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Abstract

We construct random Schrödinger operators, called Anderson Hamiltonians, with
Dirichlet and Neumann boundary conditions for a fairly general class of singular ran-
dom potentials on bounded domains. Furthermore, we construct the integrated density
of states of these Anderson Hamiltonians, and we relate the Lifschitz tails (the asymp-
totics of the left tails of the integrated density of states) to the left tails of the principal
eigenvalues.
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1 Introduction

In this paper, we consider random Schrödinger operators of the form

−∆− ξ, (1) {eq:AH}{eq:AH}

where ∆ =
∑d

i=1 ∂
2
i is the Laplacian on Rd and ξ is a random potential. Such operators are

also called Anderson Hamiltonians. This name is due to the influential work by Anderson
[3]. We consider the construction of such operators for irregular potentials ξ (also called
singular potentials) that do not need to be functions, hence there is –a priori– no obvious
interpretation of (1).

After constructing the Anderson Hamiltonian it is natural to investigate its spectral prop-
erties. One of the most studied objects in the theory of random Schrödinger operators is the
integrated density of states (IDS), see for example [16, Chapter VI] and [45] for overviews.
The IDS is a nonrandom, increasing and right-continuous function on R and is often char-
acterized as the vague limit of the normalized eigenvalue counting functions. The left tail
asymptotics of the IDS are called Lifschitz tails, which capture disorder effect in the oper-
ator (1). Relating the Lifschitz tails to the tail asymptotics of the principal eigenvalue is a
classical result, see for example Kirsch and Martinelli [44] and Simon [66].

The rest of our introduction is split as follows. In Section 1.1 we discuss the previous
works on the construction of Anderson Hamiltonians with singular potentials and how our
construction relates to these works regarding the assumptions and techniques. In Section 1.2
we discuss the study of the spectral properties of the Anderson Hamiltonians. In Section 1.3
we discuss the techniques that we use to derive our results. In Section 1.4 the main results
are presented. In Section 1.5 we give the ideas behind the construction of the operator and
how we derive the stochastic terms. In Section 1.6 we describe the outline of the rest of the
paper and in Section 1.7 we give an overview of some notation that is used throughout the
paper.
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1.1 Construction of Anderson Hamiltonians with singular potentials
{sec:construction_AH}

The mathematical study of Anderson Hamiltonians with singular potentials dates back to
the work [28] by Fukushima and Nakao. They constructed the Anderson Hamiltonian with
a white noise potential and with Dirichlet boundary conditions on the one dimensional
domain (−L,L), as the self-adjoint operator associated to the closed symmetric form on
H1

0 ((−L,L)), (formally) given by

(u, v) 7→
∫

(−L,L)

∇u · ∇v −
∫

(−L,L)

ξuv.

For ξ being the white noise one has to make sense of the term
∫

(−L,L)
ξuv. To do so,

Fukushima and Nakao replaced it by∫
(−L,L)

(uv′ + vu′)B,

whereB is the Brownian motion on (−L,L) (as ξ is the derivative ofB, this is an integration
by parts identity). In general, for a bounded open set U in Rd and a potential V of regularity
greater than −1, it is possible to make sense of∫

U

V uv

for u, v ∈ H1
0 (U) (we show this in Theorem 4.3 (a)). Therefore, in that case, one can

construct the Anderson Hamiltonian by considering the associated symmetric form.
However, this approach fails to work if the regularity of ξ is below −1. The treatment of

such singular ξ became possible only after the advent of the theory on singular stochastic
partial differential equations (singular SPDEs), most notably the theory of regularity struc-
tures by Hairer [34] and the theory of paracontrolled distributions by Gubinelli, Imkeller
and Perkowski [33].

Motivated by the theory of paracontrolled distributions, Allez and Chouk [2] constructed
the Anderson Hamiltonian with white noise on the 2D torus as the limit of

−∆− ξε + cε,

where ξε is a regularized potential and cε is a suitably chosen number such that cε ↑ ∞ as ε ↓
0. They obtained an explicit domain of the operator and its action. Subsequently, Gubinelli,
Ugurcan and Zachhuber [31] constructed the Anderson Hamiltonian with white noise on the
2D and 3D torus and studied SPDEs whose linear part is given by the Anderson Hamiltonian
(1). Chouk and van Zuijlen [19] constructed the Anderson Hamiltonian with white noise
and with either Dirichlet or Neumann boundary conditions on 2D boxes. Mouzard [58]
constructed the Anderson Hamiltonian with white noise on 2D compact manifolds, using
the theory of higher order paracontrolled distributions [8]. This paper can also be viewed as
a generalisation of [2]. Additionally, he proved a Weyl law for the Anderson Hamiltonian.
We also prove such a Weyl law in Proposition 5.17. Ugurcan [73] constructed the Anderson
Hamiltonian on R2 using the methods of paracontrolled distributions.

The works [19, 31, 58, 73] mentioned above use the techniques of the theory of para-
controlled distributions [33]. Labbé [49] used the theory of regularity structures to construct
the Anderson Hamiltonian with white noise on a d-dimensional box (d ≤ 3) with Dirichlet
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or periodic boundary conditions. Instead of directly constructing the operator itself, he con-
structed the resolvent operators Ga = (a−∆− ξ)−1 with Dirichlet boundary conditions for
large a > 0 and defined the Anderson Hamiltonian by G−1

a − a. Although this approach is
robust, the construction is abstract and the domain of the operator is implicit.

In this work we consider a fairly general class of irregular potentials under the mini-
mal assumption on the regularity of the potential ξ, which means that we assume that the
regularity of ξ is −2 + δ for some δ > 0. Typical examples of potentials that are within
this regularity regime include the white noise, namely the centered Gaussian field with delta
correlation, in d-dimensions with d ∈ {1, 2, 3}. However we can go beyound white noise,
as we can treat a Gaussian noise ξ whose covariance is formally given by

E[ξ(x)ξ(y)] = c|x− y|−α, c ∈ (0,∞), α ∈ (0,min{d, 4}).

Moreover, instead of working on a box, we consider a bounded domain U in Rd and con-
struct the Anderson Hamiltonian on U with both Dirichlet as well as Neumann boundary
conditions. For the latter, besides that the domain needs also to be Lipschitz, we have to im-
pose more restrictive assumptions on the potential. For example, these assumptions do not
allow us to construct the Anderson Hamiltonian with Neumann boundary conditions for a
white noise potential on a three dimensional domain. In order to construct this operator one
expects – due to the work of Hairer and Gerencsér [29] for the parabolic Anderson model –
the need to perform an additional renormalisation, but then only on the boundary.

1.2 Spectral properties of Anderson Hamiltonians
{sec:spectral}

Fukushima and Nakao [28] studied the integrated density of states (IDS) for the Anderson
Hamiltonian with white noise potential in one dimension and derived the explicit formula
that was predicted by physicists. The IDS for the Anderson Hamiltonian with white noise
potential on two dimensional boxes was constructed by Matsuda in [53].

Besides the study of the IDS, quite related are the studies of the asymptotics of the
eigenvalues. Chouk and van Zuijlen [19] showed the asymptotics of the eigenvalues in
two dimensions for a white noise potential and Labbé and Hsu [40] extended this to three
dimensions. The asymptotics of the principal eigenvalues plays an important role in the mass
asymptotics of the parabolic Anderson model [46, 47, 30]. Most recently, Bailleul, Dang
and Mouzard [5] studied different properties of the Anderson Hamiltonian and its spectrum,
for example the corresponding heat kernel and heat kernel estimates are studied, estimates
of the norms of the eigenfunctions in terms of the size of their corresponding eigenvalues
are given and a lower estimate on the spectral gap is given.

We remark that in one dimension with white noise, beyond the asymptotics of the eigen-
values and the study of the IDS, more is known about the spectrum properties.

Namely, McKean [54] showed that appropriately shifted and rescaled principal eigen-
values converge, as the segment size grows to infinity, to the Gumbel distribution in law.
Cambronero and McKean [13] and Cambronero, Ramírez and Rider [14] derived precise
tail asymptotics of the principal eigenvalue on the fixed torus. Dumaz and Labbé investi-
gated the detailed statistics of the eigenvalues and the eigenfunctions in a series of works
[25, 26, 24, 23]. No analogous results are known for singular potentials other than the white
noise in one dimension (see the conjectures in the introduction of [40]).

In this work we construct the IDS of the Anderson Hamiltonian with a singular potential
and we relate its left tail to those of the principal eigenvalues. In particular, by applying the
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work [40] by Hsu and Labbé, we derive the precise tail behaviour of the IDS for the white
noise in d dimensions, for d ∈ {2, 3}.

1.3 Techniques
{subsec:techniques}

The techniques to construct the operators. Instead of directly constructing the operators them-
selves, we construct the corresponding symmetric forms. In fact, we are inspired by Gu-
binelli, Ugurcan and Zachhuber [31], where they figured out that the form domain of the
Anderson Hamiltonian for a white noise potential on the 2D or 3D torus is quite simple.
The work [48] by Kuwae and Shioya is important for us as it provides a correct notion of
convergence of symmetric forms that are bounded from below.

To construct the symmetric forms, we combine an exponential transformation with an
integration by parts formulae, see Section 1.5 for a heuristic description. The exponential
transformation is now a well-known technique in singular SPDEs. The most notable one is
the Cole-Hopf transform of the KPZ equation as used by Bertini and Giacomin [9]. Hairer
and Labbé [35] used the exponential transformation to simplify the 2D parabolic Anderson
model. Gubinelli, Ugurcan and Zachhuber [31] used it to construct the Anderson Hamilto-
nian with 3D white noise. Recently, Jagannath and Perkowski [42] applied it to simplify the
construction of the dynamical Φ4

3 model and Zachhuber [74] applied it to prove global well-
posedness of multiplicative stochastic wave equations. It is interesting to note that, unlike
previous works, we can apply the trick of exponential transformation for the entire subcrit-
ical regime. A major drawback of the exponential transformation is the lack of robustness.
For instance, it does not work if we replace the Laplacian with a fractional Laplacian.

The techniques to treat the IDS. There are two standard approaches to construct the IDS:
the path integral approach [16, Section VI.1.2] and the functional analytic approach [16,
Section VI.1.3]. In our framework, we cannot use the path integral approach. Indeed, it
was shown in [53] that the 2D white noise is critical for this approach in that the Laplace
transform of the IDS is finite only for small parameters. Therefore, if the regularity of the
potential ξ is lower than that of the 2D white noise, we expect the blow-up of the Laplace
transform of the IDS for any parameter. Hence, in this paper we adopt the functional analytic
approach. This approach, introduced by Kirsch and Martinelli [44], is based on the super-
(sub-)additivity of the Dirichlet (Neumann) eigenvalue counting functions and the ergodic
theorem by Akcoglu and Krengel [1].

In order to apply this approach only under the assumptions that guarantee the existence
of the Anderson Hamiltonian with Dirichlet boundary conditions, i.e., without assuming the
additional Neumann assumption 3.2 (II) needed for the Anderson Hamiltonian with Neu-
mann boundary conditions, we are introducing an –what we call– artificial Neumann An-
derson Hamiltonian (see Definition 5.9). For the construction of this artificial operator, we
rely on a rather explicit representation of the symmetric form associated to the Anderson
Hamiltonian.

Many technical estimates here are inspired by Doi, Iwatsuka and Mine [22].

1.4 Main results
{sec:main_results}

In this section we state our three main results of the paper. These results do not require the
introduction of technical notions, however their assumptions do. We therefore briefly give
an idea about what kind of assumptions we assume below in Remark 1.3 and postpone the
detailed description of the assumptions to Section 3, in which we also discuss in which cases
these conditions are fulfilled. In Section 2 we introduce the necessary notation and recall a
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few definitions. In Section 1.5 we discuss the heuristic idea behind the construction of the
operator and the idea on how to proof that these assumptions are fulfilled in general.

{assump:base}

Assumption 1.1. We fix the dimension parameter d ∈ N \ {1}. We let Ω := S ′(Rd), P
a probability measure on the Borel-σ-algebra on Ω. We define the random variable ξ with
values in S ′(Rd) by ξ(ω) := ω for ω ∈ Ω. There exists a δ ∈ (0, 1) such that for all
σ ∈ (0,∞) one has P(ξ ∈ C−2+δ,σ(Rd)) = 1, where C−2+δ,σ(Rd) is a weighted Besov-
Hölder space, see Definition 2.2. A smooth, symmetric function ρ ∈ S(Rd) with

∫
ρ = 1 is

given and we set

ρε(x) := ε−dρ(ε−1x) and ξε := ρε ∗ ξ, x ∈ Rd, ε ∈ (0,∞). (2) {eq:xi_mollifier}{eq:xi_mollifier}

{rem:d_not_equal_one}

Remark 1.2. We do not allow d to be equal to one, since we will work with Green’s func-
tions and for d = 1 the Green function is not singular and one would need a different
treatment.

However, the interesting potentials for d = 1 are given by the derivative of fractional
Brownian motions, whose regularity is greater than −1. Hence, they can be easily treated in
the classical framework of symmetric forms, see Theorem 4.3 (a).

{rem:assumptions_brief}

Remark 1.3 (The main assumptions). Beside the above Assumption 1.1, we introduce three
other assumptions in Assumptions 3.2, namely what we call the

• Construction assumption, Assumption 3.2 (I). This imposes the existence of renormal-
isation constants (cε)ε>0 in R under which (renormalised) stochastic objects converge.

• Neumann assumption, Assumption 3.2 (II). This imposes certain convergence of the
stochastic terms considering the boundary of the domain.

• Ergodic assumption, Assumption 3.2 (III). This imposes ergodicity on the noise.

Now we state our three main results of the paper. By “domain” we mean a nonempty
open subset of Rd (remember that we assume d ∈ N \ {1}).

{def:AH_eps_with_dir_and_neu}

Definition 1.4. We impose the construction assumption 3.2 (I). Let ε > 0.

(a) For a bounded domain U we defineHD,U
ε to be the self-adjoint operator on L2(U),

−∆− ξε + cε (3) {eqn:regular_AH}{eqn:regular_AH}

with Dirichlet boundary conditions.

(b) For a bounded Lipschitz domain U we define HN,U
ε to be the self-adjoint operator (3)

on L2(U) with Neumann boundary conditions.

Remark 1.5. Actually, in Section 5 we first define the operators HD,U
ε and HN,U

ε as those
that correspond to symmetric forms given in terms of the stochastic terms that we describe
in Section 3. Then we show that these equal (3).

Definition 1.6. [61, Definition p. 284] Let A,A1, A2, . . . be self-adjoint operators on a {def:norm_resolvent_convergence}

Banach space X. We say that the sequence (An)n∈N converges in norm resolvent sense and
write

An
NR−→n→∞ A

if
lim
n→∞
‖(i + An)−1 − (i + A)−1‖X→X = 0.

A sequence converges in norm resolvent sense if and only if the above convergence holds
with “i” replaced by “λ” for any λ ∈ C \ R, see [61, Theorem VIII.19].
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The first result concerns the construction of Anderson Hamiltonians on bounded do-
mains, with Dirichlet boundary conditions.

{thm:main_AH}

Theorem 1.7 (Theorem 5.3). Assume the construction assumption 3.2 (I). LetU be a bounded
domain. There exists a self-adjoint operatorHD,U on L2(U) such that

HD,U
ε

NR−→ε↓0 HD,U in probability.

Furthermore, each of the operators has a countable spectrum of eigenvalues and the eigen-
values of HD,U

ε converge in probability to those of HD,U . Moreover, there exist choices of
eigenfunctions ofHD,U

ε andHD,U such that one also has convergence of these eigenfunctions
in probability.

The limitHD,U is independent of the mollifier ρ.

The second main result concerns Anderson Hamiltonians on bounded Lipschitz domains
with Neumann boundary conditions.

{thm:main_Neumann_AH}

Theorem 1.8 (Theorem 5.8). We impose the construction and Neumann assumption 3.2 (I)
and (II). Let U be a bounded Lipschitz domain. There exists a self-adjoint operatorHN,U on
L2(U) such that

HN,U
ε

NR−→ε↓0 HN,U in probability.

Furthermore, each of the operators has a countable spectrum of eigenvalues and the eigen-
values of HN,U

ε converge in probability to those of HN,U . Moreover, there exist choices of
eigenfunctions ofHN,U

ε andHN,U such that one also has convergence of these eigenfunctions
in probability.

The limitHN,U is independent of the mollifier ρ.

Remark 1.9. The statement of Theorem 5.3 is actually slightly more general than that of
Theorem 1.7. Convergence in probability implies that there exists a subsequence and a set
Ω1 ⊆ Ω of probability one such that the subsequence converges everywhere on Ω1. For the
convergence of the Dirichlet operators, this set Ω1 can be chosen independently from the
choice of bounded domain U .

The last main result concerns the integrated density of states (IDS) of Anderson Hamil-
tonians. For example, we show that the notion of the IDS for Anderson Hamiltonians with
smooth potentials can be extended to irregular potentials.

For a bounded domain U and L ∈ [1,∞) we write |U | for the Lebesgue measure of U
and

UL := LU = {x ∈ Rd : L−1x ∈ U}.

We recall that for the Anderson Hamiltonian with a smooth ergodic potential V the inte-
grated density of statesNV is given by the right-continuous and increasing function R→ R
with limλ→−∞NV (λ) = 0 for which, with (λk(U, V ))k∈N being the eigenvalues of−∆−V
with Dirichlet boundary conditions on U (counting multiplicities), for any bounded domain
U and continuity point λ ofNV ,

lim
L→∞

1

|UL|
∑
k∈N

1{λk(UL,V )≤λ} = NV (λ).
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{thm:main_IDS}

Theorem 1.10 (Theorem 5.26, Theorem 5.29 and Theorem 5.30).
We impose the construction and ergodic assumption 3.2 (I) and (III). There exists a (deter-
ministic) right-continuous and increasing functionN : R→ R with

lim
λ→−∞

N (λ) = 0,

such that the following holds: {item:IDS_existence}

(a) For (λD
k(U))k∈N being the eigenvalues of HD,U as in Theorem 1.7 (counting multiplici-

ties), almost surely, one has for every bounded domain U and every continuity point λ
ofN

lim
L→∞

1

|UL|
∑
k∈N

1{λD
k(UL)≤λ} = N (λ).

(N is called the integrated density of states of the Anderson Hamiltonian with potential
ξ.) {item:IDS_approx}

(b) Let N ε be the integrated density of states of the Anderson Hamiltonian with potential
ξε − cε, where cε is the renormalization constant from Assumption 3.2 (I).
Then,N ε converges vaguely toN (see Definition 5.21). {item:IDS_right_tail}

(c) One has limλ→∞ λ
− d

2N (λ) = |B(0,1)|
(2π)d

.
{item:IDS_left_tail}

(d) For any bounded domain U and α ∈ (0,∞), the following identities hold in [−∞, 0]:

lim sup
λ→−∞

(−λ)−α logN (λ) = lim sup
λ→−∞

(−λ)−α logP(λD
1 (U) ≤ λ),

lim inf
λ→−∞

(−λ)−α logN (λ) = lim inf
λ→−∞

(−λ)−α logP(λD
1 (U) ≤ λ).

{item:IDS_Neumann}

(e) Impose furthermore the Neumann assumption, Assumption 3.2 (II). For (λN
k(U))k∈N

being the eigenvalues of HN,U as in Theorem 1.8, for every bounded Lipschitz domain
U and every continuity point λ ofN ,

lim
L→∞
L∈N

1

|UL|
∑
k∈N

1{λN
k(UL)≤λ} = N (λ), almost surely.

With the above theorem in combination with the tail asymptotics of the principal eigen-
value proven in [40, Theorem 2] we obtain the precise tail behaviour of the IDS for the
Anderson Hamiltonian with white noise potential in d dimensions.

{cor:ids_tails_white_noise}

Corollary 1.11. Let d ∈ {2, 3} and ξ be the d-dimensional white noise. Then,

lim
λ→−∞

(−λ)−
4−d
2 logN (λ) = − 8

dd/2(4− d)2−d/2κ
−4
d ,

where κd is the best constant of the Gagliardo-Nirenberg inequality

‖f‖L4(Rd) ≤ C‖∇f‖d/4
L2(Rd)

‖f‖1−d/4
L2(Rd)

.

Proof. This follows from Theorem 1.10 (d) (see Theorem 5.30) and [40, Theorem 2].

Remark 1.12. The case d = 1 is of course known, see [28]. The case d = 2 was proved in
[53]. In the physics literature, these tail behaviours have been already expected (e.g., [15,
11]).
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1.5 Ideas behind the construction and deriving the stochastic terms
{subsec:strategy_ang_techniques}

In this section we give the general ideas behind the construction of the Anderson Hamiltoni-
ans as in Theorem 1.7 and Theorem 1.8. As is common practice when dealing with singular
SPDEs, we transform and decompose terms and give a meaning to the appearing stochastic
terms by means of a renormalization procedure. The heuristics behind how to derive these
stochastic terms is described in Remark 1.16.

As mentioned before, we construct the Anderson Hamiltonian by constructing the corre-
sponding symmetric form (for a definition see Definition 4.2). For a smooth potential ζ , the
Anderson Hamiltonian−∆ + ζ on a bounded domain U with Dirichlet boundary conditions
corresponds to the symmetric form

(u, v) 7→
∫
U

∇u · ∇v +

∫
U

ζuv, (4) {eqn:smooth_pot_sym_form}{eqn:smooth_pot_sym_form}

on the Sobolev space H1
0 (U), i.e., u, v ∈ H1

0 (U). Whereas, if we consider instead Neumann
boundary conditions the operator corresponds to (4) on the Sobolev space H1(U). For a
discussion on this, we refer to [20, Section 6 and 7].

Now we want to give a meaning to the symmetric form (4), basically with “ζ” replaced
by “ξ”. By the bilinearity of symmetric forms, it suffices to give a meaning on the diagonal,
i.e., we may consider u = v in the above formula (see also the comment below Defini-
tion 4.2). Now we will transform the above formula, in a type of “partial Cole–Hopf” trans-
form, by imposing that u is the product of ew and another function, for some well-chosen
function w. We present this in Lemma 1.15 after introducing some convenient notation
in Definition 1.13 and recalling Green’s formula in Lemma 1.14. For the definition of a
Lipschitz domain U and C∞(U), see Definition 2.3.

{def:notation_integral_dot}

Definition 1.13. Let U be a bounded Lipschitz domain. Let ν : ∂U → Rd be such that ν is
the outer unit normal on ∂U almost everywhere. Let S the (d − 1)-dimensional Lebesgue
measure on ∂U . Let g ∈ C1(U). For x ∈ ∂U we define ∇νg(x) := ∇g(x) · ν(x). Observe
that

∇νg(x) := lim
h→0

g(x+ hν(x))− g(x)

h
.

Let f be a measurable function on ∂U such that f∇νg is integrable on ∂U . We write∫
∂U

f∇g · dS :=

∫
∂U

f∇νg dS.

{lem:integration_by_parts}

Lemma 1.14 ([27, Theorem 4.6]).

• Let U be a bounded domain. Then, for every f ∈ H1(U) and g ∈ C2
c (U),∫

U

∇f · ∇g = −
∫
U

f∆g.

• Let U be a bounded Lipschitz domain. Then, for every f ∈ H1(U) and g ∈ C2(U),∫
U

∇f · ∇g = −
∫
U

f∆g +

∫
∂U

T (f)∇g · dS, (5) {eq:integration_by_parts}{eq:integration_by_parts}

where T = TH1(U) is the trace operator (see Lemma 2.8 (b)).
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{lem:sym_form_transform_Neumann}

Lemma 1.15. Let U be a bounded Lipschitz domain, ζ, w ∈ C∞(U) and u ∈ H1(U). Set
v := e−wu. Then, one has∫

U

(|∇u|2−ζu2) =

∫
U

e2w|∇v|2−
∫
U

e2w(ζ+|∇w|2+∆w)v2+

∫
∂U

T (v2)e2w∇w · dS.

Proof. One has∫
U

e2w|∇v|2 =

∫
U

e2w|∇(e−wu)|2 =

∫
U

|∇w|2u2 +

∫
U

|∇u|2 −
∫
U

∇w · ∇(u2)

and by integration by parts (Lemma 1.14) one has∫
U

∇w · ∇(u2) =

∫
∂U

T (u2)∇w · dS −
∫
U

(∆w)u2.

By taking ζ = ξε − cε for some cε ∈ R and a smooth enough wε and by writing

yε = −e2wε(ξε − cε + |∇wε|2 + ∆wε), (6) {eq:y_eps_def}{eq:y_eps_def}

u[ = e−w
ε

u,

the Anderson Hamiltonian with potential ξε − cε, namely,

−∆− ξε + cε, (7) {eqn:smooth_anderson_minus_c_eps}{eqn:smooth_anderson_minus_c_eps}

on U with Dirichlet boundary conditions, corresponds to the symmetric form on H1
0 (U)

given by, ∫
U

|∇u|2 − (ξε − cε)u2 =

∫
U

e2wε|∇u[|2 +

∫
U

yε(u[)2.

Similarly, if we instead consider Neumann boundary conditions, it corresponds to the sym-
metric form on H1(U) given by,∫

U

|∇u|2 − (ξε − cε)u2 =

∫
U

e2wε|∇u[|2 +

∫
U

yε(u[)2 +

∫
∂U

T ((u[)2)e2wε∇wε · dS.

Aswε will be chosen smooth enough such thatH1
0 (U) = ew

ε
H1

0 (U) andH1(U) = ew
ε
H1(U),

this means that we have to give a meaning to the limit of two, in the case of Dirichlet bound-
ary conditions, and three, in the case of Neumann boundary conditions, symmetric forms,
namely

v 7→
∫
U

e2wε |∇v|2, v 7→
∫
U

yεv2, v 7→
∫
∂U

T (v2)e2wε∇wε · dS. (8) {eq:three_syms}{eq:three_syms}

As we will show in more detail in Section 4, if there are w and y such that wε → w in Cδ and
yε → y in C−1+δ, then the first two symmetric forms in (8) converge to the corresponding
symmetric forms with w and y in place of wε and yε, respectively. (Observe that v ∈ H1(U)
one has |∇v|2 ∈ L1(U) and v2 ∈ W 1

1 (U), where W k
p is the usual Sobolev space, see

Definition 2.4.) This basically reflects the first assumption that we impose and call the
construction assumption: Assumption 3.2 (I). As T (v2) is in L1(∂U) for v ∈ H1(U), one
would expect the third symmetric form to converge only if δ > 1, as then ∇wε → ∇w
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in Cδ−1. However, with an additional assumption on a stochastic term, which we call the
Neumann assumption namely Assumption 3.2 (II), it suffices to assume that δ > 1

2
. For this

we use a further decomposition of the third symmetric form in (8). We discuss this in more
detail in Section 3.3.

So as mentioned, the construction and Neumann assumptions impose conditions on the
stochastic terms. Given a noise ξ there is a way on how to find these stochastic terms. We
describe the idea in the following remark.

{remark:finding_w_eps}

Remark 1.16 (Idea behind the derivation of the stochastic term wε). Let us present the
heuristic idea on how to choose these wε, by forgetting for the moment about the regu-
larization parameter “ε” and the renormalisation constants “cε”. Namely, we are going to
construct a w such that

ξ + |∇w|2 + ∆w

is sufficiently regular. For convenience of conversation, let us introduce a formal notion
“deg(σ)” which more or less reflects the regularity of an object “σ”, namely, we set (deg
coincides with |·|+ as in Definition B.6)

deg(ξ) = −2 + δ, deg(∂iσ) = deg(σ)− 1,

deg((−∆)−1σ) = deg(σ) + 2, deg(σ1 · σ2) = deg(σ1) + deg(σ2).

Now we expect to be able to choose w with positive regularity, so that the term |∇w|2 has a
larger regularity than ∆w, i.e., deg(|∇w|2) > deg(∆w)). Hence, by ignoring |∇w|2 we try
to find a w such that ∆w compensates the irregularity of ξ. The most natural choice for this
is w = (−∆)−1ξ. In this case,

ξ + |∇w|2 + ∆w = |∇(−∆)−1ξ|2 =: τ1.

Observe that deg(τ1) = −2 + 2δ, which is greater than deg(ξ) = −2 + δ. If the degree
−2 + 2δ is too small to our taste, then we instead set

w := (−∆)−1(ξ + τ1).

For this w we obtain

ξ + |∇w|2 + ∆w = 2∇(−∆)−1ξ · ∇(−∆)−1τ1︸ ︷︷ ︸
τ2

+ |∇(−∆)−1τ1|2︸ ︷︷ ︸
τ3

,

where deg(τ2) = −2 + 3δ and deg(τ3) = −2 + 4δ are both greater than −2 + 2δ. One can
repeat this argument until one obtains a sum of terms for ξ + |∇w|2 + ∆w such that each
term has sufficiently large degree. (As Theorem 4.3 (a) shows, “sufficiently large” means
that the degree is greater than −1.)

The above arguments are not yet mathematically rigorous, as for instance, the term
|∇(−∆)−1ξ|2, that is the inner product of ∇(−∆)−1ξ with itself, a priori does not make
sense since∇(−∆)−1ξ is not a function in general. Moreover, it turns out that |∇(−∆)−1ξε|2
itself does not converge as ε ↓ 0, but if we take a “renormalization” of it, namely

|∇(−∆)−1ξε|2 − E[|∇(−∆)−1ξε|2(0)],
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then it does converge in probability. Then, we take the limit of it as our definition of τ1

(instead of the nonrigorous definition |∇(−∆)−1ξ|2 above).

We will discuss the derivation of the stochastic terms in more detail in Section 3. On the
one hand we consider the concrete examples of two and three dimensional white noise, in
which case it suffices to take the first and second choice of w as described above, respec-
tively. On the other hand, we mention how to deal with general noises of regularity greater
than −2 with the use of the theory of regularity structures.

1.6 Outline
{sec:outline}

In Section 2, we introduce some notation related to the function spaces that we use. Tech-
nical estimates related to the objects introduced in Section 2 are postponed to Appendix A.
In Section 3, we describe the main assumptions and give examples for which these as-
sumptions are satisfied. In Section 4, we cover some theory on (deterministic) symmetric
forms that will be relevant to our problems. In Section 5, we give the definition of the
Anderson Hamiltonians and prove the main theorems on the construction and the IDS. In
Appendix B we review some necessary terminalogies from regularity structures in order to
prove in Appendix C that under general conditions the construction assumptions are satisfied
for subcritical noises.

1.7 Notation
{sec:notation}

We set N := {1, 2, 3, . . .} and N0 := {0} ∪ N. We call a subset of Rd a domain if it is an
open subset of Rd. We denote by U the closure of a subset U of Rd. Given a subset U of
Rd, L ∈ (0,∞) and x ∈ Rd, we set

UL := LU = {y ∈ Rd : L−1y ∈ U},

d(x, U) := inf{|x − y| : y ∈ U}, B(U,R) := {y ∈ Rd : d(y, U) ≤ R} and
B(x,R) := B({x}, R). We denote by |U | the Lebesgue measure of a measurable set U .

We denote by S(Rd) the space of Schwartz functions equipped with the locally convex
topology generated by the Schwartz seminorms, and, by S ′(Rd) the space of tempered distri-
butions, that is, the dual space of S(Rd). We denote by supp(f) the support of a distribution
or a continuous function f in Rd. Let k ∈ N ∪ {∞}. For a domain U , we write Ck(U)
for the k times continuously differentiable functions on U and Ck

c (U) for those functions
in Ck(U) with compact support. For a closed set V ⊆ Rd (we will consider U and ∂U for
domains U ), we define

Ck(V ) := {f |V : f ∈ Ck(Rd)}.

For a subset U of Rd, either open or closed, we define

‖f‖Ck(U) := sup
x∈U

∑
l∈Nd0:|l|≤k

|∂kf(x)| if k <∞

We denote by Lp(U), p ∈ [1,∞], the usual Lebesgue Lp-space on U . We denote by 〈F, f〉
the dual pairing of F ∈ S ′(Rd) and f ∈ S(Rd) and the dual pairing of Besov spaces [64,
Theorem 2.17]. We denote by f ∗ g the convolution of f and g. By duality, the convolution
f ∗ g for f ∈ S(Rd) and g ∈ S ′(Rd) is defined and represents a smooth function.
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LetA,X be sets and f, g : A×X → [0,∞]. We write f(a, x) .a g(a, x) if there exists a
constant C ∈ (0,∞] (possibly) depending on a –for which we also write either C = C(a) or
C = Ca– such that f(a, x) ≤ Cg(a, x) for all x. We will not explicitly write the dependence
on the dimension d, i.e., we write “.a” instead of “.d,a”.

2 Function spaces and Green’s functions
{sec:function_spaces}

2.1 Besov spaces on Rd

Here we describe definitions and important properties of Besov spaces on Rd. Technical
estimates related to Besov spaces will be given in Section A.1.

Definition 2.1. The Fourier transform of a function f ∈ S(Rd) is defined by

Ff(y) :=

∫
Rd
f(x)e−2πix·y dx.

We define Ff for f ∈ S ′(Rd) by duality: 〈Ff, g〉 := 〈f,Fg〉 for g ∈ S(Rd).
{def:besov_spaces}

Definition 2.2. Let χ̌, χ be smooth radial functions with values in [0, 1] on Rd with the
following properties:

• supp(χ̌) ⊆ B(0, 4
3
), supp(χ) ⊆ {x ∈ Rd : 3

4
≤ |x| ≤ 8

3
}.

• χ̌(x) +
∑∞

j=0 χ(2−jx) = 1 for x ∈ Rd and
∑∞

j=−∞ χ(2−jx) = 1 for x ∈ Rd \ {0}.

The existence of such χ̌ and χ is guaranteed by [4, Proposition 2.10]. For f ∈ S ′(Rd) we
set

∆−1f = F−1(χ̌Ff), ∆jf = F−1(χ(2−j·)Ff), j ∈ N0.

Let p, q ∈ [1,∞] and r ∈ R. For σ ∈ R, we set

wσ(x) := (1 + |x|2)−
σ
2 .

The weighted nonhomogeneous Besov space Br,σ
p,q (Rd) consists of those distributions f in

S ′(Rd) such that ‖f‖Br,σp,q (Rd) <∞, where

‖f‖Br,σp,q (Rd) :=
∥∥∥(2−rj‖wσ∆jf‖Lp(Rd)

)∞
j=−1

∥∥∥
`q

Let us mention that the norm actually depends on the choice of χ̌ and χ, though the space
does not. See for example [4, Corollary 2.70]. [4, Lemma 2.69] implies that different
choices of χ̌ and χ as above give equivalent norms.

We set Cr,σ(Rd) := Br,σ
∞,∞(Rd) and write Cr(Rd) := Cr,0(Rd), Br

p,q(Rd) = Br,0
p,q(Rd).

2.2 Sobolev–Slobodeckij spaces on bounded domains
{def:lipschitz_domain}

Definition 2.3. We say that a bounded domain U of Rd is called a bounded Lipschitz domain
if its boundary can be locally approximated by Lipschitz functions in the following sense:
For each y ∈ ∂U , there exist r > 0, a Lipschitz function γ : Rd−1 → R and an bijection (a
relabelling) σ : {1, . . . , d} → {1, . . . , d} such that

U ∩B(y, r) = {x ∈ B(y, r) : xσ(d) > γ(xσ(1), . . . , xσ(d))}. (9) {eqn:lipschitz_boundary}{eqn:lipschitz_boundary}
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This means in particular

∂U ∩B(y, r) = {x ∈ B(y, r) : xσ(d) = γ(xσ(1), . . . , xσ(d))}.

A function f : ∂U → R is called smooth if for each y ∈ ∂U , additional to the r, γ and
σ as above such that (9) holds, there exists a smooth function g : Rd−1 → R such that
f(x) = g(xσ(1), . . . , xσ(d−1)) for x ∈ ∂U ∩ B(y, r). C∞(∂U) is the space of all smooth
functions on ∂U .

{def:fractional_Sobolev}

Definition 2.4. Let U be a domain in Rd. Let p ∈ [1,∞] and r ≥ 0. {item:sobolev_space}

(a) The space W r
p (U) is the completion of {f |U : f ∈ C∞(U), ‖f |U‖W r

p (U) < ∞} with
respect to the norm

‖f‖W r
p (U) :=

∑
α∈Nd0,|α|≤r

‖∂αf‖Lp(U) +
∑

α∈Nd0,|α|=brc

[∂αf ]
W
r−brc
p (U)

,

where [g]W 0
p (U) := 0 and for s ∈ (0, 1),

[g]W s
p (U) :=


(∫

U

∫
U
|g(x)−g(y)|p
|x−y|d+ps dx dy

) 1
p

p <∞,
supx,y∈U,|x−y|≤1

|g(x)−g(y)|
|x−y|s , p =∞.

.

We set Hr(U) := W r
2 (U). We denote by W r

p,0(U) the completion of C∞c (U) with
respect to the norm ‖·‖W r

p (Rd) (not ‖·‖W r
p (U)) and we set Hr

0(U) := W r
2,0(U).

{item:sobolev_space_boundary}

(b) Let U be a bounded Lipschitz domain and r ∈ (0, 1). The space W r
p (∂U) is the

completion of C∞(∂U) with respect to the norm

‖g|∂U‖W r
p (∂U) := ‖g‖Lp(∂U) + [g]W r

p (∂U)

where

[g]W r
p (∂U) :=


(∫

∂U

∫
∂U
|g(x)−g(y)|p
|x−y|d−1+pr dx dy

) 1
p

p <∞,
supx,y∈∂U,|x−y|≤1

|g(x)−g(y)|
|x−y|r p =∞.

Remark 2.5 (Equivalent definitions). For a bounded domain U , let W̃ r
p (U) be the space

of f ∈ Lp(U) such that the distributional derivatives ∂αf for |α| ≤ r are in Lp(U) and
‖f‖W r

p (U) <∞.
Then W r

p,0(U) is the closure of C∞c (U) in W̃ r
p (U) and if U is a bounded Lipschitz do-

main, then W r
p (U) = W̃ r

p (U), see for example [59, Theorem 1.2] and [56].

Definition 2.6. For U a domain in Rd and r ≥ 0 we also write Cr(U) = W r
∞(U) and

‖f‖Cr(U) = ‖f‖W r
∞(U).

The following lemma relates the Sobolev–Slobodeckij spaces W r
p (and Cr) for U = Rd

to the Besov spaces.
{lem:equivalence_sob_slobo_and_besov}

Lemma 2.7. Let s ∈ (0,∞) \ N and p ∈ [1,∞]. Then W s
p (Rd) = Bs

p,p(Rd), Cs(Rd) =
Cs(Rd) and the norms ‖·‖W s

p (Rd) and ‖·‖Bsp,p(Rd) are equivalent (hence ‖·‖Cs(Rd) and ‖·‖Cs(Rd)

are equivalent).

14



Proof. This follows by [71, p.90]: For p ∈ [1,∞) one hasW s
p (Rd) = Bs

p,p(Rd) with equiva-
lent norms, see [71, p. 90 and p.113] (W s,p(Rd) is written instead ofW s

p (Rd) and it is shown
that W s

p (Rd) = Λs
p,p(Rd) = Bs

p,p(Rd)), for Cs(Rd) = Cs(Rd) = Bs
∞,∞(Rd) with equivalent

norms, see [71, p.90 (9), (6) and p.113] (actually, in [71] Cs(Rd) is defined differently but
shown to be the same as Bs

∞,∞(Rd)).
{lem:extension_and_trace_sobolev}

Lemma 2.8. Let U be a bounded Lipschitz domain. {item:extension_op}

(a) Set D := ∪p∈[1,∞],r∈[0,∞)W
r
p (U). There exists an extension operator ι : D → S ′(Rd)

such that

• ι(f) = f as distributions on U for f ∈ D,

• ‖ι(f)‖W r
p (Rd) .U,p,r ‖f‖W r

p (U) for every p ∈ [1,∞], r ∈ [0,∞) and f ∈ D,

• ι(f) ∈ C∞(Rd) for all f ∈ C∞(U).
{item:trace_op_and_inverse}

(b) Let p ∈ (1,∞) and r ∈ (1
p
, 1 + 1

p
). Then, the map C∞(U) → C∞(∂U), f 7→ f |∂U

extends uniquely to a bounded linear operator T = TW r
p (U) : W r

p (U)→ W
r− 1

p
p (∂U).

Furthermore, there exists a bounded linear operator that is the right inverse of T .

Proof. For (a) see [68, Chapter 6] in combination with [70, Section 4], or, for r ∈ [0, 1),
[21, Theorem 5.4]. For (b), see [51, Theorem 3].

{def:universal_extension_op_and_trace}

Definition 2.9. An extension operator ι as in Lemma 2.8 (a) is called a universal extension
operator from U to Rd. The operator T as in Lemma 2.8 (b) is called the trace operator.

2.3 Green’s functions
{subsec:green_function}

Let G be the Green’s function of −∆ on Rd (remember that d ∈ N \ {0}), which means
that −∆G ∗ f = f for f ∈ S(Rd). That is, G is the distribution which is represented by the
function defined for x 6= 0 by

G(x) =

{
− 1

2π
log|x| d = 2,

1
d(d−2)ωd

|x|−(d−2) d ≥ 3,

where ωd is the volume of the unit ball in Rd. The identity −∆G ∗ f = f for f ∈ S(Rd)
implies the formal identity G = F−1(|2π · |−2). As |·|−2 is singular at the origin, it is
convenient to introduce the following variants of G.

{def:G_N_and_H_N}

Definition 2.10. Let χ̌ be the function introduced in Definition 2.2. For N ∈ N0, we set

GN := F−1((1− χ̌(2−N ·))|2π·|−2).

Even though in general one cannot take the convolution of any two tempered distributions,
for a tempered distribution g ∈ S ′(Rd) we write

GN ∗ g := F−1((1− χ̌(2−N ·))|2π · |−2Fg).

Observe that the latter is indeed a tempered distribution as the product of the smooth function
(1− χ̌(2−N ·))|2π · |−2, which itself and all its derivatives are of at most polynomial growth,
and the tempered distribution Fg, is again a tempered distribution.
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Moreover, observe that for any g ∈ S ′(Rd) there exists a f ∈ C∞c (Rd) such that

−∆GN ∗ g = g + f. (10) {eqn:G_N_is_parametrix}{eqn:G_N_is_parametrix}

Namely f = −F−1(χ̌(2−N ·)) ∗ g:

−∆GN = F−1((1− χ̌(2−N ·))) ∗ g = g + f.

The parameter N is introduced to control the norm of GN ∗ f by letting N large:
{lemma:estimate_W_n_on_U_L}

Lemma 2.11. Let U be a bounded domain, σ ∈ (0,∞) and δ− ∈ (0, δ). Then for L ≥ 1
and N ∈ N0

‖GN ∗ g‖Cδ− (UL) .U,δ−,δ,σ L
σ2−(δ−δ−)N‖g‖C−2+δ,σ(Rd).

Consequently, for g ∈ C−2+δ,σ(Rd) we have limN→∞GN ∗ g = 0 in Cδ−(U).

Proof. This follows by Lemma A.5 and Corollary A.10.
{rem:G_N_M}

Remark 2.12. For M,N ∈ N0, we have GN −GM ∈ S(Rd). Furthermore, for f ∈ S ′(Rd)
and N ∈ N0, we set

[∆(GN −G)] ∗ f := F−1[χ̌(2−N ·)] ∗ f, (11) {eq:Delta_G_N_min_G}{eq:Delta_G_N_min_G}

which is a smooth function. By considering their Fourier transforms, one observes

∆(GN ∗ f) = −f + [∆(GN −G)] ∗ f. (12) {eq:laplacian_on_G_N}{eq:laplacian_on_G_N}

3 Assumptions on the stochastic terms
{sec:assumptions}

We motivate and state the main assumptions in Section 3.1, namely, those that are al-
ready mentioned in Remark 1.3: the construction assumption 3.2 (I), the Neumann assump-
tion 3.2 (II) and the ergodic assumption 3.2 (III). In Section 3.2 we show that the construc-
tion assumption is satisfied for the white noise ξ in two and three dimensions and mentioned
that it is satisfied for a very general class of subcritical noises within the framework of
regularity structures (the arguments are postponed to the Appendix C, since it requires the
full-fledged theory of regularity structures, see also Appendix B). In Section 3.3 we consider
sufficient conditions and examples for which the Neumann assumption 3.2 (II) is satisfied.

3.1 Assumptions
{subsec:main_assump}

In addition to Assumption 1.1, we will introduce three more assumptions. In this section
we go into more depth on the idea behind the construction as explained in Section 1.5 and
motivate the main assumptions, which we formulate in 3.2.

{rem:towards_construction_assumptions}

Remark 3.1 (Towards the construction assumptions). Recall from Assumption 1.1 that ξε is
a mollification of the white noise ξ. As already motivated in Section 1.5, for the convergence
of the smooth Anderson Hamiltonians, it basically suffices to find functions wε and scalars
cε such that

yε = −e2wε(ξε − cε + |∇wε|2 + ∆wε), (13) {eqn:y_eps}{eqn:y_eps}
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converges in C−1+δ. Moreover, in Remark 1.16 we have described the heuristics of finding
such wε, or actually their limit, w, where (formally)

w = (−∆)−1X, and, X = ξ + τ1 + · · ·+ τk. (14) {eqn:formal_formulation_of_w}{eqn:formal_formulation_of_w}

For the above mentioned convergence of yε, we have not been precise on what C−1+δ means.
In fact, for the noise and the stochastic terms, we will not consider them as elements on
function spaces on U , but as elements of weighted Besov spaces on Rd. That is, we consider
ξ as an element of C−2+δ,σ(Rd). The σ determines the “amount” of polynomial growth that
it allows for. As ξ is of at most polynomial growth, so is the w as in (14). But then e2w could
be of exponential growth, so that we cannot guarantee a priori that (13) is an element of a
space that allows only polynomial growth, which we want in order to show the existence of
the integrated density of states. For this reason we replace e2wε by F (wε) in the definition
of yε, where F is a bounded smooth function which equals t 7→ −e2t around the origin.

Now “(−∆)−1” as in (14) is a formal notation, which one could replace by “G∗”, where
G is the Green’s function as in Section 2.3. However, due to the singularity of G, we will
not exactly work with the Green’s function itself, but rather a version of it in which “the
Fourier terms around zero” are cut off, i.e., we will work with GN instead (Definition 2.10).
The extra parameter N will be tuned, i.e., it will be replaced by a random variable M that
also depends on the domain U so that instead of (14), we consider

w = GM ∗X,

and M is set in such a way that F (w) = −e2w.

By the above remark we are now ready to put the assumptions on the stochastic terms
for the construction of the Anderson Hamiltonian with Dirichlet boundary conditions, see
Assumptions 3.2 (I). In these assumptions we will also give a rigorous meaning to the object
X that appeared in (14).

In Remark 3.5 we comment on the Neumann assumption 3.2 (II), as it is easier to discuss
this given that the reader has read the construction assumption 3.2 (I) first.

In Assumptions 3.2 we display not only both the construction and the Neumann assump-
tions, but also the ergodic assumption, which is a rather standard assumption that is made to
guarantee the existence of the integrated density of states.

Recall that Cα,σ and Bα
p,q are defined in Definition 2.2 and GN is defined in Defini-

tion 2.10.
{assump:all_three_assump}

Assumptions 3.2. We abbreviate for α ∈ R

Lα =
⋂

σ∈(0,∞)

⋂
p∈[1,∞)

Lp(P, Cα,σ(Rd)).

{item:construction_assump}

(I) (Construction assumption) There exist (cε)ε>0 in R; X and (Xε)ε>0 in L−2+δ such
that X − ξ ∈ L−2+2δ and for all σ ∈ (0,∞) and p ∈ [1,∞)

lim
ε↓0
‖Xε −X‖Lp(P,C−2+δ,σ(Rd)) = 0,

lim
ε↓0
‖Xε − ξε − (X − ξ)‖Lp(P,C−2+2δ,σ(Rd)) = 0.

Let F : Rd → R be a compactly supported smooth function such that F (x) = −e2x if
|x| ≤ 2. For N ∈ N0, we set W ε

N := GN ∗Xε and

Y ε
N := F (W ε

N)
(
ξε − cε + |∇W ε

N |2 + ∆W ε
N

)
. (15) {eq:definition_Y_eps_N}{eq:definition_Y_eps_N}
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There exists a YN ∈ L−1+δ such that for all σ ∈ (0,∞) and p ∈ [1,∞),

lim
ε↓0
‖Y ε

N − YN‖Lp(P,C−1+δ,σ(Rd)) = 0.

Furthermore, there exists an integer b = b(δ) ∈ N such that for any σ ∈ (0,∞) and
p ∈ [1,∞) we have

a := a(δ, σ) := sup
N∈N

2−bN‖YN‖C−1+δ,σ(Rd) ∈ Lp(P). (16) {eqn:def_a_AH}{eqn:def_a_AH}

Both X and YN are independent of the mollifier ρ. {item:neumann_assump}

(II) (Neumann assumption) We assume that δ ∈ (1
2
, 1). For a bounded Lipschitz domain

U , let Ỹ U
ε be the tempered distribution given by (see Definition 1.13 for the notation∫

∂U
f∇g · dS)

ϕ 7→
∫
∂U

ϕ∇(G0 ∗ ξε) · dS.

Then there exists a random variable Ỹ U with values in S ′(Rd), independent of the
mollifier function ρ, such that

‖Ỹ U
ε − Ỹ U‖B−2+δ

p,p (Rd)

ε↓0−−→ 0 in probability for all p ∈ (2,∞). (17) {eq:tilde_Y_U_conv}{eq:tilde_Y_U_conv}

In addition, for every p ∈ (8d,∞) and q ∈ [1,∞) we have

sup
L∈N

L−
1
4‖Ỹ UL‖B−2+δ

p,p (Rd) ∈ L
q(P). (18) {eq:Y_U_bound_assump}{eq:Y_U_bound_assump}

{item:ergodic_assump}

(III) (Ergodic assumption) Recall that our probability space Ω is the space S ′(Rd) of tem-
pered distributions. Then, we have maps Tx : Ω → Ω (x ∈ Rd) of translations
ω → ω(· − x). We assume the probability measure P to be translation invariant
(P = P ◦ Tx for all x) and ergodic with respect to (Tx)x∈Rd .

{rem:gaussian_ergodic}

Remark 3.3. It is well-known (e.g. [62, Proposition 6.1]) that Assumption 3.2 (III) is satis-
fied for the Gaussian noise ξ with covariance E[ξ(x)ξ(y)] = γ(x− y) such that

lim
|x|→∞

γ(x) = 0.

In particular, this assumption is satisfied for the white noise.
{rem:technical_estimate}

Remark 3.4. The technical estimates (16) and (18) are necessary only for the construction
of the IDS (Section 5.3, in particular Remark 5.13).

{rem:neumann_construction}

Remark 3.5 (About the Neumann assumptions). From the discussion in Remark 3.1 we
know that the wε and the yε as in Section 1.5 are equal to W ε

M and Y ε
M for a well-chosen

random variable M (for its definition, see Definition 5.2).
From the convergences of the stochastic terms wε and yε that we obtain from the con-

struction assumption, the two first symmetric forms in (8) converge, as forms onH1(U). We
need an additional assumption in order to deal with the third symmetric form in (8), which
is,

v 7→
∫
∂U

T (v2)e2W ε
M∇W ε

M · dS.
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Set

Ŷ ε
M := GM ∗ (Xε − ξε) + (GM −G0) ∗ ξε.

We decompose the above symmetric form as the sum of the following symmetric forms

v 7→
∫
∂U

T (v2)e2W ε
M∇(G0 ∗ ξε) · dS, v 7→

∫
∂U

T (v2)e2W ε
M∇Ŷ ε

M · dS. (19) {eqn:two_neumann_symm_forms}{eqn:two_neumann_symm_forms}

Now, by the convergence ξε → ξ and the assumed convergences of the Xε and Xε − ξε
from the construction assumption 3.2 (I), we obtain by estimates on the Green’s function,
which we have put in Corollary A.10, and estimates of derivatives in Besov spaces, see
Lemma A.6,

W ε
M → WM in Cδ,σ(Rd), (20) {eqn:W_M_AH_eps_convergence}{eqn:W_M_AH_eps_convergence}

G0 ∗ ξε → G0 ∗ ξ in Cδ,σ(Rd), (21) {eqn:G_0_xi_eps_convergence}{eqn:G_0_xi_eps_convergence}

GM ∗ (Xε − ξε)→ GM ∗ (X − ξ) in C2δ,σ(Rd), (22) {eqn:G_M_X_AH_eps_min_xi_eps_convergence}{eqn:G_M_X_AH_eps_min_xi_eps_convergence}

(GM −G0) ∗ ξε → (GM −G0) ∗ ξ in C1+δ,σ(Rd). (23) {eqn:G_M_min_G_0_xi_eps_convergence}{eqn:G_M_min_G_0_xi_eps_convergence}

In particular, by combining (22) and (23), for δ ∈ (1
2
, 1) we have

Ŷ ε
M → ŶM in C2δ,σ(Rd). (24) {eqn:Y_M_eps_conv}{eqn:Y_M_eps_conv}

In Section 4 we will show in more detail that (20) and (24) imply the convergence of the
second symmetric form in (19). This is basically because the function e2W ε

M∇Ŷ ε
M converges

in a space of positive regularity. Now for δ > 1 the function e2W ε
M∇(G0 ∗ ξε) converges in a

space of positive regularity. However for δ ∈ (1
2
, 1) the convergence in (21) does not seem

to suffice, due to the integration over the d− 1 dimensional boundary ∂U . Let us elaborate
on this. We can rewrite the first symmetric form in (19) as v 7→ 〈Ỹ U

ε , e
2W ε

Mv2〉, where Ỹ U
ε is

the distribution as in 3.2 (II) given by

ϕ 7→
∫
∂U

ϕ∇(G0 ∗ ξε) · dS.

The distribution Ỹ U
ε could be formally interpreted as the product of ∇(G0 ∗ ξε) with the

distribution δ∂U , given by ϕ 7→
∫
∂U
ϕ dS. The distribution δ∂U is of regularity −1 (e.g.,

for I = [0, 1]d−1 × {0}, δI is the tensor product of 1[0,1]d−1 and δ0, which are in C0(Rd−1)
and C−1(R), respectively; hence the tensor product is in C−1(Rd), see [65]). Therefore the
product of these two, and thus Ỹ U

ε , converges only in the space of regularity −2 + δ. As the
symmetric form is on H1, by this reasoning, this convergence is sufficient only for δ > 1.

When additionally imposing conditions on the boundary, called the Neumann assump-
tion 3.2 (II) it actually suffices to assume δ > 1

2
. For the details we refer to Theorem 4.3,

though we do mention it is basically due to the identity∫
∂U

T (v2)e2W ε
M∇(G0 ∗ ξε) · dS = 〈Ỹ U

ε ,R(e2W ε
MT (v)2)〉,

where T is the trace operator and R is the composition of the right inverse trace operator
and the extension operator (see Lemma 2.8 (b)).
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Remark 3.6. To construct the natural Neumann Anderson Hamiltonian without the Neu-
mann condition 3.2 (II), we conjecture that “boundary renormalisation” is necessary.

For instance, if ξ is the 3D white noise, the recent work [29] suggests that the operators
associated to the symmetric forms

(u, v) 7→
∫
U

∇u · ∇v − (ξε − cε)uv + c′ε

∫
∂U

uv dS

converge, where the constants c′ε diverge logarithmically.

3.2 Construction assumption
{subsec:examples}

Here we give examples of the noise ξ for which the construction assumption 3.2 (I) is satis-
fied. We recall that the heuristic to find X is outlined in Remark 1.16.

{ex:2D_white_noise}

Example 3.7. Let d = 2 and ξ be the white noise on R2. Then ξ ∈ Lp(P, C−2+δ,σ(R2)) Let
us check this by some calculations: First of all, observe that

E[|∆jξ(x)|2] = ‖F−1[χ(2−j·)](x− ·)‖2
L2 = ‖χ(2−j·)‖2

L2 = 2jd.

Now we have

E[‖ξ‖p
Br,σp,p(Rd)

] =
∞∑

j=−1

2rpjE[‖wσ∆jξ‖pLp ] =
∞∑

j=−1

2rpj
∫
Rd
wσ(x)pE[|∆jξ(x)|p] dx

.p

∞∑
j=−1

2rpj
∫
Rd
wσ(x)pE[|∆jξ(x)|2]

p
2 dx =

∞∑
j=−1

2rpj2jp
d
2‖wσ‖pLp ,

which is finite for r < −d
2
. With the Besov embedding Lemma A.1, (74) we have for all

κ > 0,

E[‖ξ‖p
Cr−

d
p−κ,σ(Rd)

] .p,q,κ,r,σ E[‖ξ‖p
Br,σp,p(Rd)

],

and so ξ ∈ Lp(P, C−2+δ,σ(Rd)) for δ ∈ (0, 1 − d
p
) and all σ ∈ (0,∞). Differently said, for

any δ ∈ (0, 1), σ ∈ (0,∞) and p ∈ ( d
1−δ ,∞) we have

ξ ∈ Lp(P, C−2+δ,σ(Rd)).

As by Hölder’s inequality we have

‖ξ‖Lq(P,C−2+δ,σ(Rd)) ≤ ‖ξ‖Lp(P,C−2+δ,σ(Rd)),

the above holds also for p ∈ [1, d
1−δ ], i.e., for any p ∈ [1,∞). and by the proof of

Theorem A.3, ξε → ξ in Lp(P, C−2+δ,σ(R2)) for all p ∈ [1,∞), σ ∈ (0,∞) and δ ∈ (0, 1).
We check this by a simimilar calculation as above. By the above arguments, i.e., the Besov
embedding and Hölder’s inequality, we may restrict to showing

E [‖ξε − ξ‖pBr,σp,p(Rd)
]→ 0.

Now

E [‖ξε − ξ‖pBr,σp,p(Rd)
] =

∞∑
j=−1

2rpjE[‖wσ(ρε ∗∆jξ −∆jξ)‖pLp ],
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and E[‖wσ(ρε ∗∆jξ−∆jξ)‖pLp ] converges by Lebesgue’s dominated convergence theorem,
by means of the arguments of the proof of Theorem A.3. We set

cε := E[|∇G0 ∗ ξε|2(0)], τ ε := |∇G0 ∗ ξε|2 − cε.

In the following, all convergences hold for all for all p ∈ [1,∞), σ ∈ (0,∞) and δ ∈ (0, 1),
so we refrain from repeating this. As shown in [35, Proposition 1.3] (recall (10)), see the
proof for the convergence in L1 (which suffices because of the hypercontractivity of Wiener
Chaoses), we have τ ε → τ in Lp(P, C−2+2δ,σ(R2)). We then set

Xε := ξε + τ ε.

We define W ε
N and Y ε

N as in Assumption 3.2. To compute Y ε
N , we observe that

|∇W ε
N |2 = |∇G0 ∗Xε|2 + 2(∇G0 ∗Xε) · (∇(GN −G0) ∗Xε) + |∇(GN −G0) ∗Xε|2.

To simplify notation, we set rεN := (GN −G0) ∗Xε, and recall that the limit rN := (GN −
G0) ∗X is smooth by Remark 2.12. Recalling (12), we obtain

Zε
N := ξε − cε + |∇W ε

N |2 + ∆W ε
N

= 2(∇G0 ∗ ξε) · (∇G0 ∗ τ ε) + |∇G0 ∗ τ ε|2 + 2(∇G0 ∗Xε) · ∇rεN + |∇rεN |2

+ ∆rεN + [∆(G0 −G)] ∗Xε.

We have

ξε = Xε − τ ε,

and

Xε = ∆(GN −G0) ∗Xε + ∆(G0 −G) ∗Xε −∆GN ∗Xε

= ∆rεN + ∆(G0 −G) ∗Xε −∆W ε
N ,

|∇W ε
N |2 = |∇G0 ∗Xε|2 + 2(∇G0 ∗Xε) · ∇rεN + |∇rεN |2,

and

|∇G0 ∗Xε|2 = |∇G0 ∗ ξε|2 + 2(∇G0 ∗ ξε) · (∇G0 ∗ τ ε) + |∇G0 ∗ τ ε|2

= τ ε + cε + 2(∇G0 ∗ ξε) · (∇G0 ∗ τ ε) + |∇G0 ∗ τ ε|2,

from which we deduce the above identity for Zε
N :

Zε
N = ξε − cε + |∇W ε

N |2 + ∆W ε
N

= Xε − τ ε − cε + |∇W ε
N |2 + ∆W ε

N

= ∆rεN + ∆(G0 −G) ∗Xε − τ ε − cε + |∇W ε
N |2

= ∆rεN + ∆(G0 −G) ∗Xε + 2(∇G0 ∗ ξε) · (∇G0 ∗ τ ε)
+ |∇G0 ∗ τ ε|2 + 2(∇G0 ∗Xε) · ∇rεN + |∇rεN |2.

By the properties of G0 (see Corollary A.10),

∇G0 ∗ ξε → ∇G0 ∗ ξ in Lp(P, C−1+δ,σ(R2)),

∇G0 ∗ τ ε → ∇G0 ∗ τ in Lp(P, C−1+2δ,σ(R2)).
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Since δ can be arbitrarily close to 1, the products in the formula ofZε
N have well-defined lim-

its, and therefore Zε
N converges in Lp(P, C−1+δ,σ(R2)) as ε ↓ 0. Because W ε

N = GN ∗ (ξε +
τ ε), by Corollary A.10 (because ξε → ξ in C−2+δ,σ(R2) and τ ε → τ in Lp(P, C−2+2δ,σ(R2)))

W ε
N → WN := GN ∗ (ξ + τ) in Lp(P, Cδ,σ(R2)),

and, as F is Lipschitz, also F (W ε
N) converges in Lp(P, Cδ(R2)) (using Lemma A.4 to “get

rid of σ”). Therefore, for δ ∈ (1
2
, 1), Y ε

N = F (W ε
N)Zε

N converges in Lp(P, C−1+δ,σ(R2)) as
ε ↓ 0 by the Bony type estimates for weighted Besov spaces [32, Lemma 2.14].

Finally, the estimate (16) on YN follows from the estimate

‖rN‖Cκ,σ(R2) .κ,σ 2(κ−δ)N‖X‖C−2+δ,σ(R2),

which is a consequence of Corollary A.10. Therefore, Assumption 3.2 (I) holds.
{ex:3D_white_noise}

Example 3.8. Let d = 3 and ξ be the white noise on R3. Then ξ ∈ Lp(P, C−2+δ,σ(R3)) and
by the proof of Theorem A.3, ξε → ξ in Lp(P, C−2+δ,σ(R3)) for all p ∈ [1,∞), σ ∈ (0,∞)
and δ ∈ (0, 1

2
). In the following, all convergences hold for all for all p ∈ [1,∞), σ ∈ (0,∞)

and δ ∈ (0, 1
2
), so we refrain from repeating this. From the convergences of the renormalized

models associated with the 3D parabolic Anderson model [36, Theorem 5.3] or by consid-
ering the convergences in [31, Theorem 2.38], we deduce the existence of τ1, τ2, τ3, τ4 and
the following convergences as ε ↓ 0,

τ ε1 := |∇G0 ∗ ξε|2 − E[|∇G0 ∗ ξε|2(0)]→ τ1 in Lp(P, C−2+2δ,σ(R3)),

τ ε2 := (∇G0 ∗ ξε) · (∇G0 ∗ τ ε1 )→ τ2 in Lp(P, C−2+3δ,σ(R3)),

τ ε3 := |∇G0 ∗ τ ε1 |2 − E[|∇G0 ∗ τ ε1 |2(0)]→ τ3 in Lp(P, C−2+4δ,σ(R3)),

τ ε4 := (∇G0 ∗ ξε) · (∇G0 ∗ τ ε2 )→ τ4 in Lp(P, C−1+δ,σ(R3)).

For the derivation using [31], observe that (−∆)−1, (1 − ∆)−1 and G0∗ are basically the
same operations, in the sense that the difference of them will converge in a space of besser
regularity, therefore morally, we have the same identities for the Xε, Xε , Xε , Xε , Xε as in
[31, Theorem 2.38]

Xε = (−∆)−1ξε = G0 ∗ ξε,
τ ε1 = (1−∆)Xε , G0 ∗ τ ε1 = Xε ,

τ ε2 = (∇Xε) · (∇Xε )

= (1−∆)Xε ,

τ ε3 = (1−∆)Xε ,

τ ε4 = (1−∆)Xε .

We set
cε := E[|∇G0 ∗ ξε|2(0)] + E[|∇G0 ∗ τ ε1 |2(0)],

Xε := ξε + τ ε1 + 2τ ε2 + τ ε3 and rεN := (GN −G0) ∗Xε. Similar to the 2D case, we obtain

Zε
N := ξε − cε + |∇W ε

N |2 + ∆W ε
N

= 4τ ε4 + 2(∇G0 ∗ ξε) · (∇G0 ∗ τ ε3 ) + 2(∇G0 ∗ τ ε1 ) · (∇G0 ∗ (2τ ε2 + τ ε3 ))
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+ 2(∇G0 ∗Xε) · ∇rεN + |∇rεN |2 + ∆rεN + [∆(G0 −G)] ∗Xε

+ |∇G0 ∗ (2τ ε2 + τ ε3 )|2,

(Indeed,

|∇W ε
N |2 = |∇G0 ∗Xε|2 + 2(∇G0 ∗Xε) · ∇rN + |∇rN |2

and

|∇G0 ∗Xε|2 = |∇G0 ∗ ξε|2 + 2(∇G0 ∗ ξε) · (∇G0 ∗ (τ ε1 + 2τ ε2 + τ ε3 )) + |∇G0 ∗ (τ ε1 + 2τ ε2 + τ ε3 )|2

= |∇G0 ∗ ξε|2 + |∇G0 ∗ τ ε1 |2 + 2(∇G0 ∗ ξε) · (∇G0 ∗ (τ ε1 + 2τ ε2 + τ ε3 ))

+ 2(∇G0 ∗ τ ε1 ) · (∇G0 ∗ (2τ ε2 + τ ε3 )) + |∇G0 ∗ (2τ ε2 + τ ε3 )|2

= τ ε1 + 2τ ε2 + τ ε3 + cε + 4τ ε4 + 2(∇G0 ∗ ξε) · (∇G0 ∗ τ ε3 )

+ 2(∇G0 ∗ τ ε1 ) · (∇G0 ∗ (2τ ε2 + τ ε3 )) + |∇G0 ∗ (2τ ε2 + τ ε3 )|2,

so that by using that

ξε = ∆rεN + ∆(G0 −G) ∗Xε −∆W ε
N − τ ε1 − 2τ ε2 − τ ε3 ,

we deduce the identity in a similar way:

ξε − cε + |∇W ε
N |2 + ∆W ε

N

= ∆rεN + ∆(G0 −G) ∗Xε − τ ε1 − 2τ ε2 − τ ε3 − cε
+ |∇G0 ∗Xε|2 + 2(∇G0 ∗Xε) · ∇rN + |∇rN |2

= ∆rεN + ∆(G0 −G) ∗Xε + 2(∇G0 ∗Xε) · ∇rN + |∇rN |2

+ 4τ ε4 + 2(∇G0 ∗ ξε) · (∇G0 ∗ τ ε3 )

+ 2(∇G0 ∗ τ ε1 ) · (∇G0 ∗ (2τ ε2 + τ ε3 )) + |∇G0 ∗ (2τ ε2 + τ ε3 )|2,

) from which we see that Zε
N converges in Lp(P, C−1+δ,σ(R3)). As for the 2D case, F (W ε

N)
converges in Lp(P, Cδ(R3)). However, now δ ∈ (0, 1

2
) and so−1+2δ is negative. Hence we

cannot guarantee the convergence of Y ε
N = F (W ε

N)Zε
N in the same way as for the 2D case

(recall the Bony type estimates for weighted Besov spaces [32, Lemma 2.14]). However,
with some techniques from paracontrolled distributions [33], we can guarantee the conver-
gence. We describe the method without proving all the details. (The symbols “≺,�, ◦” are
here replaced by “4,5,�” to align with the recent notation.)

From the above, and using Lemma A.6 (a) and Corollary A.10, observe that Xε con-
verges in Lp(P, C−2+2δ,σ(R3) and ∇(G0 ∗ τ ε3 + rεN) converges in Lp(P, C−1+4δ,σ(R3)) (by
playing with s and r in Corollary A.10 for rεN ) and∇(G0∗ξε) converges inLp(P, C−1+δ,σ(R3))
so that

4τ ε4 + 2(∇G0 ∗ ξε) · ∇(G0 ∗ τ ε3 + rεN) (25) {eqn:def_V_N_eps_3D}{eqn:def_V_N_eps_3D}

converges in Lp(P, C−1+δ,σ(R3)) and

Ẑε
N := Zε

N −
(

4τ ε4 + 2(∇G0 ∗ ξε) · ∇(G0 ∗ τ ε3 + rεN)
)

converges in Lp(P, C−1+2δ,σ(R3)). Therefore the product F (W ε
N)Ẑε

N converges in the space
Lp(P, C−1+2δ,σ(R3)) for δ ∈ (1

3
, 1

2
).

Hence, we are left to consider the product F (W ε
N)(Zε

N−Ẑε
N). Now, we finish by showing
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(a) F (W ε
N)τ ε4 converges in Lp(P, C−1+2δ,σ(R3)),

(b) F (W ε
N)(∇G0 ∗ ξε) converges in Lp(P, C−1+2δ,σ(R3,R3)).

Indeed, if (b) holds, thenF (W ε
N)(∇G0∗ξε)·∇(G0∗τ ε3 +rεN) converges inLp(P, C−1+2δ,σ(R3))

because−2+6δ > 0 for δ ∈ (1
3
, 1

2
). For the previous, recall that∇(G0 ∗ τ ε3 + rεN) converges

in Lp(P, C−1+4δ,σ(R3)).
Let Qε be either τ ε4 or ∇G0 ∗ ξε for the moment. As the convergences of the paraprod-

ucts 4 and 5 are guaranteed, it suffices to show the convergence of the resonant product
F (W ε

N) �Qε. By the paralinearization lemma [33, Lemma 2.6],

F (W ε
N) = F ′(W ε

N) 4W ε
0 + F ′(W ε

N) 4 (W ε
N −W ε

0 ) +Rε
N ,

where ‖Rε
N‖C2δ,σ .δ,σ 1 + ‖W ε

N‖Cδ,σ . Since WN −W0 is smooth, it suffices to consider the
resonant product between F ′(W ε

N)4W ε
0 and Qε. By the so-called Commutator lemma [32,

Lemma 2.16]

‖(F ′(W ε
N) 4W ε

0 ) �Qε − F ′(W ε
N)(W ε

0 �Qε)‖C−1+3δ,2σ(R3)

. ‖F ′(W ε
N)‖Cδ(R3)‖W ε

0 ‖Cδ,σ(R3)‖Qε‖C−1+δ,σ(R3),

from which can deduce that for the convergence of F (W ε
N)�Qε it suffices to show conver-

gence of F ′(W ε
N)(W ε

0 �Qε).
Proof of (b) ForQε = ∇(G0∗ξε) we haveW ε

0 �∇(G0∗ξε) = 1
2
∇((G0∗ξε)�(G0∗ξε))+

G0 ∗ (Xε − ξε)�∇(G0 ∗ ξε) and so the convergence follows because (G0 ∗ ξε)� (G0 ∗ ξε)
and G0 ∗ (Xε − ξε) converge in Lp(P, C2δ,σ(R3)).

Proof of (a) For Qε = τ ε4 , we have the following identity

(G0 ∗ ξε) � τ ε4 = (∇G0 ∗ ξε) � (∇G0 ∗ τ ε4 )

−∇ · [(G0 ∗ ξε) �∇(G0 ∗ τ ε4 )] + (G0 ∗ ξε) � [∆(G0 −G) ∗ τ ε4 ].

The convergence of the two terms in the second line follow rather straightforwardly (recall
(11)), whereas the first term on the right-hand side (on the first line) converges as is shown
in the proof of [31, Theorem 2.38].

As in the 2D case, the estimate (16) on YN follows from Corollary A.10.

The above examples are specific cases for which the construction condition 3.2 (I) is
valid. This condition is however valid under very general assumptions in terms of regularity
structures, as we show in the next theorem. Namely, we consider the regularity structure
associated with the generalized parabolic Anderson model

∂0u = ∆u+
d∑

i,j=1

gi,j(u)∂iu∂ju+
d∑
i=1

hi(u)∂iu+ k(u) + f(u)ξ, (26) {eq:gpam}{eq:gpam}

or equivalently, the following elliptic equation, as it leads to the same regularity structure

∆u =
d∑

i,j=1

gi,j(u)∂iu∂ju+
d∑
i=1

hi(u)∂iu+ k(u) + f(u)ξ,

as described in [12] and we also consider the renormalization approach considered therein
called the BPHZ renormalization, which is further developed in the subsequent works [17,
39, 7].
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In the following theorem, the assumption we rely on, namely Assumption B.42, is for-
mulated in the language of regularity structures, based on the language discussed preceding
it in Appendix B. This assumption basically means that the solution theory of the general-
ized parabolic Anderson model can be developed. Hence, the following theorem states that
if this is the case, then the construction condition 3.2 (I) is valid as well.

{thm:convergence_X_Y_BPHZ}

Theorem 3.9. Impose Assumption B.42, which assumes that the BPHZ renormalization
models converge and a few probabilistic estimates hold. By setting Xε := XZ BPHZ,ε

and
X := XZ BPHZ

as in Definition C.9 and letting cε be defined by (104), the construction
condition 3.2 (I) is valid.

{examples:cov_gamma}

Examples 3.10. The work [17], see especially Theorem 2.31 and Theorem 2.34 therein,
gives conditions of the noise ξ under which Assumption B.42 holds. It is worth observing
that Assumption B.42 holds for the 2D and the 3D white noise, and the Gaussian noise ξ
whose covariance is formally given by

E[ξ(x)ξ(y)] = γ(x− y),

where γ : Rd \ {0} → [0,∞) is smooth and bounded away from 0 and for some δ ∈ (0, 1)
we have

sup
k∈Nd0,
|k|≤6d

sup
x∈B(0,1)\{0}

|∂kγ(x)||x|min{4,d}−δ+|k| <∞,

see [17, Theorem 2.15]. For example one could take γ to be given by

γ(x) = c|x|−α

for some c ∈ (0,∞) and α ∈ (0,min{d, 4}). It would be interesting to know, whether the
assumptions of [17] cover, for instance, the Gaussian noise ξ whose covariance is formally
given by

E[ξ(x)ξ(y)] = c|x1 − y1|−α1 · · · |xd − yd|−αd , c ∈ (0,∞),

where α1, . . . , αd ∈ (0, 1) with α1 + · · · + αd < 4. (Because the corresponding γ does
not satisfy the above condition.) Considering the Gaussian noise with this covariance seems
interesting in view of [18, Theorem 1.3].

3.3 Neumann assumption
{subsec:stoch_terms_neumann}

In this section we discuss sufficient conditions for the Neumann condition 3.2 (II) (Propo-
sition 3.11 and Lemma 3.13) and examples which satisfy the Neumann condition (Exam-
ple 3.14 and Example 3.15).

{prop:boundary_nabla_xi}

Proposition 3.11. Let δ ∈ (1/2, 1). Suppose that for any bounded Lipschitz domain U ,
there exists a ξU such that

‖1Uξε − ξU‖B−2+δ
p,p (Rd)

ε↓0−−→ 0 in probability for all p ∈ (2,∞).

Then, the convergence (17) holds. Furthermore, for any σ ∈ (d
p
,∞) we have the bound

‖Ỹ UL‖B−2+δ
p,p (Rd) .δ,p,σ,U L

2σ‖ξ‖C−2+δ,σ(Rd) + ‖ξUL‖B−2+δ
p,p (Rd) for all L ≥ 1.
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Proof. The proof is based on the duality [64, Theorem 2.17]. By the integration by parts
formula (Lemma 1.14),

〈Ỹ UL
ε , ϕ〉 =

∫
∂UL

ϕ∇(G0 ∗ ξε) · dS =

∫
UL

∇ϕ · ∇(G0 ∗ ξε)−
∫
UL

ϕ∆(G0 ∗ ξε). (27) {eq:integration_by_parts_for_xi}{eq:integration_by_parts_for_xi}

We first consider the first term on the right-hand side of (27). Let φ be a smooth function on
Rd such that φ = 1 on a neighborhood U . The map

S(Rd)→ R, ϕ 7→ 〈1UL∇ϕ, φ(L−1·)∇(G0 ∗ ξ)〉 (28) {eq:first_term_of_boundary_xi}{eq:first_term_of_boundary_xi}

is well-defined, is independent of φ and is an element of B−2+δ
p,p (Rd). Indeed, if q ∈ (1, 2) is

such that p−1 + q−1 = 1, by the duality [64, Theorem 2.17],

|〈1UL∇ϕ, φ(L−1·)∇(G0 ∗ ξ)〉| ≤ ‖1UL∇ϕ‖B1−δ
q,q (Rd)‖φ(L−1·)∇(G0 ∗ ξ)‖B−1+δ

p,p (Rd).

By Lemma A.6 and Lemma A.18 (see Definition A.14 for CMult), as 1− δ < 1
2
< 1

q
,

‖1UL∇ϕ‖B1−δ
q,q (Rd) .q,δ C

UL
Mult[W

1−δ
q ]‖∇ϕ‖B1−δ

q,q (Rd) .q,δ,U ‖ϕ‖B2−δ
q,q (Rd).

By Lemma A.1 (remember that we have pσ > d) and Lemma A.4,

‖φ(L−1·)∇(G0 ∗ ξ)‖B−1+δ
p,p (Rd) .p,δ,σ L

2σ‖∇(G0 ∗ ξ)‖C−1+δ,σ(Rd).

By Lemma A.6 and Corollary A.10,

‖∇(G0 ∗ ξ)‖C−1+δ,σ(Rd) .δ,σ ‖ξ‖C−2+δ,σ(Rd).

Therefore, the distribution defined by (28) belongs to the dual space of B2−δ
q,q (Rd), which is

identified with B−2+δ
p,p (Rd), and its norm in B−2+δ

p,p (Rd) is bounded by a multiple of

L2σ‖ξ‖C−2+δ,σ(Rd). (29) {eqn:L_2sigma_xi_norm}{eqn:L_2sigma_xi_norm}

Now it is easy to see that this distribution is the limit of the first term of the right-hand side
of (27) (as ‖ξε − ξ‖C−2+δ,σ(Rd) → 0).

Let us turn to the second term of the right-hand side of (27). Note that∫
UL

ϕ∆(G0 ∗ ξε) = −
∫
UL

ϕξε +

∫
UL

ϕ[∆(G0 −G)] ∗ ξε.

The first term is equal to 〈1ULξε, ϕ〉, whose convergence is guaranteed by the assumption.
The second term converges to ∫

UL

ϕ[∆(G0 −G)] ∗ ξ,

which equals

〈1ULϕ, φ(L−1·)[∆(G0 −G)] ∗ ξ〉. (30) {eqn:Delta_G_0_min_G_def}{eqn:Delta_G_0_min_G_def}

Now, as [∆(G0 −G)] ∗ ξ is the smooth function F−1(χ̌) ∗ ξ = ∆≤−1ξ by (11) (for ∆≤J see
Definition A.7) we obtain that the distribution defined by (30) has its norm in B−2+δ

p,p (Rd)
also bounded by a multiple of (29) by using a similar argument as above and Lemma A.9 to
obtain the estimate

‖[∆(G0 −G)] ∗ ξ‖C−1+δ,σ(Rd) .σ ‖ξ‖C−2+δ,σ(Rd).
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{lem:convergence_of_indic_U_xi_epsilon}

Lemma 3.12. We assume δ ∈ (1
2
, 1) and that there exists a δ′ ∈ (0, 1) such that, for each

p ∈ (1,∞), there exist a constant C∂
p ∈ (0,∞) and a map ε∂p : (0, 1)3 × Rd → (0,∞) with

the following properties. {item:boundary1}

(i) One has
sup

ε1,ε2,λ∈(0,1),x∈Rd
ε∂p(ε1, ε2;λ, x) <∞ (31) {eq:bound_of_bm_epsilon_boundary}{eq:bound_of_bm_epsilon_boundary}

and for each fixed λ ∈ (0, 1) and x ∈ Rd, one has limε1,ε2↓0 ε
∂
p(ε1, ε2;λ, x) = 0 (by

which we mean limε↓0 supε1,ε2∈(0,ε) ε
∂
p(ε1, ε2;λ, x) = 0).

{item:boundary2}

(ii) For every ε1, ε2, λ ∈ (0, 1), q ∈ (1,∞), bounded Lipschitz domain U , x ∈ B(U, 1)
and φ ∈ C2(Rd) with ‖φ‖C2(Rd) ≤ 1 and supp(φ) ⊆ B(0, 1), one has, with φλx :=
λ−dφ(λ−1(· − x)),

E[|〈ξε1 ,1Uφλx〉|q] ≤ C∂
q λ

(−2+δ+δ′)q, (32) {eq:bound_xi_epsilon_on_U}{eq:bound_xi_epsilon_on_U}

E[|〈ξε1 − ξε2 ,1Uφλx〉|q] ≤ ε∂q (ε1, ε2;λ, x)λ(−2+δ+δ′)q. (33) {eq:cauchy_bm_epsilon_boundary}{eq:cauchy_bm_epsilon_boundary}

Then there exists a ξU with values in C−2+δ(Rd) and r ∈ (0,∞) such that for all p ∈
( d
δ′

+ 1,∞) and q ∈ [p,∞) the random variables 1Uξε converge to ξU in Lq(P, B−2+δ
p,p (Rd))

as ε ↓ 0 and
E[‖ξU‖q

B−2+δ
p,p (Rd)

] .p,q,δ,δ′ |B(U, r)|
q
pC∂

q . (34) {eq:bound_of_xi_U}{eq:bound_of_xi_U}

Consequently, by Proposition 3.11, the Neumann condition 3.2 (II) holds.

Proof. To simplify notation, we set η := 1U(ξε1 − ξε2). We use the wavelet characterization
of Besov spaces given in Propositions A.12 and A.13. Using the notation therein, we have

‖η‖q
B−2+δ
p,p (Rd)

.
( ∑
n∈N0

2np(−2+δ)−nd
∑

G∈Gn,m∈Zd
|〈η, 2

nd
2 Ψn,G

m 〉|p
) q
p
.

Since ψf and ψm are compactly supported, by (78) there exists an r ∈ (0,∞) such that
the sum with respect to m is over Zd ∩ 2nB(U, r). Therefore, by Minkowski’s inequality
(remember that q

p
≥ 1)

E[‖η‖q
B−2+δ
p,p (Rd)

]
p
q .

∥∥∥∑
n∈N0

2np(−2+δ)−nd
∑

G∈Gn,m∈Zd∩2nB(U,r)

|〈η, 2
nd
2 Ψn,G

m 〉|p
∥∥∥
L
q
p (P)

.
∑
n∈N0

2np(−2+δ)−nd
∑

G∈Gn,m∈Zd∩2nB(U,r)

E[|〈η, 2
nd
2 Ψn,G

m 〉|q]
p
q .

By (33), by (78) and observing that 2
nd
2 Ψn,G

m = 2
d
2φλλm for φ =

∏k
j=1 ψGj and λ = 2−(n−1)+ ,

E[|〈η, 2
nd
2 Ψn,G

m 〉|q] = 2
dq
2 E[|〈ξε1 − ξε2 ,1Uφλλm〉|q]

≤ 2
dq
2 ε∂q (ε1, ε2; 2−(n−1), 2−(n−1)+m)2−(n−1)+(−2+δ+δ′)q,

and supn∈N0
#Gn <∞, we obtain∑

G∈Gn
E[|〈η, 2

nd
2 Ψn,G

m 〉|q]
p
q . 2−np(−2+δ+δ′)ε∂q (ε1, ε2; 2−(n−1)+ , 2−(n−1)+m)

p
q .
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Therefore

E[‖η‖q
B−2+δ
p,p (Rd)

]
p
q .

∑
n∈N0

2−nδ
′−nd

∑
m∈Zd∩2nB(U,r)

ε∂q (ε1, ε2; 2−(n−1)+ , 2−(n−1)+m)
p
q . (35) {eqn:sum_with_boldface_eps}{eqn:sum_with_boldface_eps}

As
∑

m∈Zd∩2nB(U,r) 1 . 2nd|B(U, r)|, we have∑
n∈N0

2−nδ
′−nd

∑
m∈Zd∩2nB(U,r)

1 . |B(U, r)|
∑
n∈N0

2−nδ
′
.

In view of the condition (i), the dominated convergence theorem yields that the right-hand
side (and thus left-hand side) of (35) converges to 0 as ε1, ε2 ↓ 0. This proves the claim on
the convergence of 1Uξε. By using (32), one can similarly prove the estimate (34).

Regarding the last claim, to prove (18), let α > 0. We have the bound

E
[(

sup
L∈N

L−α‖Ỹ UL‖B−2+δ
p,p

)q] ≤∑
L∈N

L−αqE[‖Ỹ UL‖q
B−2+δ
p,p

].

By Proposition 3.11 and (34), for any σ ∈ (d/p,∞) the right-hand side is up to constant
bounded by ∑

L∈N

L−αq(L2σq + L
qd
p ).

Therefore, if α > 2d
p

, by choosing σ sufficiently close to d
p
, the above sum is finite. In

particular, if p > 8d we may choose α = 1
4
.

{lem:example_of_boundary_xi}

Lemma 3.13. Suppose that γ, f, g : Rd → R are measurable functions such that

|γ| ≤ f + g, (36) {eq:gamma_bounded_by_f_plus_g}{eq:gamma_bounded_by_f_plus_g}

with g ∈ L∞(Rd) and f(λx) = λ−αf(x) with α < 3 for every λ ∈ (0,∞) and x ∈ Rd.
Furthermore, suppose that f is locally integrable. Let ξ be a centered Gaussian noise whose
covariance is given by

E[〈ξ, ϕ〉〈ξ, ψ〉] = 〈γ ∗ ϕ, ψ〉L2(Rd), ϕ, ψ ∈ C∞c (Rd).

Then, ξ satisfies the Neumann condition 3.2 (II).

Proof. In view of Lemma 3.12, it suffices to show that the conditions of that lemma are
satisfied. As ξ is Gaussian, so is for example 〈ξε1 ,1Uφλx〉Rd for φ ∈ S(Rd), x ∈ Rd,
λ ∈ (0,∞), where φλx := λ−dφ(λ−1(· − x)). As for Gaussian random variables Z one
has E[|Z|p] = E[|Z|2]

p
2E[|X|p], for X a standard normal random variable, it is sufficient to

consider p = 2.
Let U be a bounded Lipschitz domain and φ be as in Lemma 3.12 (II). Observe that

because ρ is symmetric

〈ξε1 − ξε2 , ψ〉 = 〈ξ ∗ ρε1 − ξ ∗ ρε2 , ψ〉 = 〈ξ ∗ (ρε1 − ρε2), ψ〉 = 〈ξ, (ρε1 − ρε2) ∗ ψ〉.

Therefore, for any λ ∈ (0, 1) and x ∈ Rd,

E[〈ξε1 − ξε2 ,1Uφλx〉2] = 〈γ ∗ (ρε1 − ρε2) ∗ (1Uφ
λ
x), (ρε1 − ρε2) ∗ (1Uφ

λ
x)〉L2(Rd).
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We set

ε∂2(ε1, ε2;λ, x) := λα
∣∣〈γ ∗ (ρε1 − ρε2) ∗ (1Uφ

λ
x), (ρε1 − ρε2) ∗ (1Uφ

λ
x)〉L2(Rd)

∣∣.
One has

lim
ε1,ε2↓0

〈γ ∗ ρε1 ∗ (1Uφ
λ
x), ρε2 ∗ (1Uφ

λ
x)〉L2(Rd) = 〈γ ∗ (1Uφ

λ
x), (1Uφ

λ
x)〉L2(Rd),

and hence limε1,ε2↓0 ε
∂
2(ε1, ε2;λ, x) = 0. To prove the bounds (31) and (32), it suffices to

show
sup

ε∈(0,1),λ∈(0,1),x∈Rd
λα
∣∣〈γ ∗ ρε ∗ (1Uφ

λ
x), ρε ∗ (1Uφ

λ
x)〉L2(Rd)

∣∣ <∞.
Let us write

Uλ
x = λ−1(U − x). (37) {eqn:rescaled_recentered_set}{eqn:rescaled_recentered_set}

By (36) (remember that φλx := λ−dφ(λ−1(· − x)))

sup
x∈Rd

∣∣〈γ ∗ ρε ∗ (1Uφ
λ
x), ρε ∗ (1Uφ

λ
x)〉L2(Rd)

∣∣
= sup

x∈Rd
|〈γ(λ·) ∗ (1Uλxφ) ∗ ρε/λ, (1Uλxφ) ∗ ρε/λ〉|

≤ λ−α〈f ∗ |φ| ∗ |ρε/λ|, |φ| ∗ |ρε/λ|〉+ 〈g(λ·) ∗ |φ| ∗ |ρε/λ|, |φ| ∗ |ρε/λ|〉.

〈f ∗ φ(λ·), g〉L2(Rd) =

∫ ∫
f(x− y)φ(λy)g(x) dy dx

=

∫ ∫
f(x− z

λ
)φ(z)g(x)λ−d dz dx

= λ−2d

∫ ∫
f(
w − z
λ

)φ(z)g(λw) dz dw

= λ−2d〈f( 1
λ
·) ∗ φ, g( 1

λ
·)〉L2(Rd).

Since, using Young’s inequality, one can bound the second term by

〈f ∗ g, g〉 ≤ ‖f ∗ g‖L∞‖g‖L1 ≤ ‖f‖L∞‖g‖2
L1 .

‖g‖L∞(Rd)‖φ‖2
L1(Rd)‖ρ‖

2
L1(Rd),

it comes down to showing

sup
µ∈(0,∞)

〈f ∗ |φ| ∗ |ρµ|, |φ| ∗ |ρµ|〉 <∞.

• Suppose µ ≤ 1. Let σ > d. By the weighted Young’s inequality, Theorem A.2, one has

〈f ∗ |φ| ∗ |ρµ|, |φ| ∗ |ρµ|〉 .σ ‖wσf‖L1(Rd)‖wσφ‖2
L2(Rd)‖w−σρµ‖

2
L1(Rd).

〈f ∗ |φ| ∗ |ρµ|, |φ| ∗ |ρµ|〉 . ‖wσ(f ∗ |φ| ∗ |ρµ|)‖L2(Rd)‖w−σ(|φ| ∗ |ρµ|)‖L2(Rd)

29



. ‖wσf‖L1(Rd)‖w−σ(|φ| ∗ |ρµ|)‖2
L2(Rd)

. ‖wσf‖L1(Rd)‖wσφ‖2
L2(Rd)‖w−σρµ‖

2
L1(Rd)

As φ is a continuous function with compact support, we have ‖wσφ‖L2(Rd) < ∞. Since f
is locally integrable and satisfies the scaling property,

‖wσf‖L1(Rd) =

∫
∂B(0,1)

|f(x)| dS(x)

∫ ∞
0

rd−1−α(1 + r2)−
σ
2 dr <∞.

Then, we observe, as µ ≤ 1,

‖w−σρµ‖L1(Rd) =

∫
Rd

(1 + µ2|x|2)
σ
2 |ρ|(x) dx ≤

∫
Rd

(1 + |x|2)
σ
2 |ρ|(x) dx <∞.

• Now suppose µ ≥ 1. By change of variables,

〈f ∗ |φ| ∗ |ρµ|, |φ| ∗ |ρµ|〉 = µ−α〈f ∗ |φµ−1| ∗ |ρ|, |φµ−1| ∗ |ρ|〉.

Therefore, it reduces to the case µ ≤ 1.
{example:example_of_gamma}

Example 3.14. An example of a γ that satisfies the conditions of Lemma 3.13 is the fol-
lowing. Let n ∈ {1, . . . , d} and d1, . . . , dn ∈ N be such that d = d1 + · · · + dn. Let
α1, . . . , αn ∈ (0,∞) are such that αj < dj for all j and α1 + . . . + αn < 3. Then, for
x = (x1, . . . , xn) ∈ Rd1 × · · · × Rdn , we set

γ(x) := |x1|−α1 · · · |xn|−αn .

For this example, f = γ and g = 0. Observe that for the local integrability of f , the
condition αj < dj for all j is necessary.

{example:2D_WN_satisf_Neumann_cond}

Example 3.15. The 2D white noise ξ2D does not satisfy the conditions of Lemma 3.13.
However, one has

E[〈ξ2D
ε1
− ξ2D

ε2
,1Uφ

λ
x〉2] = λ−2‖(1Uλxφ) ∗ (ρε1/λ − ρε2/λ)‖L2(Rd),

where Uλ
x is as in (37). Therefore, the 2D white noise satisfies the condition of Lemma 3.12

and therefore the Neumann condition 3.2 (II) as well.

4 Analysis of symmetric forms
{sec:symmetric_forms}

It is common practice in the theory of rough paths [50] to first show the existence of suf-
ficiently many stochastic objects and then apply deterministic analysis to derive results. In
this section we consider the (deterministic) analysis of symmetric forms, which we use in
Section 5 in combination with Assumptions 3.2 to construct the Anderson Hamiltonian and
derive its spectral properties.

First we recall the definition of a symmetric form and some related definitions in Defi-
nition 4.1, then, in Definition 4.2, we describe the symmetric forms EUW,Z that we will study
in Sections 4.2 and 4.3. In Section 4.1 we study examples of bounded symmetric forms. In
Section 4.2 we study basic spectral properties of the symmetric forms and their associated
self adjoint operators. And in Section 4.3 we consider estimates of eigenvalues.
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{def:def_symmetric_forms}

Definition 4.1. Let H be a Hilbert space over R. A bilinear map Q : D(Q)×D(Q) → R,
with D(Q) a dense subspace of H , is called a symmetric form on H if Q(u, v) = Q(v, u)
for all u, v ∈ D(Q). Let Q be a symmetric form on H . We write

JQKH := sup
u∈D(Q),‖u‖H=1

|Q(u, u)|. (38) {eq:def_of_form_norm}{eq:def_of_form_norm}

If JQKH < ∞, then we call Q a bounded symmetric form. In that case, without loss of
generality we assume D(Q) = H . The set of bounded symmetric forms a Banach space
under the norm J·KH . Then, a sequence (Zn)n∈N of bounded symmetric forms converges to
a bounded symmetric form Z if

JZn −ZKH → 0.

LetM > 0. A symmetric formQ is calledM -bounded from below ifQ(u, u)+M‖u‖2
H ≥ 0

for all u ∈ D(Q). It is called bounded from below if it is M -bounded from below for some
M > 0. If Q is M -bounded from below and (D(Q),Q + M〈·, ·〉H) is a Hilbert space
for some M > 0, then Q is said to be closed. If Q is a closed symmetric form and M is
as above, then a subset of D(Q) is called a core for Q if it is dense in the Hilbert space
(D(Q),Q+M〈·, ·〉H).

Observe that a symmetric form is determined by its values on the diagonal of H × H ,
i.e.,Q(u, v) = 1

2
[Q(u+ v, u+ v)−Q(u, u)−Q(v, v)]. For this reason we often only define

symmetric forms on the diagonal.
{def:symmetric_form}

Definition 4.2. Let U be a bounded domain, W ∈ L∞(U) and Z be a bounded symmetric
form on Hs(U) for some s ∈ [0, 1). We define the symmetric form E = EUW,Z on eWH1(U)

as follows: for u = eWu[ with u[ ∈ H1(U), we set

E(u, u) := EUW,Z(u, u) :=

∫
U

e2W (x)|∇u[(x)|2 dx+ Z(u[, u[).

4.1 Main examples of bounded symmetric forms
{subsec:bounded_sym_forms}

Recall the notation J·K from (38) and the constants in Definition A.14.
{theorem:examples_bd_sym_with_weighted_input}

Theorem 4.3. Let δ ∈ (0, 1), σ ∈ (0,∞) and s ∈ (1− δ, 1). {item:sym_form_on_domain}

(a) Let Y ∈ C−1+δ,σ(Rd). For any bounded domain U and φ ∈ C∞c (Rd) such that φ = 1
on a neighborhood of U , the formula

ZUY (v, v) = 〈φY,1Uv2〉

defines a bounded symmetric form on Hs
0(U) and if U is moreover Lipschitz, it also

defines a bounded symmetric form on Hs(U). The symmetric form ZUY is independent
of the choice of φ. Moreover, for L ≥ 1

JZULY KHs
0(UL) .δ,ε,U L

2σ‖Y ‖C−1+δ,σ(Rd), (39) {eqn:bound_cZ_Y_U_L_H_0}{eqn:bound_cZ_Y_U_L_H_0}

and if U is a bounded Lipschitz domain, then

JZULY KHs(UL) .δ,ε,U L
2σ‖Y ‖C−1+δ,σ(Rd). (40) {eqn:bound_cZ_Y_U_L_H}{eqn:bound_cZ_Y_U_L_H}

31



{item:sym_form_boundary_tilde}

(b) Let U be a bounded Lipschitz domain. Suppose that δ ∈ (1
2
, 1) and s ∈ (3

2
− δ, 1). Let

ε ∈ (0, δ − 1
2
), p ∈ (2,∞) and q ∈ (1, 2) be such that 1

p
+ 1

q
= 1 and

β := 2− δ + ε− 1

q
≤ 1

2
, 2− δ + ε− 1

2q
+

d

2p
≤ s. (41) {eqn:condition_beta_and_s}{eqn:condition_beta_and_s}

Let Ỹ ∈ B−2+δ
p,p (Rd) with supp(Ỹ ) ⊆ ∂U , ‖Ỹε− Ỹ ‖B−2+δ

p,p (Rd)

ε↓0−−→ 0 for some Ỹε given
by ϕ 7→

∫
∂U
ϕfε dS for fε ∈ L1(∂U), and V ∈ Cβ(U). Then, with T = T

W
β+ 1

2q
2q (U)

,

R : W β−ε
q (∂U) → W 2−δ

q (U) a right inverse of TW 2−δ
q (U) and ι a universal extension

operator from U to Rd as in Lemma 2.8,

Z̃(v, v) := Z̃U
Ỹ ,V

(v, v) := 〈Ỹ , ι ◦ R[V (T v)2]〉

defines a bounded symmetric form on Hs(U) that is independent of the choice of R
and ι.

If ỸL ∈ B−2+δ
p,p (Rd) with supp(ỸL) ⊆ ∂UL and VL ∈ Cδ(UL) for L ≥ 1, then

JZ̃UL
ỸL,VL

KHs(UL) .δ,ε,p,U L
2ε‖VL‖Cδ(UL)‖ỸL‖B−2+δ

p,p (Rd). (42) {eqn:bound_tilde_Z_in_L}{eqn:bound_tilde_Z_in_L}

{item:sym_form_boundary_hat}

(c) Let U be a bounded Lipschitz domain. Suppose δ ∈ (0, 1) and s ∈ (1
2
, 1). Let

Ŷ ∈ C1+δ,σ(Rd) and V ∈ Cδ(Rd). Then, with T = THs(U) as in Lemma 2.8 (for the
notation see Definition 1.13),

ẐU
Ŷ ,V

(v, v) :=

∫
∂U

(T v)2V∇Ŷ · dS

defines a bounded symmetric form on Hs(U) for every s ∈ (1
2
, 1). Moreover, for

L ≥ 1
JẐUL

Ŷ ,V
KHs(UL) .δ,σ,U L

σ‖V ‖Cδ(UL)‖Ŷ ‖C1+δ,σ(Rd). (43) {eqn:bound_hat_Z_in_L}{eqn:bound_hat_Z_in_L}

Proof. (a) Let us first consider U to be a bounded Lipschitz domain and v ∈ Hs(UL).
We comment on how to obtain (39) afterwards. Let φ be as in the statement. It is rather
straightforward to check that the definition of ZUY does not depend on φ. Observe that
therefore ZULY (v, v) = 〈φ(L−1·)Y,1ULv2〉 for all L > 0. Choose a p ∈ [1,∞] and an
ε ∈ (0, δ) such that 1 − δ + ε + d

2p
≤ s and pσ > d. By the duality of Besov spaces [64,

Theorem 2.17], for q ∈ [1,∞] such that 1
p

+ 1
q

= 1, we have

|〈φ(L−1·)Y,1ULv2〉| .δ,p ‖φ(L−1·)Y ‖B−1+δ
p,p (Rd)‖1ULv

2‖B1−δ
q,q (Rd).

By Lemma A.4 and Lemma A.1 (more specifically, (75) using that pσ > d) we have

‖φ(L−1·)Y ‖B−1+δ
p,p (Rd) .p,δ,σ,φ L

2σ‖Y ‖B−1+δ,2σ
p,p (Rd) .p,δ,σ L

2σ‖Y ‖C−1+δ,σ(Rd).

Then by Lemma 2.7 (see Definition A.14 for CMult and CProd)

‖1ULv2‖B1−δ
q,q (Rd) .δ,p ‖1ULv2‖W 1−δ

q (Rd) ≤ CUL
Mult[W

1−δ
q ]‖v2‖W 1−δ

q (UL)

≤ CUL
Mult[W

1−δ
q ]CUL

Prod[W 1−δ+ε
2q → W 1−δ

q ]‖v‖2
W 1−δ+ε

2q (UL)
.
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Now we apply the embedding estimate (see Definition A.14 for CEmbed) and the estimate
‖u‖

H
1−δ+ε+ d

2p (UL)
.δ,ε,p ‖u‖Hs(UL) (as 1− δ + ε+ d

2p
≤ s), we have

‖v‖W 1−δ+ε
2q (UL) .δ,ε,p C

UL
Embed[H1−δ+ε+ d

2p → W 1−δ+ε
2q ]‖v‖Hs(UL).

Hence

JZKHs(UL) .δ,ε,p,σ L
2σCUL

Mult[W
1−δ
q ]CUL

Prod[H1−δ+ε → W 1−δ
1 ]

× CUL
Embed[Hs → W 1−δ+ε

2q ]‖Y ‖C−1+δ,σ(Rd).

Therefore (40) follows by Lemma A.18. IfU is not necessarily Lipschitz but v ∈ Hs
0(U),

in the above estimates, we can replace the constant CU
Mult[W

1−δ
q ] by 1 and the estimate (39)

follows similarly.
(b) First, observe that the requirements for the existence of T andR as in Lemma 2.8 are

satisfied. Indeed, β + 1
2q
∈ ( 1

2q
, 1 + 1

2q
), or equivalently, β ∈ (0, 1), and 2− δ ∈ (1

q
, 1 + 1

q
):

On the one hand we have 2 − δ ∈ (1, 3
2
) ⊆ (1

q
, 1 + 1

q
) and because 1

q
∈ (1

2
, 1), on the other

hand we have β = 2− δ + ε− 1
q
> 2− δ − 1 = 1− δ > 0 and β ≤ 1

2
by assumption.

Again by the duality, we have

|〈Ỹ , ι ◦ R[V (T v)2]〉| .δ,p ‖Ỹ ‖B−2+δ
p,p (Rd)‖ι ◦ R[V (T v)2]‖B2−δ

q,q (Rd). (44) {eqn:estimate_pairing_tilde_Y_by_duality}{eqn:estimate_pairing_tilde_Y_by_duality}

Let us use this estimate first to show that Z̃ is independent of the choice of R and ι, as we
will use this for our norm estimates. For ϕ ∈ C∞(U)∩W r

p (U) and V ∈ C∞(U) the function
ι ◦ R[V(T ϕ)2] is equal to Vϕ2 on ∂U and thus for ε > 0∫

∂U

fε(ι ◦ R[V(T ϕ)2]) dS =

∫
∂U

fεVϕ2 dS.

By the above estimates we have already seen that Z̃U
Ỹ ,V

(v) is continuous as a function of Ỹ ,

V and v. As C∞(U) ∩W r
p (U) is dense in W r

p (U), V is the limit of smooth functions in
C∞(U) and Ỹ is the limit of Ỹε, it therefore follows that Z̃ is independent of the choice of
R and ι.

We continue by estimating the right-hand side of (44). Again, by using Lemma 2.7
(remember thatR is a bounded linear operator W β−ε

q (∂U)→ W 2−δ
q (U)),

‖ι ◦ R[V (T v)2]‖B2−δ
q,q (Rd) .δ,p ‖ι‖W 2−δ

q (U)→W 2−δ
q (Rd)‖R‖‖V (T v)2‖Wβ−ε

q (∂U). (45) {eqn:estimate_iota_circ_cR_V_cT_sq}{eqn:estimate_iota_circ_cR_V_cT_sq}

Now we estimate ‖V (T v)2‖Wβ−ε
q (∂U). Recall the notation [·] from Definition 2.4 (b). If we

set ψ := (T v)2, then

[V ψ]Wβ−ε
q (∂U) ≤

(∫
∂U

∫
∂U

|V (x)− V (y)|q|ψ(x)|q

|x− y|d−1+q(β−ε) dS(x) dS(y)
) 1
q

+
(∫

∂U

∫
∂U

|ψ(x)− ψ(y)|q|V (x)|q

|x− y|d−1+q(β−ε) dS(x) dS(y)
) 1
q

.β ‖V ‖Wβ
∞(U)

(∫
∂U

∫
∂U

|ψ(x)|q

|x− y|d−1−qε dS(x) dS(y)
) 1
q

+ ‖V ‖L∞(U)[ψ]Wβ−ε
q (∂U)

.β,δ ‖V ‖Cδ(U)

(
1 + sup

x∈∂U

∫
∂U

dS(y)

|x− y|d−1−qε

) 1
q ‖ψ‖Wβ−ε

q (∂U),
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where we used ‖V ‖Wβ
∞(U) ∨ ‖V ‖L∞(U) .β,δ ‖V ‖W δ

∞(U) = ‖V ‖Cδ(U) which holds because
β ≤ 1

2
< δ.

Therefore, by observing (see Definition A.14 for CProd and CEmbed)

‖ψ‖Wβ−ε
q (∂U) = ‖(T v)2‖Wβ−ε

q (∂U) ≤ C∂U
Prod[W β

2q → W β−ε
q ]‖T v‖2

Wβ
2q(∂U)

≤ C∂U
Prod[W β

2q → W β−ε
q ]‖T ‖2‖v‖2

W
β+ 1

2q
2q (U)

and ‖v‖
W
β+ 1

2q
2q (U)

≤ CU
Embed[Hs → W

β+ 1
2q

2q ]‖v‖Hs(U), we obtain (as we may take the infi-

mum over ι andR)

JZ̃KHs(U) .δ,ε,p C
∂U
Prod[W β

2q → W β−ε
q ]CU

Embed[Hs → W
β+ 1

2q

2q ]2C∂U
R [W 2−δ

q ]

×
(

1 + sup
x∈∂U

∫
∂U

dS(y)

|x− y|d−1−qε

) 1
q
CU

Ext[W
q
2−δ]‖T ‖

2

× ‖V ‖Cδ(U)‖Ỹ ‖B−2+δ
p,p (Rd).

With this (42) follows from Lemma A.18 (for the estimate on the CEmbed we use the
second inequality in (41)) and because∫

∂UL

dS(y)

|x− y|d−1−qε =

∫
∂U

Ld−1 dS(y)

|Lx− Ly|d−1−qε = Lqε
∫
∂U

dS(y)

|x− y|d−1−qε ,

so that

sup
x∈∂UL

(
1 +

∫
∂UL

dS(y)

|x− y|d−1−qε

) 1
q ≤ Lε sup

x∈∂U

(
1 +

∫
∂U

dS(y)

|x− y|d−1−qε

) 1
q
.

The latter supremum is finite:
∫
∂U

dy
|x−y|d−1−qε is finite for all x ∈ ∂U due to the fact that U is

a Lipschitz domain, so that by the compactness of ∂U and continuity of x 7→
∫
∂U

dy
|x−y|d−1−qε

it follows that the supremum is finite as well. The other Lε factor is due to the estimate
C∂UL

Prod[W r
2q → W r−ε

q ] .p,ε,U L
ε, see Lemma A.18.

(c) First, observe that (for ν being the outer normal on ∂U )∣∣∣ẐU
Ŷ ,V

(v, v)
∣∣∣ =

∫
∂U

(T v)2V∇Ŷ · dS

=

∣∣∣∣∫
∂U

(T v)2V∇ν Ŷ dS

∣∣∣∣ ≤ ‖V ‖L∞(∂U)‖∇Ŷ ‖L∞(∂U)‖T v‖2
L2(∂U).

Secondly, use ‖T v‖L2(∂U) ≤ ‖T v‖
W
s− 1

2
2 (∂U)

≤ ‖THs(U)‖‖v‖Hs(U), ‖V ‖L∞(∂U) ≤ ‖V ‖Cδ(U)

and ‖∇Ŷ ‖L∞(∂UL) ≤ ‖φ(L−1·)∇Ŷ ‖L∞(Rd) . ‖φ(L−1·)∇Ŷ ‖Cδ(Rd) .δ,σ,φ L
σ‖Ŷ ‖C1+δ,σ(Rd),

where the last inequality is due to Lemma A.4. (43) then follows by Lemma A.18 (observe
that we use that s > 1

2
in order to have supL≥1‖THs(UL)‖ <∞).

4.2 Basic spectral properties
{subsec:basic_properties_of_symmetric_forms}

In this section, we will work in the setting of Definition 4.2. More precisely:

Assumptions 4.4 (for this section). In this section, we fix a bounded domain U , a function
W ∈ L∞(U), and a symmetric form Z on Hs(U) for some s ∈ (0, 1).
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The goal is to introduce the Dirichlet and Neumann operators (see Definition 4.8 below)
corresponding to E = EUW,Z (see Definition 4.2) and study their spectral properties.

Definition 4.5. Let Q be a symmetric form on a Hilbert space H . Let D be the set of
u ∈ D(Q) such that there exists a ũ ∈ H such that Q(u, v) = 〈ũ, v〉H for all v ∈ D(Q).
For such u the element ũ is unique, and we will write Au = ũ. Then A on D forms a linear
operator on H , called the operator associated with Q.

{def:interpolation_constant}

Definition 4.6. Let U be a bounded Lipschitz domain and s ∈ (0, 1). We define

CU
IP[Hs] := sup

f∈H1(U)\{0}

‖f‖Hs(U)

‖f‖1−s
L2(U)‖f‖sH1(U)

.

If U is a bounded domain that is not necessarily Lipschitz, we define CU
IP[Hs] similarly as

above by replacing “Ha(U)” by “Ha
0 (U)” for a being either s or 1.

{lem:estimate_of_Z}

Lemma 4.7. Let s ∈ (0, 1). Let Z be a bounded symmetric form on Hs
0(U). Then, for any

δ ∈ (0, 1) and v ∈ H1
0 (U), we have

|Z(v, v)| ≤ δ

∫
U

|∇v|2 +
(
δ + δ−

s
1−sCU

IP[Hs
0 ]

2
1−s JZK

1
1−s
Hs

0(U)

)
‖v‖2

L2(U).

If Z is a bounded symmetric form on Hs(U), then the above statement holds with Hs
0 re-

placed by Hs.

Proof. We only prove the claim for a bounded Lipschitz domain. One has |Z(v, v)| ≤
JZKHs(U)‖v‖2

Hs(U). By interpolation and Young’s inequality (using that asb1−s ≤ a+ b),

‖v‖2
Hs(U) ≤ CU

IP[Hs]2‖v‖2s
H1(U)‖v‖

2(1−s)
L2(U) ≤ CU

IP[Hs]2(η‖v‖2
H1(U) + η−

s
1−s‖v‖2

L2(U))

for any η ∈ (0,∞). Therefore,

|Z(v, v)| ≤ ηJZKHs(U)C
U
IP[Hs]2‖v‖2

H1(U) + η−
s

1−s JZKHs(U)C
U
IP[Hs]2‖v‖2

L2(U).

We can choose η so that δ = ηJZKHs(U)C
U
IP[Hs]2 and use that ‖v‖2

H1(U) = ‖v‖2
L2(U) +∫

U
|∇v|2.

{def:self_adjoint_operator_for_cE_W_cZ}

Definition 4.8. If Z is a bounded symmetric form on H1
0 (U), then we write ED,U

W,Z for EUW,Z
(recall Definition 4.2) with D(ED,U

W,Z) = eWH1
0 (U) and let HD = HD,U = HD,U

W,Z be the
operator associated with ED,U

W,Z on L2(U).
IfZ is a bounded symmetric form onH1(U), then we write EN,U

W,Z for EUW,Z withD(EN,U
W,Z) =

eWH1(U) and letHN = HN,U = HN,U
W,Z be the operator associated with EN,U

W,Z on L2(U).
{prop:closedness_of_form}

Proposition 4.9. Let W ∈ L∞(U) and Z be a bounded symmetric form on Hs
0(U) for some

s ∈ (0, 1). Then ED,U
W,Z is closed and eWC∞c (U) is a core. Consequently,HD is self-adjoint.

If Z instead is a bounded symmetric form on Hs(U), then EN,U
W,Z is closed and eWC∞(U)

is a core. Consequently,HN is self-adjoint.
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Proof. In view of Lemma 4.7 and the symmetric form version of the Kato-Rellich theorem
[43, Theorem 1.33 in Chapter VI], we can assume Z = 0. Observe that for u = eWu[,
u[ ∈ H1(U)

e−2‖W‖L∞(U)E0,0(u[, u[) ≤ EW,0(u, u) ≤ e2‖W‖L∞(U)E0,0(u[, u[).

Therefore the claim follows as E0,0 is closed and C∞c (U) is a core for E0,0.
The self-adjointness of the corresponding operators follows as they are closed densely

defined and symmetric, cf. [20, Section 4.4]).

By applying a standard result from the spectral theory, we can easily show that the
spectrum of HD on a bounded domain and that of HN on a bounded Lipschitz domain are
discrete and that the min-max formula (also known as the Courant-Fischer formula) holds
for the eigenvalues.

{lem:eigenvalues_of_nonnegative_operator}

Lemma ([20, Corollary 4.2.3, Theorem 4.5.2, Theorem 4.5.3]). Let (H, 〈·, ·〉) be a Hilbert
space and let A be a self-adjoint operator that is bounded from below. Let B be the closed
symmetric form associated with A and let D be a core of B. Then, we have

λk := inf
L@D(A),dimL=k

sup
f∈L,‖f‖=1

〈Af, f〉,

= inf
L@D(B),dimL=k

sup
f∈L,‖f‖=1

B(f, f),

= inf
L@D,dimL=k

sup
f∈L,‖f‖=1

B(f, f),

where L @ X means L is a subspace of X . Furthermore, if limk→∞ λk = ∞, then
Spec(A) = (λk)k∈N and the resolvent (λ− A)−1 is compact for λ /∈ Spec(A).

{rem:compact_embedding_of_form_domain}

Remark. If the embedding D(B) ↪→ H is compact, then we have limk→∞ λk = ∞. See
[20, Corollary 4.2.3].

{prop:eigenvalues_of_AH}

Proposition 4.10. The spectrum ofHD is given by a sequence of eigenvalues (λD
k)k∈N count-

ing multiplicities, such that λD
1 ≤ λD

2 ≤ · · · . Moreover, by using the notation @ for “is a
linear subspace of”,

λD
k := λD

k(U ;W,Z) := inf
L@D(HD)
dimL=k

sup
u∈L

‖u‖L2(U)=1

〈HDu, u〉L2(U),

= inf
L@eWH1

0 (U)
dimL=k

sup
u∈L

‖u‖L2(U)=1

EUW,Z(u, u),

= inf
L@eWC∞c (U)

dimL=k

sup
u∈L

‖u‖L2(U)=1

EUW,Z(u, u)

and limk→∞ λ
D
k =∞. In particular, (λ−HD)−1 is a compact operator for all λ that are not

in the spectrum of HD. If U is a bounded Lipschitz domain, an analogous statement for HN

holds if H1
0 (U) and C∞c (U) are replaced by H1(U) and C∞(U).

Proof. In view of Lemma 4.2 and Remark 4.2, By well-known results of spectral theory
(see e.g., [20, Corollary 4.2.3, Theorem 4.5.2, Theorem 4.5.3] in combination with Proposi-
tion 4.9), it suffices to show that the form domain is compactly embedded in L2(U), which
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follows from the compact embeddings of Sobolev spaces (see [10, Theorem 8.11.2] for the
fact that the embedding H1

0 (U) ↪→ L2(U) is compact for any bounded domain U [10, The-
orem 8.11.4] for the fact that the embedding H1(U) ↪→ L2(U) is compact for any bounded
Lipschitz domain U ).

We show continuous dependence of the spectral structure with respect toW and Z . This
follows from the result of [48].

{def:convergence_of_symmetric_forms}

Definition 4.11. Let H be a Hilbert space and M > 0. Let (Qn)n∈N and Q be closed
symmetric forms that are M -bounded from below. We use the following convention: if
u /∈ D(Q), then we set Q(u, u) :=∞. {item:gamma_convergence}

(a) [48, Definition 2.8] We say the sequence (Qn)n∈N Γ-converges to Q, if the following
hold:

(i) If the sequence (un)n∈N converges to u in H , then

Q(u, u) ≤ lim inf
n→∞

Qn(un, un). (46) {eqn:gamma_liminf}{eqn:gamma_liminf}

(ii) For any u ∈ D(Q), there exists a sequence (un)n∈N in H such that

un → u in H and lim
n→∞

Qn(un, un) = Q(u, u).

(b) [48, Definition 2.12] The sequence (Qn)n∈N is said to be compact if the condition

sup
n∈N
Qn(un, un) + (M + 1)‖un‖2

H <∞

implies (un)n∈N is precompact inH , that is the sequence has a converges subsequence
in H .

(c) [48, Definition 2.13] We say the sequence (Qn)n∈N converges compactly to Q if
(Qn)n∈N Γ-converges to Q and if (Qn)n∈N is compact. In that case, we write

Qn
compact−−−−→n→∞ Q.

{lem:compact_convergence_of_symmetric_forms}

Lemma 4.12. Let H be a Hilbert space and M > 0. Suppose that (Qn)n∈N is a sequence
of closed quadratic forms on H that are M -bounded from below and converges compactly
to Q. Let An (resp. A) be the self-adjoint operator associated with Qn (resp. Q).

(a) [48, Theorem 2.4 and Theorem 2.5] For any bounded continuous function f on R, we
have ‖f(An)− f(A)‖H→H → 0. In particular, An

NR−→n→∞ A (see Definition 1.6).

(b) [48, Corollary 2.5] Let λk,n (resp. λk) be the k-th eigenvalue ofAn (resp. A), counting
multiplicities. Then, we have limn→∞ λk,n = λk for any k. Moreover, for any k there
exist (a choice of the) k-th eigenfunctions φk,n (resp. φk) of An (resp. A) such that
φk,n converges to φk in H .

{remark:to_convergence_sym_forms}

Remark 4.13. In the proof of the following theorem we use the following elementary fact.
If (an)n∈N is a sequence in R and lim infn→∞ an <∞, then there exists a strictly increasing
function ϕ : N→ N such that lim infn→∞ aϕ(n) = lim infn→∞ an and supn∈N aϕ(n) <∞.
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Let (an)n∈N be as such and a = lim infn→∞ an. For all m ∈ N there exists an Nm ∈ N
such that for all N ≥ Nm, infn≥N an ∈ (a − 1

m
, a + 1

m
). Therefore, we can find a strictly

increasing sequence (km)m∈N such that akm ∈ (a − 1
m
, a + 1

m
) for all m. Set ϕ(m) = km

for all m. Then lim infn→∞ aϕ(n) = a and supn∈N aϕ(n) ≤ a+ 1.
In the following theorem we consider the compact convergence for the symmetric forms

ED,U
Wn,Zn on Hs

0(U) and the symmetric forms EN,U
Wn,Zn on Hs(U) as defined in Definition 4.8.

{thm:convergence_of_symmetric_forms}

Theorem 4.14. Let s ∈ [0, 1). Suppose that Wn → W in C(U).

• If JZn −ZKHs
0(U)

n→∞−−−→ 0, then

ED,U
Wn,Zn

compact−−−−→n→∞ ED,U
W,Z .

• If U is a bounded Lipschitz domain and JZn −ZKHs(U)
n→∞−−−→ 0, then

EN,U
Wn,Zn

compact−−−−→n→∞ EN,U
W,Z .

Proof. We only prove the second statement. We first show that (EN
Wn,Zn)n∈N is compact.

Suppose supn∈N EN
Wn,Zn(un, un) + (M + 1)‖un‖2

L2(U) < ∞. We set u[n := e−Wnun. By
Lemma 4.7, we have supn∈N‖u[n‖H1(U) <∞ because for any δ ∈ (0, 1),

EN
Wn,Zn(un, un) =

∫
U

e2Wn |∇u[n|2 + Zn(u[n, u
[
n)

≥ e−2‖Wn‖L∞ (1− δ)
∫
U

|∇u[n|2 −
(
δ + Cδ−

s
1−s JZnK

1
1−s
Hs(U)

)
‖u[n‖2

L2(U),

and thus supn∈N‖u[n‖H1(U) < ∞ as Wn → W in C(U). Since the embedding H1(U) ↪→
L2(U) is compact, the sequence (u[n)n∈N is also precompact in L2(U). As un = eWnu[n and
‖Wn −W‖L∞(U) → 0, also (un)n∈N is precompact in L2(U).

Next we show that (EN
Wn,Zn)n∈N Γ-converges to EN

W,Z . Since (ii) of Definition 4.11 (a) is
trivial, we focus on showing (i) Definition 4.11 (a).

Suppose that (un)n∈N converges to u in L2(U). As we want to show (46), we may
assume lim infn→∞ EN,U

Wn,Zn(un, un) < ∞ and by Remark 4.13 we may as well assume
supn∈N E

N,U
Wn,Zn(un, un) < ∞ (by possibly considering a subsequence), so that by the above

supn∈N‖u[n‖H1(U) <∞. It suffices to show∫
U

e2W |∇u[|2 ≤ lim inf
n→∞

∫
U

e2Wn|∇u[n|2, (47) {eq:fatoru_sobolev}{eq:fatoru_sobolev}

lim
n→∞

Zn(u[n, u
[
n) = Z(u[, u[). (48) {eqn:convergence_cZ}{eqn:convergence_cZ}

Since the sequence (u[n)n∈N is bounded in H1(U) and converges to u[ in L2(U), by interpo-
lation it converges to u[ in Hs(U) from which (48) follows. Indeed, we have

Z(u, u)−Zn(un, un) = Z(u− un, u− un)−Z(un, un) + 2Z(u, un)−Zn(un, un)

= Z(u− un, u− un)− 2Z(un, un) + 2Z(u, un) + [Z − Zn](un, un)

= Z(u− un, u− un) + 2Z(u− un, un) + [Z − Zn](un, un).

For v ∈ C∞c (U),

〈∇u[n, v〉L2(U) = −〈u[n,∇v〉L2(U) → −〈u[,∇v〉L2(U) = 〈∇u[, v〉L2(U),

which implies that (∇u[n)n∈N converges weakly to∇u[ in L2(U). Therefore, (eWn∇u[n)n∈N
converges weakly to eW∇u[ in L2(U) and this implies (47) (this follows for example by the
dual representation of the norm on L2(U)).
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4.3 Estimates of eigenvalues
{subsec:estimates_eigenvalues}

This section serves as preparation for Section 5.3 on the integrated density of states and
its results are not used for the construction of Anderson Hamiltonians (Theorem 1.7 and
Thereom 1.8).

Assumptions 4.15 (for this section). We assume the following throughout this section:

• W is a continuous function defined on Rd.

• s ∈ [0, 1), U is the collection of bounded Lipschitz domains.

• ZU is a bounded symmetric form on Hs(U) for all U ∈ U .

For each U ∈ U , we let EU = EUW,ZU be the symmetric form defined in Definition 4.2. Recall
the notationsHN,U andHD,U from Definition 4.8 and λN

k(U), λD
k(U) from Proposition 4.10.

Remark 4.16. For Dirichlet boundary conditions we do not necessarily need to consider
Lipschitz domains. Indeed, if U would instead be the collection of all bounded domains and
ZU a bounded symmetric form onHs

0(U) for all U ∈ U , then the statements of Lemma 4.18,
Lemma 4.24 (a) and Lemma 4.28 (a) remain valid.

{def:eigenvalue_counting_function}

Definition 4.17. For # ∈ {N,D} and U ∈ U , we define the eigenvalue counting functions
N#(U, λ) for λ ∈ R by

N#(U, λ) := N#
W,Z(U, λ) :=

∞∑
k=1

1{λ#k (U ;W,Z)≤λ}.

We setN#
0 (U, λ) := N#

0,0(U, λ), which is the eigenvalue counting function of the Neumann
or the Dirichlet Laplacian on U .

For L > R > 0 we set

UR
L := UL ∩B(∂UL, R), C(∂UL, R) := {x ∈ UL : d(x, ∂UL) = R}. (49) {eqn:def_U_L_R_and_C_partial_U_L_R}{eqn:def_U_L_R_and_C_partial_U_L_R}

(Observe C(∂UL, R) = ∂UR
L \ ∂UL.) We denote by H1

m,R(UR
L ) the closure in H1(UR

L ) with
respect to H1-norm of the set

{φ ∈ C∞(UR
L ) : φ = 0 on a neighborhood of C(∂UL, R)}.

Let Nm
0 (UR

L , λ) be the eigenvalue counting function of the operator associated with the
symmetric form (u, u) 7→

∫
URL
|∇u|2 with the domain H1

m,R(UR
L ).

{lem:monotonicity_of_IDS}

Lemma 4.18. Let U,U1, U2 ∈ U , U1 ⊆ U2 and λ ∈ R. Then

ND(U, λ) ≤NN(U, λ),

ND(U1, λ) ≤ND(U2, λ).

Proof. Since H1
0 (U) ⊆ H1(U), the min-max formula (Lemma 4.10) implies λD

k(U) ≥
λN
k(U) for all k, and thus the first inequality. The second also follows by the min-max

formula, as H1
0 (U1) ⊆ H1

0 (U2).
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{lem:estimate_of_eigenvalue_counting_functions_of_AH}

Lemma 4.19. Let U ∈ U , s ∈ (0, 1), θ ∈ (0,∞) and λ ∈ R. We set

Λ±λ,θ(W,Z) := (1± θ)e±4‖W‖L∞(U)(λ± A±),

where

A± := AW,Z±,θ := θ +
( θ

1± θ

)− s
1−s
CU

IP[Hs]
2

1−s e(2± 2s
1−s )‖W‖L∞(U)JZK

1
1−s
Hs(U).

Then, one has

ND

0 (U,Λ−λ,θ(W,Z)) ≤ND(U, λ) ≤NN(U, λ) ≤NN

0(U,Λ+
λ,θ(W,Z)).

Proof. We only prove NN(U, λ) ≤ NN

0(U,Λ+
λ,θ(U,W,Z)); the other inequality follows

similarly. By setting δ := θ
1+θ

e−2‖W‖L∞(U) , Lemma 4.7 yields

|Z(u[, u[)| ≤ δ

∫
U

|∇u[|2 + A+e
−2‖W‖L∞(U)

∫
U

(u[)2.

One has
∫
U
e2W |∇u[|2 ≥ e−2‖W‖L∞(U)

∫
U
|∇u[|2. Therefore, by Proposition 4.10,

λN
k(U) = inf

L@H1(U),
dimL=k

sup
u[∈L,∫

e2W (u[)2=1

∫
U

e2W |∇u[|2 + Z(u[, u[)

≥ inf
L@H1(U),
dimL=k

sup
u[∈L,∫

e2W (u[)2=1

e−2‖W‖L∞(U)

1 + θ

∫
U

|∇u[|2 − A+e
−2‖W‖L∞(U)

∫
U

(u[)2

≥ e−2‖W‖L∞(U)

1 + θ

{
inf

L@H1(U),
dimL=k

sup
u[∈L,∫

e2W (u[)2=1

∫
U

|∇u[|2
}
− A+.

We compute

inf
L@H1(U),
dimL=k

sup
u[∈L,∫

e2W (u[)2=1

∫
U

|∇u[|2 = inf
L@H1(U),
dimL=k

sup
u[∈L,∫

e2W (u[)2≤1

∫
U

|∇u[|2

≥ inf
L@H1(U),
dimL=k

sup
u[∈L,∫

(u[)2≤e−2‖W‖L∞(U)

∫
U

|∇u[|2

= e−2‖W‖L∞(U)λN
k(U ; 0, 0). (50) {eqn:estimate_eigenvalues_with_W}{eqn:estimate_eigenvalues_with_W}

Therefore,

λN
k(U) ≥ e−4‖W‖L∞(U)

1 + θ
λN
k(U ; 0, 0)− A+

and the claimed inequality follows.

As Lemma 4.19 suggests, we need estimates of N#
0 (U, λ). The following lemma is

sufficient for our purpose.
{lem:estimate_of_N_0}

Lemma 4.20. Let U be a bounded Lipschitz domain.
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{item:estimate_N_0_m}

(a) Then, there exist CU , RU > 0 such that

Nm
0 (UR

L , λ) ≤ CUR
d(1 + λ)

d
2Ld−1

for every L ≥ 1, λ ≥ 0 and R ≥ RU . {item:estimates_N_0_d_and_N_0_n}

(b) [63, Theorem 3.1 and Theorem 3.2] There exists a C ′U > 0 such that

|B(0, 1)|
(2π)d

|U |λ
d
2 − C ′Uλ

d−1
2 log λ ≤ND

0 (U, λ)

≤NN

0(U, λ) ≤ |B(0, 1)|
(2π)d

|U |λ
d
2 + C ′Uλ

d−1
2 log λ

for every λ ≥ 2.

Proof. The claim (a) follows from the proof of [22, Theorem 6.2]. Indeed, we can combine
the estimates (6.20), (6.23), (6.24) and (6.25) therein.

{def:ordering_symm_forms}

Definition 4.21. Let Q1 and Q2 be closed symmetric forms on Hilbert spaces H1 and H2

that are bounded from below. We write Q1 ≺ Q2 if there exists an isometry Φ : H2 → H1

such that Φ(D(Q2)) ⊆ D(Q1) and Q1(Φ(f),Φ(f)) ≤ Q2(f, f) for every f ∈ D(Q2).
{lemma:eigenvalue_comparison}

Lemma 4.22. Let Q1,Q2 be as in Definition 4.21 and let A1 and A2 be the associated self-
adjoint operators. Suppose that the spectrum of A1 and that of A2 are discrete. We denote
them by (µk(A1))k∈N and (µk(A2))k∈N, respectively. Then, Q1 ≺ Q2 implies µk(A1) ≤
µk(A2) for every k.

Proof. This follows from the min-max formula. (Lemma 4.2),

µk(A) = inf
K@D(QA),dimK=k

sup
g∈K,‖g‖=1

QA(g, g)

≤ inf
L@D(QB),dimL=k

sup
f∈L,‖f‖=1

QA(Φ(f),Φ(f))

≤ inf
L@D(QB),dimL=k

sup
f∈L,‖f‖=1

QB(f, f) = µk(B).

In order to compare the eigenvalue counting functions on different domains, it will be
convenient to introduce the following symmetric forms.

{def:sum_sym_forms}

Definition 4.23. Let J ∈ N. Let Ej be a symmetric form on a Hilbert space Hj for
j ∈ {1, . . . , J}. We define the symmetric form

⊕J
j=1 Ej on the Hilbert space

⊕
Hj by

D(
⊕J

j=1 Ej) =
⊕J

j=1D(Ej) and for v =
⊕J

j=1 vj with vj ∈ D(Ej), (
⊕J

j=1 Ej)(v, v) :=∑J
j=1 Ej(vj, vj).
Observe that if Aj is the operator associated with Ej for all j, then the operator

⊕J
j=1Aj

defined by
⊕J

j=1Ajv =
⊕J

j=1Ajvj for v =
⊕J

j=1 vj ∈
⊕J

j=1D(Aj) =: D(
⊕J

j=1Aj) is
the operator associated with

⊕J
j=1 Ej . In particular, the principal eigenvalue of

⊕J
j=1Aj is

given by minj∈{1,...,J} λ1(Aj), where λ1(Aj) is the principal eigenvalue of Aj for all j.
Moreover, ifAj has a countable spectrum for all j, then one hasN⊕J

j=1 Ej
=
∑J

j=1N Ej ,
whereNQ is the eigenvalue counting function corresponding to the operator associated with
Q.

Observe that using this notation, one also has N aQ+bI(λ) = NQ(λ−b
a

), where I is the
symmetric form I(v, v) = ‖v‖2. Moreover, Q1 ≺ Q2 impliesNQ1 ≥NQ2 .
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{lem:box_decomposition_neumann}

Lemma 4.24. Let U,U1, . . . , UJ ∈ U , U = ∪Jj=1Uj with U j ∩ Uk = ∂Uj ∩ ∂Uk for j 6= k.
{item:dirichlet_ev_estimates_decomp}

(a) If

ZUj(v, v) = ZU(v, v), v ∈ H1
0 (Uj), j ∈ {1, . . . , J}, (51) {eqn:cZ_restriction_consistence}{eqn:cZ_restriction_consistence}

then

λD
1 (U) ≤ min

j∈{1,...,J}
λD

1 (Uj) and ND(U, λ) ≥
J∑
j=1

ND(Uj, λ). (52) {eq:box_decomposition_dirichlet}{eq:box_decomposition_dirichlet}

{item:neumann_ev_estimates_decomp}

(b) If

ZU(v, v) =
J∑
j=1

ZUj(v|Uj , v|Uj), v ∈ H1(U), (53) {eq:cZ_decomposable}{eq:cZ_decomposable}

then

λN
1(U) ≥ min

j∈{1,...,J}
λN

1(Uj) and NN(U, λ) ≤
J∑
j=1

NN(Uj, λ).

Proof. (a) follows from the fact that ⊕Jj=1H
1
0 (Uj) ⊆ H1

0 (U).
(b) As L2(U) and

⊕J
j=1 L

2(Uj) are isometric, H1(U) ⊆ ⊕Jj=1H
1(Uj) and EU(u, u) =∑J

j=1 EUj(u|Uj , u|Uj) for u ∈ eWH1(U), we have⊕Jj=1EN,Uj ≺ EN,U . Now both inequalities
follow from Lemma 4.22 (see also the comments in Definition 4.23).

{rem:example_decomposable}

Remark 4.25. Observe that (51) and (53) hold for U,U1, . . . , UJ as in Lemma 4.28 (a)
if δ ∈ (0, 1), σ ∈ [0,∞), Y ∈ C−1+δ(Rd) and ZU is given by ZUY for U ∈ U as in
Theorem 4.3 (a); or if Y ∈ C1(Rd) and ZU is given for U ∈ U by

ZU(v, v) :=

∫
∂U

v2∇Y · dS,

or if it is a linear combination of the above examples.

We can give a “reversed” inequality of (52). First we present an auxiliary lemma which
is based on the IMS formula, see [67].

{lem:IMS_trick}

Lemma 4.26. Let J ∈ N and U,U1, . . . , UJ ∈ U . Let η1, . . . , ηJ be smooth functions
Rd → [0, 1] such that there exists an A > 0 such that

∥∥∥ J∑
j=1

|∇ηj|2
∥∥∥
L∞(Rd)

≤ A, j ∈ {1, . . . , J},
J∑
j=1

η2
j = 1 on U.

Then

EUW,0(u, u) ≥
J∑
j=1

EUW,0(ηju, ηju)− A‖ηju‖2
L2 , u ∈ eWH1(U).
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Proof. Observe that
∑J

j=1∇(η2
j ) = 0. Let u = eWu[ with u[ ∈ H1(U). Then

η2
j |∇u[|2 = |∇(ηju

[)|2 − |∇ηj|2(u[)2 −∇(η2
j ) · u[∇u[,

and therefore ∫
U

e2W |∇u[|2 =
J∑
j=1

∫
U

e2Wη2
j |∇u[|2

≥
J∑
j=1

{∫
U

e2W |∇(ηju
[)|2 − A‖ηju[‖2

L2

}
.

Remark 4.27. So far we have only considered the Anderson Hamiltonians on bounded
domains, which means bounded open subsets of Rd. However, whether one considers U or
U , does not intrinsically make a difference. In the following lemma and further on we will
consider the Anderson Hamiltonian on closed boxes of the form [0, L]d for example. One
may read (0, L)d instead in order to align with the rest of the text, though we write [0, L]d as
this is more common in the literature.

{lem:upper_estimates_N}

Lemma 4.28. Let Z ∈ C−1+δ(Rd) with δ ∈ (0, 1) and suppose ZU = ZUZ as in Theo-
rem 4.3 (a) for every Lipschitz domain U . {item:box_decomposition_dirichlet_reversed}

(a) There exists a K > 0 (which depends only on d) such that for all U ∈ U , all l, L > 0
with L > 2l and n ∈ N,

λD
1 ([0, nL]d) ≥ min

k∈Zd∩[−1,n+1]d
λD

1 (kL+ [−l, L+ l]d)− K

l2
,

ND([0, nL]d, λ) ≤
∑

k∈Zd∩[−1,n+1]d

ND

(
kL+ [−l, L+ l]d, λ+

K

l2

)
.

{item:upper_bound_of_neumann_ids_by_dirichlet_ids}

(b) There exists a K > 0 (depending only on d) such that for all U ∈ U and s ∈ (1− δ, 1)
there exist Cs,U , RU > 0 such that for all L ≥ 1, λ ∈ R and R ≥ RU ,

NN(UL, λ) ≤ND(UL, λ+KR−2)

+ Cs,UR
dLd−1ed

3−2s
1−s ‖W‖L∞(UL)(1 + max{λ, 0}+ JZK

1
1−s
Hs(U))

d
2 .

Proof. (a) According to [19, Lemma 8.2], there exists a smooth function η : Rd → [0, 1]
and a K > 0, such that η = 1 on [0, L− 2l]d, supp(η) ⊆ [−2l, L]d, ‖∇η‖2

L∞(Rd)
≤ K

2dl2
and∑

k∈Zd
η(x+ kL)2 = 1 for x ∈ Rd.

We set ηk := η( ·+(l, l, . . . , l)+Lk) for k ∈ Zd. Observe that supp(ηk) ⊆ kL+[−l, L+ l]d,
and, ∑

k∈[−1,n+1]d∩Zd
η2
k = 1 on [0, nL]d,

∥∥∥ ∑
k∈[−1,n+1]d∩Zd

|∇ηk|2
∥∥∥
L∞(Rd)

≤ K

l2
.
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Therefore, the map

Φ : L2([0, nL]d)→
⊕

k∈[−1,n+1]d∩Zd
L2(kL+ [−l, L+ l]d), u 7→ (ηku)k∈[−1,n+1]d∩Zd .

is an isometry and Φ(eWH1
0 ([0, nL]d)) ⊆ ⊕k∈[−1,n+1]d∩Zde

WH1
0 (kL+ [−l, L+ l]d).

Observe that for u ∈ H1
0 ([0, nL]d), for φ ∈ C∞c (Rd) such that φ = 1 on a neighborhood

of [0, nL]d,

Z [0,nL]d

Z (u, u) = 〈φZ,1[0,nL]du
2〉 =

∑
k∈[−1,n+1]d∩Zd

〈φZ,1[0,nL]dη
2
ku

2〉

=
∑

k∈[−1,n+1]d∩Zd
ZkL+[−l,L+l]d

Z (ηku, ηku).

Therefore, by Lemma 4.26,

E [0,nL]d

W,Z (u, u) ≥
∑

k∈[−1,n+1]d∩Zd

{
EkL+[−l,L+l]d

W,Z (ηku, ηku)− K

l2
‖ηku‖2

L2(kL+[−l,L+l]d)

}
.

and thus E [0,nL]d

W,Z �
⊕

k∈[−1,n+1]d∩Zd [E
kL+[−l,L+l]d

W,Z − K
l2
I] (where I is as in Definition 4.23),

from which we conclude the estimates (use the discussion in Definition 4.23).
(b) As given in [22, Proposition 4.3], there exist smooth functions α1 and α2 on Rd and

a K > 0 (only depending on d) such that

supp(α1) ⊆ UL \B(∂UL,
R
2

), supp(α2) ⊆ B(∂UL, R),

α2
1 + α2

2 = 1 on a neighborhood of UL,
∥∥∥ 2∑
j=1

|∇αj|2
∥∥∥
L∞(Rd)

≤ KR−2.

Recall the definitions of UR
L and H1

m,R(UR
L ) from Definition 4.17. The map

Φ : L2(UL)→ L2(UL)⊕ L2(UR
L ), u 7→ α1u⊕ α2u

is an isometry and Φ(eWH1(UL)) ⊆ eWH1
0 (UL)⊕ eWH1

m,R(UR
L ).

Observe that ZUL(α2u, α2u) = ZURL (α2u, α2u) as suppα2 ∩ UL ⊆ UR
L . Therefore, by

Lemma 4.26, for u ∈ H1(UL),

EUL(u, u) ≥ EUL(α1u, α1u) + EURL (α2u, α2u)−
2∑
j=1

KR−2‖αju‖2
L2(UL).

By applying Lemma 4.7 with δ = e
−2‖W‖L∞(UL)

2
, we obtain

EURL (α2u, α2u) ≥ e−2‖W‖L∞(UL)

2

∫
URL

|∇(α2u
[)|2 − A‖α2u‖2

L2(URL ),

where

A :=
e−2‖W‖L∞(UL)

2
+ 2

s
1−s e

2s
1−s‖W‖L∞(UL)CUL

IP [Hs]
2

1−s JZK
1

1−s
Hs(U).
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Therefore, EN,UL � (ED,UL−KR−2I)+(Em,R,URL −(KR−2 +A)I), where Em,R,URL is the re-
striction of EN,URL to Hm,R(UR

L ), and thus, by Lemma 4.22 (the additional factor e2‖W‖L∞(UL)

is explained similarly as in (50)),

NN(UL, λ) ≤ND(UL, λ+KR−2) +Nm
0 (UR

L , 2e
4‖W‖L∞(UL)(λ+KR−2 + A)).

By Lemma 4.20 (a), for R ≥ RU ,

Nm
0 (UR

L , 2e
4‖W‖L∞(U)(λ+KR−2 + A))

.U R
dLd−1

{
e4‖W‖L∞(U)(1 + max{λ, 0}+KR−2 + A)

} d
2 .

It remains to apply Lemma A.18, more specifically (82): CUL
IP [Hs] .s,U 1.

5 The Anderson Hamiltonian with Dirichlet and Neumann boundary
conditions

{sec:eigenvalues_of_AH}

Based on the results obtained Section 4 we can give the definition of the Anderson Hamil-
tonian −∆ − ξ with Dirichlet and with Neumann boundary conditions, and show that it is
the limit of the operators −∆− ξε + cε, where the cε’s are as in Assumption 3.2 (I).

We discuss the construction of the Anderson Hamiltonian with Dirichlet boundary con-
ditions in Section 5.1 and with Neumann boundary conditions in Section 5.2. In Section 5.3
we consider the integrated density of states associated to the Anderson Hamiltonian.

5.1 The Dirichlet Anderson Hamiltonian
{subsec:dirichlet_anderson}

Assumptions 5.1 (for this section). In this section we impose the construction assump-
tion 3.2 (I).

As discussed in Remark 3.1, we will choose M to be a random variable with values in
N0 such that F (W ε

M) = e2W ε
M , where F is as in Assumption 3.2 (I):

{def:dirichlet_AH}

Definition 5.2. Let U be a bounded domain and let r ∈ (1 − δ, 1). Using the notation of
Theorem 4.3 (a), for N ∈ N0 we define the following symmetric forms on Hr

0(U):

ZN [U ] := ZUYN , ZεN [U ] := ZUY εN . (54) {eq:def_of_cZ_AH}{eq:def_of_cZ_AH}

For δ− ∈ (0, δ] and γ ∈ (0,∞), we set

M(U, δ−; γ) := inf{N ∈ N : ‖Wn‖Cδ− (U) ≤ γ for all n ≥ N}, (55) {eq:M_AH}{eq:M_AH}

which is finite by Lemma 2.11. Recalling the notation from Definition 4.8, for M =
M(U, δ; 1) (which attains its values in N0 by Lemma 2.11), we define

HD := HD,U := HD,U
WM ,ZM [U ], HD

ε := HD,U
ε := HD,U

W ε
M ,Z

ε
M [U ].

Recalling Proposition 4.10, we set

λD
k(U) := λD

k(U ;WM ,ZM [U ]), λD
k;ε(U) := λD

k(U ;W ε
M ,ZεM [U ]).
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{thm:convergence_of_Dirichlet_AH}

Theorem 5.3. For ε ∈ (0, 1), we have

HD
ε = −∆− ξε + cε. (56) {eqn:H_eps_fd_equals_smooth_AH}{eqn:H_eps_fd_equals_smooth_AH}

Let (εn)n∈N be a sequence in (0, 1) such that εn → 0. Then, there exist a subsequence
(εnm)m∈N and a subset Ω1 ⊆ Ω of P-probability 1 such that on Ω1 the following holds: for
any bounded domain U , one has

HD,U
εnm

NR−→m→∞ HD,U , (57) {eqn:limit_resolvent_sense_dirichlet}{eqn:limit_resolvent_sense_dirichlet}

for all k ∈ N
lim
m→∞

λD
k;εnm

(U) = λD
k(U),

and there exist an eigenfunction φk ofHD,U corresponding to λD
k and eigenfunctions φk,m of

HD,U
εnm

corresponding to λD
k;εnm

(U) for all m ∈ N such that

φk,m
m→∞−−−→ φk in L2(U).

Proof. (56) follows by our choice of M (see (55)) and by Lemma 1.15 and the construction
assumption 3.2 (I) (see also the discussion in Section 1.5 and Remark 3.1).

Let σ ∈ (0, 1). By 3.2 (I), there exist a subsequence (εnm)m∈N and a subset Ω1 ⊆ Ω of
P-probability 1 such that on Ω1, for every N ∈ N0,

lim
m→∞

‖Xεnm −X‖Cδ,σ(Rd) = 0, lim
m→∞

‖Y εnm
N − YN‖C−1+δ,σ(Rd).

Observe that by Lemma A.5 and Corollary A.10, because W ε
M −WM = GM ∗ (Xε −X),

for all ε ∈ (0, 1),

‖W ε
M −WM‖Cδ(U) .U,δ,σ ‖Xε −X‖C−2+δ,σ(Rd),

and that by Theorem 4.3 (a), for r ∈ (1− δ, 1),

JZεM −ZMKHr
0 (U) .δ,p,U ‖Y ε

M − YM‖C−1+δ,σ(Rd).

Therefore, the claim follows from Theorem 4.14 and Lemma 4.12.
{remark:larger_M_dirichlet}

Remark 5.4. Let M be a random variable with values in N0 such that M ≥ M(U, δ; 1).
Then, almost surely, HD(U) = HD

WM,ZM[U ](U), because HD
W ε

M,Z
ε
M[U ](U) = −∆− ξε + cε =

HD
ε (U) and similarly as in Theorem 5.3,HD

WM,ZM[U ](U) is the limit (in the sense of (57)) of
HD
W ε

M,Z
ε
M[U ](U). We will apply this in Section 5.3 with M = M(U, δ; γ) for γ ∈ (0, 1].

5.2 The Neumann Anderson Hamiltonian
{subsec:Neumann}

As described in the beginning of Section 4 (below Lemma 1.15), the boundary term will be
dealt with by the decomposition into symmetric forms Z̃ and Ẑ . Let us first consider the
ingredients for the latter symmetric form.

{def:hat_Y_AH}

Definition 5.5. Let U be a bounded Lipschitz domain. For N ∈ N0 we define

ŶN := GN ∗ (X − ξ) + (GN −G0) ∗ ξ,
Ŷ ε
N := GN ∗ (Xε − ξε) + (GN −G0) ∗ ξε, ε ∈ (0, 1).
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{lemma:estimate_hat_Y_N_AH}

Lemma 5.6. Let U be a bounded Lipschitz domain. Then for δ ∈ (1
2
, 1) and N ∈ N0

‖ŶN‖C1+δ,σ .U,δ ‖X − ξ‖C−2+2δ,σ(Rd) + 2N‖ξ‖C−2+δ,σ(Rd),

‖ŶN − Ŷ ε
N‖C1+δ,σ .U,δ ‖X − ξ − (Xε − ξε)‖C−2+2δ,σ(Rd) + 2N‖ξ − ξε‖C−2+δ,σ(Rd),

Moreover, ‖ŶN − Ŷ ε
N‖C1+δ,σ converges in probability to 0.

Proof. The estimates follow by the construction assumption 3.2 (I) and Corollary A.10.
{def:cZ_Neumann}

Definition 5.7. Impose the construction and Neumann assumptions, 3.2 (I) and (II), let U
be a bounded Lipschitz domain. Let r ∈ (1 − δ, 1). Using the notation of Theorem 4.3,we
define the following symmetric forms on Hr(U), for N ∈ N0

Z̃N [U ] := Z̃U
Ỹ U ,e2WN

, Z̃εN [U ] := Z̃U
Ỹ Uε ,e

2Wε
N
,

ẐN [U ] := ẐU
ŶN ,e

2WN
, ẐεN [U ] := ẐU

Ŷ εN ,e
2Wε

N
.

We furthermore make abuse of notation (compared to the symmetric forms on Hr
0(U) as in

(54)) and define the following symmetric forms on Hr(U),

ZN [U ] := ZUYN , ZεN [U ] := ZUY εN . (58) {eq:def_of_cZ_AH_neumann}{eq:def_of_cZ_AH_neumann}

Then we define

ZN
N [U ] := ZN [U ] + Z̃N [U ] + ẐN [U ],

ZN,ε
N [U ] := ZεN [U ] + Z̃εN [U ] + ẐεN [U ], ε ∈ (0, 1).

Recalling the notations from Definition 4.8 and Proposition 4.10, for M = M(U, δ; 1) (see
(55)) we set

HN := HN,U := HN,U
WM ,ZN

M [U ], λN
k(U) := λN

k(U ;WM ,ZN
M [U ]),

HN
ε := HN,U

ε := HN

W ε
M ,Z

N,ε
M [U ]

, λN
k;ε(U) := λN

k(U ;W ε
M ,Z

N,ε
M [U ]).

{thm:convergence_of_Neumann_AH}

Theorem 5.8. Impose the construction and Neumann assumptions, 3.2 (I) and (II). Let U
be a bounded Lipschitz domain. For ε ∈ (0, 1),

HN
ε = −∆− ξε + cε (59) {eqn:H_eps_fn_equals_smooth_AH}{eqn:H_eps_fn_equals_smooth_AH}

Then, one has (see Definition 1.6 for “ NR−→”)

HN,U
ε

NR−→ε↓0 HN,U in probability,

λN
k;ε(U)

ε↓0−−→ λN
k(U) in probability, k ∈ N.

and for all k ∈ N there exist an eigenfunction φk of HN,U corresponding to λN
k(U) and

eigenfunctions φk,m ofHN,U
ε corresponding to λN

k;ε(U) for all ε > 0 such that

φk,m
m→∞−−−→ φk in L2(U) in probability.
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Proof. (59) follows by the construction assumption 3.2 (I) and Lemma 1.15 (see also the
discussion in Section 1.5 and Remark 3.5).

The convergences follows in a similar as in Theorem 5.3, that is we again apply Theo-
rem 4.14 and Lemma 4.12. The convergence of Wn and ZεN [U ] follow in the same way as in
Theorem 5.3. The convergence of Z̃εN [U ] is guaranteed by the Neumann assumption 3.2 (II)
and Theorem 4.3 (b) and the convergence of ẐεN [U ] by Theorem 4.3 (c) and Lemma 5.6.

Without the Neumann assumption 3.2 (II), we can still construct an artificial Neumann
Anderson Hamiltonian, which will be used in Section 5.3 as a technical tool.

{def:artificial_Neumann_AH}

Definition 5.9. Impose the construction assumption 3.2 (I) and let U be a bounded Lipschitz
domain and r ∈ (1− δ, 1). For M = M(U, δ; 1), we set

HN,U
:= HN,U

WM ,ZM [U ], λ
N

k(U) := λN
k(U ;WM ,ZM [U ]).

{remark:larger_M_neumann}

Remark 5.10. Similar to Remark 5.4, for M being a random variable with values in N0

such that M ≥ M(U, δ, 1), one has, almost surely, HN,U
= HN,U

WM,ZM[U ] and, if one imposes
the Neumann condition 3.2 (II), thenHN,U = HN,U

WM,ZM[U ].

5.3 Integrated density of states
{subsec:IDS}

The aim of this section is to study the integrated density of states (IDS) associated to the
Anderson Hamiltonian with potential ξ. Namely, we prove Theorem 1.10:

• Theorem 1.10 (a) and (e) are proven by Theorem 5.26.

• Theorem 1.10 (b) is proven by Theorem 5.29.

• Theorem 1.10 (c) and (d) are proven by Theorem 5.30.

Compared to the previous two sections, this section is rather technical involving quantitative
estimates obtained before, especially in Section 4.3. Before stating the assumptions for this
section, we give some estimates on M and the symmetric forms Z and ZN in the follow-
ing lemma which will be used later on (they will be reformulated in Remark 5.13 under
Assumption 5.12).

{lem:estimate_of_cZ_AH_Neumann}

Lemma 5.11. Impose the construction assumption 3.2 (I). Let δ− ∈ (0, δ) and σ ∈ (0,∞).
Let U be a bounded domain. We will use the following abbreviation for the M defined in
(55): ML,δ−,γ := M(UL, δ−; γ). Recall also the definition a and b from (16). {item:estimate_M_gamma}

(a) There exists a C = C(U, δ−, σ) ∈ (0,∞) such that for all L ≥ 1 and γ ∈ (0,∞) one
has

M(UL, δ−; γ) ≤ 1 + (δ − δ−)−1 log2

(
Cγ−1Lσ‖X‖C−2+δ,σ(Rd)

)
. (60) {eqn:estimate_M_gamma}{eqn:estimate_M_gamma}

{item:estimate_first_part_symm_f_neumann}

(b) Suppose U is a bounded Lipschitz domain. For every r ∈ (1 − δ−, 1), L ≥ 1 and
γ ∈ (0,∞),

JZML,δ−,γ
[UL]KHr(UL) .U,δ−,δ,σ γ

−(δ−δ−)−1bL(2+b(δ−δ−)−1)σ‖X‖(δ−δ−)−1b

C−2+δ,σ(Rd)
a.

{item:estimate_complete_part_symm_f_neumann}

(c) Additionally, impose the Neumann assumption 3.2 (II) and that 1/2 < δ−. Suppose
that r ∈ (3

2
−δ−, 1), ε ∈ (0, δ−− 1

2
), p ∈ (2,∞) and q ∈ (1, 2) are such that 1

p
+ 1

q
= 1

and (41) holds for s = r. Then, for every σ ∈ (0,∞), L ≥ 1 and γ ∈ (0, 1],
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JZN
ML,δ−,γ

[UL]KHr(UL)

.U,δ−,δ,σ,ε γ
−(δ−δ−)−1bL(2+(δ−δ−)−1b)σ‖X‖(δ−δ−)−1b

C−2+δ,σ(Rd)
(a + ‖ξ‖C−2+δ,σ(Rd))

+ L2ε‖Ỹ UL‖B−2+δ
p,p (Rd) + Lσ‖X − ξ‖C−2+2δ,σ(Rd).

Proof. (a) (60) is a direct consequence of Lemma 2.11.
(b) follows by Theorem 4.3 (a) (see (39)) since by definition of b and a (see (16)),

‖YN‖C−1+δ−,σ(Rd) ≤ 2bNa, (61) {eqn:estimate_Y_N_AH}{eqn:estimate_Y_N_AH}

and by using (60).
For (c) we use (b) and estimate Z̃ML,γ

[UL] and ẐML,γ
[UL]. By Theorem 4.3 (b) and (c)

we have

Z̃ML,γ
[UL] .δ,ε,p,U L

2ε‖e2WML,γ ‖Cδ(UL)‖Ỹ UL‖B−2+δ
p,p (Rd),

ẐML,γ
[UL] .δ,σ,U L

σ‖e2WML,γ ‖Cδ(UL)‖ŶML,γ
‖C1+δ,σ(Rd).

As for any x, y ∈ R,

|ex − ey| = ex|1− ey−x| ≤ Cex|y − x| ≤ Cex∨y|y − x|,

by definition of ML,γ we have ‖e2WML,γ ‖Cδ(U) . 2γe2γ ≤ 2e2.
Therefore, we obtain the desired inequality by the estimate of ‖ŶML,γ

‖C1+δ,σ(Rd) from
Lemma 5.6 and (60).

Assumption 5.12. (Assumptions for this section) Throughout the rest of this section, we {ass:section_IDS}

impose the construction assumption 3.2 (I) and the ergodic assumption 3.2 (III). We fix
δ−, δ, r ∈ (0, 1), σ ∈ (0, 1/4) and p ∈ (8d,∞) such that δ− < δ and

(2 + (δ − δ−)−1b(δ−))dσ < 1− r. (62) {eq:condition_of_sigma}{eq:condition_of_sigma}

We set

|||ξ||| := 1 + ‖X‖C−2+δ,σ(Rd) + a + ‖X − ξ‖C−2+2δ,σ(Rd),

aε := aε(δ, σ) := sup
N∈N

2−bN‖Y ε
N‖C−1+δ,σ(Rd) ∈ Lp(P),

|||ξε||| := 1 + ‖Xε‖C−2+δ,σ(Rd) + aε + ‖Xε − ξε‖C−2+2δ,σ(Rd), ε > 0.

Whenever we impose the Neumann assumption 3.2 (II), we implicitly also assume that δ− >
1
2
; the condition (41) is satisfied for q ∈ (1, 2) such that 1

p
+ 1

q
= 1 and some ε ∈ (0, δ−− 1

2
);

and for any bounded Lipshitz domain U , we set (with Ỹ U as in Assumption 3.2 (II))

|||ξ|||∂U := sup
L∈N

L−
1
4‖Ỹ UL‖B−1+δ

p,p (Rd), |||ξε|||∂U := sup
L∈N

L−
1
4‖Ỹ UL

ε ‖B−1+δ
p,p (Rd), ε > 0.

{rem:estimates_on_cZ}

Remark 5.13. By the construction assumption 3.2 (I), |||ξ||| ∈ Lq(P) for every q ∈ [1,∞)
and under the Neumann assumption 3.2 (II), in particular (17), |||ξ|||∂U ∈ Lq(P) for every
q ∈ [1,∞). By Lemma 5.11 and the condition on σ, (62), there exists anm ∈ N such that for
all bounded Lipschitz domains U , for all L ≥ 1 and γ ∈ (0, 1], for ML,δ−,γ = M(UL, δ−, γ),

JZML,δ−,γ
[UL]KHr(UL) .U γ

−(δ−δ−)−1bL
1−r
d |||ξ|||m, (63) {eq:estimate_of_cZ_AH_artificial_Neumann}{eq:estimate_of_cZ_AH_artificial_Neumann}
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JZN
ML,δ−,γ

[UL]KHr(UL) .U γ
−(δ−δ−)−1bL

1−r
d (|||ξ|||m + |||ξ|||∂U) under 3.2 (II). (64) {eq:estimate_of_cZ_AH_n_Neumann}{eq:estimate_of_cZ_AH_n_Neumann}

For (64) observe that σ ≤ 1−r
d

and that we may choose ε > 0 as in Lemma 5.11 (c) such
that 2ε < 1−r

d
. In (63) one may replace “Z” and “ξ” by “Zε” and “ξε” and in (64) one may

replace “ZN”, “ξ” and “ξ” by “ZN,ε”, “ξε” and “ξε”.

Our first goal is to construct the IDS for the Anderson Hamiltonian, see Definition 5.25
We begin by introducing some notation related to eigenvalue counting functions.

Definition 5.14. Recall the notation from Definition 4.17. For a bounded domain U , λ ∈ R
and ε > 0, we setND := ND

WM ,ZM andND

ε := ND

W ε
M ,Z

ε
M

, i.e.,

ND(U, λ) :=
∑
k∈N

1{λD
k(U)≤λ}, ND

ε (U, λ) :=
∑
k∈N

1{λD
k;ε(U)≤λ}.

If U is a bounded Lipshitz domain, we setN
N

:= NN

WM ,ZM andN
N

ε := NN

W ε
M ,Z

ε
M

, i.e.,

N
N
(U, λ) :=

∑
k∈N

1{λN

k(U)≤λ}, N
N
(U, λ) :=

∑
k∈N

1{λN

k;ε(U)≤λ},

and under the Neumann assumption 3.2 (II) we setNN := NN

WM ,ZN
M

andNN

ε := NN

W ε
M ,Z

N,ε
M

,
i.e.,

NN(U, λ) :=
∑
k∈N

1{λN
k(U)≤λ}, NN

ε (U, λ) :=
∑
k∈N

1{λN
k;ε(U)≤λ}.

{remark:restricting_to_eps_0}

Remark 5.15. In most of the following we restrict our statements to ND, N
N

and NN.
However, by ‘adding some ε’s’ the statements are also valid by replacing the occurrences of
“ND”, “N

N
” “NN”, “ξ” and “ξ”, and by “ND

ε ”, “N
N

ε ” “NN

ε ”, “ξε” and “ξε”.
{lem:upper_bound_of_neumann_N}

Lemma 5.16. Let U be a bounded Lipschitz domain. Then, for any θ ∈ (0, 1), there exist
λU,θ, CU,θ,r ∈ (0,∞) and an integer l ∈ N such that for every λ ≥ λθ,U

ND(U, λ) ≥ (1− θ) |B(0, 1)|
(2π)d

|U |{λ+ θ + CU,θ,r|||ξ|||l}
d
2 , (65) {eqn:estimate_N_fd_below_ball}{eqn:estimate_N_fd_below_ball}

N
N
(U, λ) ≤ (1 + θ)

|B(0, 1)|
(2π)d

|U |{λ+ θ + CU,θ,r|||ξ|||l}
d
2 . (66) {eqn:estimate_artN_fn_above_ball}{eqn:estimate_artN_fn_above_ball}

In particular, E[N
N
(U, λ)m] <∞ for every m ∈ (0,∞) and λ ∈ R.

If we furthermore impose the Neumann assumption 3.2 (II), then

NN(U, λ) ≤ (1 + θ)
|B(0, 1)|

(2π)d
|U |{λ+ θ + CU,θ,r(|||ξ|||+ |||ξ|||∂U)l}

d
2 . (67) {eqn:estimate_N_fn_above_ball}{eqn:estimate_N_fn_above_ball}

Proof. The proof of (65) and (67) are similar to (66), hence we only give the proof of
the latter. Remember that ND

0 and NN

0 are the eigenvalue counting functions of −∆ with
Dirichlet and Neumann boundary conditions, respectively. By Lemma 4.20 (b), there exists
a λU,θ > 0 such that for λ ≥ λU,θ we have

NN

0(U, λ) ≤ (1 + θ)
1
2
|B(0, 1)|

(2π)d
|U |λ

d
2 .
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For the Dirichlet estimate: By Lemma 4.20 (b), there exists a λU,θ > 0 such that for λ ≥ λU,θ
we have

ND

0 (U, λ) ≥ (1− θ)
1
2
|B(0, 1)|

(2π)d
|U |λ

d
2 .

Let θ′ ∈ (0,∞), γ ∈ (0, 1]. By Lemma 4.19, and Remark 5.10, with Λ+
λ,θ′ := Λ+

λ,θ′(WMγ ,ZMγ )
where Mγ is the random variable M(U, δ; γ) (see (55)), one has

N
N
(U, λ) ≤ (1 + θ)

1
2
|B(0, 1)|

(2π)d
|U |(Λ+

λ,θ′)
d
2 .

For the Dirichlet estimate: with instead Remark 5.4 and Λ−λ,θ′ ,

ND(U, λ) ≥ (1− θ)
1
2
|B(0, 1)|

(2π)d
|U |(Λ−λ,θ′)

d
2 .

Recalling the definition of Λ+
λ,θ′ , one observes that there exists a constant C ′U,θ′,r such that

Λ+
λ,θ′ ≤ (1 + θ′)e(2+ 2r

1−r )γ(λ+ θ′ + C ′U,θ′,rJZMγK
1

1−r
Hr(U)).

For the Dirichlet estimate:

Λ−λ,θ′ ≥ (1− θ′)e−(2+ 2r
1−r )γ(λ− θ′ − C ′U,θ′,rJZMγK

1
1−r
Hr(U)).

Therefore, if γ := (2 + 2r
1−r )

−1 log(1 + θ′) and θ′ := (1 + θ)
1
2d − 1 ∈ (0, θ), and CU,θ,r =

C ′U,θ′,rγ
1−r
dσ
−2 (see (62)), using (63), one has due to the fact that

(1 + θ′)e(2+ 2r
1−r )γ = (1 + θ′)2 = (1 + θ)

1
d ,

Λ+
λ,θ′ ≤ (1 + θ)

1
d (λ+ θ + CU,θ,r|||ξ|||l),

For the Dirichlet estimate: if γ := −(2+ 2r
1−r )

−1 log(1−θ′) and θ′ := 1− (1−θ) 1
2d ∈ (0, θ),

and CU,θ,r = C ′U,θ′,rγ
1−r
dσ
−2

Λ−λ,θ′ ≥ (1− θ)
1
d (λ− θ − CU,θ,r|||ξ|||l),

due to the fact that

(1− θ′)e−(2+ 2r
1−r )γ = (1− θ′)2 = (1 + θ)

1
d ,

which yields (66).

By Lemma 4.19 we deriveND(U, λ) ≤NN
(U, λ) and similarly - by using thatZN

N [U ] =
ZN [U ] on Hr

0 (which follows due to the fact that T equals zero on Hr
0(U), see Lemma 2.8)

- ND(U, λ) ≤ NN(U, λ). Therefore, as a direct consequence of Lemma 5.16 we obtain
the following asymptotics. These asymptotics agree with the asymptotics of the eigenvalue
counting function for the Laplacian operator, as proven by Weyl (also called Weyl’s law) and
later generalised for a class of Schrödinger operators by Kirsch and Martinelli [44, Propo-
sition 2.3] (observe that our results agree with the work of Mouzard on two dimensional
manifolds, see [58]).
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{prop:weyl}

Proposition 5.17. Let U be a bounded Lipschitz domain, then

lim
λ→∞

λ−
d
2ND(U, λ) = lim

λ→∞
λ−

d
2N

N
(U, λ) =

|B(0, 1)|
(2π)d

|U |,

and under the Neumann assumption 3.2 (II),

lim
λ→∞

λ−
d
2NN(U, λ) =

|B(0, 1)|
(2π)d

|U |.

{prop:existence_of_IDS}

Proposition 5.18. There exist (deterministic) functions R→ [0,∞), N D and N N
, such that

for all λ ∈ R and y ∈ Rd, P-almost surely and in L1(P), with Q = y + [−1
2
, 1

2
]d,

N D(λ) = lim
L∈Q,L→∞

1

Ld
ND(QL, λ),

N N
(λ) = lim

L∈Q,L→∞

1

Ld
N

N
(QL, λ)

exist. Moreover,

sup
L>0

1

Ld
E[ND(QL, λ)] = N D(λ)

≤N N
(λ) = inf

L>0

1

Ld
E[N

N
(QL, λ)]. (68) {eqn:overline_sN_n_equals_inf}{eqn:overline_sN_n_equals_inf}

Under the Neumann assumption 3.2 (II), one may simultaneously replace N
N

by NN and
N N

by N N in the above definition and inequality.

Proof. The existence of the mentioned limits in the P-almost sure sense and the equalities in
(68) follow by an application of the ergodic theorem by Akcoglu and Krengel [1], see also
[44, Section 3] for a similar construction (in case the potential is a function). The conditions
of this ergodic theorem are satisfied on the one hand by the ergodic assumptions 3.2 (III)
and on the other hand by the fact that Q 7→ ND(Q, λ) is superadditive and Q 7→ N

N
(Q, λ)

is subadditive, which follows by Lemma 4.24 and Remark 4.25. That the convergences hold
also in L1(P) and the inequality in (68) holds, follows by Lemma 4.18 as for Q ⊆ [−1, 1]d,
it implies

ND(Q, λ) ≤ND([−1, 1]d, λ) ≤NN
([−1, 1]d, λ),

andN
N
([−1, 1]d, λ) is in L1(P) by Lemma 5.16.

Remark 5.19. The cube Q in Proposition 5.18 does not need to be centered at the origin.
This is important in the proof of Theorem 5.26.

Definition 5.20. We define (deterministic) functionsND,N
N

: R→ R by

ND(λ) := inf
λ′>λ

N D(λ′) and N
N
(λ) := inf

λ′>λ
N N

(λ′).

Note that they are right-continuous functions that satisfy limλ→−∞N
#(λ) = 0 for # de-

noting either D or N.
{def:vague_convergence}

Definition 5.21. A sequence (fn)n∈N of increasing functions R → [0,∞), is said to con-
verge vaguely to some function f : R → [0,∞) if fn(λ) → f(λ) for all λ ∈ R that are
continuity points of f .
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{rem:convergence_of_ids_cube}

Remark 5.22. If λ is a continuity point ofND(λ), thenND(λ) = N D(λ).
{remark:upper_estimate_with_norm_xis}

Remark 5.23. Observe that by Lemma 4.28 (b) and (63) for γ = 1, for all µ > 0 and
bounded Lipschitz domains U , there exists a CU,µ > 0 such that

ND(UL, λ) ≤NN
(UL, λ)

≤ND(UL, λ+ µ) + CU,µL
d−1[1 + max{λ, 0}+ JZML,1

K
1

1−r
Hr(UL)]

d
2

≤ND(UL, λ+ µ) + CU,µL
d−1[1 + max{λ, 0}+ L

1
d |||ξ|||

m
1−r ]

d
2

≤ND(UL, λ+ µ) + CU,µL
d− 1

2 [1 + max{λ, 0}+ |||ξ|||
m

1−r ]
d
2 ,

and under the Neumann assumption 3.2 (II)

ND(UL, λ) ≤N (UL, λ)

≤ND(UL, λ+ µ) + CU,µL
d− 1

2 [1 + max{λ, 0}+ (|||ξ|||m + |||ξ|||∂U)
1

1−r ]
d
2 .

{prop:ids_boundary_condition}

Proposition 5.24. ND = N
N

and, under the Neumann assumption 3.2 (II),ND = NN.

Proof. Let λ be a continuity point of both ND and N
N
. By Remark 5.23 applied to

U = [−1
2
, 1

2
]d, by Proposition 5.18, because N D(λ) = ND(λ) and N N

(λ) = N
N
(λ),

see Remark 5.22, we have for all µ > 0,

ND(λ) ≤NN
(λ) ≤ND(λ+ µ),

so that the equality follows as both ND and N
N

are right-continuous. Under the Neumann
assumption 3.2 (II), we can argue similarly with “NN” instead of “N

N
”.

Alternative proof of Proposition 5.24. We could invoke Lemma 4.28 (b), but instead give a
more elementary proof. We follow the start of the proof of Lemma 4.28 (b).

Let l > 0, n ∈ N, n ≥ 3.

U1 = [−(n− 1)l, (n− 1)l]d, U2 = [−nl, nl]d \ [−(n− 2)l, (n− 2)l]d.

Then, for L = nl, R = 2l and Q = [−1, 1]d we have U1 = QL \ B(∂QL, R) and U2 =

QR
L ⊆ B(∂UL, R). Because H1

m,R(U2) is embedded in H1(U2), we have EN,U2 � Em,R,U2

(where E = EWM ,Z
N

M
) and thus by the proof of Lemma 4.28 (b),

N
N
([−nl, nl]d, λ) ≤ND([−(n− 1)l, (n− 1)l]d, λ+

K

l
) +N

N
(U2, λ+

K

l
).

Since U2 can be decomposed into {nd − (n − 2)d} boxes of size l, the subadditivity of
N

N
and the translation invariance yield

E[N
N
(U2, λ)] ≤ (nd − (n− 2)d)E[N

N
([0, l]d, λ)].

Therefore,

1

(nl)d
E[N

N
([−nl, nl]d, λ)] ≤ 1

(nl)d
E
[
ND

(
[−(n− 1)l, (n− 1)l]d, λ+

K

l

)]
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+
nd − (n− 2)d

(nl)d
E
[
N

N
(

[0, l]d, λ+
K

l

)]
.

By letting n→∞, if λ is a continuity point ofN
N
, one has

N
N
(λ) ≤N D(λ+Kl−1) ≤ND(λ+ 2Kl−1), l > 0.

SinceN
N

andND are right-continuous, we complete the proof.
{def:IDS}

Definition 5.25. Thanks to Proposition 5.24, we may simply write

N := ND = N
N
(= NN under the Neumann assumption 3.2 (II)).

We callN the integrated density of states (IDS) for the Anderson Hamiltonian with potential
ξ.

One can see the validity of the above definition from the following two perspectives: (i)
N is the limit of eigenvalue counting functions on growing domains (Theorem 5.26) and
(ii)N is the limit of the IDS associated with mollified noise (Theorem 5.29).

{thm:IDS_general}

Theorem 5.26. Let U be a bounded domain. Then, almost surely,

lim
L→∞

1

|UL|
ND(UL, ·) = N vaguely. (69) {eqn:convergence_IDS_dirichlet}{eqn:convergence_IDS_dirichlet}

If U is a bounded Lipschitz domain, then

lim
L∈N,L→∞

1

|UL|
N

N
(UL, ·) = N vaguely. (70) {eqn:convergence_IDS_hat_neumann}{eqn:convergence_IDS_hat_neumann}

Under the Neumann assumption 3.2 (II), one can replaceN
N

byNN in (70).

Proof. Firstly, observe that we may assume U to be a bounded Lipschitz domain due to the
monotonicity of ND(U, λ) as a function of U . If U is a bounded domain but not Lipschitz,
then for all ε ∈ (0, |U |) there exist bounded Lipschitz domains U−, U+ such that U− ⊆
U ⊆ U+ and |U \ U−|, |U+ \ U | < ε. Then

N ∂(U−L , ·)
|U−L |+ εL

≤ N
∂(UL, ·)
|UL|

N ∂(U+
L , ·)

|U+
L | − εL

.

Then use moreover, e.g., |U−L |
|U−L |+εL

= |U−|
|U−|+ε . By Remark 5.23 it suffices to prove (69) (also

forNN under the Neumann assumption 3.2 (II).
Let λ ∈ R be a continuity point ofN . We set

In := {k ∈ Zd : k + [0, 1]d ⊆ 2nU}, Jn := {k ∈ Zd : (k + [0, 1]d) ∩ (2nU) 6= ∅}.

By Lemma 4.18 and Lemma 4.24,∑
k∈In

ND(2−nL(k + [0, 1]d), λ) ≤ND(UL, λ) ≤
∑
k∈Jn

N
N
(2−nL(k + [0, 1]d), λ).

Therefore, by Proposition 5.18 and Remark 5.22,

#In
2dn|U |

ND(λ) ≤ lim inf
L→∞

1

|UL|
ND(UL, λ) ≤ lim sup

L→∞

1

|UL|
ND(UL, λ) ≤ #Jn

2dn|U |
N

N
(λ).

By Proposition 5.24, one has N = ND = N
N
. Thus, the proof is complete by letting

n→∞.
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Remark 5.27. Recall Remark 5.15. Let ε ∈ (0, 1). There exist functions N D

ε ,N
N

ε and
N N

ε such that analogues statements as in Proposition 5.18 hold. Then we define ND

ε (λ) :=

infλ′>λN D

ε (λ′) and similarly N
N

ε and NN

ε . By analogous arguments as in Theorem 5.26
we also have ND

ε = N
N

ε (= NN

ε under the Neumann assumption 3.2 (II)). In this case
N ε := ND

ε is called the integrated density of states for the Anderson Hamiltonian with
potential ξε − cε.

For the convergence of N ε to N that we show in Theorem 5.29, we introduce the fol-
lowing auxiliary lemma.

{lemma:liminf_expect_IDS_eps}

Lemma 5.28. Let # denote either D or N. For all L > 0, λ ∈ R and µ > 0,

lim inf
ε↓0

E[N#
ε (QL, λ)] ≥ E[N#(QL, λ− µ)].

Proof. First we observe that as λ#
k;ε(QL)→ λ#

k (QL) in probability for all k (by Theorem 5.3
and Theorem 5.8), the following holds: For all (εn)n∈N in (0,∞) with εn ↓ 0 as n → ∞,
there exists a subsequence (εnm)m∈N and a Ω1 ⊆ Ω of P-probability 1, such that on Ω1,
λ#
k;εnm

(QL)→ λ#
k (QL) for all k, and therefore for all µ > 0

lim inf
ε↓0

N#
ε (QL, λ) ≥N#(QL, λ− µ).

Indeed, if µ1,m ≤ µ2,m ≤ · · · and µk,m → µk in R as m → ∞, for all k ∈ N, then
lim infm→∞

∑∞
k=1 1{µk,m≤µ} ≥

∑∞
k=1 1{µk≤µ−ε} for all µ ∈ R and ε > 0. Let µ ∈ R, ε > 0.

Let k ∈ N be such that µk ≤ µ − ε < µk+1, i.e.,
∑∞

k=1 1{µk≤µ−ε} = k. Then there exists
an M ∈ N such that for all m ≥ M , µk,m ≤ µ, i.e., lim infm→∞

∑∞
k=1 1{µk,m≤µ} ≥ k.

Therefore, for all (εn)n∈N in (0,∞) with εn ↓ 0 as n → ∞, there exists a subsequence
(εnm)m∈N such that by Fatou’s lemma

lim inf
m→∞

E[N#
εnm

(QL, λ)] ≥ E[lim inf
m→∞

N#
εnm

(QL, λ)] ≥ E[N#(QL, λ− µ)].

From this the inequality follows.
{thm:IDS_epsilon}

Theorem 5.29. N ε →N vaguely.

Proof. Let Q := [−1/2, 1/2]d, L ∈ N and µ ∈ (0, 1). Let λ ∈ R be a continuity point of
N . By (68) (see also Remark 5.22)

N (λ)−N ε(λ) ≤ 1

Ld
E[N

N
(QL, λ)−ND

ε (QL, λ)].

By Lemma 5.28, for all L ≥ 1 and µ > 0,

A := lim sup
ε↓0

{N (λ)−N ε(λ)} ≤ 1

Ld
E[N

N
(QL, λ)−ND(QL, λ− µ)].

Therefore, by (68), taking the infimum over L ≥ 1 in the above inequality, we obtain A ≤
N (λ) −N (λ − µ) for all µ > 0. As λ is a continuity point of N , it follows that A ≤ 0.
Similarly, as by (68) one also has

N (λ)−N ε(λ) ≥ 1

Ld
E[ND(QL, λ)−NN

(QL, λ)].

one can show using Lemma 5.28 for # denoting N,

lim inf
ε↓0
{N (λ)−N ε(λ)} ≥ 0.
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Finally, we prove the tail behavior of the IDS.
{thm:IDS_tails}

Theorem 5.30. One has the following tail estimates of the IDS.

(a) One has limλ→∞ λ
− d

2N (λ) = |B(0,1)|
(2π)d

.

(b) For every bounded domain U and every α ∈ (0,∞), one has

lim sup
λ→−∞

(−λ)−α logN (λ) = lim sup
λ→−∞

(−λ)−α logP(λD
1 (U) ≤ λ), (71) {eqn:limsup_lambda_min_infty}{eqn:limsup_lambda_min_infty}

lim inf
λ→−∞

(−λ)−α logN (λ) = lim inf
λ→−∞

(−λ)−α logP(λD
1 (U) ≤ λ). (72) {eqn:liminf_lambda_min_infty}{eqn:liminf_lambda_min_infty}

Proof. (a) Let Q := [0, 1]d. By applying Fatou’s lemma and the first inequality of (68), we
obtain

E[lim inf
λ→∞

λ−
d
2ND(Q, λ)] ≤ lim inf

λ→∞
λ−

d
2N (λ) ≤ lim sup

λ→∞
λ−

d
2N (λ).

E[lim inf
λ→∞

λ−
d
2ND(Q, λ)] ≤ lim inf

λ→∞
E[λ−

d
2ND(Q, λ)]

≤ lim inf
λ→∞

λ−
d
2 sup
L>0

1

Ld
E[ND(QL, λ)]

≤ lim inf
λ→∞

λ−
d
2N D(λ) ≤ lim inf

λ→∞
λ−

d
2ND(λ).

Since limλ→∞ λ
− d

2ND(Q, λ) = |B(0,1)|
(2π)d

by Proposition 5.17, the lower bound is obtained. To
obtain the upper bound, by the last inequality of (68) and the estimate (66) from Lemma 5.16,
for any θ ∈ (0, 1) we have

lim sup
λ→∞

λ−
d
2N (λ) ≤ lim sup

λ→∞
λ−

d
2E[N

N
(Q, λ)]

≤ lim sup
λ→∞

λ−
d
2 (1 + θ)

|B(0, 1)|
(2π)d

E[{λ+ θ + CQ,θ,r|||ξ|||l}
d
2 ]

≤ (1 + θ)
|B(0, 1)|

(2π)d
.

Now the identity in (a) follows.
(b) Let λ < 0. Thanks to the monotonicity of λD

1 (see Proposition 4.10), we may and do
assume U = [0, L]d for some L ∈ (0,∞). By (68) (see also Remark 5.22),

P(λD
1 (U) ≤ λ) ≤ E[ND(U, λ)] ≤ LdN (λ).

Therefore, we establish that the left-hand sides are greater or equal to the right-hand sides
of (71) and (72). By Lemma 4.28 (a), for l ∈ (0, L/2) and n ∈ N, one has

ND(Un, λ) ≤
∑

k∈Zd∩[−1,n+1]d

ND(k + [−l, L+ l]d, λ+Kl−2)

and hence

1

nd
E[ND(Un, λ)] ≤ (n+ 2)d

nd
E[ND([0, L+ 2l]d, λ+Kl−2)].

56



Letting n→∞, for p, q ∈ (1,∞) with p−1 + q−1 = 1, one obtains

N (λ) ≤ E[ND([0, L+ 2l]d, λ+Kl−2)]

= E[ND([0, L+ 2l]d, λ+Kl−2)1{λD
1 ([0,L+2l]d)≤λ+Kl−2}]

≤ E[ND([0, L+ 2l]d, Kl−2)q]
1
qP(λD

1 ([0, L+ 2l]d) ≤ λ+Kl−2)
1
p .

where we applied Hölder’s inequality in the second inequality. Note that

E[ND([0, L+ 2l]d, Kl−2)q] <∞

by Lemma 4.19 and Lemma 4.20 (b). Therefore, for U = [0, L+2l]d, the left-hand sides are
less or equal to the right-hand sides of (71) and (72). As L and l ∈ (0, L/2) can be chosen
arbitrarily, the equalities follow.

A Estimates related to function spaces
{subsec:technical_estimates_function_spaces}

A.1 Estimates in Besov spaces
{subsec:estimates_in_Besov}

This subsection gives estimates in weighted Besov spaces (see Definition 2.2).
{lem:weighted_besov_p_vs_infty}

Lemma A.1. Let p, q ∈ [1,∞], r ∈ R and σ1, σ2 ∈ [0,∞). Then

‖f‖Cr,σ1 (Rd) .p,r,σ1 ‖f‖
B
r+ dp ,σ1
p,∞ (Rd)

, (73) {eqn:estimate_infty_by_p_besov}{eqn:estimate_infty_by_p_besov}

‖f‖Cr,σ1 (Rd) .p,q,r,κ,σ1 ‖f‖
B
r+ dp+κ,σ1
p,q (Rd)

, κ > 0. (74) {eqn:estimate_infty_by_p_q_besov}{eqn:estimate_infty_by_p_q_besov}

If pσ2 > d, then
‖f‖

B
r,σ1+σ2
p,q (Rd)

.p,q,r,σ1,σ2 ‖f‖Cr,σ1 (Rd). (75) {eqn:estimate_p,q_by_infty_infty_besov}{eqn:estimate_p,q_by_infty_infty_besov}

Proof. By [72, Theorem 6.5], one has ‖f‖Br,σp,q (Rd) ∼p,q,r,σ ‖wσf‖Brp,q(Rd). Therefore (73)
and (74) follow by the (unweighted) Besov embedding, see [71, Section 2.7.1]. For (75),
the product estimate in the Besov space (see [52, Corollary 2.1.35], which follows also from
[60, Lemma 2.1]) yields

‖f‖
B
r,σ1+σ2
p,q (Rd)

.p,q,r,σ1,σ2 ‖wσ2‖
B
|r|+1

2
p,q (Rd)

‖f‖Cr,σ1 (Rd).

Now ‖wσ2‖
B
|r|+1

2
p,q (Rd)

. ‖wσ2‖
B
|r|+3

4
p,p (Rd)

. ‖wσ2‖
W
|r|+3

4
p (Rd)

. ‖wσ2‖W |r|+1
p (Rd)

(by Lemma 2.7).

Since |∂mwσ2| .m,σ2 wσ2−|m|, we have ‖wσ2‖W |r|+1
p (Rd)

<∞ if pσ2 > d.
{thm:weighted_young}

Theorem A.2 (Weighted Young’s inequality). Let p, q, r ∈ [1,∞], 1
r

+ 1 = 1
p

+ 1
q

and
σ ∈ [0,∞). Then

‖wσ(f ∗ g)‖Lr .σ ‖w−σf‖Lp‖wσg‖Lq .

Proof.

(1 + |x|2)−
σ
2 (1 + |y|2)−

σ
2 . (1 + |x− y|2)−

σ
2 ,

because 1 + |x− y|2 ≤ (1 + |x|2)(1 + |y|2).. Using that wσ(x) .σ wσ(x− y)w−σ(y), one
can estimate wσ(x)|f ∗ g|(x) ≤ [(|f |w−σ) ∗ (|g|wσ)](x), see also [57, Theorem 2.4]. The
rest follows by Young’s inequality, [4, Theorem 1.4].
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{theorem:conv_mollifiers_in_weighted}

Theorem A.3. Let r ∈ R and σ ∈ [0,∞]. Let ϕ ∈ S(Rd) and
∫
ϕ = 1 and ϕε(x) =

ε−dϕ(ε−1x). Then, for all η ∈ Cr,σ(Rd), δ > 0,

‖ϕε ∗ η − η‖Cr−δ,σ+δ(Rd)
ε↓0−−→ 0.

Proof. In this proof we refrain from writing “(Rd)”. Let δ > 0 and p ∈ (d
δ
,∞). By

Lemma A.1, (75), η is an element of Br,σ+δ
p,1 . As by Lemma A.1, (73),

‖ϕε ∗ η − η‖Cr−δ,σ+δ . ‖ϕε ∗ η − η‖Br,σ+δp,1
=

∞∑
j=−1

2rj‖wσ+δ(ϕε ∗∆jη −∆jη)‖Lp .

It suffices to show for all j that ‖wσ+δ(ϕε ∗∆jη −∆jη)‖Lp
ε↓0−−→ 0 and

‖wσ+δ(ϕε ∗∆jη −∆jη)‖Lp . ‖wσ+δ∆jη‖Lp (76) {eqn:estimate_difference_weighted_conv}{eqn:estimate_difference_weighted_conv}

As ϕε ∗ ∆jη converges to ∆jη almost everywhere (as it does at every Lebesgue point, see
[41, Proposition 2.3.8]), the converges follows from (76) by Lebesgue’s dominated con-
vergence theorem. By the weighted Young inequality, we have ‖wσ+δ(ϕε ∗ ∆jη)‖Lp .σ

‖w−(σ+δ)ϕε‖L1‖wσ+δ∆jη‖Lp . As w−(σ+δ)(εx) ≤ w−(σ+δ)(x) for ε ∈ (0, 1), we have
‖w−(σ+δ)ϕε‖L1 ≤ ‖w−(σ+δ)ϕ‖L1 which is finite because ϕ ∈ S(Rd). This proves (76).

{lem:localization}

Lemma A.4. Let p, q ∈ [1,∞], r ∈ R and σ ∈ [0,∞). Let Z ∈ Br,σ
p,q (Rd) and φ ∈ S(Rd).

Then, one has

‖φ(L−1·)Z‖Brp,q(Rd) .p,q,r,σ,φ L
σ‖Z‖Br,σp,q (Rd), L ≥ 1.

Proof. By the product estimate for Besov spaces [64, Theorem 4.37], we have

‖φ(L−1·)Z‖Brp,q(Rd) .p,q,r ‖φ(L−1·)w−σ‖C|r|+1
2 (Rd)
‖wσZ‖Brp,q(Rd).

Since ‖wσZ‖Brp,q(Rd) .p,q,r,σ ‖Z‖Br,σp,q (Rd) by [72, Theorem 6.5] and ‖·‖
C|r|+

1
2
. ‖·‖

W
|r|+1

2∞
.

‖·‖
W
|r|+1
∞

by Lemma 2.7, it suffices to show

‖φ(L−1·)w−σ‖W |r|+1
∞ (Rd)

.r,σ,φ L
σ.

For this, it suffices to show

‖∂m[w−σφ(L−1·)]‖L∞(Rd) .σ,m,φ L
σ

for every m ∈ Nd
0. By the Leibniz rule,

∂m[w−σφ(L−1·)] =
m∑
l=0

(
m

l

)
L−|m−l|∂lw−σ∂

m−lφ(L−1·).

Since |∂lw−σ(x)| .σ,l (1 + |x|2)
σ−|l|

2 , we obtain

sup
x∈Rd
|∂m[w−σφ(L−1·)](x)| .σ,m

m∑
l=0

(
m

l

)
L−|m−l| sup

x∈Rd
(1 + |x|2)

σ−|l|
2 |∂m−lφ(L−1x)|

=
m∑
l=0

(
m

l

)
L−|m−l| sup

x∈Rd
(1 + |Lx|2)

σ−|l|
2 |∂m−lφ(x)|

.m,σ,φ L
σ.
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{lemma:estimate_C_delta_U_by_weighted}

Lemma A.5. LetU be a bounded domain, r ∈ R and σ ∈ (0,∞). Then for forZ ∈ Cr,σ(Rd)

‖Z‖Cr(UL) .U,σ L
σ‖Z‖Cr,σ(Rd), L ≥ 1.

Proof. Let φ ∈ C∞c (Rd) be 1 on a neighborhood ofU . Then ‖Z‖Cr(UL) = ‖φ(L·)Z‖Cr(U) ≤
‖φ(L·)Z‖Cr(Rd). By Lemma 2.7,

‖φ(L·)Z‖Cr(Rd) .r ‖φ(L·)Z‖Cr(Rd).

Therefore, we obtain the desired estimate by an application of Lemma A.4.
{lem:derivative_and_lifting_in_Besov}

Lemma A.6. Let p, q ∈ [1,∞], r ∈ R, σ ∈ [0,∞), m ∈ Nd
0 and a ∈ R. {item:derivative_besov}

(a) One has ‖∂mf‖
B
r−|m|,σ
p,q (Rd)

.p,q,r,σ,m ‖f‖Br,σp,q (Rd).
{item:lifting_besov}

(b) Let χ̃ be a smooth function on Rd such that χ̃ = 0 in a neighborhood of 0 and all
the derivatives are bounded. Then, one has ‖F−1[|2π·|2aχ̃Ff ]‖Br−2a,σ

p,q (Rd) .p,q,r,σ,a,χ̃

‖f‖Br,σp,q (Rd).

Proof. We only prove (a), as the proof of (b) is similar. We use the notations from Defi-
nition 2.2. Let ψ be a compactly supported smooth function on Rd such that ψ = 1 on a
neighborhood of supp(χ) and set ψj := ψ(2−j·). Because ∆j∂

mf = F−1[χ(2−j·)ψj]∗∆jf
for j ∈ N0, by Theorem A.2 we have

‖wσ(∆j∂
mf)‖Lp(Rd) ≤ ‖w−σF−1[(−2πi·)mψj]‖L1(Rd)‖wσ∆jf‖Lp(Rd). (77) {eqn:derivative_LP_block}{eqn:derivative_LP_block}

It remains to observe that for all j ∈ N0

2−j|m|‖w−σF−1[(−2πi·)mψj]‖L1(Rd) = ‖w−σF−1[(−2−j+1πi·)mψ(2−j·)]‖L1(Rd)

= ‖2jd
[
w−σ(2−j·)[F−1[(−2πi·)mψ

]
(2j·)‖L1(Rd)

≤ ‖w−σ[F−1[(−2πi·)mψ]‖L1(Rd),

as w−σ(2−j·) ≤ w−σ. For j = −1 a similar estimate as (77) holds for a ψ̃ ∈ C∞c (Rd) with
ψ̃ = 1 on supp(χ̃).

{def:Delta_le_LP_block}

Definition A.7. For J ∈ N0 or J = −1 we write

∆≤Jf =
J∑

j=−1

∆jf, ∆≥Jf =
∞∑
j=J

∆jf.

{rem:sum_large_LP_blocks}

Remark A.8. Observe that by definition of χ̌ and χ (Definition 2.2), for N ∈ N

(1− χ̌)(2−Nx) =
∞∑
j=N

χ(2−jx), x ∈ Rd,

and therefore

∆≥Nf = F−1
(

(1− χ̌)(2−N ·)Ff
)
, ∆≤Nf = F−1

(
χ̌(2−N ·)Ff

)
.
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{lem:fourier_cutoff}

Lemma A.9. Let p, q ∈ [1,∞], r, s ∈ R with r ≤ s, σ ∈ [0,∞) and N ∈ N0. Then, one
has (observe the difference of the positions of r and s)

‖∆≥Nf‖Br,σp,q (Rd) .s−r,σ 2−(s−r)N‖f‖Bs,σp,q (Rd),

‖∆≤Nf‖Bs,σp,q (Rd) .s−r,σ 2(s−r)N‖f‖Br,σp,q (Rd).

Proof. We first observe by Remark A.8 that ∆≥N∆jf = [2NdF−1(1 − χ̌)(2N ·) ∗ f . Thus,
by [57, Theorem 2.4 and Lemma 2.6], one has

‖wσ(∆j∆≥Nf)‖Lp(Rd) . ‖wσ(∆jf)‖Lp(Rd)

Therefore,

‖∆≥Nf‖Br,σp,q (Rd) =
( ∞∑
j=N−1

2jqr‖wσ(∆j∆≥Nf)‖q
Lp(Rd)

) 1
q

≤ 2−(N−1)(s−r)
( ∞∑
j=N−1

2jqs‖wσ(∆j∆≥Nf)‖q
Lp(Rd)

) 1
q

.s−r,σ 2−N(s−r)
( ∞∑
j=N−1

2jqs‖wσ(∆jf)‖q
Lp(Rd)

) 1
q

≤ 2−N(s−r)‖f‖Bs,σp,q (Rd).

The second inequality can be proven similarly.

Recall the definition of an admissible kernel and of GN , see Definition B.35 and Defini-
tion 2.10.

{cor:estimates_of_G_N_and_H_N}

Corollary A.10. Let p, q ∈ [1,∞], r, s ∈ R with r ≤ s, σ ∈ [0,∞) and N ∈ N0. Let K be
an admissible kernel. Set HN := GN −K. Then, one has

‖GN ∗ f‖Br+2,σ
p,q (Rd) .p,q,r,s,σ 2−(s−r)N‖f‖Bs,σp,q (Rd),

‖HN ∗ f‖Bs+2,σ
p,q (Rd) .p,q,r,s,σ 2(s−r)N‖f‖Br,σp,q (Rd),

‖(GN −G0) ∗ f‖Bs+2,σ
p,q (Rd) .p,q,r,s,σ 2(s−r)N‖f‖Br,σp,q (Rd).

Proof. Suppose ψ ∈ C∞c (Rd) is 0 in a neighborhood of 0 and is equal to 1 on supp(1−χ̌). If
we set g := F−1[|2π·|−2ψFf ], thenGN ∗f = ∆≥Ng. Therefore, the first claimed inequality
follows from Lemma A.6 (b) and Lemma A.9.

To prove the second claimed inequality, recall that one hasHN = (GN−G0)+(G0−K).
By Lemma C.1 below, G0 −K belongs to S(Rd). Therefore,

‖(G0 −K) ∗ f‖Bs+2,σ
p,q (Rd) .p,q,r,s,σ ‖f‖Br,σp,q (Rd).

On the other hand, one has (GN −G0) ∗ f = (∆≥N −∆≥0)g = (∆≤N−1 −∆−1)g. Hence,
by Lemma A.6 (b) and by Lemma A.9, the third inequality and thus the second follow.

Finally, we recall a wavelet characterization of weighted Besov spaces.
{thm:scale_function_and_wavelet}

Theorem A.11 ([55], [72, Theorem 1.61]). For any k ∈ N, there exist ψf, ψm ∈ Ck
c (R) with

the following properties.
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• For n ∈ N0, if we denote by Vn the subspace of L2(R) spanned by

{ψf(2
n · −m) : m ∈ Z},

then the inclusions V0 ⊆ V1 ⊆ · · · ⊆ Vn ⊆ Vn+1 ⊆ · · · hold and L2(R) is the closure
of ∪n∈N0Vn.

• The set
{ψf(· −m) : m ∈ Z} ∪ {ψm(· −m) : m ∈ Z}

forms an orthonormal basis of V1. Therefore, the set

{ψf(· −m) : m ∈ Z} ∪ {2
n
2ψm(2n · −m) : n ∈ N0,m ∈ Z}

forms an orthonormal basis of L2(R).

• One has
∫
R x

lψm(x) dx = 0 for every l ∈ {1, 2, . . . , k}.

One can build an orthonormal basis of L2(Rd) as follows.
{prop:wavelet_basis}

Proposition A.12 ([72, Proposition 1.53]). Let k ∈ N and let ψf, ψm ∈ Ck
c (Rd) be as in

Theorem A.11. For n ∈ N0, we define the sets of d-tuples by

Gn :=

{
{(f, . . . , f)} if n = 0,

{(G1, . . . , Gd) ∈ {f,m}d : ∃j s.t. Gj = m} if n ≥ 1.

For n ∈ N0, G ∈ Gn, m ∈ Zd and x ∈ Rd, we set (n− 1)+ = max{n− 1, 0} and

Ψn,G
m (x) := 2

d(n−1)+
2

d∏
j=1

ψGj(2
(n−1)+xj −mj). (78) {eq:wavelet_basis}{eq:wavelet_basis}

The set {Ψn,G
m : n ∈ N0, G ∈ Gn,m ∈ Zd} forms an orthonormal basis of L2(Rd).

With the expansion by the basis {Ψn,G
m : n ∈ N0, G ∈ Gn,m ∈ Zd}, one can give a

wavelet characterization of weighted Besov spaces.
{prop:besov_wavelet}

Proposition A.13 ([72, Theorem 6.15]). Let p, q ∈ [1,∞], r ∈ R and σ ∈ (0,∞). Suppose

k > max
{
r,

2d

p
+
d

2
− r
}

and let {Ψn,G
m : n ∈ N0, G ∈ Gn,m ∈ Zd} be as in Proposition A.12. Then, there exists a

constant C ∈ (0,∞) such that for every f ∈ Br,σ
p,q (Rd) one has

C−1‖f‖Br,σp,q (Rd)

≤
∥∥∥(2n(r−d/p)

( ∑
G∈Gn,m∈Zd

wσ(2−nm)p|2nd/2〈f,Ψn,G
m 〉|p

)1/p)
n∈N0

∥∥∥
lq(N0)

≤ C‖f‖Br,σp,q (Rd).
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A.2 Estimates of constants of functional inequalities on bounded domains
{subsec:estimates_of_constants}

In Definition 4.6 we have introduced the smallest constant that appears in interpolation in-
equalities. In this section we introduce also other constants that appear in functional in-
equalities and study their behaviour (also under scaling of the underlying domain).

{def:functional_inequalities_constants}

Definition A.14. Let U be a bounded domain and p, p1, p2 ∈ [1,∞], r1, r2, s ∈ [0,∞),
r ∈ (0,∞) and δ ∈ (0, r). We set

CU
Embed[W r1

p1
→ W r2

p2
] := sup

f∈W r1
p1

(U)\{0}

‖f‖W r2
p2

(U)

‖f‖W r1
p1

(U)

,

CU
Prod[W r

2p → W r−δ
p ] := sup

f∈W r
2p(U)\{0}

‖f 2‖W r−δ
p (U)

‖f‖2
W r

2p(U)

.

Similarly, we setCU
Embed[W r1

p1,0
→ W r2

p2,0
], . . . by replacing the function spaces “W r

p ” to those
with zero boundary conditions “W r

p,0”. If U is a bounded Lipschitz domain, for a universal
extension operator ι from U to Rd as in Lemma 2.8, we set

CU
Ext[W

r1
p1
,W r2

p2
] := inf{‖ι‖W r1

p1
(U)→W r1

p1
(Rd) + ‖ι‖W r2

p2
(U)→W r2

p2
(Rd)

|ι is an universal extension operator},
C∂U

R (W r
p ) := inf{‖R‖

W r
p (∂U)→W

r+1
p

p (U)
| R is a right inverse of T

W
r+1

p
p (U)

},

C∂U
Prod[W r

2p → W r−δ
p ] := sup

f∈W r
2p(∂U)\{0}

‖f 2‖W r−δ
p (∂U)

‖f‖2
W r

2p(∂U)

,

CU
Mult[W

r
p ] := sup

f∈W r
p (U)\{0}

‖1Uf‖W r
p (Rd)

‖f‖W r
p (U)

,

and CU
Ext[W

r
p ] := CU

Ext[W
r
p ,W

r
p ].

{lem:scaling_of_embed_const}

Lemma A.15. Let U be a domain.

(a) Let p1, p2 ∈ (1,∞) with p1 ≤ p2 and r1, r2 ∈ [0,∞) with r2 = r1− d( 1
p1
− 1

p2
). Then,

one has CU
Embed[W r1

p1,0
→ W r2

p2,0
] .p1,p2,r1 1. If U is a bounded Lipschitz domain, one

has CU
Embed[W r1

p1
→ W r2

p2
] .p1,p2,r1 C

U
Ext[W

r1
p1

].

(b) Let s ∈ (0, 1). Then, one has CU
IP[Hs

0 ] .s 1. If U is a bounded Lipschitz domain, one
has CU

IP[Hs] .s C
U
Ext[L

2, H1].

Proof. We only prove the claim for a bounded Lipschitz domain U .
(a) Let ι be a universal extension operator from U to Rd. Then, by using the Sobolev

embedding in Rd [10, Theorem 8.12.6] for the second inequality,

‖f‖W r2
p2

(U) ≤ ‖ι(f)‖W r2
p2

(Rd) .p1,p2,r1 ‖ι(f)‖W r1
p1

(Rd) ≤ ‖ι‖W r1
p1

(U)→W r1
p1

(Rd)‖f‖W r1
p1

(U),

and thus ‖f‖W r2
p2

(U) .p1,p2,r1 C
U
Extend[W r1

p1
]‖f‖W r1

p1
(U).

(b) We can prove the claim similarly by using the inequality [4, Proposition 2.22]

‖f‖Hs(Rd) .s ‖f‖1−s
L2(Rd)

‖f‖sH1(Rd).
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{lem:scaling_of_prod_const}

Lemma A.16. Let U be a bounded domain, p ∈ [1,∞), r ∈ (0, 1) and ε ∈ (0, r). Then we
have

CU
Prod[W r

2p,0 → W r−ε
p,0 ] .p,ε 1,

and if U is a bounded Lipschitz domain

CU
Prod[W r

2p → W r−ε
p ] .p,ε 1,

C∂U
Prod[W r

2p → W r−ε
p ] .p,ε 1 + sup

x∈∂U

(∫
∂U

dy

|x− y|d−1−2pε

) 1
2p
.

Proof. We only prove the first inequality. Since∫
|x|≥1

1

|x|d+p(r−ε) dx <∞,

one has

‖f 2‖W r−ε
p (Rd) .p,r ‖f 2‖Lp(Rd) +

∫
|x−y|≤1

|f(x)2 − f(y)2|p

|x− y|d+p(r−ε) dx dy.

Observe that ‖f 2‖Lp(Rd) ≤ ‖f‖2
L2p(Rd)

. Furthermore, observe that

|f(x)2 − f(y)2|p

|x− y|d+p(r−ε) =
( |f(x) + f(y)|
|x− y|

d
2p
−ε

)p( |f(x)− f(y)|
|x− y|

d
2p

+r

)p
,

so that, by Hölder’s inequality∫
|x−y|≤1

|f(x)2 − f(y)2|p

|x− y|d+p(r−ε) dx dy ≤ ‖f‖W r
2p(Rd)

(∫
|x−y|≤1

|f(x) + f(y)|2p

|x− y|d−2pε
dx dy

) 1
2p
.

∫
|x−y|≤1

|f(x) + f(y)|2p

|x− y|d−2pε
dx dy ≤ 2

∫
|x−y|≤1

|f(x)|2p

|x− y|d−2pε
dx dy

≤ 2‖f‖2p
L2p

∫
|z|≤1

1

|z|d−2pε
dz.

Now the latter integral can be estimated by ‖f‖L2p times the following integral over the unit
ball that can be estimated as follows∫

|x|≤1

dx

|x|d−2pε
.
∫ 1

0

dr

r1−2pε
=

1

2pε
.

{lem:mult_by_Lipschitz_domain}

Lemma A.17 ([69, Proposition 5.3]). Let p ∈ (1,∞), r ∈ (0, 1
p
) and let U be a bounded

Lipschitz domain. Then, the map

Br
p,p(Rd)→ Br

p,p(Rd), f 7→ f1U

is a bounded linear operator.
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{lem:scaling_of_iota}

Lemma A.18. Let U be a bounded Lipschitz domain. Then, we have

sup
L≥1

CUL
Ext[W

r1
p1
,W r2

p2
] <∞, p1, p2 ∈ [1,∞], r1, r2 ∈ [0,∞), (79) {eqn:estimate_scaling_Ext}{eqn:estimate_scaling_Ext}

sup
L≥1
‖TW r

p (UL)‖ <∞, p ∈ (1,∞), r ∈ (1
p
, 1 + 1

p
), (80) {eqn:estimate_scaling_cT}{eqn:estimate_scaling_cT}

sup
L≥1

C∂UL
R [W r

p ] <∞, p ∈ (1,∞), r ∈ (0, 1), (81) {eqn:estimate_scaling_cR}{eqn:estimate_scaling_cR}

sup
L≥1

CUL
Embed[W r1

p1
→ W r2

p2
] <∞,

{
p1, p2 ∈ (1,∞), r1, r2 ∈ [0,∞),

p1 ≤ p2, r2 = r1 − d( 1
p1
− 1

p2
),

(82) {eqn:estimate_scaling_Embed}{eqn:estimate_scaling_Embed}

sup
L≥1

CUL
IP [Hs] <∞ s ∈ (0, 1), (83) {eqn:estimate_scaling_Interpolation}{eqn:estimate_scaling_Interpolation}

sup
L≥1

CUL
Mult[W

r
p ] <∞, p ∈ (1,∞), r ∈ (0, 1

p
), (84) {eqn:estimate_scaling_Mult}{eqn:estimate_scaling_Mult}

sup
L≥1

CUL
Prod[W r

2p → W r−ε
p ] <∞ p ∈ [1,∞), r ∈ (0, 1), ε ∈ (0, r), (85) {eqn:estimate_scaling_Prod_dom}{eqn:estimate_scaling_Prod_dom}

sup
L≥1

L−εC∂UL
Prod[W r

2p → W r−ε
p ] <∞, p ∈ [1,∞), r ∈ (0, 1), ε ∈ (0, r). (86) {eqn:estimate_scaling_Prod_boundary_dom}{eqn:estimate_scaling_Prod_boundary_dom}

If U is a bounded domain (that is not necessarily Lipschitz), then (82) and (85) hold by
replacing the occurrences of the form “W a

b ” by “W a
b,0”.

Proof. Let ι be a universal extension operator from U to Rd (Definition 2.9). For L ≥ 1,
we define a universal extension operator ιL from UL to Rd by ιL(f) := ι(f(L·))(L−1·).
By change of variables, and using that ∂αι(f) = ι(∂αf) it is straightforward to check that
‖ιL‖W r

p (UL)→W r
p (Rd) ≤ ‖ι‖W r

p (U)→W r
p (Rd). This implies (79). The two (80) and (81) estimates

can be proven similarly.
(82) and (83) follow by Lemma A.15 and by (79).
(84) First observe r ∈ (0, 1). Set F := ιL(f) for f ∈ W r

p (UL). Then, 1ULf =
1ULF and thus ‖1ULf‖W r

p (Rd) ≤ ‖F‖Lp + [1ULF ]W r
p (Rd). By change of variables, one has

[g(L−1·)]W s
p (Rd) = L

d
p
−s[g]W s

p (Rd) and thus

[g(L−1·)]W s
p (Rd) =

(∫
Rd×Rd

|g(L−1x)− g(L−1y)|p

|x− y|d+ps
dx dy

) 1
p

=
(∫

Rd×Rd

|g(w)− g(z)|p

Ld+ps|w − z|d+ps
L2d dw dz

) 1
p

= L
d
p
−s
(∫

Rd×Rd

|g(w)− g(z)|p

Ld+ps|w − z|d+ps
L2d dw dz

) 1
p

= L
d
p
−s[g]W s

p (Rd).

[1ULF ]W r
p (Rd) = L

d
p
−r[1UF (L·)]W r

p (Rd).

By Lemma A.17 and Lemma 2.7, one has

[1UF (L·)]W r
p (Rd) ≤ ‖1UF (L·)‖W r

p (Rd) .U,p,r ‖F (L·)‖Lp(Rd) + [F (L·)]W r
p (Rd)

= L−
d
p‖F‖Lp(Rd) + L−

d
p
−r[F ]W r

p (Rd).

The claim follows because ‖F‖W p
r (Rd) ≤ ‖ιL‖W r

p (UL)‖f‖W p
r (UL) ≤ ‖ι‖W r

p (U)‖f‖W p
r (UL).

(85) and (86) follow from Lemma A.16.
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B A regularity structure for the gPAM
{sec:review_of_reg_str}

In this appendix, we list the necessary definitions and results from the paper of Bruned,
Hairer and Zambotti [12] regarding the regularity structure for the generalized Parabolic
Anderson model

∂0u = ∆u+
d∑

i,j=1

gi,j(u)∂iu∂ju+
d∑
i=1

hi(u)∂iu+ k(u) + f(u)ξ, (87) {eq:gpam_app}{eq:gpam_app}

that we use in Appendix C.

B.1 Terminologies
{subsec:terminologies_reg_str}

Here we review some terminologies from [12].

Definition B.1. We fix a type set L := {Ξ,I }. The symbol Ξ represents the noise ξ and
the symbol I represents an abstract integration operator.

{def:terminology_tree}

Definition B.2. We define the following notions regarding graphs.

(a) A rooted tree is a finite connected simple graph without cycles, with a distinguished
vertex called the root. We do not allow for an empty tree but we allow for a trivial
tree • which consists of only one vertex. Vertices will be called nodes. Given a rooted
tree T , the set of nodes and that of edges are denoted by N = NT and by E = ET
respectively. We denote by ρT the root of T . Nodes of a rooted tree are endowed with
a partial order ≤ by their distances from the root. We orient edges (x, y) ∈ E so that
x ≤ y.

(b) A forest is a finite simple graph without cycles. We say a forest is rooted if every
component of the forest is a rooted tree. We allow for an empty rooted forest. Given
a rooted forest F , the set of nodes and that of edges are denoted by N = NF and by
E = EF respectively.

(c) A tree or a forest is called typed if it is endowed with a map t : E → L where E is the
set of edges.

(d) We say A is a subforest of a forest F , and write A ⊆ F , if NA ⊆ NF and EA ⊆ EF and
if (x, y) ∈ EA implies {x, y} ⊆ NA. We note that a subtree of a rooted tree is again a
rooted tree whose root is the unique vertex which is closest to the root of the original
rooted tree. Therefore, a subforest of a rooted forest is again a rooted forest. If a forest
is typed, a subforest inherits types by restriction. If A and B are (rooted, typed) forests,
we denote by A tB the disjoint union of A and B with types naturally inherited.

{def:forests}

Definition B.3. In this paper, a typed forest F is often equipped with a colouring F̂ and
decorations n, o, e as follows.

(a) A pair (F, F̂ ) is called a colourful forest if the following hold:

• F = (EF , NF , t) is a typed rooted forest.

• One has F̂ : EF tNF → {0, 1, 2} such that if F̂ ((x, y)) = i > 0 for (x, y) ∈ EF
then F̂ (x) = F̂ (y) = i.

(b) If (F, F̂ ) is a colourful forest and
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• n : NF → Nd
0,

• o : NF → Z⊕ Z[L] with supp(o) ⊆ ∪i>0F̂
−1(i),

• e : EF → Nd
0 and supp(e) ⊆ EF \ supp(F̂ ),

then the 5-tuple (F, F̂ , n, o, e), also written (F, F̂ )n,oe , is called a decorated forest. We
denote by F the set of decorated forests.

(c) For x, y ∈ NF , we write x ∼ y if they are connected in ∪i>0F̂
−1(i).

(d) Given a decorated forest (F, F̂ , n, o, e), we view a subforest A ⊆ F as a decorated
forest by restricting the associated maps (F̂ , n, o, e).

(e) We write •m for the decorated tree (•, 2,m, 0, 0).

Many examples of colourful forests can be found in [12].

Definition B.4. Two notions of product for forests are defined as follows.

(a) For decorated forests τi = (Fi, F̂i, ni, oi, ei) (i = 1, 2), we define the forest product by

τ1 · τ2 := (F1 t F2, F̂1 + F̂2, n1 + n2, o1 + o2, e1 + e2)

where, for i 6= j, (F̂i, ni, oi, ei) are set to 0 on Fj .

(b) For a a decorated forest τ = (F, F̂ , n, o, e), we denote by J (τ) the decorated tree

(J (F ), [F̂ ], [n], [o], e),

where J (F ) is the tree obtained by gluing all the roots of F ,

[F̂ ](ρJ (F )) := max
y is a root of F

F̂ (y), [F̂ ](x) = F̂ (x) for x 6= ρJ (F )

and [n] and [o] are defined at the new root by summing the values at the roots of F , and
are equal to n and o elsewhere, respectively. The tree product is defined by

τ1τ2 := J (τ1 · τ2).

{def:tree_join}

Definition B.5 ([12, Section 4.3]). For a decorated tree τ = (T, T̂ )n,oe and k ∈ Nd
0, we write

Ik(τ) for a decorated tree σ = (S, Ŝ)ñ,õẽ obtained by connecting the old root ρτ to a new
root ρσ with a new edge e = (ρ0, ρτ ) and by defining Ŝ, ñ, õ and ẽ as an extension of T̂ , n,
o and e such that

Ŝ(ρσ) = ñ(ρσ) = õ(ρσ) = 0, t(e) = I , Ŝ(e) = 0, ẽ(e) = k,

For i ∈ {1, . . . , d}, we write Ii(τ) := Iei(τ), where ei is the ith standard basis of Rd.
{def:degree}

Definition B.6 ([12, Definition 5.3]). We assign the degree |·| to the types by

|Ξ| := −2 + δ, |I | := 2. (88) {eq:xi_degree}{eq:xi_degree}

We extend the degree to (k, v) ∈ Zd ⊕ Z[L] by

|(k, v)| :=
d∑
i=1

ki + a|Ξ|+ b|I |
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where v = aΞ + bI . For a decorated tree τ = (F, F̂ , n, o, e), we set

Êi := F̂−1(i) ∩ EF , Ê := Ê1 ∪ Ê2, N̂i := F̂−1(i) ∩NF

and we define two notions of degrees |·|− and |·|+ by

|τ |− :=
∑

e∈EF \Ê

(|t(e)| − e(e)) +
∑
x∈NF

n(x)

|τ |+ :=
∑

e∈EF \Ê2

(|t(e)| − e(e)) +
∑
x∈NF

n(x) +
∑

x∈NF \N̂2

|o(x)|.

B.2 Hopf algebras on forests and trees

In this section, we introduce Hopf algebra structures on some spaces of forests and those of
trees. For this purpose, we begin with introducing contraction operators.

Definition B.7 ([12, Definition 3.18]). We set

K (F, F̂ )n,oe := (KF̂F, F̂ )
[n],[o]
[e] ,

where

• KF̂F is the quotient forest F/ ∼, where the equivalent relation ∼ is in the sense of
Definition B.3-(c);

• F̂ and [e] are natural “restrictions”;

• one has [n](x) :=
∑

y∼x n(y);

• one has

[o](x) :=
∑
y∼x

o(y) +
∑
e∈E(x)

t(e), E(x) := {(y, z) ∈ E : y ∼ z ∼ x}.

For a decorated forest τ and i ∈ N, one has a unique decomposition τ = µ · ν such
that on ν the map F̂ is equal to i and on each component of µ the map F̂ is not equal to i
everywhere.

Definition B.8. Then, we set

ki(ν) :=

{
(•, i,

∑
x∈Nν n(x), 0, 0) if

∑
x∈Nν n(x) > 0

∅ otherwise

and
Ki(τ) := K (µ) · ki(ν).

In addition, we denote by K̂i(τ) the decorated forest that is obtained from Ki(τ) by setting
o to 0 on F̂−1(i).

Remark B.9. ν is allowed to be an empty forest ∅ and ki(∅) = ∅.

With these operators, one can write Hopf algebras associated to regularity structures and
renormalization structures.
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Definition B.10. We define vector spaces H1, H◦ as follows.

(a) We denote by H1 the free vector space generated by

B(H1) := {(F, F̂ )n,oe : F̂ ≤ 1, K1(F ) = F}.

(b) We denote by H◦ the free vector space generated by B(H◦), where τ ∈ B(H◦) if and
only if

• τ is a tree and F̂ ≤ 1; • K (τ) = τ .
{def:coproduct_for_decorated_forests}

Definition B.11 ([12, Definition 3.3]). Given a decorated forest τ = (F, F̂ )n,oe , we denote
by U1(τ) the set of all subforests of F which contains F̂−1(1) and subforests of F that are
disjoint from F̂−1(2). We set

∆1τ :=
∑

A∈U1(τ)

∑
nA:nA≤n

∑
εFA

1

εFA!

(
n

nA

)
(A,F |A, nA + πεFA, o|NA , e|EA)

⊗ (F, F̂ ∪1 A, n− nA, o + nA + π(εFA − e1A), e1EF \EA + εFA),

(89) {eq:coproduct_formula}{eq:coproduct_formula}

where

• εFA runs over all maps EF → Nd
0 supported on the (outgoing) boundary

∂(A,F ) := {(e+, e−) ∈ EF \ EA : e+ ∈ NA};

• for ε : EF → Nd
0 one defines πε : NF → Zd by

πε(x) :=
∑
e∈EF

e=(x,y) for some y

ε(x);

• F̂ ∪1 A is the map defined by

F̂ ∪1 A(x) :=

{
1 if x ∈ A
F̂ (x) otherwise.

Some of the main results from [12] are the following.
{prop:forest_hopf_algebra}

Proposition B.12 ([12, Proposition 4.11]). The vector space H1 is a Hopf algebra with
multiplication

M(τ1 ⊗ τ2) := K1(τ1 · τ2),

with unit ∅, with coproduct (K1 ⊗K1)∆1 and with counit

1
′
H1

((F, F̂ )n,oe ) := 1{∅}((F, F̂ )n,oe ),

The Hopf algebra H1 is graded with respect to |·|−.
{prop:forest_coaction}

Proposition B.13 ([12, Proposition 4.14]). The vector space H◦ is a left comodule over the
Hopf algebra H1 with coaction

(K1 ⊗K )∆1 : H◦ → H1 ⊗H◦.

The coaction is compatible with the gradings (H◦, |·|−) and (H1, |·|−) in that if τ ∈ B(HC
◦ )

and if one write
(K1 ⊗K )∆1τ =:

∑
τ (1) ⊗ τ (2),

then one has |τ |− = |τ (1)|− + |τ (2)|−.
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B.3 Rule

The spaces H1, H2 and H◦ are too big for our applications. For instance, H◦ contains an
element

Ξ Ξ ,

which should not be an element of our regularity structure. To solve this problem, we
introduce the notion of rule.

We set
T := {(F, F̂ , n, o, e) ∈ F : F is a tree, F̂ ≡ 0, o ≡ 0}.

The set T is a monoid with the tree product and with the trivial tree as unit. We simply write
T n
e for (T, 0, n, 0, e) ∈ T.

Definition B.14. Given a decorated tree T n
e ∈ T, we associate to each x ∈ NT a node type

NT (x) := N (x) :=
(
(t(e1), e(e1)), . . . , (t(en), e(en))

)
,

where (e1, . . . , en) are the edges leaving the node x, namely, for each j one can find a
yj ∈ NT such that ej = (x, yj).

Definition B.15. Let (L×N0)n/ ∼n be the set of unordered n-tuples valued in L×N0 and
let PN be the power set of ∪n∈N0(L× N0)n/ ∼n. We define the rule R : L→ PN by

R(Ξ) := {()},
R(I ) := {([I ]n), ([I ]n,Ii), ([I ]n,Ii,Ij), ([I ]n,Ξ);n ∈ N0, i, j ∈ {1, . . . , d}},

where we write [I ]n for the n-tuple of (I , 0) and write Ii for (I , ei), where ei is the ith
unit vector in Rd.

It is not difficult to show that the ruleR is subcritical in the sense of [12, Definition 5.14]
and complete in the sense of [12, Definition 5.20].

Lemma. The rule R is subcritical in the sense of [12, Definition 5.14]. That is, one can find
a map reg : L→ R, which defines a map on the power set of ∪n(L× N0)n/ ∼n by

reg(N) :=
∑

(t,k)∈N

(
reg(t)− k

)
,

such that
reg(t) < |t|+ inf

N∈R(t)
reg(N) for every t ∈ L. (C1) {eq:subcritical}{eq:subcritical}

Proof. For t = Ξ to satisfy (C1), one needs

reg(Ξ) < |Ξ| = −2 + δ,

and thus we set reg(Ξ) := −2 + δ
2
. For t = I to satisfy (C1), one needs

reg(I ) < |I |+ min{0, reg(I )− 1, 2 reg(I )− 2, reg(Ξ)}

or 0 < reg(I ) < δ
2
. Therefore, we set reg(I ) := δ

3
.
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Remark. By [12, Proposition 5.15], the set {τ ∈ T◦ : |τ | ≤ γ} is finite for every γ ∈ R.
One can observe this from Lemma B.3.

Definition B.16 ([12, Definition 5.8]). Let τ = T n
e ∈ T.

(a) We say τ conforms to the rule R at the node x if the following hold:

• if x is the root, then N (x) ∈ R(Ξ) or N (x) ∈ R(I );

• otherwise, one has N (x) ∈ R(t(e)), where e is the edge such that e = (y, x) for
some node y.

(b) We say τ conforms to the rule R if τ comforms to R at every node, except possibly the
root.

(c) We say τ strongly conforms to the rule R if τ comforms to R at every node.

Definition B.17 ([12, Definition 5.13]). We define sets T� (� ∈ {◦, 1,−}) as follows.

(a) We denote by T◦ ⊆ T the set of trees which strongly conform to R.

(b) We denote by T1 ⊆ F the smallest submonoid under the forest product which contains
T◦.

(c) We denote by T− ⊆ T◦ the set of trees T n
e with the following properties:

• one has |τ |− < 0 and n(ρT ) = 0;

• if there exists only one edge containing ρT , then

T n
e =

ρT

e
, n(ρT ) = e(e) = 0, t(e) = Ξ. (90) {eq:tree_xi}{eq:tree_xi}

One can describe T− more concretely in the following recursive way. Let

T(1) := {τ ∈ T : ∀e ∈ Eτ , ρτ ∈ e; N (ρτ ) ∈ R(I )},
T

(1)
− := {τ ∈ T(1) : |τ | < 0}.

Note T
(1)
− consists of two elements, both of which are of the form (90). Then, recursively,

we set

T(n) := {J t1
k1

(τ1) · · ·J tl
kl

(τl) :
(
(tj, kj)

)l
j=1
∈ R(I ), τj ∈ T(n−1)},

T
(n)
− := T(n) ∩ T−.

Now one has
T◦ =

⋃
n∈N

T(n), T− =
⋃
n∈N

T
(n)
− .

{lem:structure_of_rtree_minus}

Lemma. Regarding T(n) and T
(n)
− , one has the following claims.

(a) One has
min{|τ | : τ ∈ T(n) \ T(n−1)} = −2 + nδ.

In particular, T(n)
− = T

(n−1)
− for large n.
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(b) If τ = J t1
k1

(τ1) · · ·J tl
kl

(τl) ∈ T
(n)
− , then τj ∈ T

(n−1)
− for every j such that tj = I . In

particular, if y is a leaf of τ , namely if N (y) = {()}, then for the edge e = (x, y) one
has t(e) = Ξ.

Proof. The claims will be proved by induction. Indeed, for n = 1, the claims are true.
Suppose that the claims are verified for n− 1. We will check the claim (ii). Let

τ = J t1
k1

(τ1) · · ·J tl
kl

(τl) ∈ T
(n)
− \ T

(n−1)
− .

• Suppose ((tj, kj))
l
j=1 = ([I ]l). Then,

|τ | =
l∑

j=1

(
|τ |+ 2

)
+
∑
x∈Nτ

n(x) ≥ lδ > 0,

contradiction.

• Suppose ((tj, kj))
l
j=1 = (Ip, [I ]l−1). Then,

|τ | = |τ1|+ 1 +
l∑

j=2

(
|τj|+ 2

)
+
∑
x∈Nτ

n(x),

which can be less than 0 only if τ1, . . . , τl ∈ I (n−1).

• Suppose ((tj, kj))
l
j=1 = (Ip,Iq, [I ]l−2). Then,

|τ | = |τ1|+ |τ2|+ 2 +
l∑

j=2

(
|τj|+ 2

)
+
∑
x∈Nτ

n(x),

which can be less than 0 only if τ1, . . . , τl ∈ I (n−1).

• Suppose ((tj, kj))
l
j=1 = (Ξ, [I ]l−1). Then, τ1 is the trivial tree and

|τ | = −2 + δ +
l∑

j=2

(
|τj|+ 2

)
+
∑
x∈Nτ

n(x),

which can be less than 0 only if τ2, . . . , τl ∈ I (n−1).

To see the claim (i), it suffices to check |τ | in the above four cases, by knowing that at least
one of τj’s satisfies |τj| ≥ −2 + (n− 1)δ.

The notion of completeness is more technical.

Definition. Let N =
(
(t1, k1), . . . , (tn, kn)

)
∈ (L× Nd

0)n/ ∼n.

(a) Given m ∈ Nd
0, we denote by ∂mN the set of n-tuples

(
(t1, k1 +m1), . . . , (tn, kn +mn)

)
,

n∑
j=1

mj = m.
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(b) We define a substitution operation as follows. Suppose we are given M ⊆ N and
M̃ ∈ PN , where PN is the power set of ∪n(L× Nd

0)n/ ∼n. Suppose M̃ is finite and
write N = M t N̄ . Then, we set

RM̃
MN := N̄ t M̃1 t · · · t M̃l, M̃ = {M̃1, . . . , M̃l}.

Definition. Given a tree T n
e ∈ T◦(R), we associate ¯NT (e) = ¯N (e) to each e = (x, y) ∈ ET

in the following recursive way. Suppose y is a leaf, namely N (y) = {()}. Then, we set

¯N (e) := R(t(e)).

Otherwise, if e1, . . . , el are all the edges of the form ej = (y, v) for some node v, we set

¯N (e) := {RM̃
N (y)N : N (y) ⊆ N ∈ R(t(e)), M̃ = {M1, . . . ,Ml}, Mj ∈ ¯N (ej)}.

Let us compute ¯N for the following decorated tree:

x1

x2

x4

x8

Ξ

I

x5

x9

Ξ

I1

I

x3

x6

x10

Ξ

I1

x7

x11

Ξ

I1

I1

.

One first sees

¯N ((x4, x8)) = ¯N ((x5, x9)) = ¯N ((x6, x10)) = ¯N ((x7, x11)) = {()}.

Next, one observes

¯N ((x2, x4)) = {R{()}(Ξ) ([I ]n,Ξ) : n ∈ N0} = {([I ]n) : n ∈ N0}.

Similarly,

¯N ((x2, x5)) = ¯N ((x3, x6)) = ¯N ((x3, x6)) = {([I ]n) : n ∈ N0}.

Finally, one observes

¯N ((x1, x2))

= {R{([I ]k),([I ]l)}
(I ,I1) (I ,I1, [I ]n),R{([I ]k),([I ]l)}

(I ,I1) (I ,I1,Ij, [I ]n)

|k, l, n ∈ N0, j ∈ {1, . . . , d}}
= {([I ]n), ([I ]n,Ij) : n ∈ N0, j ∈ {1, . . . , d}}

and

¯N ((x1, x3)) = {R{([I ]k),([I ]l)}
(I1,I1) ([I ]n,I1,I1) : k, l, n ∈ N0, j ∈ {1, . . . , d}}

= {([I ]n) : n ∈ N0}.
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{lem:contraction_and_node_type}

Lemma. Suppose F n
e ∈ T strongly conforms to the rule R and G is a subtree of F contain-

ing the root of F . Write e1, . . . , el for all the edges in G containing the root ρG = ρF and
write ρKGF for the root of the contracted tree

KGF := K (F,1G, n, 0, e).

Then, one finds (M1, . . . ,Ml) ∈ ¯NG(e1) × · · · × ¯NG(el) and NG(ρG) ⊆ N ∈ R(I ) such
that

NKGF (ρKGF ) = R{M1,...,Ml}
NG(ρG) N.

Proof. We denote by d(·, ·) the graph distance on the nodes. Set

n := max{d(ρG, y) : y ∈ G}.

The proof is based on the induction on n. When n = 1, the proof of the claim is obvious.
Suppose n ≥ 2 and write ej = (ρG, yj) for j = 1, . . . , l. We denote by Gj and by Fj the
subtree of G and F respectively such that

• the root of Gj and Fj is yj and

• one has NG = ∪lj=1NGj ∪ {ρG} and EG = ∪lj=1EGj ∪ {e1, . . . , el} and similarly for
Fj .

ρG

y1

G1

e1

yl

Gl

el

By the hypothesis of the induction, for each j ∈ {1, . . . , l}, writing e(j)
1 , . . . , e

(j)
lj

for all the
edges in Gj containing ρGj = yj , there exist

(M
(j)
1 , . . . ,M

(j)
lj

) ∈ ¯NG(e
(j)
1 )× · · · × ¯NG(e

(j)
lj

)

and NG(yj) ⊆ N (j) ∈ R(I ) such that

Mj := NKGj
Fj(yj) = R

{M(j)
1 ,...,M

(j)
lj
}

NGj
(yj)

N (j).

Therefore, one has Mj ∈ ¯NG(ej) and

NKGF (ρKGF ) = R{M1,...,Ml}
NG(ρG) NF (ρF ).

If T n
e strongly conforms to the rule R, it does not necessarily hold true that a contracted

tree
K (F,1G, n, 0, e), for G ⊆ F containg the root ρF

conforms to the rule R at its new root. However, the following lemma shows that it holds
true in a certain interesting situation and it will be a key ingredient for Lemma B.23.
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{lem:rule_complete}

Lemma. The subcritical rule R is complete in the sense of [12, Definition 5.20]. That is, if
τ ∈ T− and N (ρτ ) ⊆ N ∈ R(I ), then writing e1, . . . , el for the edges containing the root
ρτ one has

∂mR{M1,...,Ml}
N (ρτ ) N ∈ R(I )

for every (M1, . . . ,Ml) ∈ ¯N (e1)× · · · × ¯N (el) and for every m ∈ Nd
0 with |m|+ |τ | < 0.

Proof. The proof is based on induction. Let

τ = J t1
e1

(τ1) · · ·J tl
el

(τl) ∈ T
(n)
− \ T

(n−1)
− .

• Suppose ((tj, kj))
l
j=1 = (Ξ, [I ]l−1). Then τ1 is the trivial tree. By Lemma B.3, τ2, . . . , τl ∈

T
(n−1)
− . By the hypothesis of the induction, one has

¯N (ej) ⊆

{
{([I ]n) : n ∈ N0} |τ | < −1

R(I ) |τ | ≥ −1.

Since

|τ | = −2 + δ +
l∑

j=2

(
|τj|+ 2

)
+ n(ρτ ) < 0,

there is at most one τj such that |τj| ≥ −1.

– If |τj| < −1 for every j, then

{R{M1,...,Ml}
N (ρτ ) N : N (ρτ ) ⊆ N ∈ R(t(I )),Mj ∈ ¯N (ej)} ⊆ {([I ]n) : n ∈ N0}.

– If there exists exactly one τj such that |τj| ≥ −1, then |τ | ≥ −1 and

{R{M1,...,Ml}
N (ρτ ) N : N (ρτ ) ⊆ N ∈ R(t(I )),Mj ∈ ¯N (ej)} ⊆ R(t(e))

Therefore, in this case, τ satisfies the claim.

• Suppose ((tj, kj))
l
j=1 = (Ip,Iq, [I ]l−2). Then, by Lemma B.3, one has τ1, . . . , τl ∈

T
(n−1)
− . One has

|τ | = 2(l − 1) +
l∑

j=1

|τj|+ n(ρτ ) < 0

and therefore there is at most one j such that |τj| ≥ −1. Then, one can prove the claim as
in the first case. The case ((tj, kj))

l
j=1 = (Ip, [I ]l−1) can be handled similarly.

B.4 Definition of the regularity structure

The content of this section is parallel to [12, Section 5.5]. Our goal here is to construct
subspaces of H� (� ∈ {1, ◦}) which provide a correct framework for the theory of regularity
structures. Since we desire that elements of those spaces conform to the rule R, one might
want to consider a subspace spanned by T�. However, T� is not closed under the coproduct
of H�. Therefore, we introduce the following definition.
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{def:spaces_obeying_rule}

Definition B.18. Recall the notation introduced in Definition B.11. For � ∈ {1, ◦}, we
denote by B(HC

� ) ⊆ B(H�) the set consisting of

K1(F, F̂ ∪1 A, n− nA, nA + π(εFA − e1A), e1F\A + εFA) (91) {eq:basis_of_H_diamond_C}{eq:basis_of_H_diamond_C}

for τ = (F, F̂ )n,0e ∈ T�, A ∈ U1(τ), nA ≤ n with supp(nA) ⊆ NA and εFA : EF → Nd
0 with

supp(εFA) ⊆ ∂(A,F ). We denote by HC
� the free vector space generated by B(HC

� ).

Remark B.19. By choosing A = ∅ one observes T� ⊆ B(HC
� ) for � ∈ {1, ◦}. In fact, as

Lemma B.20 below shows, HC
1 is the smallest subbialgebra of H� both containing T� and

closed under the coactions.
{lem:H_circ_subbialgebras}

Lemma B.20. The subspace HC
1 is a subbialgebra of H1. Furthermore, the statements of

Proposition B.13 and of Proposition B.12-(iii) remain valid if one replaces (H1, H◦) by
(HC

1 , H
C
◦ ).

Proof. This is essentially proven in [12, Lemma 5.25 and Lemma 5.28]. Here we give a self-
contained proof. We start to prove HC

1 is a subbialgebra of H1. Recalling that T1 is closed
under multiplication, it is easy to see HC

1 is closed under multiplication as well. To prove
HC

1 is closed under coproduct, one first notes that if τ ∈ T1, then the first components and
the second components appearing in the coproduct formula (89) of (K1 ⊗K1)∆1τ belong
to (up to multiplication by a nonzero constant) T1 and B(HC

1 ) respectively. Now suppose
τ2 = (F2, F̂2)n2,o2e2

∈ B(HC
1 ) and write

τ2 = K1(F1, F̂1 ∪1 A1, n1 − nA1 , nA1 + π(εF1
A1
− e1A1), e1F1\A1 + εF1

A1
) (C2) {eq:tau_2_contraction}{eq:tau_2_contraction}

as in (91) and set τ1 := (F1, F̂1)n1,o1e1
. To show HC

1 is closed under coproduct, it suffices to
show the first and the second components appearing in (K1 ⊗K1)∆1τ2 belong to B(HC

1 ).
This follows from the identity

(IdH1 ⊗(K1 ⊗K1)∆1)(K1 ⊗K1)∆1τ1 = ((K1 ⊗K1)∆1 ⊗ IdH1)(K1 ⊗K1)∆1τ1. (C3) {eq:coproduct_tau_1}{eq:coproduct_tau_1}

Indeed, suppose σ appears in the first components of (K1⊗K1)∆1τ2. Then, σ is among the
second components appearing in

(IdH1 ⊗(K1 ⊗K1)∆1)(K1 ⊗K1)∆1τ1

and hence, in view of (C3), among the second components appearing in

((K1 ⊗K1)∆1 ⊗ IdH1)(K1 ⊗K1)∆1τ1.

However, we know that the first components of (K1 ⊗K1)∆1τ1 belongs to T1 and that for
τ ′ ∈ T1 the second components in (K1 ⊗K1)∆1τ

′ belong to B(HC
1 ). This implies σ ∈

B(HC
1 ). One can similarly argue that the second components appearing in (K1⊗K1)∆1τ2

belong to B(HC
1 ).

We move to prove HC
2 is a subbialgebra of H2. It suffices to show that both the first

components and the second components appearing in (K̂2 ⊗ K̂2)∆2τ for τ ∈ B(HC
2 )

belong to B(HC
2 ). Indeed, suppose τ = τ2 ∈ B(HC

2 ) is represented as in (C2) and define
τ1 ∈ T2 in the same way. The claim is a consequence of the coaction identity

(IdH1 ⊗(K̂2 ⊗ K̂2)∆2)(K1 ⊗K )∆1τ1 = M (13)(2)(4)K ⊗4
1 (∆1 ⊗∆1)(IdH2 ⊗K )∆2τ1.
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In fact, the first components appearing in (K̂2⊗K̂2)∆2τ2 are among the second components
of

K ⊗4
1 (∆1 ⊗∆1)(IdH2 ⊗K )∆2τ1,

which belong to B(HC
2 ) since the first components appearing in ∆2τ1 belong to T2 again.

One can similarly argue for the second components appearing in (K̂2⊗ K̂2)∆2τ2, by noting
that the second components appearing in ∆2τ1 belong to T2 again.

Finally, we prove the claims in the lemma after “Furthermore". As for Proposition B.12-
(iii), it suffices to show that the first and the second components appearing in (K1⊗K )∆1τ
for τ ∈ B(HC

2 ) belong to B(HC
1 ) and B(HC

2 ) respectively. This is a consequence of the
coproduct identity [12, Proposition 3.11]

(K1 ⊗K1 ⊗K )(IdF⊗∆1)∆1τ1 = (K1 ⊗K1 ⊗K )(∆1 ⊗ IdF)∆1τ1, τ1 ∈ T2. (C4) {eq:coprod_1_for_tau_1}{eq:coprod_1_for_tau_1}

Indeed, suppose σ appears in the first components appearing in (K1 ⊗ K )∆1τ for some
τ ∈ B(HC

2 ). Then, σ is among the second components appearing in (C4) for some τ1 ∈ T2.
Since the first components of ∆1τ1 belong to T1, we conclude σ belongs to HC

1 . One can
similarly argue for the second components appearing in (K1 ⊗ K )∆1τ . The claims for
Proposition B.13 can be proved similarly.

{def:basis_of_H_R}

Definition B.21. For � ∈ {1, ◦} we denote by HR
� the free vector space generated by

B(HR
� ) := {(F, F̂ )n,oe ∈ B(HC

� ) : (F, F̂1F̂ 6=1)n,0e ∈ T�}.
{rem:space_diamond_is_a_subset_of_hat_space_diamond}

Definition B.22. We denote by T1 the free vector space generated by

B(T1) := {τ ∈ B(HC
1 ) : (F, 0)n,0e ∈ T− for every connected component (F, F̂ )n,oe of τ}

and by T2 the free vector space generated by B(T2), where τ ∈ B(T2) if and only if

K̂2

[
Ik1(τ1) · · ·Ikn(τn)•m

]
for n ∈ N0, k1, . . . , kn,m ∈ Nd

0 and τ1, . . . , τn ∈ HR
◦ such that |Ikj(τj)|+ > 0 for every

j = 1, . . . , n. We denote by pC1 : HC
1 → T1 the natural projection. We note that T1 is an

algebra under the forest product and T2 is an algebra under the tree product.
{prop:def_of_renormalization_structures}

Proposition B.23 ([12, Proposition 5.35]). The linear map

∆1 := (pC1 ⊗ pC1 )(K1 ⊗K1)∆1 : T1 → T1 ⊗T1

defines a coproduct over the algebra T1 (with the forest product as multiplication). With
this coproduct and the counit as in Proposition B.12, T1 is a Hopf algebra. Furthermore,
the vector space HR

◦ is a right comodule over T1 with coaction

∆◦− := (pC1 ⊗ Id)(K1 ⊗K )∆1 : HR
◦ → T1 ⊗HR

◦ .

Remark B.24. As shown in [12, Proposition 5.34], one can view T2 as a Hopf algebra with
grade |·|+ and one can define a coaction ∆◦+ : HR

◦ → HR
◦ ⊗ T2, of which we do not need

the precise definition here but will only use the recursive formula [12, Proposition 4.17].
{def:def_of_gPAM_reg_str}

Definition B.25. We set

T := HR
◦ , T+ := T2, T− := T1,

Then, in the language of [6], the pair (T ,T+) is a concrete regularity structure and the pair
(T−,T ) is a renormalization structure for the generalized PAM. For � ∈ {−,+}, we denote

76



• by ∆� the coproduct of T�,

• by 1� the unit of T�,

• by 1′� the counit of T� and

• by A� the antipode of T�.

Recall that the product M− of T− is the forest product while the product M+ of T+ is
the tree product. We write 1 ∈ T for •0. For � ∈ {−,+}, the Hopf algebra T� is graded
with |·|�. The vector space T is graded both with |·|− and with |·|+.

Definition B.26. As shown in [12, Proposition 5.39], if

A := {|τ |+ : τ ∈ B(T )},

and we denote by G the character group of T+, the triplet (A,T , G) is a regularity structure
in the sense of [34, Definition 2.1]. We have the graded decomposition

T = ⊕γ∈ATγ, Tγ := span{τ ∈ B(T ) : |τ |+ = γ}.

We write p<β for the natural projection from T to T<β := ⊕γ<βTγ .
{def:product_in_reg_sp}

Definition B.27. If τ, σ ∈ B(T ) are such that τσ ∈ B(T ), we write τ ? σ := τσ. We
extend the product ? bilineary. Note that the product ? is not defined for all pairs (τ, σ).

The following lemma essentially states that the product ? is regular in the sense of [34,
Definition 4.6].

{lem:product_is_regular}

Lemma B.28 ([12, Proposition 3.11]). If τ, σ ∈ B(T ) are such that τσ ∈ B(T ), then
∆◦+(τ ? σ) = ∆◦+(τ)∆◦+(σ).

{def:derivative_in_reg_sp}

Definition B.29. Let V be the subspace of T generated by

I (τ1) · · ·I (τn), τ1, . . . , τn ∈ T .

For i ∈ {1, . . . , d}, we define the linear map Di : V → T , called a derivative, by

Di[I (τ1) · · ·I (τn)] =
d∑
j=1

Ii(τj)
∏
k 6=j

I (τk).

Definition. We set

∆̂− := (pC1 ⊗ IdT̂−
)(K1 ⊗K1)∆1 : T− → T− ⊗ T̂−,

∆̂+ := (IdT̂+
⊗p2K̂2)∆2 : T̂+ → T̂+ ⊗T+.

In view of Remark B.22, one can regard T� as a subspace of T̂�. We write i� : T� → T̂� for
the injection.

Proposition B.30 ([12, Section 6.1]). Let i− : T− → HR
1 be the natural projection. Then,

there exists a unique algebra morphism Â− : T− → HR
1 such that

MH1(Â− ⊗ IdT̂−
)(K1 ⊗K1)∆1i− = 1′−(·)1H1 on T−,

where MH1 is the product in H1.
{def:twisted_antipode}

Definition B.31. We call Â− a negative twisted antipode.

As for Â−, we only use the following property. As shown in [12, Proposition 6.6], one
has the following recursive formula:

Â−τ = −MH1(Â− ⊗ IdHR
1

)(∆̂−τ − τ ⊗ 1−), (92) {eq:antipode_minus_recursive}{eq:antipode_minus_recursive}

where ∆̂− := (pC1 ⊗ IdHR
1

)(K1 ⊗K1)∆1.
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B.5 Models and modelled distributions

Recall the notion of models Z = (Π,Γ) from [34, Definition 2.17]. In our situation (gener-
alized parabolic Anderson model), the scaling s is uniform: s = (1, 1, . . . , 1). We also need
the functional |||·|||γ;K and the psuedometric |||·; ·|||γ;K from [34, (2.16) and (2.17)]. With the
notion of models, one can associate to an abstract element of T a concrete distribution on
Rd. We list some definitions related to models from [34] and [12].

Definition. We write T<γ := ⊕β<γTβ . We write pβ : T → Tβ and p<γ : T → T<γ for
the natural projections. Since Tβ is identified with some Euclidean space, we can equip Tβ

with the corresponding Euclidean norm for which we write ‖·‖β .

Definition ([34, Definition 2.17]). A model for the regularity structure T is a pair Z =
(Π,Γ) with the following properties.

• For each x ∈ Rd, one has a linear map Πx : T → S ′(Rd) and Π = (Πx)x∈Rd .

• For each x, y ∈ Rd, one has Γxy ∈ G, where G is the structure group of T and
Γ = (Γxy)x,y∈Rd .

• One has the identities ΓxyΓyz = Γxz and ΠxΓxy = Πy for x, y, z ∈ Rd.

• One has the following analytic estimates. For every γ ∈ R and a compact set K of Rd,
there exists a constant Cγ,K such that

|〈Πxτ, φ
λ
x〉| ≤ Cγ,Kλ

β, ‖pαΓxyτ‖α ≤ Cγ,K|x− y|β−α (C5) {eq:model_analytic_estimates}{eq:model_analytic_estimates}

for every α, β such that α < β < γ, every τ ∈ B(T ) ∩ Tβ , every x, y ∈ K with
|x − y| ≤ 1, every λ ∈ (0, 1) and every φ ∈ C2(Rd) with supp(φ) ⊆ B(0, 1) and
‖φ‖C2(Rd) ≤ 1 and where φλx(y) := λ−dφ(λ−1(y − x)).

We denote by |||Z |||γ;K the infinimum of the constants Cγ,K such that the inequalities (C5)
hold. Given another model Z̃ = (Π̃, Γ̃), we denote by |||Z ; Z̃ |||γ;K the infinimum of those
C > 0 such that

|〈(Πx − Π̃x)τ, φ
λ
x〉| ≤ Cλβ, ‖pα(Γxy − Γ̃xy)τ‖α ≤ C|x− y|β−α,

where α, β, x, y, τ , λ and φ range as before.

An important concept in the theory of regularity structures is the modelled distribution
([34, Definition 3.1]). We denote by Dγ(T ,Z ) = Dγ(Z ) the space of modelled distribu-
tions with respect to the model Z whose images are in T<γ = ⊕β<γTβ . We set

Dγα(T ,Z ) := {f ∈ Dγ(T ,Z ) : f is ⊕α≤β<γ Tβ-valued}.

We will use the norm |||·|||γ;K given by [34, (3.1)].

Definition ([34, Definition 3.1]). Let γ ∈ R and Z = (Π,Γ) be a model for T . We define
the space Dγ(T ,Z ) of modelled distributions as the space of maps f : Rd → T<γ such
that for every compact set K ⊆ Rd one has

|||f |||γ;K := max
β<γ

sup
x∈K
‖pβf(x)‖β + max

β<γ
sup
x,y∈K,
|x−y|≤1

‖pβ[f(y)− Γyxf(x)]‖β
|x− y|γ−β

<∞.

We set
Dγα(T ,Z ) := {f ∈ Dγ(T ,Z ) : f is ⊕α≤β<γ Tβ-valued}.
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Definition B.32. Let Z be a model over T and let γ, l > 0. By [34, Theorem 3.10], there
exists a unique continuous linear operator R = RZ : Dγ(T ,Z ) → CminA

loc (Rd) with the
following property: there exists a C = C(γ, l,T ) > 0 such that for every compact set
K ⊆ Rd

|(Rf − Πxf(x))(φλx)| ≤ Cλγ‖Z ‖γ;B(K,l)|||f |||γ;B(K,l), where φλx := λ−dφ(λ−1(· − x)),
(93) {eq:modelled_dist_approximation}{eq:modelled_dist_approximation}

uniformly over φ ∈ C2(B(0, l)) with ‖φ‖Cr(Rd) ≤ 1, λ ∈ (0, 1), f ∈ Dγ(T ,Z ) and x ∈ K.
The operatorR is called the reconstruction operator.

{prop:product_modelled_distributions}

Proposition B.33 ([34, Theorem 4.7]). Let V1 and V2 be subspaces of T closed under the
action of the structure group. Suppose the product τ1 ? τ2 is well-defined for every τ1 ∈ V1

and τ2 ∈ V2. Let Z be a model for T and let fi ∈ Dγiαi(Vi,Z ) for i = 1, 2. Then, if we set
γ := min{γ1 +α2, γ2 +α1}, one has p<γ(f1 ? f2) ∈ Dγα1+α2

(T ,Z ). Moreover, there exists
a constant C ∈ (0,∞) which depends only on T such that

|||p<γ(f1?f2)|||γ;K ≤ C(1+|||Z |||γ1+γ2;K)2|||f1|||γ1;K|||f2|||γ2;K for every compact set K ⊆ Rd.
{def:function_and_modelled_distritbusion}

Definition B.34. Let F ∈ C∞b (Rd) and let V be a subspace of {τ ∈ T : p<0τ = 0} that is
closed under the product ? and under the action of the structure group. We define the map
F ? : V → V by

F ?(τ) :=
∑
k∈N0

DkF (τ̄)

k!
(τ − τ̄)?k, τ̄ := p0τ.

According to [34, Theorem 4.16], if γ > 0 and f ∈ Dγ(V,Z ), then one has

F ?
γ (f)(x) := p<γF

?(f(x)) ∈ Dγ(V,Z ).

Furthermore, there exist a constant C ∈ (0,∞) and an integer k ∈ N, which depend only
on T , F and γ, such that

|||p<γF (f)|||γ;K ≤ C(1 + |||Z |||γ;K + |||f |||γ:K)k for every compact set K ⊆ Rd. (94) {eq:composition_modelled_distribution}{eq:composition_modelled_distribution}

B.6 Operations with kernels
{def:admissible_kernel}

Definition B.35. A smooth map K : Rd \ {0} → R with suppK ⊆ B(0, 1) is called an
admissible kernel if it satisfies [34, Assumption 5.1] with K(x, y) := K(x − y) and if the
following are satisfied:

• with the notation of [34, Assumption 5.1] one has the scaling s = (1, 1, . . . , 1) and
the regularization β = 2;

• one has
∫
Rd x

kK(x)dx = 0 for |k| ≤ 1;

• the difference K − G is smooth on Rd, where G is the Green’s function on Rd (see
Section 2.3).

The existence of such a kernel is guaranteed by [34, Lemma 5.5].

Definition B.36 ([34, Definition 5.9]). Given an admissible kernel K, a model (Π,Γ) for T
is said to realize K if one has

ΠxIkτ = ∂kK ∗ Πxτ −
∑

j∈Nd0:|τ |++2−|j|−|k|>0

(· − x)j

j!
[∂k+jK ∗ Πxτ ](x)
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for every τ ∈ B(T ), k ∈ Nd
0 with |k| ≤ 1 and x ∈ Rd. The space M̄ (T , K) of all K-

admissible models is endowed with the topology induced by the collection of pseudometrics
(|||· ; ·|||γ,K)γ,K. In fact, the space M̄ (T , K) is a complete metric space.

We recall operations of kernels on modelled distributions from [34, Section 5].
{def:kernel}

Definition B.37. Let Z = (Π,Γ) be a model realizing K in the sense of [34, Definition
5.9].

(a) We set

J (x)τ := J Z (x)τ :=
∑

|k|<|τ |++2

Xk

k!

[
DkK ∗ Πxτ(x)

]
, x ∈ Rd,

for τ ∈ B(T ) and extend it linearly for τ ∈ T .

(b) Let γ ∈ (0,∞) \ N and f ∈ Dγ(T ,Z ). We set

N f(x) := NZ
γ f(x) :=

∑
|k|<γ+2

Xk

k!
DkK ∗ (RZ f − Πxf(x))(x) (95) {eq:def_of_cN}{eq:def_of_cN}

and
Kf(x) := KZ

γ f(x) := (I + J Z (x))f(x) +NZ
γ f(x). (96) {eq:def_of_curl_K}{eq:def_of_curl_K}

By [34, Theorem 5.12], K maps Dγ(T ,Z ) to Dγ+2(T ,Z ) and one has RKf =
K ∗ Rf . More precisely, one has

|||Kf |||γ+2;K .T ,γ (1 + |||Z |||γ+2;B(K,1))
2|||f |||γ;B(K,1). (97) {eq:schauder_estimate_modelled_distribution}{eq:schauder_estimate_modelled_distribution}

uniformly over Z ∈ M (T , K), f ∈ D(T ,Z ) and compact sets K ⊆ Rd. See [37,
Theorem 5.1].

(c) For a smooth function F on Rd and β ∈ (0,∞), we set

RβF (x) :=
∑
|k|<β

Xk

k!
DkF (x), x ∈ Rd.

Then [34, Lemma 2.12] implies RβF ∈ Dβ(T ,Z ).

B.7 BPHZ renormalization
{subsubsection:BPHZ}

Interesting models can be derived from the realization defined below.

Definition B.38 ([12, Definition 6.9]). We call a linear map Π : T → S ′(Rd) a (ζ-
)realization if

Π1 = 1, ΠΞ = ζ, Π(Xkτ) = xkΠτ for every τ ∈ B(T ).

A realization is called smooth if its image is a subset ofC∞(Rd). Given an admissible kernel
K, a realization Π is called K-admissible if it additionally satisfies

ΠIk(τ) = ∂kK ∗ τ for every τ ∈ B(T ) and k ∈ Nd
0 with |k| ≤ 1.
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{def:realization_to_model}

Definition B.39 ([12, Definition 6.8]). Let K be an admissible kernel. To a smooth K-
admissible realization Π, one can associate a model

Z (Π) := (Π,Γ)

realizing K as in [12, Definition 6.8]. More precisely, as follows.

• For z ∈ Rd, one defines a character g+
z (Π) : T̂+ → R by

g+
z (Π)(Xi) := −zi, g+

z (Π)(Îk(τ)) := ∂kK ∗ τ(z), g+
z (Π)(Ξ) = 0.

• One defines the character fz : T+ → R by fz := g+
z (Π)Â+.

• One sets
Πx := (Π⊗ fx)∆◦+, Γxy := fx · f−1

y = fx · (fy ◦A+),

where · represents the product of the character group G+.

We denote by M (T , K) the closure in M̄ (T , K) of

{Z (Π) : Π is a smooth K-admissible realization}.
{def:canonical_model}

Definition B.40 ([12, Proposition 6.12]). A (K-)canonical realization Πcan,ε for ξε is the
smooth K-admissible ξε-realization characterized by the identities

Πcan,ε(τσ) = Πcan,ε(τ)Πcan,ε(σ), Πcan,ε(Rατ) = Πcan,ετ,

where Rατ is obtained from τ = (F, F̂ )n,oe by resetting F̂ (ρRτ ) = 1 and o(τ) = α. We set

Z can,ε := (Πcan,ε,Γcan) := Z (Πcan,ε).

In the situation of our interest, the model Z can,ε does not converge as ε ↓ 0. To ob-
tain a limit, one has to “twist” the realization Πcan,ε. This operation of twisting is called
renormalization. The most natural renormalization is called the BPHZ renormalization, as
introduced in [12].

Definition B.41 ([12, Theorem 6.16]). The BPHZ realization ΠBPHZ,ε is a unique ξε-realization
characterized by the following properties:

• ΠBPHZ,ε = (g ⊗Πcan,ε)∆◦− for some algebraic map g : T− → R;

• For every τ ∈ T with |τ |+ < 0, one has E[ΠBPHZ,ετ(0)] = 0.

We set
Z BPHZ,ε := (ΠBPHZ,ε,ΓBPHZ,ε) := Z (ΠBPHZ,ε).

To solve the generalized parabolic Anderson model (87), we need the convergence of
Z BPHZ,ε. More precisely, we assume the following; for a condition under which this as-
sumption is satisfied, we refer to [17, Theorem 2.31].

{assump:convergence_of_BPHZ}

Assumption B.42. As ε ↓ 0, the family of models (Z BPHZ,ε)ε∈(0,1) converges to some
model Z BPHZ = (ΠBPHZ,ΓBPHZ), independent of the mollifier ρ, in M (T , K) in prob-
ability. Furthermore, there exists a δ′ ∈ (0, 1) with the following property. For every
p ∈ 2N, there exist constants CBPHZ

p ∈ (0,∞) and a map εBPHZ
p : (0, 1)→ (0,∞) such that

limε↓0 ε
BPHZ
p (ε) = 0 and the estimates

E[|〈ΠBPHZ
x τ, φλx〉|p] ≤ CBPHZ

p λp(|τ |++δ′),

E[|〈ΠBPHZ
x τ − ΠBPHZ,ε

x τ, φλx〉|p] ≤ εBPHZ
p (ε)λp(|τ |++δ′)

hold for all x ∈ Rd, λ ∈ (0, 1), φ ∈ C2(Rd) with ‖φ‖C2(Rd) ≤ 1 and with supp(φ) ⊆ B(0, 1)
and τ = (T, 0)n,0e ∈ T with |τ |+ < 0. Here we write φλx := λ−dφ(λ−1(· − x)).
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List of symbols from Appendix B

A� antipode of the Hopf algebra T� 74
Â− negative twisted antipode 74
B basis 64
K contraction operator for decorated trees 64
|·| degree or simply absolute value 63
I abstract symbol for integration 62
J joining trees at their roots 63
Z model (Π,Γ) 75
Z (Π) the model from the realization Π 77
Π realization 77
R the reconstruction operator 76
(T ,T+) concrete regularity structure for the gPAM 73
(T−,T ) renormalization structure for the gPAM 73
T set of trees (T, 0)n,0e 66
T− set of trees which conform to R and have negative homogeneity 67
T◦ set of trees which strongly conform to R 67
t type map:E → L 62
L type set {Ξ,I } 62
1′� counit of T� 74
T1 free monoid generated by T◦ 67
1� unit of T� 74
EF edge set of F 62
(F, F̂ ) colourful forest 62
(F, F̂ , n, o, e) decorated forest 63
H◦ vector space of trees invariant under K 64
H1 Hopf algebra of forests invariant under K1 64
HC
� subspace of H� which contains T� and is closed under coproducts 72

HR
� subspace of HC

� whoses basis belongs to T� 73
Di derivative in T 74
M (T , K) the space of models from K-admissible realizations 78
•m the decorated tree (•, 2,m, 0, 0) 63
NF node set of F 62
R rule 66
NT (x) node type of T at x 66
∆◦− coaction T → T− ⊗T 73
∆� coproduct T� → T� ⊗T� 74
Ξ abstract symbol for a noise 62
p<β the natural projection from T to ⊕γ<βTγ 74
Dγ(T ,Z ) the space of modelled distributions 75
ρT root of a tree T 62
τ1 · τ2 forest product of τ1 and τ2 63
τ1τ2 tree product of τ1 and τ2 63
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C Proof of Theorem 3.9
{sec:bphz_AH}

Based on the framework discussed in Appendix B, here we provide the details to prove
Theorem 3.9. First, we prepare some results on the kernel GN from Definition 2.10. In the
rest of this section, we fix an admissible kernel K as in Definition B.35 and we set

HN := GN −K. (98) {eq:def_H_N}{eq:def_H_N}

{lem:H_N_is_Schwarz}

Lemma C.1. For every N ∈ N0, the function HN belongs to S(Rd).

Proof. Since the Fourier transform of GN − G has a compact support, we observe that
HN = (GN − G) + (G −K) is smooth. Thus, it comes down to showing that HN decays
rapidly or equivalently, as K is supported on B(0, 1), to showing that GN decays rapidly.
For m,n ∈ Nd

0, one has

F [xn∂mGN ](ξ) = (−2πi)m−n∂nξ [ξm|ξ|−2(1− χ̌)(2−Nξ)].

If |k| > 0, the function ∂kχ̌ is smooth and supported on B(0, 2N+2/3) \ B(0, 3/4). There-
fore, with some compactly supported smooth function R one has

∂nξ [ξm|ξ|−2(1− χ̌)(2−Nξ)] = ∂nξ [ξm|ξ|−2]× (1− χ̌)(2−Nξ) +R(ξ).

If n1, . . . , nd are sufficiently large, then ∂n[ξm|ξ|−2] is bounded for |ξ| ≥ 3/4. This means
that F [xn∂mGN ](ξ) is integrable, or equivalently, xn∂mGN is bounded.

Remark C.2. Thanks to Lemma C.1, the convolution HN ∗f is well-defined for f ∈ S ′ and
the distribution HN ∗ f represents a smooth function.

{def:kernel_cG_N}

Definition C.3. Suppose that the model Z realizes K. For γ ∈ (0,∞)\N, f ∈ Dγ(T ,Z )
and N ∈ N0, we set

GNf(x) := GZ
N,γf(x) := KZ

γ f(x) +Rγ+2[HN ∗ RZ f ](x).

Recalling thatGN = K+HN from (98), one hasRZ GZ
N f = GN ∗RZ f . For the motivation

behind the parameter N , see Remark 3.1.

C.1 Definition of modelled distributions

Here we rigorously implement the strategy outlined in Remark 1.16, in the framework of
Appendix B.

{def:set_cT}

Definition C.4. We define T , T− ⊆ T and B(T ),B(T−) ⊆ B(T ) as follows.

(a) For τ1, τ2 ∈ T we write “∇I (τ1) · ∇I (τ2)” for “
∑d

j=1 Ij(τ1)Ij(τ2)”.

(b) We denote by T the smallest subset of T with the following properties:

• Ξ ∈ T and

• if τ1, τ2 ∈ T , then∇I (τ1) · ∇I (τ2) ∈ T .

Furthermore, we associate c(τ) ∈ N to each τ ∈ T by setting c(Ξ) := 1 and by
inductively setting for τ1, τ2 ∈ T

c(∇I (τ1) · ∇I (τ2)) :=

{
2c(τ1)c(τ2) if τ1 6= τ2,

c(τ1)c(τ2) if τ1 = τ2.
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(c) One defines B(T ) ⊆ B(T ) as the minimal subset with the following properties:

• Ξ ∈ B(T ) and

• if τ1, τ2 ∈ B(T ) and i ∈ {1, . . . , d}, then Ii(τ1)Ii(τ2) ∈ B(T ).

(d) We set T− := {τ ∈ T : |τ |+ < 0} and B(T−) := {τ ∈ B(T ) : |τ |+ < 0}.
{def:kernel_for_cT}

Definition C.5. Given a model Z realizing K, we associate τK = τK,Z ∈ Dγτ (T ,Z ) to
each τ ∈ T− by setting ΞK := Ξ and by inductively setting

γτ := min{γτ1 + 1 + |τ2|+, γτ2 + 1 + |τ1|+}, τK :=
d∑
i=1

Di[KτK1 ] ?Di[KτK2 ]

for τ = ∇I (τ1) · ∇I (τ2). The exponent γΞ is chosen so that γτ > 2 for every τ ∈ T−.
{rem:tau_K_and_tau}

Remark C.6. Thanks to Proposition B.33 and [34, Theorem 5.12], indeed one has τK,Z ∈
Dγτ . Furthermore, for τ = ∇I (τ1) · ∇I (τ2) and a compact set K, one has

|||τK,Z |||γτ ;K .T (1 + |||Z |||γτ1+γτ2+2;B(K,1))
6|||τK,Z1 |||γτ1 ;B(K,1)|||τK,Z2 |||γτ2 ;B(K,1).

Therefore, there exist a constant γ, C ∈ (0,∞) and integers k, l ∈ N, which depend only on
T , such that

|||τK,Z |||γ;K ≤ C(1 + |||Z |||γ;B(K,l))
k (99) {eq:estimate_of_tau_K}{eq:estimate_of_tau_K}

uniformly over τ ∈ T−, Z ∈M (T ,Z ) and compact sets K ⊆ Rd.
{def:def_of_modelled_distributions_for_AH}

Definition C.7. Let F ∈ C∞c (R) be such that F (x) = −e2x if |x| ≤ 2. Given N ∈ N and a
model Z realizing K, we set

X := XZ :=
∑
τ∈T−

c(τ)τK,Z ,

WN := WZ
N := p<2GZ

N,2X
Z ,

where GZ
N,2 is as in Definition C.3, and

Y N := Y Z
N

:= p<δ

[
F ?(WZ

N ) ?
{ ∑

τ1,τ2∈T−,
|τ1|++|τ2|+>−2

d∑
i=1

c(τ1)c(τ2)Di[KZ τK,Z1 ] ?Di[KZ τK,Z2 ]

+ 2
d∑
i=1

Di[KZXZ ] ? R2[∂i{HN ∗ (RZXZ )}]
}]
.

{prop:modelled_distributions_for_AH}

Proposition C.8. Suppose that a model Z realizes K. Let N ∈ N. Then, one has WZ
N ∈

D2
0(T ,Z ) and Y Z

N ∈ Dδ−1+δ(T ,Z ). More precisely, there exist constants γ, C ∈ (0,∞)

and integers k, l ∈ N such that the following estimates hold uniformly overN ∈ N, Z ,Z ∈
M (T , K) and convex compact sets K ⊆ Rd:

|||XZ |||2;K ≤ C(1 + |||Z |||γ;B(K,l))
k,

|||WZ
N |||2;K ≤ C{(1 + |||Z |||γ;B(K,l))

k + ‖HN ∗ (RZXZ )‖C2(K)},
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|||Y Z
N |||δ;K ≤ C(1 + |||Z |||γ;B(K,l) + ‖HN ∗ (RZXZ )‖C2(K))

k,

and furthermore

|||XZ ;XZ |||2;K ≤ C(1 + |||Z |||γ;B(K,l)|||Z |||γ;B(K,l))
k|||Z ; Z |||γ;B(K,l),

|||WZ
N ;WZ

N |||2;K ≤ C(1 + |||Z |||γ;B(K,l) + |||Z |||γ;B(K,l))
k|||Z ; Z |||γ;B(K,l)

+ ‖HN ∗ (RZXZ −RZXZ )‖C2(K)

|||Y Z
N ;Y Z

N |||δ;K ≤ C
(

1 + |||Z |||γ;B(K,l) + |||Z |||γ;B(K,l)

+ ‖HN ∗ (RZXZ )‖C2(K) + ‖HN ∗ (RZXZ )‖C2(K)

)k
× (|||Z ; Z |||γ;B(K,l) + ‖HN ∗ (RZXZ −RZXZ )‖C2(K)).

Proof. The estimate for XZ follows from (99). As for the estimate of WZ
N , the Schauder

estimate (97) gives the estimate for KXZ . The estimate for R2[HN ∗ (RZXZ )] follows
from the estimate

|||R2[HN ∗ (RZXZ )]|||2;K ≤
∑

m:|m|≤2

‖∂m[HN ∗ (RZXZ )]‖L∞(K),

where the convexity of K is used. The estimate for Y Z
N follows from Proposition B.33, the

estimate (94) and the Schauder estimate (97).
For the estimates of the differences, the proof is similar. Indeed, we apply difference-

analogue of Proposition B.33, the estimate (94) and (97), which can be found in [34, Propo-
sition 4.10], [38, Proposition 3.11] and [34, Theorem 5.12] respectively.

{def:def_of_X_W_N_Y_N_for_model}

Definition C.9. Given a model Z realizing K and N ∈ N, with XZ ,WZ
N and Y Z

N as in
Definition C.7, we set

XZ := RZXZ , WZ
N := RZWZ

N

and
Y Z
N := RZY Z

N + F (WZ
N )
{
|∇[HN ∗ (XZ )]|2 + [∆(GN −G)] ∗XZ

}
.

As noted in Definition C.3, one has WZ
N = GN ∗XZ .

{lem:cancellation_for_W_can}

Lemma C.10. Let ε ∈ (0, 1). To simplify notation, we write Xcan,ε := XZ can,ε
here for

instance. Then, one has the following identity:

|∇W can,ε
N |2 + ∆W can,ε

N = −ξε
+

∑
τ1,τ2∈T−,

|τ1|++|τ2|+>−2

c(τ1)c(τ2)∇(K ∗ Rcan,ετK,can,ε
1 ) · ∇(K ∗ Rcan,ετK,can,ε

2 )

+ 2∇[K ∗Xcan,ε] · ∇[HN ∗ (Xcan,ε)] + |∇[HN ∗ (Xcan,ε)]|2 + [∆(GN −G)] ∗Xcan,ε.

Proof. One has W can
N = K ∗Xcan +HN ∗Xcan and

|∇W can
N |2 =

∑
τ1,τ2∈T−

c(τ1)c(τ2)∇[K ∗ RcanτK,can
1 ] · ∇[K ∗ RcanτK,can

2 ]

+ 2∇[K ∗Xcan] · ∇[HN ∗Xcan] + |∇HN ∗Xcan|2.
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Furthermore,

∆W can
N = −

∑
τ∈T−

c(τ)RcanτK,can + [∆(GN −G)] ∗Xcan.

Now it remains to observe∑
τ1,τ2∈T−

c(τ1)c(τ2)∇[K ∗ RcanτK,can
1 ] · ∇[K ∗ RcanτK,can

2 ]−
∑
τ∈T−

c(τ)RcanτK,can

= −ξε +
∑

τ1,τ2∈T−,
|τ1|++|τ2|+>−2

c(τ1)c(τ2)∇(K ∗ RcanτK,can
1 ) · ∇(K ∗ RcanτK,can

2 ).

C.2 BPHZ renormalization forX

The goal of this section is to show XZ BPHZ,ε
= XZ can,ε−cε (Proposition C.18). To this end,

our first goal is to obtain the basis expansion for modelled distributions τK,Z ∈ T−, which
will be given in Lemma C.13.

{lem:Delta_to_T_0}

Lemma C.11. For every τ1, τ2 ∈ T− with |τ1|+, |τ2|+ < −1 and i, j ∈ {1, . . . , d}, one has

∆◦+[Ii(τ1)] = Ii(τ1)⊗ 1+, ∆◦+[Ii(τ1)Ij(τ2)] = [Ii(τ1)Ij(τ2)]⊗ 1+.

In particular, the constant map x 7→ Ii(τ1)Ij(τ2) belongs to D∞|τ1|+|τ2|+2(T ,Z ) for any
model Z = (Π,Γ) and

R[Ii(τ1)Ij(τ2)] = Πx[Ii(τ1)Ij(τ2)],

where the right-hand side is independent of x.

Proof. In view of the recursive formula [12, Proposition 4.17], one can prove the claim
by induction on |·|+. Indeed, suppose one is going to prove ∆◦+τ = τ ⊗ 1+, where τ =
Ii(τ1)Ij(τ2) and ∆◦+τk = τk ⊗ 1+. By Lemma B.28, ∆◦+τ = ∆◦+[Ii(τ1)]∆◦+[Ij(τ2)].
Therefore, it suffices to show ∆◦+[Ii(τ1)] = [Ii(τ1)] ⊗ 1+. By [12, Proposition 4.17], one
has

∆◦+Ii(τ1) = (Ii ⊗ Id)∆τ1 +
∑

k:|τ |++1−|k|>0

Xk

k!
⊗ Îei+k(τ1).

It remains to observe that (Ii⊗ Id)∆τ1 = [Ii(τ1)]⊗1+ by hypothesis of the induction and
that the set over which k ranges is empty.

{def:remove_cT}

Definition C.12. We use some notations from Section B.1. Let τ ∈ B(T ) and let e be an
edge of τ with t(e) = I . By removing the edge e, we obtain a decorated forest with two
connected components. We denote by

Remove(τ ; e)

the component containing the root of τ , with decoration inherited from τ . For instance,

Remove( ; ) = ,

where represents the noise Ξ. We set

Remove(B(T )) := {Remove(τ ; e) : τ ∈ B(T ), e ∈ Eτ with t(e) = I },
Removen(B(T )) := {(T, 0)n,0e : (T, 0)0,0

e ∈ Remove(B(T ))}.
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{lem:tau_K_expansion}

Lemma C.13. Suppose Z = (Π,Γ) is a model realizing K. Then, one has a claim for
τ ∈ T− as follows.

(a) If τ = Ξ or τ = ∇I (τ1) · ∇I (τ2) with |τ1|+, |τ2|+ < −1, then τK,Z = τ .

(b) If τ = ∇I (τ1) ·∇I (τ2) with |τ1|+ > −1 and |τ2|+ < −1, then one has the expansion

τK,Z (x) = τ +
∑

σ∈V(τ)

aZ
τ,σ(x)σ, (100) {eq:tau_K_expansion}{eq:tau_K_expansion}

with the following properties:

• V(τ) is a finite subset of Removen(B(T )) that is independent of Z ,

• one has

aZ
τ,σ(x)

=
∑

j∈{1,...,d},n∈N0,ρ∈T−,
l1,...,ln∈Nd0,σ1,...,σn∈Removen(B(T ))
|σk|++2−lk>0,−1<|ρ|+<|τ |+

,

cl1,...,ln,σ1,...,σnτ,σ,ρ (P)[∂jK ∗ Πxρ
K,Z (x)]

n∏
k=1

[∂lkK ∗ Πxσk](x)

+
∑

n∈N0,ρ∈T−,
l,l1,...,ln∈Nd0,σ1,...,σn∈Removen(B(T ))
|σk|++2−lk>0,−1<|ρ|+<|τ |+

,

cl1,...,ln,σ1,...,σnτ,σ,ρ,l (R)[∂lK ∗ (RZ ρK,Z − Πxρ
K,Z (x))](x)

×
n∏
k=1

[∂lkK ∗ Πxσk](x),

where the sum is actually finite and the constants

cl1,...,ln,σ1,...,σnτ,σ,ρ (P) and cl1,...,ln,σ1,...,σnτ,σ,ρ,l (R)

are independent of Z .

Proof. To see the claim (a), if |τ |+ < −1, thanks to Lemma C.11, the identity (96) becomes

Kτ = I τ + (K ∗ Rτ)(x)1

and hence DiKτ = Iiτ . The claim (b) seems complicated but can be proven easily by
induction. Suppose that one has τ = ∇I (τ1) · ∇I (τ2) such that τ1 has the expansions
of the form (100) and τK2 = τ2. Furthermore, one has −1 < |τ1|+ < 0 since |τ |+ < 0.
Therefore, one has

τK1 = τ1 +
∑

σ∈Removen(B(T ))

aσσ, τK2 = τ2 (101) {eq:tau_1_K_expansion}{eq:tau_1_K_expansion}

where aσ has the desired property. By the definition (96) of K , one has

DiKτK1 (x) = Iiτ1 +
∑

σ∈Removen(B(T ))

aσ(x)Ii(σ) + [∂iK ∗ Πxτ1](x)1

+
∑

σ∈Removen(B(T )),l∈Nd0
|σ|+1−|l|>0

aσ(x)[∂ei+lK∗Πxσ](x)
X l

l!
+

∑
|l|<γτ1+1

[∂ei+lK∗(RτK1 −Πxτ
K
1 )](x)

X l

l!
,
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where γτ1 is chosen so that τK1 ∈ Dγτ1 (T ,Z ), see Remark C.6. Since DiKτK2 = Iiτ2 as
shown in the part (a), one has

Ii(σ)Ii(τ2), X lIi(τ2) ∈ Removen(B(T )).

Since |τ1|+ < |τ |+, we complete the induction.

We recall an explicit formula of the BPHZ realization.

Definition C.14 ([12, Theorem 6.18]). Let T̂− be the free algebra generated by T under
the forest product. (In fact, recalling HR

1 from Definition B.21, we have T̂− = HR
1 .) We

define the algebra homomorphism g−ε : T̂− → R characterized by

g−ε (i◦τ) := E[Πcan,ετ(0)],

where i◦ : T → T̂− is the natural injection. Then, we have

ΠBPHZ,ε = (g−ε Â− ⊗Πcan,ε∆◦−). (102) {eq:bphz_realization}{eq:bphz_realization}

In view of the identity (102) and Lemma C.13, we need to understand (g−ε Â−⊗Πcan,ε)∆◦−τ
for τ ∈ T− and τ ∈ Removen(B(T )). As one can easily guess from the definition of g−ε , it
is necessary to estimate E[Πcan,ετ(0)] for such τ . The following simple lemma is a conse-
quence of the symmetry of the noise ξ.

{lem:expectation_remove_cT}

Lemma C.15. For τ ∈ Remove(B(T )), one has E[Πcan,ετ(0)] = 0.

Proof. Let τ = (T, 0)0,0
e ∈ Remove(B(T )). Let Πminus be the canonical realization for

ξε(−·). Since ξ d
= ξ(−·), one has Πminusσ

d
= Πcan,εσ for every σ ∈ T . If we set

n(T ) := #{e ∈ ET : t(e) = I },

by using the identity
∂iK ∗ [f(−·)] = −[∂iK ∗ f ](−·),

where the fact K = K(−·) is used, one has Πminusτ = (−1)n(T )Πcan,ετ . However, since
τ ∈ Remove(B(T )), n(T ) is odd. Therefore, one has

Πminusτ
d
= Πcan,ετ and Πminusτ = −Πcan,ετ,

and concludes E[Πcan,ετ(0)] = 0.
{lem:Delta_minus_expansion}

Lemma C.16. For τ = (F, F̂ )n,oe ∈ B(T ) ∪ Removen(B(T )) and x ∈ Rd, one has

∆◦−τ = τ ⊗ 1 + 1− ⊗ τ + ker(g−ε Â− ⊗ Πcan,ε
x ) ∩ ker(g−ε Â− ⊗Πcan,ε).

Proof. Recall from Definition B.2-(a) that edges are oriented. We call an edge e = (a, b)
a leaf if b is not followed by any edge. We call a node a of F true if there exists an edge
e = (a, b) such that t(e) = I . We denote by N true the set of all true nodes of F . For a
subforest G of F , we set

N j
G := {a ∈ NG ∩N true : there exist exactly j outgoing edges in G at a}.

Recalling the coproduct formula (89), one has
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∆◦−τ = τ ⊗R|τ |+1 + 1− ⊗ τ

+
∑

G⊆F,G6=∅

∑
nG 6=n,εFG

1

εFG!

(
n

nG

)
(G, 0)

nG+πεFG,0
e ⊗K (F,1G)

n−nG,π(εFA−e1G)

e1EF \EG+εFG
,

where Rα is defined in Definition B.40. However, note that Πcan,εRα1 = Πcan,ε1. We fix
G 6= ∅, nG 6= n and εFG and set

τ1 := (G, 0)
nG+πεFG,0
e , τ2 := K (F,1G)

n−nG,π(εFA−e1G)

e1EF \EG+εFG

We will prove (g−ε Â− ⊗ Πcan,ε
x )(τ1 ⊗ τ2) = 0 by considering various cases, which will

complete the proof. When a case is studied, we exclude all cases considered before.

1. Suppose that G 6= F and that a connected component T of G satisfies N0
T = ∅ and

N1
T = N1

F ∩ NG. Then, the forest τ2 contains a leaf (a, ρT ) of edge type I and hence
Πcan,ε
x τ2 = Πcan,ετ2 = 0.

2. Suppose G contains a leaf of edge type I . Then, in view of the recursive formula (92),
this is also the case for each forest appearing in Â−τ1 and hence g−ε Â−τ1 = 0.

3. Suppose N0
G 6= ∅. If the case 2 is excluded, then a connected component of τ1 is of the

form •n1,0 and hence τ1 = 0 (as an element of T−).

4. Suppose τ1 contains a connected component τ3 = (T, 0)n,0e such that #N1
T ≥ 2. Let

a ∈ N1
T .

• If a is the root of T , then τ3 = Ii(τ4) and hence τ1 = 0 (as an element of T−).

• If a is not the root of T , one can merge two consecutive edges (a1, a) and (a, a2)
into a single edge (a1, a2) to obtain a new tree τ5 ∈ T◦ with |τ3|− = |τ5|−+1. Since
|σ|− ≥ −2 + δ for every σ ∈ T◦, if #(N1

T \ {ρT}) ≥ 2, then |τ3|− > 0 and hence
τ1 = 0 (as an element of T−).

5. Suppose that τ1 contains a connected component τ6 = (T6, 0)n6,0e such that N0
T6

= N1
T6

=
∅. Then, T1 = T6 = F and τ1 ∈ B(T ). However, this implies n = nG = 0, which is
excluded.

6. Therefore, it remains to consider the case where every connnected component τ7 =
(T7, 0)n7,0e of τ1 satisfies #N1

T7
= 1 and N0

T7
= ∅ and all leaves of τ7 are of type Ξ,

namely τ7 ∈ Removen(B(T )). If n7 6= 0 on NT7 , then |τ7|− > 0. Thus, we suppose
n7 = 0. We will show g−ε Â−τ7 = 0, which implies g−ε Â−τ1 = 0 since the character
g−ε Â− is multiplicative. To apply the recursive formula (92), consider the expansion

∆̂−τ7 − τ7 ⊗ 1− = 1⊗ τ7 +
∑
τ8

cτ8τ8 ⊗ τ9.

Then, one has

g−ε Â−τ7 = −E[Πcan,ετ7(0)]−
∑
τ8

cτ8 ×
(
g−ε Â−τ8

)
× E[Πcan,ετ9(0)].

By the same reasoning as before, one can suppose that every component τ10 = (T10, 0)0,0
e

of τ8 belongs to Remove(B(T )). However, since T10 has a strictly smaller number of
edges than T7 does, one can assume g−ε Â−τ8 = 0 by induction. Therefore, it remains to
show E[Πcan,ετ7(0)] = 0. But this was shown in Lemma C.15.
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{cor:bphz_character_for_cT}

Corollary C.17. If τ ∈ Remove(B(T )), then g−ε Â−τ = 0. If τ ∈ T−, then

g−ε Â−τ = −E[Πcan,ετ(0)].

Proof. The claim for τ ∈ Remove(B(T )) is proved in the proof of Lemma C.16, see the
case 6. If τ ∈ T−, by Lemma C.16 one has

ΠBPHZ,ετ = Πcan,ετ + g−ε Â τ.

However, since |τ |− < 0, one has E[ΠBPHZ,ετ(0)] = 0 by definition, which completes the
proof.

{prop:bphz_vs_can_for_X}

Proposition C.18. For τ ∈ T−, one has

ΠZ BPHZ,ε

x τK,Z
BPHZ,ε

(x) = ΠZ can,ε

x τK,Z
can,ε

(x)− E[Πcan,ετ(0)], x ∈ Rd, (103) {eq:bphz_vs_can_for_X_realization}{eq:bphz_vs_can_for_X_realization}

RZ BPHZ,ε

τK,Z
BPHZ,ε

= RZ can,ε

τK,Z
can,ε − E[Πcan,ετ(0)].

In particular,
XZ BPHZ,ε

= XZ can,ε − cε.

where
cε :=

∑
τ∈T−

c(τ)E[Πcan,ετ(0)]. (104) {eq:def_of_c_epsilon}{eq:def_of_c_epsilon}

Proof. To simplify notation, we writeRBPHZ := RZ BPHZ,ε here, for instance. Since

R#τK,#(x) = [Π#
x τ
K,#(x)](x), # ∈ {can,BPHZ},

it suffices to prove (103). By Lemma C.13, one has the expansion

τK,BPHZ(x) = τ +
∑
σ

aBPHZ
τ,σ (x)σ.

In the expression of aBPHZ
τ,σ given in Lemma C.13, every ρ in the sum satisfies |ρ|+ < |τ |+.

Therefore, one can assume aBPHZ
σ = acan

σ by induction. By Lemma C.16 and Corollary
C.17,

∆◦−τ
K,BPHZ(x) = τ ⊗ 1 + 1− ⊗ τ +

∑
σ

acan
σ (x)1− ⊗ σ + ker(g−ε Â− ⊗ Πcan

x ).

Furthermore, by [12, Theorem 6.16], one has

ΠBPHZ
x = (g−ε Â− ⊗ Πcan

x )∆◦−.

Therefore,

ΠBPHZ
x τK,BPHZ(x) = g−ε Â−τ + Πcan

x τ +
∑
σ

acan
σ (x)Πcan

x σ

= −E[Πcan,ετ(0)] + Πcan
x τK,can(x),

where we applied Corollary C.17 to get the last equality.
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C.3 BPHZ renormalization for Y N

The goal of this section is to compare Y Z can,ε

N and Y Z BPHZ,ε

N , as we did forX in the previous
section. Again, we need to obtain the basis expansion for Y N .

{lem:expansion_for_cY}

Lemma C.19. Let τ1, τ2 ∈ T−, i ∈ {1, . . . , d} and N ∈ N. Let Z be a model realizing K.
Assume |τ1|+ + |τ2|+ > −2. Then, for x ∈ Rd, one has

p<δ
{
F (WZ

N )(x) ?Di[KτK,Z1 ](x) ?Di[KτK,Z2 ](x)
}

= p<δ

{∑
k∈N0

DkF (WZ
N (x))

k!

( ∑
τ∈T−

I τ
)?k

?Di[KτK,Z1 ](x) ?Di[KτK,Z2 ](x)
}

and

p<δ
{
F (WZ

N )(x) ?Di[KZXZ ](x) ? R2[∂i{HN ∗ (RZXZ )}](x)
}

= p<δ

{∑
k∈N0

DkF (WZ
N (x))

k!
∂i[HN ∗ (XZ )](x)

( ∑
τ∈T−

I τ
)?k

?Di[KZXZ ](x)
}
.

Proof. By Lemma C.13, one has

WZ
N (x) =

∑
τ∈T−

I τ +WZ
N (x)1 +WZ ,+

N (x),

whereWZ ,+
N (x) ∈ ⊕α≥1Tα. Recalling Definition B.34, one has

F (WZ
N )(x) =

∑
k∈N0

DkF (WZ
N (x))

k!

( ∑
τ∈T−

I τ +WZ ,+
N (x)

)?k
.

Since Lemma C.13 implies that

Di[KτK,Z1 ](x) ?Di[KτK,Z2 ](x)

is ⊕α≥−1+δTα-valued, one can ignore the contribution from WZ ,+
N (x) when the projection

p<δ is applied. This observation proves the claimed identities.
{lem:BPHZ_vs_can_for_Y}

Lemma C.20. Let N ∈ N. To simplify notation, we write XBPHZ,ε := XZ BPHZ,ε
here, for

instance. Then, one has

RBPHZ,εY BPHZ,ε
N = F (WBPHZ,ε

N )

×
{ ∑

τ1,τ2∈T−,
|τ1|++|τ2|+>−2

c(τ1)c(τ2)∇(K ∗ Rcan,ετK,can,ε
1 ) · ∇(K ∗ Rcan,ετK,can,ε

2 )

+ 2∇[K ∗Xcan,ε] · ∇[HN ∗Xcan,ε]
}

Proof. To simplify notation, we also write ΠBPHZ,ε
x := ΠZ BPHZ,ε

x here, for instance. One has

RBPHZ,εY BPHZ,ε
N (x) = [ΠBPHZ,ε

x Y BPHZ,ε
N (x)](x).

In view of Lemma C.13, Proposition C.18 and Lemma C.19, it suffices to show

ΠBPHZ,ε
x [I (τ1) · · ·I (τn)Ii(τn+1)] = Πcan,ε

x [I (τ1) · · ·I (τn)Ii(τn+1)],
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ΠBPHZ,ε
x [I (τ1) · · ·I (τn)Ii(τn+1)Ii(τn+2)] = Πcan,ε

x [I (τ1) · · ·I (τn)Ii(τn+1)Ii(τn+2)],
(105) {eq:pi_BPHZ_vs_can}{eq:pi_BPHZ_vs_can}

for τ1, . . . , τn, τn+1 ∈ T− and τn+2 ∈ Remove(B(T )). We only prove the second identity
of (105). We set

τ := (F, 0)0,0
e := I (τ1) · · ·I (τn)Ii(τn+1)Ii(τn+2), (Fj, 0)0,0

e := τj.

The proof of (105) follows the argument in the proof of Lemma C.16. We claim

∆◦−τ = 1− ⊗ τ +
∑

J⊆{1,...,n}

[
Ii(τn+1)

∏
j∈J

I (τj)
]
⊗
[
Ii(τn+2)

∏
j /∈J

I (τj)
]

+
∑

J⊆{1,...,n}

[
Ii(τn+1)Ii(τn+2)

∏
j∈J

I (τj)
]
⊗
∏
j /∈J

I (τj). (106) {eq:Delta_minus_for_bm_tau}{eq:Delta_minus_for_bm_tau}

Indeed, let σ ⊗ σ′ be a basis appearing in the coproduct formula (89) for ∆◦−τ . If we set
(G, 0)n,0e := σ and σk := (G ∩ Fj, 0)n,0e , by repeating the argument in the proof of Lemma
C.16, the forest σk is either ∅, τk or Remove(ρk; ek) for some ρk and ek.

• If σk = ∅, then σ = 0 in T− unless (ρτ , ρτk) /∈ Eσ.

• If σk = τk, then σ′ has a leaf of type I unless (ρτ , ρτk) ∈ Eσ.

• If σk = Remove(ρk; ek), then |σ|+ > 0 and hence σ = 0 in T−.

Therefore, the claimed identity (106) is established. It remains to show

g−ε Â−
[
Ii(τn+1)

∏
j∈J

I (τj)
]

= 0, g−ε Â−
[
Ii(τn+1)Ii(τn+2)

∏
j∈J

I (τj)
]

= 0. (107) {eq:bphz_character_I_and_derivative_I}{eq:bphz_character_I_and_derivative_I}

Without loss of generality, we can suppose J = {1, . . . , n}. The proof is based on induction.
We only consider the first identity of (107). As for the case n = 0, the first identity of (107)
is shown in Lemma C.15. Similarly to (106), one can show

∆̂−τ = 1− ⊗ τ +
∑

J⊆{1,...,n}

[
Ii(τn+1)

∏
j∈J

I (τj)
]
⊗
∏
j /∈J

I (τj)

In view of the recursive formula (92) and the hypothesis of the induction, it remains to show

E[Πcan,ετ (0)] = 0.

However, this can be proved as in Lemma C.15, since τ has an odd number of edges e such
that t(e) = I and |e(e)| = 1.

{prop:identitiy_for_W_and_Y}

Proposition C.21. Let cε be as in (104). We then have

Y Z BPHZ,ε

N = F (WZ BPHZ,ε

N )(ξε − cε + |∇WZ BPHZ,ε

N |2 + ∆WZ BPHZ,ε

N ).

Proof. To simplify notation, we write XBPHZ,ε := XZ BPHZ,ε here, for instance. aaaa
By Proposition C.18,XBPHZ,ε andXcan,ε are only different by constant, so thatWBPHZ,ε

N =
W can,ε
N . Therefore, by Lemma C.10 and Lemma C.20,

By definition:

Y BPHZ,ε
N := RBPHZ,εY BPHZ,ε

N +F (WBPHZ,ε
N )

{
|∇[HN∗(XBPHZ,ε)]|2+[∆(GN−G)]∗XBPHZ,ε

}
.
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By Lemma C.20

RBPHZ,εY BPHZ,ε
N = F (WBPHZ,ε

N )

×
{ ∑

τ1,τ2∈T−,
|τ1|++|τ2|+>−2

c(τ1)c(τ2)∇(K ∗ Rcan,ετK,can,ε
1 ) · ∇(K ∗ Rcan,ετK,can,ε

2 )

+ 2∇[K ∗Xcan,ε] · ∇[HN ∗Xcan,ε]
}

By Lemma C.10

|∇W can,ε
N |2 + ∆W can,ε

N = −ξε
+

∑
τ1,τ2∈T−,

|τ1|++|τ2|+>−2

c(τ1)c(τ2)∇(K ∗ Rcan,ετK,can,ε
1 ) · ∇(K ∗ Rcan,ετK,can,ε

2 )

+ 2∇[K ∗Xcan,ε] · ∇[HN ∗ (Xcan,ε)] + |∇[HN ∗ (Xcan,ε)]|2 + [∆(GN −G)] ∗Xcan,ε.

Y BPHZ,ε
N − F (WBPHZ,ε

N )(ξε + |∇WBPHZ,ε
N |2 + ∆WBPHZ,ε

N )

= F (WBPHZ,ε
N )×

(
[∆(GN −G)] ∗ (XBPHZ,ε −Xcan,ε)

)
= F (WBPHZ,ε

N )×
(
[∆(GN −G)] ∗ cε

)
= −F (WBPHZ,ε

N )cε.

C.4 Stochastic estimates and Besov regularity
{subsec:stochastic_estimates}

Proposition C.8 gives pathwise estimates for the modelled distributions X , WN and Y N .
Here we give stochastic estimates for X and YN in suitable Besov spaces. For this sake, we
will use the notation on wavelets from Appendix A.1. We fix k ∈ N such that k > 5d

2
+ 2,

and we consider the orthonormal basis {Ψn,G
m } given by (78). We set Ψ := Ψ

0,(f,...,f)
0 .

Definition C.22. Let Z = (Π,Γ),Z = (Π,Γ) ∈M (T , K). Given a compact set K ⊆ Rd,
we set

JZ KK := sup
τ=(T,0)n,0e ∈B(T )∩T<0

sup
n∈N

sup
x∈K∩2−nZd

2n|τ |+|〈Πxτ, 2
ndΨ(2n(· − x))〉Rd |,

JZ ; Z KK := sup
τ=(T,0)n,0e ∈B(T )∩T<0

sup
n∈N

sup
x∈K∩2−nZd

2n|τ |+|〈Πxτ − Πxτ, 2
ndΨ(2n(· − x))〉Rd |.

{lem:model_norm_bounded_by_lattice_model_norm}

Lemma C.23. For each γ ∈ R, there exist a constant C ∈ (0,∞) and an integer k ∈ N
such that the following estimates hold uniformly over Z ,Z ∈M (T , K) and compact sets
K ⊆ Rd:

|||Z |||γ;K ≤ C(1 + JZ KK)k, |||Z ; Z |||γ;K ≤ C(1 + JZ KK)k(JZ ; Z KK + JZ ; Z KkK).

Proof. Using the recursive formula [12, Proposition 4.17], one can prove the claim as in
[49, Lemma 2.3].

{lem:L_p_norm_of_lattice_model_norm}

Lemma C.24. Let L ∈ [1,∞) and set QL := [−L,L]d. Let p ∈ 2N. Under Assumption
B.42, if pδ′ > d+ 1, one has

E[JZ BPHZKpQL ] ≤ CBPHZ
p Ld, E[JZ BPHZ; Z BPHZ,εKpQL ] ≤ εBPHZ

p (ε)Ld.

93



Proof. The proof is essentially the repetition of [49, Lemma 4.11]. Set

B0(T ) := {τ = (T, 0)n,0e ∈ B(T ) : |τ |+ < 0}.

If we write Ψλ
x := λ−dΨ(λ−1(· − x)), one has

E[JZ BPHZKpQL ] = E[ sup
τ∈B0(T )

sup
n∈N

sup
x∈QL∩2−nZd

2n|τ |+p|〈Πxτ,Ψ
2−n

x 〉Rd |p]

.
∑

τ∈B0(T )

∑
n∈N

2ndLd2n|τ |+pE[|〈Π0τ,Ψ
2−n

0 〉Rd|p],

where the stationarity of the noise ξ and the estimate #(QL∩ 2−nZd) . 2ndLd are used. By
Assumption B.42,

E[|〈Π0τ,Ψ
2−n

0 〉Rd |p] .ψf
CBPHZ
p 2−np(|τ |++δ′).

Therefore,
E[JZ BPHZKpQL ] . CBPHZ

p Ld|B0(T )|(2pδ′−d − 1)−1.

The estimate for the second claimed inequality is similar.
{lem:estimate_of_H_N_conv_X}

Lemma C.25. Let K ⊆ Rd be a compact set and σ ∈ (0,∞). Then, there exists a constant
C ∈ (0,∞) such that for all N ∈ N

‖HN ∗X‖C2(K) ≤ C23N‖X‖C−2,σ(Rd).

Proof. Let φ ∈ C∞c (Rd) be such that φ ≡ 1 on K. By Lemma A.4, one has

‖HN ∗X‖C2(K) . ‖φ(HN ∗X)‖C2(Rd) .σ ‖HN ∗X‖C2,σ(Rd).

It remains to apply Corollary A.10.

Recall from Definition B.6 that we have, for instance, |Ξ|+ = −2 + δ + κ for some
κ ∈ (0, δ′).

{prop:stochastic_estimates_of_X_and_Y}

Proposition C.26. Under Assumption B.42, there exist a deterministic integer k = k(δ−) ∈
N such that for all σ ∈ (0,∞), p ∈ 2N with p > (d + 1)/min{δ′ − κ, σ} and N ∈ N we
have the following:

E[‖XZ BPHZ‖p
B
−2+δ+κ/2,σ
p,p (Rd)

] .δ,δ′,κ,σ,p C
BPHZ
kp ,

E[‖Y Z BPHZ

N ‖p
B
−1+δ+κ/2,σ
p,p (Rd)

] .δ,δ′,κ,σ,p C
BPHZ
kp 2kpN

and

E[‖XZ BPHZ −XZ BPHZ,ε‖p
B
−2+δ+κ/2,σ
p,p (Rd)

] .δ,δ′,κ,σ,p C
BPHZ
kp [εBPHZ

kp (ε) + εBPHZ
p (ε)],

E[‖Y Z BPHZ

N − Y Z BPHZ,ε

N ‖p
B
−1+δ+κ/2,σ
p,p (Rd)

] .δ,δ′,κ/2,σ,p C
BPHZ
kp 2kpN [εBPHZ

kp (ε) + εBPHZ
p (ε)].

Proof. Set Z := Z BPHZ. In the proof, we drop superscripts for BPHZ. The natural
numbers k, l, γ depend only on T and they vary from line to line. We will not write down
the dependence on T , δ, δ−, p, σ. Recall the notation Ψn,G

m from (78).
Suppose we are given a modelled distribution f ∈ Dγα(T ,Z ) with α < 0 < γ. We

decompose
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〈Rf, 2nd/2Ψn,G
m 〉Rd

= 〈Rf − Π2−nmf(2−nm), 2nd/2Ψn,G
m 〉Rd + 〈Π2−nmf(2−nm), 2nd/2Ψn,G

m 〉Rd .

Using (93), the first term is bounded by a constant times

2−nγ|||f |||γ;B(2−nm,l)|||Z |||γ;B(2−nm,l).

To estimate the second term, consider the basis expansion

f(x) =
∑
σ

aσ(x)σ.

One has |aσ(2−nm)| ≤ |||f |||γ;B(2−nm,l) and

|〈Π2−nmσ, 2
nd/2Ψn,G

m 〉Rd | . 2−nα|||Z |||γ;B(2−nm,l).

Therefore,
|〈Rf, 2nd/2Ψn,G

m 〉Rd | . 2−nα|||f |||γ;B(2−nm,l)|||Z |||γ;B(2−nm,l). (108) {eq:modelled_dist_tested_agianst_wavelet}{eq:modelled_dist_tested_agianst_wavelet}

Applying the estimate (108) toX and Y N , by Proposition A.13, we get

‖X‖p
B
−2+δ+κ/2,σ
p,p (Rd)

.
∑
n∈N0

2−n(d+κ/2)
∑

G∈Gn,m∈Zd
wσ(2−nm)p|||X|||p2;B(2−nm,l)|||Z |||

p
2;B(2−nm,l),

‖YN‖p
B
−1+δ+κ/2,σ
p,p (Rd)

.
∑
n∈N0

2−n(d+κ/2)
∑

G∈Gn,m∈Zd
wσ(2−nm)p|||Y N |||pδ;B(2−nm,l)|||Z |||

p
δ;B(2−nm,l).

To estimate ‖X‖
B
−2+δ+κ/2,σ
p,p (Rd)

, we use Lemma C.8 and stationarity to obtain

E[‖X‖p
B
−2+δ+κ/2,σ
p,p (Rd)

] .
∑
n∈N0

2−n(d+(δ−δ−))
∑

G∈Gn,m∈Zd
wσ(2−nm)pE[(1 + |||Z |||γ;B(0,l))

kp].

Since ∑
m∈Zd

wσ(2−nm)p .
∫
Rd

(1 + |2−nx|2)−
pσ
2 dx = 2nd‖wσ‖pLp(Rd)

,

and by Lemma C.23 and by Lemma C.24

E[(1 + |||Z |||γ;B(0,l))
kp] . CBPHZ

k′p

for some k′ ∈ N, we conclude

E[‖X‖p
B
−2+δ+κ/2,σ
p,p (Rd)

] . CBPHZ
kp .

The estimate of YN is similar by using Lemma C.25. The estimates of the differences can
be proved similarly by using [34, (3.4)].
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Proof of Theorem 3.9. The claim on the convergence follows from Proposition C.26 and by
applying Besov embeddings: Observe that WZ BPHZ,ε

N = GN ∗XZ BPHZ,ε
= GN ∗Xε = W ε

N

(see Definition C.9) and Y ε
N = Y Z BPHZ,ε

N by Proposition C.21.
To show (16), let p ∈ 2N be such that d/p < κ/2. By Proposition C.26 and the Besov

embedding, for some k′ ∈ N,

E[‖Y Z BPHZ

N ‖pC−1+δ,σ(Rd)
] .p,δ,σ E[‖Y Z BPHZ

N ‖p
B
−1+δ+d/p,σ
p,p (Rd)

] .p,δ,κ,σ 2pk
′N .

Therefore, if k > k′, ∑
N∈N

2−kpNE[‖Y Z BPHZ

N ‖pC−1+δ,σ(Rd)
] <∞.
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