)×QR \Qκ) → Π([ε,∞)×QR \Qκ),

and thus

lim
n→∞

1

γn

(log 2#En) = 0,

and, since limn→∞ γ(tn) = 0, we have by Theorem 3.5 (a) and Proposition 3.6 (b),

lim sup
n→∞

sup
µ∈W

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
≤ sup

µ∈W
[ΦΠε(µ)− qDΠε(µ)] ≤ Ξ(Πε).

Therefore, on BN , for any R > 0,

lim sup
n→∞

1

γn

logZR,−
n ≤ ε+ Ξ(Πε).
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So summarizing the above, for every ε and η in (0,∞) there exist a κ > 0 and an N ∈ N such that
P[Bε,κN ] ≥ 1− η and thus

P
[
lim sup
n→∞

1

γn

logZR,−
n ≤ ε+ Ξ(Πε)

]
≥ P[Bε,κN ] ≥ 1− η.

As Πε → Π inM◦
p almost surely, we have for any sequence (εk)k∈N with εk ↓ ∞; lim supk→0 Ξ(Π

εk) ≤ Ξ(Π)
almost surely by Theorem 3.5 (b)(strictly speaking, as this theorem only considers sequences we should
replace the occurrences of “ε” by “εk” for a sequence (εk)k∈N that converges to 0 and replace “lim supε↓0” by
“lim supk→∞”) . Therefore, for all η > 0 and ζ > 0 there exists an ε > 0 such that

P[ε+ Ξ(Πε) ≤ Ξ(Π) + ζ] ≥ 1− η,

and thus

P
[
lim sup
n→∞

1

γn

logZR,−
n ≤ Ξ(Π) + ζ

]
≥ P

[
lim sup
n→∞

1

γn

logZR,−
n ≤ ε+ Ξ(Πε)

]
≥ 1− η.

As the above holds for any η > 0 and ζ > 0, (by first taking η to zero and then ζ) we obtain (5.9). □

7.3 Proof of Proposition 5.4 (b)
In this section we prove Proposition 5.4 (b) by mentioning where to adapt the proof in of Proposition 5.4 (a)

as in the previous section.

Proof of Proposition 5.4 (b). Let us write

Cδ = {ν ∈ W : d(ν, µ∗) ≥ δ}, Sδ =
⋃
{suppRd ν : ν ∈ Cδ(µ∗)}.

Thus Sδ is the subset of Rd where the ν that are at least at distance δ of µ∗, are allowed to be supported.
Then, similarly to (7.18) and (7.23), the following estimates hold, with Eδn = En ∩Sδ, on BN , for n ≥ N

ZR,−,δ
n = E

[
eHn(X)

1{d(W n, µ
∗) ≥ δ}1

{
max

s∈[0,tn]
|Xs| ≤ Rrn

}]
≤
∑

A⊂Eδ
n

eεγn exp
(

sup
µ∈WR∩Cδ

suppRd µ=A

γnΦΠε
n
(µ)
)
P
[
A ⊂ suppRd W n

]
.

Then, similar to (7.24), by using that Eδn ⊂ En, we obtain (on BN , for n ≥ N)

ZR,−,δ
n ≤

∑
A⊂Eδ

n

eεγn exp
(

sup
µ∈WR

suppRd µ=A

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
.
)

≤ eεγn2#En exp
(
sup
µ∈Cδ

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
.
)

The rest of the proof follows in the same fashion as in the proof of Proposition 5.4 (a) in the previous section,
by taking Ξδ (see (5.5)) instead of Ξ. □
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Appendix A. The space E

Lemma A.1. Let E be the union of (0,∞)×Rd with (0,∞], E = ((0,∞)×Rd)∪ (0,∞]. Define d : E×E→
[0,∞) by

d(s, s′) = |s− s′| s, s′ ∈ (0,∞],

d(s, (f, y)) =
1

f
+

∣∣∣∣ f

1 ∨ |y| − s

∣∣∣∣ s ∈ (0,∞], (f, y) ∈ (0,∞)× Rd,

d((f, y), (f ′, y′)) =
1

f ∧ f ′

(
1− e−| log f−log f ′|−|y−y′|

)
+

∣∣∣∣ f

1 ∨ |y| −
f ′

1 ∨ |y′|

∣∣∣∣ (f, y), (f ′, y′) ∈ (0,∞)× Rd.

(a) d is a metric on E.
(b) The function ι : (0,∞)× Rd → E, ι((f, y)) = (f, y), (f, y) ∈ (0,∞)× Rd, is continuous and open.
(c) E equipped with the topology generated by d is a locally compact Polish space, such that (i) and (ii) of

Lemma 2.1 hold. Moreover, for s, h > 0, the closure of Hs
h, is given by

Hs
h = {(f, y) ∈ (0,∞)× Rd : f ≥ s|y|+ h} ∪ [s,∞] , (A.1)

and is a compact set.
(d) For every compact set K in E there exist h, s > 0 such that K ∩ [(0,∞)×Rd] ⊂ Hs

h for some h, s > 0.

Proof. (a) The idea behind this is very similar to (BKdS18, Section 13) (which considers a larger space than
R×Rd instead of (0,∞)×Rd). Somehow the homeomorphism (0,∞)×Rd → R×Rd, (f, y) 7→ (log f, y) is put
inbetween to relate these spaces, but the “second part” of the metric is quite similar to keep the limit as being
the “ratio”. In order to see that d is a metric, we have to show that the triangle inequality is satisfied. If
a, b, c ∈ E, then d(a, b) ≤ d(a, c) + d(c, b) follows easily if at least one element of a, b, c is in (0,∞]. Therefore,
we show that d satisfies the triangle inequality on (0,∞)×Rd. It is rather easy to see that it suffices to prove
that d is a metric on R× Rd (by plugging in λ = log f and z = y), where

d((λ, z), (λ′, z′)) = e−(λ∧λ′)
(
1− e−|λ−λ′|−|z−z′|

)
(λ, z), (λ′, z′) ∈ R× Rd.

As we will see, this can be boiled down to the fact that (1− e−a)(1− e−b) ≥ 0 for a, b ≥ 0. Let (λ, z), (λ′, z′),
(λ′′, z′′) ∈ R× Rd. We may assume λ < λ′ and λ′ = λ+ a, λ′′ = λ+ b, a > 0, b ∈ R. Then with p = |z − z′|,
q = |z − z′′|, r = |z′ − z′′|, so that p ≤ q + r and e−|z−z′| = e−p ≥ e−q−r,

eλ
[
d((λ, z), (λ′′, z′′)) + d((λ′′, z′′), (λ′, z′))− d((λ, z), (λ′, z′))

]
= e−(b∧0)

(
1− e−b−q

)
+ e−(a∧b)

(
1− e−|b−a|−r

)
−
(
1− e−a−p

)
≥
(
1− e−b−q

)
+ e−a

(
1− e−|b−a|−r

)
−
(
1− e−a−q−r

)
= −e−b−q + e−a − e−|b−a|−a−r + e−a−q−r

= e−a(1− ea−b−q − e−|b−a|−r + e−q−r){
≥ e−a(1− e−q − e−r + e−q−r) = e−a(1− e−q)(1− e−r) ≥ 0 if b > a,

= e−a(1− e|b−a|−q)(1− e−|b−a|−r) ≥ 0 if b < a.

(b) It is rather straightforward to check that a sequence (fn, yn)n∈N in (0,∞)×Rd converges to an element
(f, y) of (0,∞) × Rd with respect to d if and only if it converges with respect to the Euclidean metric on
(0,∞)× Rd. Therefore ι is continuous and open.

(c) That (A.1) holds follows by the definition of d. Observe that for a sequence (an)n∈N in Hs
h there either

exists a subsequence that is contained in [s,∞] or a subsequence in (0,∞) × Rd of the form (fn, yn)n∈N for
which either
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(1) fn is contained in a set of the form [h,M ] for some M ≥ h (and thus the yn are contained in a ball
of radius s(M + h)), or,

(2) fn →∞ (and thus lim infn→∞
fn
|yn| ≥ s).

In both cases one can find a subsequence of (fn, yn)n∈N that converges in Hs
h. Hence Hs

h is compact.

Every (f, y) ∈ (0,∞) × Rd has a compact neighbourhood in (0,∞) × Rd and therefore in E, because ι is
continuous. On the other hand, every t ∈ (0,∞] has a compact neighbourhood, for example Hs

h for s < t and
h = 1

t−s (indeed, observe that {a ∈ E : d(a, t) < t− s} ⊂ Hs
h). Therefore E is locally compact.

Observe that a sequence (fn, yn)n∈N whose elements belong to (0,∞)×Rd is a Cauchy sequence in E either

if it is a Cauchy sequence in [h, h−1]×Rd for some h ∈ (0, 1) or if fn →∞ and fn
|yn| → s for some s ∈ (0,∞],

this s is then the limit in E. From this we infer that E is complete. It is separable as Q>0 × Qd ∪ Q>0 is
dense, where Q>0 = (0,∞) ∩Q. Therefore E is a Polish space.

(d) This follows by the fact that every compact set in E is a subset of Hs
h for some h, s > 0. Indeed, first

it will be clear that every compact set is a subset of {(f, y) ∈ (0,∞) × Rd : f ≥ h} ∪ (0,∞] for some h > 0.
Secondly, (0, s] is not compact for all s > 0 and moreover, if (fn, yn)n∈N is a sequence in (0,∞) × Rd with

fn, yn →∞ and fn
|yn| → 0, then it does not possess a subsequence that converges in E. □

Proof of Lemma 2.1. The existence of E for which (i) and (ii) hold, follows by Lemma A.1.
(a) Because ι is an open map, ι(B) is a Borel set in E for every Borel set B in (0,∞) × Rd. Hence P ◦ ι

defines a measure on E, clearly with values in N0∪{∞}. It is a Radon measure because ι is continuous and so
ι(K) is compact in E for every compact set K in (0,∞)×Rd. Therefore it is a Point measure on (0,∞)×Rd.
because for such K, one has P(ι(K)) < ∞ because P is Radon on E. Observe that not every element of
Mp((0,∞)×Rd) is of the form P ◦ ι for some P inM◦

p. Take
∑

n∈N δ(|yn|+1,yn) for a sequence (yn)n∈N in Rd

with |yn| → ∞ for example (it attains the value ∞ on the set Hs
s for any s ∈ (0, 1)).

(b) Because the embedding is continuous, it follows that P is a measure on E. Hence it is an element of
Mp if and only if it is a Radon measure. Therefore by (i) it follows that P is an element ofMp if and only if

P(Hs
h) <∞ for all s, h > 0. Suppose the latter is the case. Then suppP ⊂ (0,∞)×Rd, as if otherwise, then

there exists a sequence (fn, yn)n∈N in this support that converges in E to 2s for a s ∈ (0,∞]. This can only
be the case if that sequence is contained in Hs

h for some h > 0, in which case P(Hs
h) =∞. □

Appendix B. Measurability of the maximizer µ∗

In this section we show the measurability of the µ∗ as in Lemma 5.3.
First observe that Π, Πn and Π(L)

n for all n,L ∈ N are all good point measures P-almost surely by
Lemma 4.4 and Lemma 4.2. Let (Ω,F) be the underlying (complete) measurable space of P. Let Ω1 ∈ F be
such that on Ω1, Π, Πn and Π(L)

n for all n,L ∈ N are all good point measures and such that Πn → Π on
Ω1. Then, for all ω ∈ Ω1 and all n,L ∈ N, there exist µ∗[ω], µ∗

n[ω] and µ∗
n,L[ω] such that

ΨΠ[ω](µ
∗[ω]) = Ξ(Π[ω]), ΨΠn[ω](µ

∗[ω]) = Ξ(Πn[ω]), Ψ
Π

(L)
n [ω]

(µ∗[ω]) = Ξ(Π(L)

n [ω]).

Let us set µ∗[ω] = µ∗
n[ω] = µ∗

n,L = 0 for all n,L ∈ N. As, on Ω1, Π
(L)

n
L→∞−−−−→ Πn and Πn

L→∞−−−−→ Π, by

Theorem 2.8 (d) we have µ∗
n,L

L→∞−−−−→ µ∗
n and µ∗

n
n→∞−−−−→ µ∗ on Ω. Therefore it suffices to show that µ∗

n,L is

measurable for all n,L ∈ N in order to conclude that µ∗ is measurable (likewise, µ∗
n for all n ∈ N).

As Π is almost surely good, there exists an Ω1 ⊂ Ω with P(Ω1) = 1 such that for each ω ∈ Ω1, by
Theorem 2.8 (a) there exists a unique µ∗[ω] ∈ F(Π(ω)) such that

ΨΠ[ω](µ
∗[ω]) = Ξ(Π[ω]).

We will show that there exists an Ω∗ ⊂ Ω with P(Ω∗) = 1 such that ω 7→ µ∗[ω] is measurable.
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This follows because ΠL
n has a finite support: For ω ∈ Ω1, there exist m[ω] ∈ N0 and distinct (f1[ω], y1[ω]),

. . . , (fm[ω], ym[ω]) in suppΠL
n [ω] such that

ΨΠL
n [ω](µ

∗
n:L[ω]) = Ξ(ΠL

n [ω]) = φm(f1[ω], . . . , fm[ω])− qD0(y1[ω], . . . , ym[ω]).

These m, f1, . . . , fm and y1, . . . , ym are measurable as this is a finite optimization problem. Then µ∗
n:L =∑m

i=1 wiδfi,yi , where the wi are measurable functions of the f1, . . . , fm due to Proposition 3.1.

(Measurability of a finite optimization problem). Let U1, . . . , Um be random variables such thatP[Ui = Uj ] = 0
for all i, j with i ̸= j. Suppose Ω1 is such that Ui(ω) ̸= Uj(ω) for all i, j with i ̸= j and all ω ∈ Ω1. On Ω1

there exists a function i such that

i(ω) =
m

argmax
j=1

Uj(ω), ω ∈ Ω1.

This function is measurable as for all k ∈ {1, . . . ,m}
{ω ∈ Ω1 : i(ω) = k} = {ω ∈ Ω1 : Uk(ω)−

m
max
j=1

Uj(ω) = 0},

and because Uk and the maximum function maxmj=1 Uj are measurable.

Appendix C. References to Resnick’s book

Mp(E) denotes the set of point measures on E, where µ is a point measure on E if µ =
∑∞

i=1 kiδxi
for

k1, k2, . . . in N and x1, x2, . . . in E such that for all compact K ⊂ E there are only finitely many i such that
xi ∈ K.

Theorem C.1. (Res87, Proposition 3.13) Let E be a complete separable metric space. Suppose mn,m ∈
Mp(E) and mn

v−→ m. Let K ⊂ E be compact and such that m(∂K) = 0. Then there exists an N such that
for a n ≥ N there exist labelling of points in mn and m

mn(· ∩K) =

I∑
i=1

δxn
i
, m(· ∩K) =

I∑
i=1

δxi
,

such that in EI

(xn
1 , . . . , x

n
I )→ (x1, . . . , xI).
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