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Abstract

We address the analysis of a model for brittle delamination of two visco-elastic bodies, bonded
along a prescribed surface. The model also encompasses thermal effects in the bulk. The related
PDE system for the displacements, the absolute temperature, and the delamination variable has a
highly nonlinear character. On the contact surface, it features frictionless Signorini conditions and a
nonconvex, brittle constraint acting as a transmission condition for the displacements.

We prove the existence of (weak/energetic) solutions to the associated Cauchy problem, by ap-
proximating it in two steps with suitably regularized problems. We perform the two consecutive
passages to the limit via refined variational convergence techniques.

1 Introduction

This paper deals with the analysis of a model describing the evolution of brittle delamination between two
visco-elastic bodies Ω+ and Ω−, bonded along a prescribed contact surface Γ, see e.g. Fig. 2.1, over a fixed
time interval (0, T ). The modeling of delamination follows the approach by M. Frémond [Fré88, Fré02],
which treats this phenomenon within the class of generalized standard materials [HN75]. More precisely,
the adhesiveness of the bonding is modeled with the aid of an internal variable, the so-called delamination
variable z : (0, T )×Γ → [0, 1], which describes the fraction of fully effective molecular links in the bonding.
Hence, z(t, x) = 1 means that the bonding at time t ∈ (0, T ) is fully intact in the material point x ∈ ΓC,

whereas for z(t, x) = 0 the bonding is completely broken. The weakening of the bonding is a dissipative
and unidirectional process, which is assumed to be rate-independent. These facts are modeled by the
positively 1-homogeneous dissipation potential

R1(ż) :=

∫

ΓC

R1(ż) dS with R1(ż) :=

{
a1|ż| if ż ≤ 0,

+∞ otherwise,
(1.1a)

where ż is the time derivative of z. A further dissipative process is due to viscosity in the bulk, and the
amount of dissipated energy is described by the positively 2-homogeneous dissipation potential

R2(ė) :=

∫

Ω\ΓC

R2(ė) dx with R2(ė) :=
1
2 ė:D:ė, (1.1b)

acting on the rate of the linearized strain tensor e. Here, Ω = Ω− ∪ Γ ∪ Ω+ ⊂ Rd and D is a positively
definite, symmetric fourth-order tensor. In particular, the specific dissipation rate R(

.
e,

.
z) = R2(

.
e)dx +

R1(
.
z)dS is in general a measure which reflects the mixed (i.e., rate-dependent and rate-independent)

character of the model. Its absolutely continuous part is given by the (pseudo)potential of viscous-
type dissipative forces in the bulk. The possibly concentrating part, supported on Γ, features the rate-
independent dissipation metric R1.

The visco-elastic response in the bulk material is modeled with the aid of Kelvin-Voigt rheology, ne-
glecting inertia. This rheological model can be described by a parallel arrangement of a linear spring,
which instantaneously produces a deformation in proportion to a load, and of a dashpot, which instanta-
neously produces a velocity in proportion to a load. In other words, in a Kelvin-Voigt visco-elastic solid,
a sudden application of a load will not cause an immediate deflection, since it is damped (cf. dashpot
arranged in parallel with the spring). Instead, a deformation is built up rather gradually. Hence, the
stress tensor of a Kelvin-Voigt visco-elastic solid is of the form σ = C : e+DR2(ė), where C is a symme-
tric, positive definite fourth order tensor and DR2 is the derivative of the viscous dissipation density R2;
hereafter, with D we will denote the Gâteaux derivative. For more details on the rheological modeling of
visco-elastic solids the reader is referred to, e.g., [Fun65].

As a further constitutive property of the bulk material it is assumed, that temperature changes cause
additional stresses due to thermal expansion. Following [Rou10], for the stress tensor including visco-
elastic response and thermal expansion stresses we use the ansatz

σ(e, ė, θ) := C : e+DR2(ė)− θC : E (1.2)
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with θ > 0 the absolute temperature and E the symmetric matrix of thermal expansion coefficients.
The unknown states in our model are given by the displacement field u : (0, T )× (Ω−∪Ω+) → Rd, the

delamination variable z : (0, T )×ΓC → [0, 1] and the absolute temperature θ : (0, T )×(Ω−∪Ω+) → (0,∞).
The PDE system describing their evolution consists of the viscous (damped) force balance for u, the heat
equation for θ and a flow rule for z, which couple the three unknowns in a highly nonlinear manner, see
Section 2.1. In the analysis, however, we will treat a weak formulation of this PDE system, the so-called
energetic formulation. This terminology stems from the fact that this formulation involves the energy
and dissipation functionals related to the PDE system.

For the delamination system the overall Helmholtz free energy Ψ = Ψ(u, z, θ) consists of a bulk and
of a surface contribution

Ψ(u, z, θ) = Ψbulk(u, z, θ) + Ψsurf(u, z, θ), (1.3)

where Ψbulk(u, z, θ) =
∫
Ω\Γ W(e(u), θ) dx with W (e, θ) := 1

2e:C:e−θe:C:E−ψ0(θ). Here, ψ0 : (0,+∞) →
R is a strictly convex function, which gives the (purely) thermal part of the free energy. The surface
contribution to Ψ does not depend on θ and indeed coincides to the surface contribution Φsurf to the
(purely) mechanical part of the energy, given by the functional

Φ(u, z) := Φbulk(u) + Φsurf(
[[
u
]]
, z) , (1.4)

where
Φbulk(u) =

∫

Ω\Γ
1
2 e:C:edx and Φsurf(

[[
u
]]
, z) =

∫

Γ

φsurf(
[[
u
]]
, z) dS. (1.5)

(here and in what follows, we shall use in surface integrals dS as short-hand for dHd−1(S), where Hd−1

denotes the (d− 1)-Hausdorff measure).
At fixed temperature, for fully rate-independent systems the energetic formulation was developed in

[Mie05, MT04, FM06], and in this setting it is solely defined by the global stability condition and the
global energy balance, i.e. (u, z) : (0, T ) → Q is an energetic solution of the rate-independent system
(Q,Φ,R1), given by a state space Q, an energy functional Φ and a dissipation potential R1, if for all
t ∈ (0, T ):

∀ (ũ, z̃) ∈ Q : Φ(t, u(t), z(t)) ≤Φ(t, ũ, z̃) + R1(z̃ − z(t)) (stability) , (1.6a)

Φ(t, u(t), z(t)) + VarR1
(z; [0, t]) =Φ(0, u(0), z(0)) +

∫ t

0

∂tΦ(s, u(s), z(s)) ds (energy balance) (1.6b)

with VarR1
(z; [0, t]) := sup

∑k
i=1 R1(z(tk) − z(tk−1)), where the supremum is taken over all partitions

of the time interval [0, t]. However, conditions (1.6) do not supply a suitable energetic formulation in
the temperature-dependent, viscous setting. For this context, an appropriate notion was introduced in
[Rou10], see Definition 3.3 ahead. Instead of the two conditions (1.6), the energetic formulation for rate-
independent systems with temperature-dependent and viscous effects consists of four conditions: a weak
formulation of the momentum balance for u, a weak formulation of the heat equation for θ, a so-called
semistability condition for z, and an energy (in-)equality. The latter two conditions correspond to those
in (1.6). In particular, the notion of semistability highlights a significant difference, as, here, stability is
only tested for z, while ũ is kept fixed as a solution u, i.e.

∀ t ∈ (0, T ) ∀ test functions z̃ : Φ(t, u(t), z(t)) ≤ Φ(t, u(t), z̃) + R1(z̃ − z(t)) (semistability) . (1.7)

The adapted energetic formulation of Definition 3.3 will be analyzed for our delamination model in
visco-elastic solids with thermal effects. In particular, we aim at a model for brittle delamination, i.e. it
involves the

brittle constraint: z
[[
u
]]
= 0 a.e. on (0, T )× ΓC , (1.8)

where [[u]] is the jump of u across ΓC. This condition allows for displacement jumps only in points x ∈ ΓC,

where the bonding is completely broken, i.e. z(t, x) = 0; in points where z(t, x) > 0 it ensures [[u]] = 0, i.e.
the continuity of the displacements. In other words, the brittle constraint (1.8) distinguishes between the
crack set, where the displacements may jump, and the complementary set with active bonding, where it
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imposes a transmission condition on the displacements. Moreover, our model contains a non-penetration
constraint ensuring that the two parts of the body, Ω− and Ω+, cannot interpenetrate along ΓC:

non-penetration condition:
[[
u
]]
· n ≥ 0 a.e. on (0, T )× ΓC . (1.9)

Here, n denotes the unit normal to ΓC oriented from Ω+ to Ω−.
The extremely strict and nonconvex brittle constraint (1.8) causes severe difficulties in the existence

analysis, even in the fully rate-independent setting (with fixed temperature and no viscosity), which was
addressed in [RSZ09]. Therein, the existence of energetic solutions in the sense of (1.6) was not proved
directly, but by passing to the limit in a suitable approximation procedure, where (1.8) was replaced
by the so-called adhesive contact condition. The latter model involves an energy term which penalizes
displacement jumps in points with positive z, but does not strictly exclude them, i.e. the

adhesive contact term: k
2

∫

ΓC

z
∣∣[[u
]]∣∣2 dS . (1.10)

The existence of energetic solutions for the related rate-independent system was proved in [KMR06]. As
k → ∞ it was shown in [RSZ09] that the (fully) rate-independent systems of adhesive contact approximate
the system for brittle delamination in the sense of Γ-convergence of rate-independent processes developed
in [MRS08].

Our aim is to apply a similar strategy in the viscous, temperature-dependent setting. For this, we
want to make use of the results in [RR11], see also [RR13], where the existence of energetic solutions
in the sense of [Rou10] was proved for adhesive contact in visco-elastic materials with thermal effects.
However, as this notion of solution splits the stability test into two separate conditions, weak momentum
balance for u and semistability for z, we cannot perform the limit passage k → ∞ in the model from
[RR11] without adding suitable regularization terms. These will allow us to gain additional information
on the solutions which, in turn, enables us to construct test functions for the semistability condition and
the momentum balance suitably fitted to the properties of the solutions.

We postpone a thorough discussion of these regularization terms to Section 2, where we gain further
insight into the PDE system, reveal its analytical difficulties, and explain our results. At this point, let
us just mention that our regularizations will consist of a gradient term for z and of a term of p-growth in
the strain e, with p larger than space dimension, ensuring the continuity of the displacements in each of
the subdomains Ω− and Ω+. It was proved in [MRT12] that the model for brittle delamination (without
a gradient of z), also treated in [RSZ09], describes the evolution of a Griffith-crack along ΓC. This means
that z ∈ {0, 1}, only, and hence z marks the crack set and the unbroken part of ΓC. The fully rate-
independent brittle delamination model analyzed in [MRT12, Tho08, RSZ09] is thus in accord with the
crack models treated in e.g. [BFM08, DMFT05], but on a prescribed interface, see also [NO08, KMZ08].
In the visco-elastic, temperature-dependent setting we also want to ensure that z ∈ {0, 1}, and therefore
we choose the regularization such that z is the indicator function of a set of finite perimeter in ΓC. As the
perimeter is a highly nonconvex term, we first approximate it by a Modica-Mortola term (2.13). Thus,
our approximation procedure is the following:

1. From the model for adhesive contact with Modica-Mortola regularization (called Modica-Mortola
adhesive contact model) we will pass to the model for adhesive contact with perimeter regularization
(called SBV-adhesive contact model) in Section 4;

2. from the SBV-adhesive contact model we will then pass in Sections 5 and 6 to the SBV-brittle
delamination model (i.e. the model which incorporates the brittle constraint (1.8), but still contains
the perimeter term for the delamination variable z ∈ {0, 1}), thus proving the main result of this
paper, Thm. 5.1.

Crucial for the passage from adhesive contact to brittle delamination in the visco-elastic, temperature-
dependent setting is the construction of suitable test functions for the momentum balance. While referring
to the discussion at the beginning of Sec. 5 for all details, let us mention here that such construction
requires the continuity of the displacements in Ω± ensured by the regularizing term in the momentum
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equation, joint with additional information on the semistable delamination variables which solve the
adhesive problems. In fact, it involves a fine analysis of their properties, based on tools of geometric
measure theory. To such analysis, we have devoted the whole Section 6. Therein, it will be proved that
the finite perimeter sets Zk underlying the indicator functions zk which are semistable for the adhesive
or the brittle problems, have the so-called property a. This is a lower density estimate with respect to the
(d− 1)-dimensional Lebesgue-measure, see (6.6). It ensures that Ld−1(Zk ∩Bρ?

(yk)) ≥ a(ΓC)ρ
d−1
? for all

yk ∈ supp zk and all ρ? ∈ (0, R), with constants a(ΓC) and R depending only on ΓC, the space dimension,
and the given data. As ρ? can be kept fixed for all k ∈ N, we will see that such a lower bound excludes
that subsets of Zk concentrate in the null-set of the limit function z. From this, we will deduce support
convergence for the sequence (zk)k, which means that the supports of the delamination variables solving
the SBV-adhesive contact problems can be enclosed into balls around the support of the delamination
variable for the SBV-brittle delamination model, and the radii of these balls tend to 0.

This support convergence will be the key property for the aforementioned construction of test func-
tions. In this connection, let us mention that, in contrast to the fully rate-independent case treated in
[RSZ09], for the limit passage from adhesive to brittle pure Γ-convergence of the systems in the sense
of [MRS08] is no longer sufficient for the present visco-elastic, temperature-dependent systems. Here,
Mosco-convergence will be needed.

Let us conclude with a few remarks on our reasons for not encompassing inertia in the momentum
balance. It is well known that, already in the frame of adhesive contact systems, the coupling of inertia
with Signorini contact conditions poses remarkable analytical problems. In particular, the existence
of solutions complying with the energy balance (which plays a crucial role in our analysis) is, to our
knowledge, open in the case of bounded domains, see also [RR11, Rem. 5.3] for more comments and
references. Indeed, in [RR11], inertia was included in the momentum equilibrium only upon dealing with
special contact conditions for the displacement, which do not encompass Signorini contact. Even in such
a context, the passage to the limit in the weak momentum balance from adhesive to brittle would be
an open problem. In fact, it would rely on the construction of suitable test functions being in addition
sufficiently smooth with respect to time, as required by the weak formulation of the momentum equation
with inertia. However, such time regularity seems to be out of reach, as a close perusal of the construction
in Sec. 5.1 shows.
Plan of the paper. After further discussing and motivating our approximation of the brittle delam-
ination model via the SBV-adhesive and the Modica-Mortola adhesive systems in Section 2, in Section
3 we will first collect all the assumptions on the domain and the given data. Hence, we will introduce
the energetic formulation of the visco-elastic, temperature-dependent systems for adhesive contact and
brittle delamination, and finally discuss the general strategy for proving the existence of energetic solu-
tions. In Section 4 we will carry out the limit passage from Modica-Mortola to SBV-adhesive contact,
see Thm. 4.3, in order to obtain an existence result for the SBV-adhesive contact systems (Thm. 4.1).
This analysis relies on the existence of energetic solutions to the Modica-Mortola adhesive contact sys-
tem, stated in Thm. 4.2, which shall be obtained by passing to the limit in a suitable time-discretization
scheme in Appendix A.1. These results will be used in order to prove our main result, Thm. 5.1, on the
existence of energetic solutions for the SBV-brittle delamination systems. Indeed, in Section 5 we will
pass with SBV-adhesive contact to SBV-brittle delamination. As mentioned above, this limit passage
bears difficulties in the momentum balance, which can be solved by exploiting additional information
on semistable delamination variables, i.e. the lower density estimate and the support convergence. They
will be proved in Section 6, by means of tools from geometric measure theory collected for the reader’s
convenience in Appendix A.2. Finally, in Section 7 we address an alternative scaling for the limit passage
from SBV-adhesive to SBV-brittle, which may capture crack initiation in a more concise way. The results
therein are a direct consequence of Sections 3–6.

2 Presentation of the models and analytical difficulties

In this section, we first detail the classical formulation of the PDE system describing the brittle delamina-
tion model for visco-elastic materials with thermal effects. We then highlight the main difficulties related
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to its analysis and motivate its approximation by the SBV- and Modica-Mortola adhesive systems.

2.1 The classical formulation of the problem

Throughout the paper we assume that Ω ⊂ Rd, d ≥ 2, is a bounded domain with Ω = Ω+ ∪ Γ ∪ Ω− and
Γ representing the prescribed (flat, convex) interface with possible delamination, see Fig. 2.1. We denote
by n both the outward unit normal to ∂Ω, and the unit normal to Γ oriented from Ω+ to Ω−. Given
v ∈W 1,2(Ω\Γ;Rd), with v+ (v−) we signify the restriction of v to Ω+ (Ω−). We denote by

[[
v
]]
:= v+|Γ − v−|Γ the jump of v across Γ . (2.1)

The PDE system, coupling the momentum equation in the bulk (2.2a) for the displacement u, the
heat equation (2.2b) for the absolute temperature θ, and the evolution (2.2k)–(2.2n) for the delamination
parameter z, formally reads:

− div σ(u, u̇, θ) = F in (0, T )× (Ω\Γ), (2.2a)

cv(θ)
.
θ − div

(
K(e(u), θ)∇θ

)
= e(

.
u):D:e(.u)− θE:C:e(.u) +H in (0, T )× (Ω\Γ), (2.2b)

u = 0 on (0, T )× ΓD, (2.2c)
σ(u,

.
u, θ)

∣∣
ΓN

n = f on (0, T )× ΓN, (2.2d)

(K(e(u), θ)∇θ)n = h on (0, T )× ∂Ω, (2.2e)[[
σ
]]
n = 0 on (0, T )× Γ, (2.2f)[[

u
]]
· n ≥ 0 on (0, T )× Γ, (2.2g)

σ(u,
.
u, θ)

∣∣
Γ
n · n ≥ 0 wherever z(·) = 0 on (0, T )× Γ, (2.2h)

σ(u,
.
u, θ)

∣∣
Γ
n·
[[
u
]]
= 0 on (0, T )× Γ, (2.2i)

z
[[
u
]]
= 0 on (0, T )× Γ, (2.2j).

z ≤ 0 on (0, T )× Γ, (2.2k)
ξ ≤ a1 + a0 on (0, T )× Γ, (2.2l).
z (ξ − a0 − a1) = 0 on (0, T )× Γ, (2.2m)
ξ ∈ ∂zΦ(u, z) on (0, T )× Γ, (2.2n)
1

2

(
K(e(u), θ)∇θ|+Γ +K(e(u), θ)∇θ|−Γ

)
·n + η(

[[
u
]]
, z)
[[
θ
]]
= 0 on (0, T )× Γ, (2.2o)

[[
K(e(u), θ)∇θ

]]
·n = −a1

.
z on (0, T )× Γ, (2.2p)

where ∂Ω = ΓD ∪ ΓN with ΓD the Dirichlet and ΓN the Neumann parts of the boundary ∂Ω.

Ω+ Ω−

ΓC

n

Figure 2.1: A possible domain Ω with convex interface ΓC.

System (2.2) was derived in [RR11, Sec. 2] starting from the Helmholtz free energy (1.3) and the
dissipation potentials (1.1); its thermodynamical consistency was shown, in the sense that the Clausius-
Duhem inequality and the positivity of temperature are satisfied. In the following lines, we will confine
ourselves to just explaining the meaning of the equations; for more details we refer to [RR11].
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In (2.2a), (2.2d), (2.2f), (2.2h), and (2.2i), the term σ = σ(u, v, θ) := D:e(v) + C:
(
e(u)−Eθ

)
is the

stress tensor, which encompasses Kelvin-Voigt rheology and thermal expansion, as explained along with
(1.2). Here, the tensors

C, D : Rd×d
sym → Rd×d

sym are of 4th-order, positive definite, symmetric and div(C :e(u)) has a potential,
(2.3)

i.e. Cijkl = Cjikl = Cklij , and the same for D; E ∈ Rd×d is a matrix of thermal-expansion coefficients.
Moreover, F : (0, T ) × Ω → Rd in (2.2a) is the applied bulk force, f : (0, T ) × ΓN → Rd in (2.2d) is the
applied traction, while H : (0, T )× Ω → R in (2.2b) and h : (0, T )× ∂Ω → R in (2.2e) are external heat
sources.

In the heat equation (2.2b), the function cv : (0,+∞) → (0,+∞) is the heat capacity of the system,
defined from the thermal energy ψ0 by cv(θ) = θψ0

′′(θ). Moreover, −K(e, θ)∇θ determines the heat flux
according to Fourier’s law, with K = K(e, θ) as the positive definite matrix of heat conduction coefficients.
The terms e(u̇):DR2(e(u̇)) = e(u̇):D:e(u̇) and −θE:C:e(u̇) on the right-hand side of (2.2b) are heat sources
due to viscous and thermal expansion stresses, and they generate a coupling between the heat and the
momentum equation.

Further, (2.2c) and (2.2d) are the Dirichlet and Neumann conditions for u and (2.2e) is the Neumann
condition for the heat flux across the boundary of Ω; on the contact surface Γ we have the transmission
condition (2.2f) and conditions (2.2g)–(2.2i). The latter yield the complementarity form of the Signorini
contact conditions, preventing penetration of either of the bodies Ω+ and Ω− along the interface. Fur-
thermore, (2.2j) is the brittle constraint, which can be interpreted as a transmission condition on the
contact surface Γ, as explained along with (1.8).

The complementarity conditions (2.2k)–(2.2n) determine the evolution of the delamination variable.
Observe that they rewrite as ∂I(−∞,0](

.
z) + ξ − a0 − a1 3 0, with ξ ∈ ∂zΦ(u, z). Now, (2.2k) ensures

the unidirectionality of the delamination process, as crack healing is prevented. In (2.2l), (2.2m), the
coefficient a0 (resp. a1) is the phenomenological specific energy per area which is stored (resp. dissipated)
by disintegrating the adhesive. The overall activation energy to trigger the debonding process in the
adhesive is then a0 + a1. Moreover, in (2.2n), ∂zΦ(u, z) denotes the (convex analysis) subdifferential
of the mechanical energy Φ introduced in (1.4) and (1.5). Hereby, the surface part of the energy has
the density φsurf([[u]], z) := I[[[u]]·n≥0](u) + I[0,1](z) + J∞([[u]], z) − a0z, where I[[[u]]·n≥0](u) stands for the
indicator function of the non-penetration condition, i.e. I[[[u]]·n≥0](u) = 0 if [[u]]·n ≥ 0 and I[[[u]]·n≥0](u) = ∞
otherwise. Moreover, I[0,1] denotes the indicator function of the interval [0, 1], i.e I[0,1](r) = 0 if r ∈ [0, 1]

and I[0,1](r) = +∞ otherwise. The third operator refers to the indicator function featuring the brittle
constraint

J∞(v, z) = I{vz=0}(v, z), i.e. J∞(v, z) =

{
0 if vz = 0,
+∞ otherwise.

(2.4)

Finally, conditions (2.2o) and (2.2p) balance the heat transfer across Γc with the ongoing crack growth.
In particular, the function η in the boundary condition (2.2o) on Γ for θ is a heat-transfer coefficient,
determining the heat convection through Γ, which depends on the state of the bonding and on the distance
between the crack lips. We refer to [RR11, Rem. 3.3] for further details.

2.2 Regularization and approximation via adhesive contact models

The analysis of system (2.2) encounters several difficulties: first of all, the mixed character of the problem,
coupling rate-independent evolution for z, with rate-dependent equations for u and θ. Let us also mention
the highly nonlinear character of the heat equation, with a quadratic term on the right-hand side. The
evolution of z is ruled by the complementarity conditions (2.2k)–(2.2n), which can be reformulated as
the subdifferential inclusion

∂I(−∞,0](
.
z(t, x)) + ∂zΦ(u(t, x), z(t, x))− a0 − a1 3 0, (t, x) ∈ (0, T )× Γ. (2.5)

Let us observe that the subdifferential inclusion (2.5) for z is effectively triply nonlinear, featuring three
multivalued operators, since ∂zΦ(u, z) involves the subdifferentials of both I[0,1] and J∞. Here, an addi-
tional difficulty stems from the fact that the subdifferential of the brittle constraint J∞ depends on [[u]], i.e.
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∂zJ∞
([[
u
]]
, z
)
=





∅ if z 6= 0 and [[u]] 6= 0,

0 if [[u]] = 0,
R if [[u]] 6= 0 and z = 0,

(2.6)

and this dependence is of course transferred onto ∂zΦ(u, z).
Nonetheless, it is the analysis of the boundary value problem for the momentum equation which brings

along the most challenging problems. Indeed, in view of (2.2g)–(2.2j), on the contact surface Γ we have
for the displacement u a double constraint, namely the non-penetration [[u]] · n ≥ 0, and the nonconvex
brittle constraint z[[u]] = 0. Such constraints are reflected in the variational formulation of the boundary
value problem for (2.2a) as a variational inequality, i.e.

[[
u
]]
· n ≥ 0, z

[[
u
]]
= 0 on (0, T )× Γ, and

∫

Ω\Γ

(
D:e(.u) + C:(e(u)− Eθ)

)
: e(v − u) dx ≥

∫

Ω

F · (v−u) dx+

∫

ΓN

f · (v−u) dx (2.7)

for all test functions v with suitable regularity and such that [[v]] · n ≥ 0 and z[[v]] = 0 a.e. on (0, T )× Γ.
A major difficulty is that the brittle constraint involves z, and accordingly the set of test functions in
(2.7) depends on z.

The SBV-brittle delamination system. To handle the coupling of the brittle and of the non-
penetration constraints, we will approximate system (2.2) by penalizing the condition z[[u]] = 0 on
(0, T ) × Γ. For the passage to the limit in the weak formulation of the momentum equation, a suitable
construction of approximate test functions will be needed. This construction relies on a higher spatial
regularity for the displacement variable u. Therefore, we have to regularize the momentum equation
(2.2a) by means of a tensorial p-Laplacian term, with p > d. More precisely, in the momentum balance
(2.2a) and in the boundary conditions (2.2d), (2.2f), (2.2h), and (2.2i), from now on the stress tensor σ
will be given by

σ = σ(u, v, θ) := D:e(v) + C:
(
e(u)−Eθ

)
+ |e(u)|p−2H:e(u) with p > d (2.8)

and H a fourth-order symmetric positive-definite tensor. Note that the term |e(u)|p−2H:e(u) ensures that
u ∈ W 1,p(Ω±) ⊂ C0(Ω±) (since p > d), which is crucial for tackling the brittle constraint z[[u]] = 0.
Materials with constitutive laws of p-Laplacian-type, also known as power-law materials, are used in
literature in order to model strain hardening or softening [Kno77, HK81]. In particular, the case of power
p larger than space dimension is used to describe strain hardening, also at small strains [Bel84].

Furthermore, we shall also regularize the delamination variable z through an additional gradient
term G(z). Gradient regularizations of the type G(z) =

∫
Ω

1
r |∇z|r dx are widely used and accepted in

models for volume damage (see e.g. [FN96, BSS05, MR06, TM10, Tho10, MRT12]), but also in models
for delamination and adhesive contact [FF06, AB08, Fré02, BBR08, BBR09]. In particular, the latter
works involve the gradients of z ∈ H1(ΓC), while here, we reduce the regularization to BV-type. Because
of this, the delamination variable may jump in space and therefore drop instantaneously from one value
to another. Let us stress that this brings our model closer to describing the physics of cracking.

To be more precise, we take the state space Z for z as a subset of the space BV(Γ) of functions on
bounded variation on Γ, whose distributional gradient is a finite Radon measure on Γ. Hence, we consider
Gb(z) = b|Dz|(Γ) for some b > 0, where |Dz|(Γ) denotes the variation of the measure Dz in Γ. Moreover,
we add a further constraint in our delamination system, namely that the variable z only takes the values
{0, 1}. Therefore, our model accounts for just two states of the bonding between Ω+ and Ω−, that is,
fully effective and completely ineffective. On the one hand, the feature that z ∈ {0, 1} makes our model
akin to a Griffith-type model for crack evolution (along a prescribed interface). Therein, the delamination
variable z individuates the crack set, and thus only takes either the value 0, or 1, see [Tho10, MRT12].
On the other hand, such a restriction brings along some analytical advantages, as the considerations in
Sec. 6 will show later on. Since z ∈ {0, 1}, z can be viewed as the characteristic function of a set Z with
finite perimeter. Therefore, the gradient term Gb reduces to

Gb(z) = b|Dz|(Γ) = bP (Z,Γ), (2.9)
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where P (Z,Γ) is the perimeter of the set Z in Γ, cf. Def. A.7. We will also use that Gb(z) = Hd−2(Jz),
where Hd−2 denotes the (d−2)-dimensional Hausdorff measure and Jz is the jump set of z ∈ SBV(Γ; {0, 1}),
see Def. A.13. Here, SBV(Γ; {0, 1}) is the set of characteristic functions of subsets of ΓC with finite
perimeter. In particular, the acronym SBV stands for special functions of bounded variation, which is
the subspace of BV of functions whose total variation has no Cantor part, see [AFP05] for more details.
With the regularization Gb given by (2.9), the subdifferential inclusion (2.5) is formally replaced by

∂I(−∞,0](
.
z(t, x)) + ∂zΦ(u(t, x), z(t, x)) + ∂Gb(z(t, x))− a0 − a1 3 0, (2.10)

for a.a. (t, x) ∈ (0, T )× Γ . In fact, we will analyze a weak formulation of (2.10).
Throughout the paper, we shall refer to the PDE system (2.2), with (2.5) replaced by (2.10), and

the stress σ given by (2.8), as the SBV-brittle delamination system. We shall propose a suitable notion
of weak solution for this system, cf. Def. 3.9 of energetic solution. This solution concept consists of the
weak formulations of the boundary-value problems for the momentum equation (2.2a), with σ from (2.8),
and for the heat equation (2.2b), as well as of a semistability condition in place of (2.10), and of an
energy (in-)equality. Our main Theorem 5.1 states the existence of energetic solutions to the SBV-brittle
delamination system. In what follows, we hint at the strategy for the proof of this existence result, and
in doing so we motivate the two aforementioned gradient regularizations.

The SBV-adhesive contact system. In order to deal with the brittle constraint z[[u]]=0 on (0, T )×Γ,
we approximate problem (2.2), with an adhesive contact problem, where (2.2g)–(2.2i) are replaced by

[[u(t, x)]] · n ≥ 0(
σ(u(t, x),

.
u(t, x), θ(t, x))

∣∣
Γ
n+kz(t, x)[[u(t, x)]]

)
· n ≥ 0(

σ(u(t, x),
.
u(t, x), θ(t, x))

∣∣
Γ
n+kz(t, x)[[u(t, x)]]

)
·[[u(t, x)]] = 0





(2.11)

for a.a. (t, x) ∈ (0, T )× Γ, whereas instead of (2.10) we have

∂I(−∞,0](
.
z(t, x))+∂I[0,1](z(t, x))+

1

2
k
∣∣[[u(t, x)

]]∣∣2+∂Gb(z(t, x))−a0−a1 3 0, (t, x) ∈ (0, T )×Γ, (2.12)

with k > 0 a fixed constant. Formally, (2.5), along with the brittle constraint z[[u]] = 0 on (0, T ) × Γ,
arises in the limit as k → ∞ of (2.11) and (2.12). We shall refer to the approximate problem obtained
replacing (2.2g)–(2.2j) and (2.10), with (2.11) and (2.12), respectively (combined with the quasi-static
momentum equation (2.2a) with σ from (2.8)), as the SBV-adhesive contact system. First, we shall prove
existence of energetic solutions for the related Cauchy problem in Theorem 4.1. Hence we shall take
the limit as k → ∞: Thm. 5.1 states that, up to a subsequence, solutions to the SBV-adhesive contact
systems converge to solutions of the SBV-brittle delamination system.

The Modica-Mortola adhesive contact system. Since the SBV-gradient term in (2.12) is highly
nonconvex, to prove existence for the (weak formulation of the) SBV-adhesive system we use a Modica-
Mortola type approximation. This kind of regularization has been well known in the mathematical
literature for more than thirty years. Indeed, in the papers [MM77, Mod87] (see also [Alb00]), within
phase transition modeling it was proved that the so-called static Modica-Mortola functional Γ-converges
to the static perimeter functional. Modica-Mortola approximations in the context of models for volume
damage have also been exploited in [Gia05, Tho13a]. The Modica-Mortola functional is

Gm(z) :=

∫

Γ

(
m

2
g(z) +

1

2m
|∇z|2 + I[0,1](z)

)
dS with g(z) = z2(1−z)2 and m > 0. (2.13)

Accordingly, we will approximate the SBV-adhesive system by replacing the subdifferential inclusion
(2.12) for z, with

∂I(−∞,0](
.
z(t, x)) + ∂I[0,1](z(t, x)) +

1

2
k
∣∣[[u(t, x)

]]∣∣2 + m

2
g′(z(t, x))− 1

m
∆z(t, x)− a0 − a1 3 0, (2.14)

for a.a. (t, x) ∈ (0, T ) × Γ. The resulting approximate problem will be called Modica-Mortola adhesive
contact system. Since the existence result from [RR11] does not apply to this system, we will prove the
existence of solutions in Thm. 4.2. Observe that the p-regularizing term in (2.8) is not needed for the
related analysis, as it only plays a role in the passage to the brittle limit. However we will keep it in the
Modica-Mortola system as well, for consistency of exposition.
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3 General setup and weak formulation

In this section we present a suitable notion of weak formulation for the visco-elastic, temperature-
dependent systems of adhesive contact and brittle delamination, i.e. the energetic formulation developed
in [Rou10]. Prior to establishing this formulation in Section 3.3, in Sec. 3.1 we perform the so-called
enthalpy reformulation of system (2.2) (and its regularizations), following [Rou10]. Then, in Section 3.5
the general strategy of the existence proof will be outlined. Although Definition 3.3 of energetic solution
does not rely on a specific set of assumptions on the geometrical setting and the problem data, subsequent
results such as Thm. 3.1 do. That is why, we have chosen to preliminarily collect all of the assumptions
on the given data in Section 3.2, appropriate for all the systems and all the limit passages. Let us now
fix some general notation.

Notation 3.1 (Function spaces) Throughout the paper, for p ∈ (1,∞) we shall adopt the notation

W 1,p
ΓD

(Ω\Γ;Rd) =
{
v ∈W 1,p(Ω\Γ;Rd) : v = 0 on ΓD

}
. (3.1)

We recall that
u 7→ u|Γ :W 1,p(Ω\Γ) →W 1,1− 1

p (Γ) continuously (3.2)

with Γ = ∂Ω, or Γ = Γ, or Γ = ΓN. Furthermore, we shall exploit that, for p > d, the following embedding
holds for W 1,p(Ω±) (and obviously for the Sobolev space W 1,p(Ω±;Rd) of vector-valued functions)

W 1,p(Ω±) ⊂ C0(Ω±) compactly. (3.3)

We shall denote by 〈·, ·〉 the duality pairing between the spaces W 1,q(Ω\Γ;Rd)∗ and W 1,q(Ω\Γ;Rd), and
between W 1,q(Ω\Γ)∗ and W 1,q(Ω\Γ), for any 1 ≤ q <∞.

For a (separable) Banach space X, we shall use the notation BV([0, T ];X) for the space of functions
from [0, T ] with values in X that have bounded variation on [0, T ]. Notice that all these functions are
defined everywhere on [0, T ].

Finally, throughout the paper we will use the symbols c, c′, C, and C ′, for various positive constants
depending only on known quantities.

3.1 Enthalpy reformulation

Following [Rou10, RR11], we shall in fact analyze a reformulation of the PDE system (2.2), in which we
replace the heat equation (2.2b) with an enthalpy equation, cf. system (3.6) below. This is motivated
by the fact that the nonlinear term cv(θ)θ̇ makes it difficult to implement a time-discretization scheme
for (2.2b). In turn, time-discretization will provide the basic existence result for the Modica-Mortola
adhesive contact system. Therefore, as in [Rou10, RR11] we are going to resort to a change of variables
for θ, by means of which cv(θ)θ̇ is replaced by the linear contribution ẇ.

Hereafter, we switch from the absolute temperature θ, to the enthalpy w, defined via the so-called
enthalpy transformation, i.e.

w = h(θ) :=

∫ θ

0

cv(r) dr. (3.4)

Thus, h is a primitive function of cv, normalized in such a way that h(0) = 0. Since cv is strictly positive
(cf. assumption (3.8a) later on), h is strictly increasing. Thus, we are entitled to define

Θ(w) :=

{
h−1(w) if w ≥ 0,

0 if w < 0,
K(e, w) :=

K(e,Θ(w))

cv(Θ(w))
, (3.5)

where h−1 here denotes the inverse function to h. With transformations (3.4) and (3.5), the classical
formulation (2.2) of the SBV-brittle delamination system (with σ from (2.8) and the additional SBV-
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gradient regularization in (2.10)), turns into

− div
(
DR2(e(u̇))+DW2(e(u))−BΘ(w)+DWp(e(u))

)
= F in (0, T )× (Ω\Γ), (3.6a).

w − div
(
K(e(u), w)∇w

)
= e(

.
u):D:e(.u)−Θ(w)B:e(.u) +H in (0, T )× (Ω\Γ), (3.6b)

u = 0 on (0, T )× ΓD, (3.6c)
σ(u,

.
u,w)

∣∣
ΓN

n = f on (0, T )× ΓN, (3.6d)

(K(e(u), w)∇w)n = h on (0, T )× ∂Ω, (3.6e)[[
σ(u,

.
u,w)

]]
n = 0 on (0, T )× Γ, (3.6f)[[

u
]]
· n ≥ 0 on (0, T )× Γ, (3.6g)

σ(u,
.
u,w)

∣∣
Γ
n · n ≥ 0 wherever z(·) = 0 on (0, T )× Γ, (3.6h)

σ(u,
.
u,w)

∣∣
Γ
n·
[[
u
]]
= 0 on (0, T )× Γ, (3.6i)

∂I(−∞,0](
.
z) + ∂zΦ(u, z) + ∂Gb(z)− a0 − a1 3 0 on (0, T )× Γ, (3.6j)

1

2

(
K(e(u), w)∇w|+Γ +K(e(u), w)∇w|−Γ

)
·n + η(

[[
u
]]
, z)
[[
Θ(w)

]]
= 0 on (0, T )× Γ, (3.6k)

[[
K(e(u), w)∇w

]]
· n = −a1

.
z on (0, T )× Γ, (3.6l)

where W2(e) := 1
2e:C:e and Wp(e) := 1

p |e|p−2e:H:e with p > d in (3.6a), and we have introduced the
placeholder

B := C:E .

Furthermore, in the momentum equation and in the enthalpy equation, we have incorporated the notation
from (1.1) for the dissipation potentials. With slight abuse, we also write

σ(u, v, w) := σ(u, v,Θ(w)) =
[
DR2(e(v)) + DW2(e(u))−BΘ(w)+DWp(e(u))

]
.

With obvious changes, one also obtains the classical enthalpy reformulation of the SBV-adhesive (cf.
(2.11) and (2.12)), and of the Modica-Mortola adhesive (cf. (2.14)) contact systems.

3.2 Assumptions on the domain and the given data

Assumptions on the reference domain Ω. We suppose that

• Ω ⊂ Rd, d ≥ 2, is bounded, Ω−, Ω+, Ω are Lipschitz domains, Ω+ ∩ Ω− = ∅ , (3.7a)
• ∂Ω = ΓD ∪ ΓN, ΓD, ΓN open subsets in ∂Ω, ΓD ∩ ΓN = ∅, Hd−1(ΓD) > 0 , (3.7b)

• Γ ⊂ Rd−1 is a convex domain, contained in a hyperplane of Rd,

such that in particular Hd−1(Γ) = Ld−1(Γ) > 0 ,
(3.7c)

where Hd−1 and Ld−1 respectively denote the (d− 1)-dimensional Hausdorff and Lebesgue measures.
Assumptions on the given data. We impose the following conditions on cv, K, and η:

cv : [0,+∞) → R+ continuous, (3.8a)

∃ω1 ≥ ω >
2d

d+2
, c1 ≥ c0 > 0 such that ∀θ ∈ R+ : c0(1+θ)

ω−1 ≤ cv(θ) ≤ c1(1+θ)
ω1−1, (3.8b)

K : Rd×d × R → Rd×d is bounded, continuous, and (3.8c)
inf

(e,w,ξ)∈Rd×d
sym ×R×Rd, |ξ|=1

K(e, w)ξ:ξ > 0, (3.8d)

and that

η : Γ×
(
Rd × R

)
→ R+ is a Carathéodory function such that

∃Cη > 0 ∃σ1, σ2 > 0 such that ∀ (x, v, z) ∈ Γ×Rd × R : |η(x, v, z)| ≤ Cη(1+|v|σ1+|z|σ2).
(3.8e)

In particular, notice that any polynomial growth of η w.r.t. the variables (v, z) is admissible.
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Remark 3.2 It is immediate to deduce from (3.8b) that

∃C1
θ , C

2
θ > 0 ∀w ∈ R+ :

(
C1

θw+1
)1/ω1 − 1 ≤ Θ(w) ≤

(
C2

θw+1
)1/ω − 1 . (3.9)

In particular, since ω > 1, the right-hand side estimate yields

Θ(w) ≤ C2
θw. (3.10)

Moreover, it follows from (3.8b)–(3.8c) and the definition (3.5) of K that

∃CK > 0 ∀ ξ, ζ ∈ Rd : |K(e, w)ξ:ζ| ≤ CK|ξ||ζ| . (3.11)

Data qualification. We shall suppose for the right-hand sides F , H, f , and h that

F ∈ L2(0, T ;W 1,2(Ω\Γ;Rd)∗) ∩W 1,1(0, T ;W 1,p(Ω\Γ;Rd)∗) , (3.12a)

f ∈ L2(0, T ;L2(d−1)/d(ΓN;Rd)) ∩W 1,1(0, T ;L1(ΓN;Rd)) , (3.12b)
H ∈ L1(0, T ;L1(Ω)), H ≥ 0 a.e. in Q , (3.12c)
h ∈ L1(0, T ;L1(∂Ω)), h ≥ 0 a.e. in (0, T )× ∂Ω . (3.12d)

We also introduce the functions

F : (0, T ) →W 1,p(Ω\Γ;Rd)∗, 〈F(t), v〉 :=
∫
Ω
F (t)v dx+

∫
ΓN
f(t)v dS for v∈W 1,p(Ω\Γ;Rd),

H : (0, T ) →W 1,r(Ω\Γ;Rd)∗, 〈H(t), v〉 :=
∫
Ω
H(t)v dx+

∫
∂Ω
h(t)v dS for v∈W 1,r(Ω\Γ;Rd),

(3.13)

with 1 ≤ r < d+2
d+1 , cf. (3.27c) later on. Finally, we impose the following on the initial data

u0 ∈W 1,p
ΓD

(Ω\Γ;Rd) ,
[[
u0
]]
· n ≥ 0 on (0, T )× Γ, (3.14a)

z0 ∈ L∞(Γ), 0 ≤ z0 ≤ 1 a.e. onΓ , (3.14b)
θ0 ∈ Lω1(Ω) , θ0 ≥ 0 a.e. inΩ , (3.14c)

where ω1 is the same as in (3.8b). It follows from (3.14c) and (3.8b) that w0 := h(θ0) ∈ L1(Ω).

3.3 General energetic formulation

In the weak formulation for the SBV-brittle delamination system and for its approximations, a crucial
role is played by the mechanical part of the overall Helmholtz free energy, i.e. by the functional Φ :

W 1,p(Ω\Γ;Rd) × Z → (−∞,+∞] (with the space Z specified below), given by Φ(u, z) := Φbulk(u) +

Φsurf([[u]], z), cf. (1.4). In fact, the functional Φsurf : L2(Γ)×Z → (−∞,+∞] is the only contribution in the
mechanical energy Φ to change when passing from the Modica-Mortola, to the SBV-adhesive contact, and
to the SBV-brittle delamination systems, whereas the bulk contribution Φbulk :W 1,p(Ω\Γ;Rd) → [0,+∞)

for all of the three models is given by

Φbulk(u) :=

∫

Ω\ΓC

(
W2(e(u)) +Wp(e(u))

)
dx with W2(e) :=

1
2e :C :e, Wp(e) :=

1
p |e|p−2e :H :e . (3.15)

In order to specify the surface mechanical energies, we observe that the impenetrability constraint [[u]]·n ≥
0 on (0, T )× Γ can be reformulated as

[[
u(t, x)

]]
∈ C(x) for a.a. (t, x) ∈ (0, T )× Γ,

upon introducing the multivalued mapping

C : Γ ⇒ Rd s.t. C(x) = {v ∈ Rd; v·n(x) ≥ 0} for a.a. x ∈ Γ. (3.16)

We will denote by IC(x) the indicator functional of the closed cone C(x), and by ∂IC(x) its (convex
analysis) subdifferential. For the definition and basic properties of subdifferentials, the reader may refer,
e.g., to [IT79].

Then, the surface contributions to the mechanical energy are
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– for the Modica-Mortola adhesive system:

Φsurf = Φsurf
k,m(

[[
u
]]
, z) :=

∫

Γ

(
IC(x)

([[
u
]])

+ Jk(
[[
u
]]
, z) + I[0,1](z)− a0z

)
dS + Gm(z)

with Jk(
[[
u
]]
, z) :=

k

2
z
∣∣[[u
]]∣∣2 and Gm from (2.13).

(3.17)

We denote by Φk,m the corresponding mechanical energy, defined on W 1,p(Ω\Γ;Rd)×ZMM, with

ZMM := H1(ΓC); (3.18)

– for the SBV-adhesive system:

Φsurf = Φsurf
k (

[[
u
]]
, z) =

∫

Γ

(
IC(x)

([[
u
]])

+ Jk(
[[
u
]]
, z) + I[0,1](z)− a0z

)
dS + Gb(z) (3.19)

with

Gb(z) =

{
bHd−2(Jz) if z ∈ SBV(Γ; {0, 1}),
+∞ otherwise,

(3.20)

(cf. also (2.9)), where Jz denotes the set of approximate jump points of z (cf. Def. A.13) and, from
the calculations for the Γ-limit passage as m → ∞ in the Modica-Mortola functionals (Gm)m (see
[Mod87, Alb00]), it follows that b = 2

∫ 1

0
ξ(1−ξ) dξ. We denote by Φk the corresponding mechanical

energy, defined on the space W 1,p(Ω\Γ;Rd)× ZSBV, with

ZSBV := SBV(Γ; {0, 1}); (3.21)

– for the SBV-brittle system:

Φsurf = Φsurf
b (

[[
u
]]
, z) =

∫

Γ

(
IC(x)

([[
u
]])

+ J∞(
[[
u
]]
, z) + I[0,1](z)− a0z

)
dS + Gb(z), (3.22)

cf. (2.4) for the definition of J∞. We denote by Φb the corresponding mechanical energy, defined
on the space W 1,p(Ω\Γ;Rd)× ZSBV.

Exploiting the positive 1-homogeneity of the dissipation potential from (1.1), we now introduce its related
dissipation distance, also denoted by R1 from now on, i.e. R1 : L1(Γ) × L1(Γ) → [0,+∞] defined (with
slight abuse of notation) by

R1

(
z̃−z) :=

∫

Γ

R1(z̃−z) =





∫

Γ

a1|z̃−z| dS if z̃ ≤ z a.e. in Γ,

+∞ otherwise.
(3.23)

In view of the bulk term with p-growth in (3.15) and the surface energies (3.17) and (3.22), we shall use
the following notation for sets of test functions for the weak formulation of the momentum equation

U :=
{
v ∈W 1,p

ΓD
(Ω\Γ;Rd) :

[[
v(x)

]]
∈ C(x) for a.a.x ∈ Γ

}
; (3.24)

Uz :=
{
v ∈W 1,p

ΓD
(Ω\Γ;Rd) :

[[
v(x)

]]
∈ C(x), z(x)

[[
v(x)

]]
= 0 for a.a.x ∈ Γ

}
(3.25)

with a given z ∈ L1(Γ). The former set is used in the adhesive and the latter in the brittle setting.
The enthalpy equation will be formulated as a variational inequality, restricted to positive test func-

tions in order to deal with the quadratic dissipation term on the right-hand side by lower semicontinuity
(see also Remark 3.11). In particular, we shall use test functions in the space

W := C0([0, T ];W 1,r′(Ω\Γ)) ∩W 1,r′(0, T ;Lr′(Ω)) ⊂ C0([0, T ];L∞(Γ)) (3.26)

where r′ = r
r−1 is the conjugate exponent of r in (3.27c) below. Since 1 ≤ r < d+2

d+1 , by trace embedding
(3.2) the inclusion in (3.26) holds. In turn, we may mention that the Lr(0, T ;W 1,r(Ω\Γ))-regularity for
w derives from Boccardo-Gallouët-type estimates [BG89] on the enthalpy equation, combined with
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the Gagliardo-Nirenberg inequality. We refer to the proof of the forthcoming Proposition 3.13, and to
[Rou10] for all details.

We are now in the position to introduce a general weak solvability notion for a thermal delamination
system, i.e. the Modica-Mortola/SBV-adhesive, and SBV-brittle systems, consisting of the weak formu-
lation of the momentum equation, of a mechanical energy inequality, a semistability condition, and of
the variational formulation of the enthalpy equation. While the last three items have the same form for
each of the delamination systems we consider, we will not give a unified variational formulation of the
momentum equation, for it substantially changes when switching from adhesive to brittle delamination
(see Lemma 3.10 later on). In particular, let us highlight that in the brittle case the set of test functions
Uz for the weak formulation of the momentum equation does depend on the z-component of the solution.

Definition 3.3 (Energetic solution) Given a triple of initial data (u0, z0, θ0) satisfying (3.14), we call
a triple (u, z, w) an energetic solution of a thermal delamination system, if

u ∈ L∞(0, T ;W 1,p
ΓD

(Ω\Γ;Rd)) ∩W 1,2(0, T ;W 1,2
ΓD

(Ω\Γ;Rd)), (3.27a)

z ∈ L∞((0, T )× Γ) ∩ BV([0, T ];L1(Γ)), z(t, x) ∈ [0, 1] for a.a. (t, x) ∈ (0, T )× Γ , (3.27b)

w ∈ Lr(0, T ;W 1,r(Ω\Γ)) ∩ L∞(0, T ;L1(Ω)) ∩ BV([0, T ];W 1,r′(Ω\Γ)∗) (3.27c)

for every 1 ≤ r < d+2
d+1 , the triple (u, z, w) complies with the initial conditions

u(0) = u0 a.e. in Ω, z(0) = z0 a.e. in Γ, w(0) = w0 a.e. in Ω, (3.28)

and with
1. the weak formulation of the momentum equation

-in the adhesive case:

u(t) ∈ U for a.a. t ∈ (0, T ), and for all v ∈ U
∫

Ω\ΓC

(
DR2(e(

.
u(t))+DW2(e(u(t)))−BΘ(w(t))+DWp(e(u(t)))

)
:e(v−u(t)) dx

+

∫

Γ

kz(t)
[[
u(t)

]]
·
[[
v−u(t)

]]
dS ≥ 〈F(t), v−u(t)〉 for a.a. t ∈ (0, T );

(3.29a)

-in the brittle case:

u(t) ∈ Uz(t) for a.a. t ∈ (0, T ), and for all v ∈ Uz(t)∫

Ω\ΓC

(
DR2(e(

.
u(t))+DW2(e(u(t)))−BΘ(w(t))+DWp(e(u(t)))

)
:e(v−u(t)) dx

≥ 〈F(t), v−u(t)〉 for a.a. t ∈ (0, T );

(3.29b)

2. semistability for a.a. t ∈ (0, T )

∀z̃ ∈ Z : Φ
(
u(t), z(t)

)
≤ Φ

(
u(t), z̃

)
+ R1

(
z̃ − z(t)

)
; (3.30)

3. mechanical energy inequality

Φ
(
u(t), z(t)

)
+

∫ t

0

2R2(e(
.
u)) ds+VarR1

(z; [0, t])

≤ Φ
(
u0, z0

)
+

∫ t

0

∫

Ω\ΓC

Θ(w)B:e(.u) dxds+
∫ t

0

〈F, .u〉 ds for all t ∈ [0, T ],
(3.31)

where we use the notation

VarR1
(z̃; [t1, t2]) := sup

k∑

i=1

R1

(
z̃(si)−z̃(si−1)

)
for z̃ ∈ L1(Γ), [t1, t2] ⊂ [0, T ] , (3.32)

with the sup taken over all partitions t1 = s0 < . . . < sk = t2 of the interval [t1, t2];
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4. weak enthalpy inequality

〈w(T ), ζ(T )〉+
∫ T

0

∫

Ω\ΓC

K(e(u), w)∇w·∇ζ − w
.
ζ dxdt+

∫ T

0

∫

Γ

η(x,
[[
u
]]
, z)
[[
Θ(w)

]][[
ζ
]]
dSdt

≥
∫ T

0

∫

Ω\ΓC

(
2R2(e(

.
u))−Θ(w)B :e(

.
u)
)
ζ dxdt+

∫∫

(0,T )×Γ

ζ|+Γ+ζ|−Γ
2

dξsurf.
z

(S, t)

+

∫ T

0

〈H, ζ〉dt+
∫

Ω\ΓC

w0ζ(0) dx for all ζ ∈ W with ζ ≥ 0 a.e., (3.33)

where w0 = h(θ0) and ξsurf.
z

is a measure (=heat produced by rate-independent dissipation) defined
by prescribing its values for every closed set of the type A := [t1, t2]×C ⊂ [0, T ]× Γ by

ξsurf.
z

(A) :=

∫

C

R1(z(t1, x)−z(t2, x)) dS . (3.34)

Notice that, since w ∈ BV([0, T ];W 1,r′(Ω\Γ)∗), for all t ∈ [0, T ] one has w(t) ∈W 1,r′(Ω\Γ)∗, so that the
first duality pairing on the left-hand side of (3.33) makes sense pointwise.

Remark 3.4 (Consistency with the energetic solutions in the rate-independent case) Note
that, without viscosity in the momentum equation and in the isothermal case (i.e., in the case of a
purely rate-independent evolution of delamination, cf. [RSZ09]), the notion of weak solution of Definition
3.3 coincides with the concept of (global) energetic solution introduced in [MT04], see also [Mie05].

Remark 3.5 (Total energy inequality) Suppose that (3.33) holds as an equality (cf. Thm. 3.1 below).
Then, adding the mechanical energy inequality (3.31) (for t = T ), and the weak formulation (3.33) of the
enthalpy equation tested by 1 yields a further energy inequality

Φ
(
u(T ), z(T )

)
+

∫ T

0

2R2(e(
.
u)) ds+〈w(T ), 1〉 ≤ Φ

(
u0, z0

)
+

∫

Ω\ΓC

w0 dx+

∫ T

0

〈F, .u〉 dt+
∫ T

0

〈H, 1〉 dt, (3.35)

which involves the enthalpy contribution 〈w(T ), 1〉 as well.

Remark 3.6 (The weak enthalpy inequality) Variational inequalities akin to (3.33) (and in partic-
ular, featuring positive test functions) arise quite naturally in the weak formulation of heat-type equations
with quadratic nonlinearities on the right-hand side: we quote for example [FPR09, FFRS12] on systems
for phase change and nematic liquid crystals, respectively, as well as [Fei07] on a model for compressible,
viscous, heat conducting fluids.

Indeed, it is not difficult to verify that, if z ∈ BV(0, T ;L1(ΓC)) is such that ż(t, x) exists for almost
all (t, x) ∈ (0, T )× ΓC, any sufficiently regular function w which fulfills (3.33), is also a supersolution of
the boundary-value problem (3.6b, 3.6e, 3.6k, 3.6l).

Now, we specialize Definition 3.3 to the delamination systems considered in what follows.

Definition 3.7 (Energetic solution of the Modica-Mortola adhesive contact system) Given a
quadruple of initial data (u0,

.
u0, z0, θ0) satisfying (3.14), we call a triple (u, z, w) an energetic solution to

the Modica-Mortola adhesive contact system, if, in addition to (3.27b), we have

z ∈ L∞(0, T ;ZMM) (3.36)

with ZMM from (3.18), the triple (u, z, w) fulfills Definition 3.3, with the weak formulation of the mo-
mentum inclusion (3.29a), and Φ replaced by Φk,m from (3.17).

Definition 3.8 (Energetic solution of the SBV-adhesive contact system) Given a quadruple of
initial data (u0,

.
u0, z0, θ0) satisfying (3.14), we call a triple (u, z, w) an energetic solution to the SBV-

adhesive contact system, if, in addition to (3.27b), we have

z ∈ L∞(0, T ;ZSBV) (3.37)

with ZSBV from (3.21), the triple (u, z, w) fulfills Definition 3.3, with the weak formulation of the mo-
mentum inclusion (3.29a), and Φ replaced by Φk from (3.19).
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Definition 3.9 (Energetic solution of the SBV-brittle delamination system) Given a quadruple
of initial data (u0,

.
u0, z0, θ0) satisfying (3.14), we call a triple (u, z, w) an energetic solution to the (Cauchy

problem for the) SBV-brittle contact system, if (3.37) holds, the triple (u, z, w) fulfills Definition 3.3, with
the weak formulation of the momentum inclusion (3.29b), and Φ replaced by Φb from (3.22).

3.4 The energy and enthalpy equalities

For the adhesive systems it is possible to prove even equalities in the energy inequalities (3.31), (3.35)
and in the enthalpy inequality (3.33), also dropping the positivity restriction on the test functions.

Theorem 3.1 (Energy and enthalpy equalities for the adhesive systems) Assume (3.7), (3.8),
(3.12), and (3.14). Then, the Modica-Mortola adhesive and the SBV-adhesive contact systems admit
energetic solutions (in the sense of Definitions 3.7 and 3.8) for which the mechanical energy inequality
(3.31) and the total energy inequality (3.35) hold as equalities, and so does the enthalpy inequality (3.33)
for any test function in W.

The proof will be given in Section 4.3 for SBV-adhesive contact, i.e. for the energy Φk from (3.19)
for any k > 0 fixed. For Modica-Mortola adhesive contact, i.e. with Φk,m from (3.17) for any m, k > 0

fixed, one uses exactly the same arguments. While the mechanical energy estimate (3.31) is obtained
by passing to the limit in an approximate mechanical energy inequality exploiting lower semicontinuity,
these arguments amount to first showing the opposite relation in (3.31) by means of a Riemann-sum
technique (developed in Section 4.3), applied to the momentum balance and the semistability inequality.
This yields the mechanical energy equality. Using the latter, we are then able to deduce convergence of
the quadratic viscous dissipation term on the right-hand side of (3.33), along a sequence of approximate
solutions. This convergence is crucial to obtain the enthalpy equality. Finally, summing the mechanical
and enthalpy equalities leads to the total energy equality.

In fact, in order to obtain the opposite relation in the mechanical energy inequality for the adhesive
models, we will not employ the momentum balance as a variational inequality but consider its reformu-
lation as a subdifferential inclusion, as stated in the following.

Lemma 3.10 (Subdifferential formulation of the momentum equation)
Assume (3.7).

1. For IC from (3.16) and Jk from (3.17) consider the functionals

IC :W 1,p(Ω\Γ;Rd) → [0,+∞], IC(u) =

∫

Γ

IC(x)(
[[
u(x)

]]
) dS, (3.38)

Jk :W 1,p(Ω\Γ;Rd)× L∞(Γ) → [0,+∞], Jk(u, z) =

∫

Γ

Jk(
[[
u
]]
, z) dS = k

2

∫

Γ

z|
[[
u
]]
|2 dS, (3.39)

Fk(u, z) := IC(u) + Jk(u, z), (3.40)

with subdifferentials ∂ IC, ∂uJk, ∂uFk :W 1,p(Ω\Γ;Rd) ⇒W 1,p(Ω\Γ;Rd)∗ (∂u denoting the subdif-
ferential w.r.t. u). Then, the sum rule

∂uFk(u, z) = ∂ IC(u) + ∂uJk(u, z) holds for all (u, z) ∈W 1,p(Ω\Γ;Rd)× L∞(Γ), i.e.

λ ∈ ∂uFk(u, z) ⇔ ∃ ` ∈ ∂ IC(u) s.t. ∀ v ∈W 1,p(Ω\Γ;Rd) 〈λ, v〉 = 〈`, v〉+
∫

Γ

kz
[[
u
]]
·
[[
v
]]
dS,

(3.41)
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and (3.29a) is equivalent to

for all v ∈W 1,p(Ω\Γ;Rd), for a.a. t ∈ (0, T ):
∫

Ω\ΓC

(
DR2(e(

.
u(t)))+DW2(e(u(t)))−BΘ(w(t))+DWp(e(u(t)))

)
:e(v) dx

+

∫

Γ

kz(t)
[[
u(t)

]]
·
[[
v
]]
dS +〈`(t), v〉

︸ ︷︷ ︸
〈λ(t),v〉

=〈F(t), v〉

with ` ∈ Lp′
(0, T ;W 1,p(Ω\Γ;Rd)∗) such that `(t) ∈ ∂IC(u(t)) for a.a. t ∈ (0, T )

and λ ∈ Lp′
(0, T ;W 1,p(Ω\Γ;Rd)∗) such that λ(t) ∈ ∂uFk(u(t), z(t)) for a.a. t ∈ (0, T ),

(3.42)

where p′ = p
p−1 is the conjugate exponent of p.

2. For IC from (3.16) and J∞ from (2.4) consider the functionals

J∞ :W 1,p(Ω\Γ;Rd)× L∞(Γ) → [0,+∞], J∞(u, z) :=

∫

Γ

J∞
([[
u(x)

]]
, z(x)

)
dS, (3.43)

F∞(u, z) := IC(u) + J∞(u, z). (3.44)

Then, (3.29b) can be reformulated as

for all v ∈W 1,p(Ω\Γ;Rd) and a.a. t ∈ (0, T ) :
∫

Ω\ΓC

(
DR2(e(

.
u(t))+DW2(e(u(t)))−BΘ(w(t))+DWp(e(u(t)))

)
:e(v) dx+ 〈λ(t), v〉 = 〈F(t), v〉

with λ ∈ Lp′
(0, T ;W 1,p(Ω\Γ;Rd)∗) such that λ(t) ∈ ∂uF∞(u(t), z(t)) for a.a. t ∈ (0, T ).

(3.45)

Observe that the sum rule (3.41) holds thanks to the Rockafellar-Moreau theorem, see e.g. [IT79, p. 200,
Thm. 1], since Jk(·, z) is smooth. For F∞ we only have ∂IC + ∂uJ∞ ⊂ ∂uF∞, whereas the converse
inclusion in fact may not hold.

The analog of Thm. 3.1 cannot be obtained for the SBV-brittle delamination system, where already
the strategy to gain the mechanical energy balance fails, and hence the enthalpy equality seems to be
out of reach. The reasons for this are expounded in Remark 4.5 below, where we also discuss a possible
integration of the weak formulation (3.33) of the enthalpy equation, by means of the concept of defect
measure.

Remark 3.11 (Defect measure of the enthalpy equation in the brittle case) In our approach,
the failure of equality in the weak formulation (3.33) of the enthalpy equation is due to a lack of strong
compactness in L2(0, T ;L2(Ω;Rd×d)) for (e(u̇k))k, where (uk, zk, wk)k is a sequence of solutions to the
SBV-adhesive contact problems with which we approximate as k → ∞ the SBV-brittle delamination
system. Therefore, the passage to the limit as k → ∞ in the quadratic viscous dissipation term on the
right-hand side of the enthalpy equalities (by Thm. 3.1) for the SBV-adhesive contact systems, solely
relies on lower semicontinuity arguments, cf. the proof of Thm. 5.1.

Nonetheless, one can consider the limit in the sense of measures of the sequence (2R2(e(
.
uk)))k: it is

a Radon measure µ0 on [0, T ]× Ω. Taking the limit of (3.33) as k → ∞ then leads to

〈w(T ), ζ(T )〉+
∫ T

0

∫

Ω

K(e(u), w)∇w·∇ζ − w
.
ζ dxdt+

∫ T

0

∫

Γ

η(x,
[[
u
]]
, z)
[[
Θ(w)

]][[
ζ
]]
dSdt

=

∫ T

0

∫

Ω

(
2R2(e(

.
u))−Θ(w)B :e(

.
u)
)
ζ dxdt+

∫∫

(0,T )×Γ

ζ|+Γ+ζ|−Γ
2

dξsurf.
z

(S, t)

+

∫∫

(0,T )×Ω

ζ dµ+

∫ T

0

〈H, ζ〉dt+
∫

Ω\Γ
w0ζ(0) dx for all ζ ∈ W,

(3.46)

where the measure µ is given by
µ = µ0 − 2R2(e(

.
u))dL, (3.47)
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with dL is the Lebesgue measure on (0, T )×Ω. Following [Gér91, Fei04, Nau06] we refer to µ as a defect
measure, for it represents the defect between the limiting measure µ0 and the dissipation 2R2(e(

.
u)). The

defect-measure formulation (3.46) complements (3.33), in that it reflects a possible additional energy
dissipation of solutions lacking regularity and exhibiting concentration effects. Hence, in the brittle case
we could complete the weak enthalpy inequality by coupling it with (3.46)–(3.47).

3.5 Strategy of the existence proof and uniform a priori estimates

Here, we provide the general scheme for proving the existence of solutions to (the Cauchy problems for)
the Modica-Mortola, SBV-adhesive, and SBV-brittle delamination systems, upon taking the limit in a
suitable approximate problem: i.e., passing to the limit either with a time-discretization scheme to the
Modica-Mortola system, or with the Modica-Mortola system to the SBV-adhesive system, or with the
SBV-adhesive system to the SBV-brittle system. We will refer to the latter limit passage as the brittle
limit, and to the former two passages as the adhesive limit(s).

Notation 3.12 Hereafter, we shall suppose that the parameters m and k vary in N. This will allow us
to directly consider sequences (um, zm, wm)m of solutions to the Modica-Mortola delamination system
(where we omit the dependence on k for notational simplicity), when taking the limit asm→ ∞; sequences
(uk, zk, wk)k of solutions to the SBV-adhesive contact system, when taking the limit as k → ∞.

In performing the aforementioned passages to the limit, we shall always follow these steps:

Step 0: a priori estimates and compactness for the approximate solutions;
Step 1: proof of the weak formulation of the momentum equation. To this aim, we shall rely on the

subdifferential reformulations of Lemma 3.10, and in all of the adhesive limits, use techniques
from maximal monotone operator theory to identify the weak limits of the nonlinear terms. For
the brittle limit, we will need to prove Mosco-convergence as k → ∞ of the functionals (Jk)k
to the functional J∞. Combining this information with maximal monotone operator techniques,
we will handle the passage to the limit in the term k

2 z|[[u]]|2 as k → ∞.
Step 2: proof of the semistability condition (3.30), verifying the mutual recovery sequence condition from

[MRS08], in Propositions 4.2 and 5.7;
Step 3: proof of the mechanical energy inequality (3.31) by lower semicontinuity arguments;
Step 4: proof of the weak formulation of the enthalpy inequality.

A priori estimates. We conclude this section by collecting the a priori estimates on approximate
solutions, which are valid for all of the successive approximations of the SBV-brittle system we shall tackle:
the Modica-Mortola approximation of the SBV-adhesive system, and the SBV-adhesive approximation of
the SBV-brittle system. In order to state such estimates in a unified way, we consider a generic sequence
(un, zn, wn)n of energetic solutions to the thermal delamination system driven by a sequence (Φn)n of
energy functionals Φn :W 1,p(Ω\Γ;Rd)× Z → (−∞,+∞]. More specifically, when considering
(a1) the Modica-Mortola approximation of the SBV-adhesive system, we have the energies (Φk,m)m, and

Z = ZMM: we shall consider the energetic solutions (um, zm, wm)m (for notational simplicity, we
omit their dependence on k ∈ N), obtained by passing to the limit in the time-discretization scheme
of Problem A.1 in Appendix A.1;

(a2) the SBV-adhesive approximation of the SBV-brittle system, we have the energies (Φk)k, and Z =

ZSBV: we shall consider the energetic solutions (uk, zk, wk)k obtained by passing to the limit in the
Modica-Mortola approximation, cf. Sec. 4.

We shall call an energetic solution to the Modica-Mortola adhesive (to the adhesive SBV, resp.) dela-
mination system approximable, if it is obtained by passing to the limit in the time-discretization scheme
of Problem A.1 (in the Modica-Mortola approximation, resp.). We can now state the following general
result yielding a priori estimates on the family (un, zn, wn)n.

Proposition 3.13 (A priori estimates) Assume (3.7), (3.8), (3.12), and let (u0, θ0, z0) be a triple of
initial data complying with (3.14). Suppose in addition that (u0, z0) comply with the semistability (3.30)
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with the energy Φn, i.e.

Φn(u0, z0) ≤ Φn(u0, z̃) + R1(z̃−z0) for all z̃ ∈ Z.

Let (un, zn, wn)n be a family of (approximable) energetic solutions to the thermal delamination system
in the adhesive case (i.e. with (3.29a)), in either of the two cases (a1) and (a2).

Then, there exist a constant S > 0 and, for every 1 ≤ r < d+2
d+1 , Sr > 0, such that for all n ∈ N the

following estimates hold:

‖un‖L∞(0,T ;W 1,p
ΓD

(Ω\Γ;Rd))∩W 1,2(0,T ;W 1,2
ΓD

(Ω\Γ;Rd)) ≤ S; (3.48)

sup
t∈[0,T ]

Φn (un(t), zn(t)) ≤ S; (3.49)

‖zn
∥∥
L∞((0,T )×Γ)

≤ S; (3.50)

‖zn
∥∥
BV([0,T ];L1(Γ))

≤ S; (3.51)

‖wn‖L∞(0,T ;L1(Ω)) ≤ S; (3.52)
‖wn‖Lr(0,T ;W 1,r(Ω\Γ)) + ‖wn‖BV([0,T ];W 1,r′ (Ω\Γ)∗) ≤ Sr for any 1 ≤ r < d+2

d+1 . (3.53)

We postpone the proof to Appendix A.1.

Remark 3.14 (Extension: more general bulk energies) The bulk energy densities W2(e) =
1
2e:C: e

and Wp(e) = 1
p |e|p−2e:H: e can be replaced by general strictly convex, Gâteaux-differentiable functions

Wn : Rd → R fulfilling suitable growth assumptions from above and below.

4 Adhesive contact: From Modica-Mortola- to SBV-regularization

The main goal of this section is to prove the existence of energetic solutions in the sense of Definition 3.8
for the SBV-adhesive contact model, and precisely the following

Theorem 4.1 (Existence result for SBV-adhesive contact, k > 0 fixed)
Keep k > 0 fixed. Assume (3.7), (3.8), (3.12), (3.14). Suppose that the initial data (u0, z0) fulfill

Φk(u0, z0) ≤ Φk(u0, z̃) + R1(z̃−z0) for all z̃ ∈ ZSBV. (4.1)

Then, there exists an energetic solution (u,w, z) to the SBV-adhesive contact system, such that (u, z)

comply with the semistability (3.30) for all t ∈ [0, T ]. Moreover, for this solution the mechanical energy, the
enthalpy and the total energy estimates (3.31), (3.33) and (3.35) with Φk hold as equalities. Furthermore,

∃ θ∗ > 0 : inf
x∈Ω

θ0(x) ≥ θ∗ ⇒ ∃ θ̄ > 0 : inf
(t,x)∈(0,T )×Ω

θ(t, x) = inf
(t,x)∈(0,T )×Ω

Θ(w(t, x)) ≥ θ̄. (4.2)

To prove this, we apply the following strategy:
1. we start from an existence result for Modica-Mortola adhesive contact, m, k>0 fixed (Thm. 4.2),
2. as m→∞, k>0 fixed, we show that the energetic solutions of the Modica-Mortola adhesive contact

models suitably converge to an energetic solution of the SBV-adhesive contact model (Thm. 4.3),
3. from Prop. 4.3 and Cor. 4.4 ahead, we directly conclude the validity of the mechanical, the enthalpy

and the total energy balance as equalities.
Indeed, we have

Theorem 4.2 (Existence for the Modica-Mortola adhesive contact model, m, k > 0 fixed)
Keep m, k > 0 fixed. Assume (3.7), (3.8), (3.12), (3.14). Suppose that the initial data (u0, z0) fulfill

Φk,m(u0, z0) ≤ Φk,m(u0, z̃) + R1(z̃−z0) for all z̃ ∈ ZMM. (4.3)

Then, there exists an energetic solution (u,w, z) to the Modica-Mortola adhesive contact system, such
that (u, z) complies with the semistability (3.30) for all t∈ [0, T ]. Moreover, for such solution the energy
estimates (3.31), (3.33) and (3.35) with Φk,m hold as equalities. Furthermore, (4.2) holds.
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The proof of Thm. 4.2 follows from passing to the limit in a suitably devised semi-implicit time-
discretization scheme, which we present in Appendix A.1. Therein, we will also sketch the main steps of
the passage to the limit in the time-discretization, and specifically dwell on the differences between our
argument and the arguments in [RR11, RR13], where a semi-implicit discretization procedure was also
developed for proving existence to adhesive contact models in thermo-visco-elasticity. In particular, we
will detail the proof of the semistability condition (3.30), which needs to be carefully handled due to the
gradient regularization in the subdifferential inclusion (2.14) for z.

Concerning the convergence of the Modica-Mortola approximation to SBV-adhesive contact, we have

Theorem 4.3 (Modica-Mortola approximation of SBV-adhesive contact, k > 0 fixed)
Keep k > 0 fixed. Assume (3.7), (3.8), (3.12). Let (um, wm, zm)m be a sequence of approximable
solutions to the Modica-Mortola adhesive model, supplemented with initial data (u0m, θ

0
m, z

0
m)m fulfilling

(3.14) and (4.3). Suppose that, as m→ ∞

u0m⇀u0 in W 1,p(Ω\Γ;Rd), θ0m → θ0 in Lω1(Ω), z0m
∗
⇀ z0 in L∞(Γ), and (4.4)

Φk,m(u0m, z
0
m) → Φk(u0, z0). (4.5)

Then, there exist a (not relabeled) subsequence, and a triple (u,w, z), such that the following conver-
gences hold as m→ ∞

um⇀u in L∞(0, T ;W 1,p
ΓD

(Ω\Γ;Rd)) ∩W 1,2(0, T ;W 1,2
ΓD

(Ω\Γ;Rd)), (4.6a)

um → u in C0([0, T ];W 1−ε,p
ΓD

(Ω\Γ;Rd)) for all ε ∈ (0, 1], (4.6b)

zm
∗
⇀ z in L∞(0, T ; SBV(Γ; {0, 1})) ∩ L∞((0, T )× Γ), (4.6c)

zm(t)
∗
⇀ z(t) in SBV(Γ; {0, 1}) ∩ L∞(Γ), (4.6d)

zm(t) → z(t) in Lq(Γ) for all 1 ≤ q <∞ for all t ∈ [0, T ], (4.6e)
zm → z in Lq(0, T ;Lq(Γ)) for all 1 ≤ q <∞, (4.6f)
wm ⇀ w in Lr(0, T ;W 1,r(Ω\Γ)), (4.6g)
wm → w in Lr(0, T ;W 1−ε,r(Ω\Γ)) ∩ Lq(0, T ;L1(Ω)) for all ε ∈ (0, 1], 1≤q<∞, (4.6h)

wm(t)⇀w(t) in W 1,r′(Ω\Γ)∗ for all t ∈ [0, T ], (4.6i)
Θ(wm) → Θ(w) in L2(0, T ;L2(Ω)), (4.6j)

[[
Θ(wm)

]]
→
[[
Θ(w)

]]
in Lrω(0, T ;L(s−ε)ω(Γ)) for all 0 < ε ≤ s− 1, (4.6k)

and (u,w, z) is an energetic solution to the SBV-adhesive contact system. Furthermore, (4.2) holds for
θ = Θ(w).

Before developing the proof, let us recall the well-known Γ-convergence theorem for the static functionals
(Gm)m proved in [MM77, Mod87]. It will be exploited for the convergence results (4.6e), (4.6f).

Theorem 4.4 ([MM77, Mod87]) Let (ζm)m ⊂ H1(Γ) fulfill

sup
m∈N

Gm(ζm) <∞. (4.7)

Then, the sequence (ζm)m is precompact in L1(Γ) and every limit point belongs to SBV(Γ; {0, 1}). More-
over, the functionals (Gm)m Γ-converge in L1(Γ) as m→ ∞ to the functional Gb (3.20), i.e.
Γ-lim inf inequality: for all ζ∈SBV(Γ; {0, 1}) and (ζm)m⊂H1(Γ) with ζm → ζ in L1(Γ) there holds

lim inf
m→∞

Gm(ζm) ≥ Gb(ζ); (4.8)

Γ-lim sup inequality: for every ζ ∈ SBV(Γ; {0, 1}) there exists (ζm)m ⊂ H1(Γ) with ζm → ζ in L1(Γ)

and lim supm→∞ Gm(ζm) ≤ Gb(ζ).
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Theorem 4.4 will also serve as a building block for the limit passage in the semistability condition.
Anyhow, let us observe that it will not be sufficient to pass to the limit in the semistability condition.
This is ultimately due to the fact that the rate-independent delamination process is non-static. Hence,
taking the limit of (3.30) as m→ ∞ requires the construction of a sequence which mutually recovers

R1︸︷︷︸
“dissipation"

+ Gm︸︷︷︸
“static energy"

.

Such a construction of the mutual recovery sequence will be carried out in Section 4.2.
We now develop the proof of Theorem 4.3, following the steps outlined in Sec. 3.5.

Step 0: selection of converging subsequences. Estimates (3.48)–(3.53) hold for the sequence
(um, wm, zm)m. Convergences (4.6a), (4.6b) follow from standard weak and strong compactness results
(cf. the Aubin-Lions type theorems in [Sim87, Cor. 4, Cor. 5]). Taking into account that p > d ≥ 2,

Sobolev trace theorems (cf. (3.2)) and embedding results, from (4.6b) we deduce that
[[
um
]]
→
[[
u
]]

in C0([0, T ]; C0(Γ;Rd)). (4.9)

As for (zm)m, the L∞-convergence in (4.6c) ensues from (3.50) via the Banach-Alaouglu Theorem. To
obtain the weak∗-SBV convergences in (4.6c) and (4.6d), we exploit estimate (3.49), which implies that
Gm(zm(t)) ≤ C for a constant independent of m and t. Therefore, in view of the well-known compactness
and Γ-convergence result for the static Modica-Mortola functional recalled in Theorem 4.4 below, the
sequence (zm(t))m is precompact in L1(Γ). The strong Lq-convergence for any q ∈ [1,∞), see (4.6e) and
(4.6f), is then implied by the uniform L∞-bound (3.50). From this we directly conclude

R1(z(s)−z(t)) = VarR1
(z; [s, t]) = lim

m→∞
VarR1

(zm; [s, t]) = lim
m→∞

R1(zm(s)−zm(t)) (4.10)

for all 0 ≤ s ≤ t ≤ T , where we have for the first and the third equalities in the above chain we
have used that both z and zm are non-increasing w.r.t. time. From (4.8) below, we also deduce that
lim infm→∞ Gm(zm(t)) ≥ Gb(z(t)) for all t ∈ [0, T ]. Then, taking into account (4.6a), (4.6d), (4.6e), and
(4.9), we have

lim inf
m→∞

Φk,m(um(t), zm(t)) ≥ Φk(u(t), z(t)) for all t ∈ [0, T ]. (4.11)

As for (wm)m, convergences (4.6g)–(4.6h) are a consequence of estimates (3.52)–(3.53), and of a
generalization of the Aubin-Lions theorem to the case of time derivatives as measures (see e.g. [Rou05,
Cor. 7.9]). Taking into account the a priori bound of (wm(t))m in L1(Ω), we then conclude (4.6i).
Furthermore, arguing by interpolation (e.g. via the Gagliardo-Nirenberg inequality), it is possible to
derive from (4.6h) that

wm → w in L(d+2)/d−ε(0, T ;L(d+2)/d−ε(Ω)) for all 0 < ε ≤ d+ 2

d
− 1, (4.12)

see [Rou10, Sec. 4] for further details. Hence, relying on the growth condition (3.9) for Θ and on the fact
that ω > 2d

d+2 , one can tune ε > 0 in (4.12) in such a way as to obtain (4.6j). Moreover, again taking
into account the trace result (3.2), we deduce from (4.6h) that, wi

m|Γ → wi|Γ in Lr(0, T ;Ls−ε(Γ)) for all
0 < ε ≤ s− 1 with s = (d−1)r

d−r , for i = +,−. Therefore, (3.9) ensures (4.6k).
Steps 1 and 2, i.e. the limit passages in the momentum balance and in the semistability con-

dition will be carried out separately in Subsections 4.1 and 4.2, respectively. Let us mention in advance
that, upon passing to the limit in the momentum balance we shall also prove that um → u in strongly
Lp(0, T ;W 1,p(Ω\Γ;Rd)), cf. Proposition 4.1 later on.

Step 3: mechanical energy inequality. We use (4.6a), (4.10), and (4.11) to pass to the limit as
m→ ∞ on the left-hand side of the mechanical energy inequality (3.31) for the Modica-Mortola solutions
(um, wm, zm)m. Combining (4.6a) and (4.6j), we have

Θ(wm)B:e(.um)⇀Θ(w)B:e(.u) in L1(0, T ;L1(Ω)). (4.13)

This, (4.5), and again (4.6a) enable us to pass to the limit on the right-hand side of (3.31), and thus to
conclude that (u,w, z) complies with the mechanical energy inequality for the SBV-adhesive system.
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Step 4: enthalpy inequality. Thanks to convergence (4.6i) we pass to the limit as m → ∞ in the
first term on the left-hand side of (3.33). We deal with the second integral by means of (4.6g), which we
combine with the convergence K(e(um), wm) → K(e(u), w) in Lq(0, T ;Lq(Ω)) for all 1 ≤ q < ∞ due to
(4.6b), (4.6h), and the boundedness of K. To pass to the limit in the surface integral term on the left-hand
side, we rely on (4.6k) and on (4.6f) and (4.9), which yield η([[um]], zm) → η([[u]], z) in Lq(0, T ;Lq(Γ)) for
all 1 ≤ q <∞, in view of the at most polynomial growth (3.8e) of η. The passage to the limit in the first
term on the right-hand side of (3.33) is guaranteed by (4.6a) via lower semicontinuity, and by (4.13). For
the second term, we observe that

ξsurf.
zm

→ ξsurf.
z

in the sense of measures on (0, T )× Γ. (4.14)

This follows from the fact that VarR1
(zm, [0, T ]) → VarR1

(z, [0, T ]) (cf. (4.10), as well as (4.41) ahead),
arguing in the very same way as in [Rou10, proof of Prop. 4.3]. Finally, observe that the strong convergence
θ0m → θ0 in Lω1(Ω) and the growth condition (3.8b) yield that w0

m := h(θ0m) → w0 := h(θ0) in L1(Ω),
which allows us to take the limit of the last term on the right-hand side. Thus, the triple (u,w, z) fulfills
the enthalpy inequality (3.33).

Positivity of the temperature. Suppose that infx∈Ω θ0(x) ≥ θ∗ > 0: it follows from convergence
(4.4) that there exist m̄ ∈ N and θ̃ > 0 such that infx∈Ω θ

0
m(x) ≥ θ̃ for all m ≥ m̄. Then, by Thm. 4.2 (cf.

also (A.30) later on) there exists θ̄ > 0 with inf(t,x)∈(0,T )×Ω θm(t, x) ≥ θ̄ for all m ≥ m̄, and (4.2) ensues
from convergence (4.6j). This concludes the proof of Theorem 4.3.

4.1 Step 1: Limit passage in the momentum balance

In the following we verify that the weak momentum equation (3.29a) holds for the SBV-adhesive limit
system. For this, we aim to take the limit m → ∞ in (3.29a) for the Modica-Mortola adhesive systems.
But as (4.6a) only guarantees weak W 1,p-convergence of the Modica-Mortola adhesive displacements
(um)m, we cannot directly pass to the limit with the nonlinear term

∫
Ω\ΓC

DWp(e(um(t)):e(v−um(t)) dx.

In order to circumvent this difficulty we are going to make use of the equivalent subdifferential inclusions
(3.42). For every m ∈ N and a.a. t ∈ (0, T ), these involve the elements `m(t) ∈ ∂uIC(um(t)), IC from
(3.38), with (um(t), wm(t), zm(t), `m(t)) fulfilling (3.42) for a.a. t ∈ (0, T ). Here, a comparison of the
terms in (3.42) together with estimates (3.48), (3.50), (3.53) yields a uniform bound for the sequence
(`m)m ⊂ Lp′

(0, T ;W 1,p(Ω\Γ;Rd)∗), i.e. supm∈N ‖`m‖Lp′ (0,T ;W 1,p(Ω\Γ;Rd)∗) ≤ C, and hence there exists
` ∈ Lp′

(0, T ;W 1,p(Ω\Γ;Rd)∗) such that up to a subsequence

`m⇀` in Lp′
(0, T ;W 1,p(Ω\Γ;Rd)∗) as m→ ∞. (4.15)

Moreover, due to the bound (3.48), there exists µ ∈ Lp′
(0, T ;Lp′

(Ω)) such that, up to the extraction of
a further (not relabeled) subsequence there holds

DWp(e(um))⇀µ in Lp′
(0, T ;Lp′

(Ω)) as m→ ∞. (4.16)

Exploiting convergences (4.6a), (4.6j), (4.15) and (4.16), we obtain that the limit (u,w, z, µ, `) fulfills
∫

Ω\ΓC

(
DR2(e(

.
u(t)))+DW2(e(u(t)))−BΘ(w(t))+µ(t)

)
:e(v) dx+

∫

Γ

kz(t)
[[
u(t)

]]
·
[[
v
]]
dS+〈`(t), v〉 = 〈F(t), v〉

(4.17)
for all v ∈ W 1,p(Ω\Γ;Rd) and a.a. t ∈ (0, T ). Hence, in order to conclude that (4.17) is the momentum
inclusion for the SBV-adhesive limit, we have to identify

µ(t) = DWp(e(u(t))) and `(t) ∈ ∂uIC(u(t)) for a.a. t ∈ (0, T ). (4.18)

This will follow from a well-known result from maximal monotone operator theory, for the subdifferential

A := ∂F with F : Lp(0, T ;W 1,p(Ω\Γ;Rd)) → [0,+∞], F(v) :=

∫ t

0

∫

Ω\ΓC

Wp(e(v))) dx+ IC(v) ds. (4.19)

Note, that the identification of the limits in (4.18) will ultimately imply the strong convergence of (um)m
in Lp(0, T ;W 1,p(Ω\Γ;Rd)). Hence, we may state the following result:
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Proposition 4.1 (Momentum balance for the SBV-adhesive model) Let (3.7), (3.8), (3.12), and
(3.14) hold true. Keep k ∈ N fixed. Consider (um, zm, wm)m such that (um, zm, wm) → (u, z, w) as
m→ ∞ in the sense of (4.6) and such that, for all m ∈ N, the triple (um, zm, wm) satisfies the Modica-
Mortola adhesive momentum inclusion (3.42). Then the limit (u, z, w) fulfills the SBV-adhesive momen-
tum inclusion for a.a. t ∈ (0, T ) and moreover we have um → u even strongly in Lp(0, T ;W 1,p(Ω\Γ;Rd)).

Proof: To prove (4.18), we apply [Att84, p. 356, Lemma 3.57] (cf. also Lemma 5.4 ahead) to A = ∂F

from (4.19); in the following we use the placeholder X = Lp(0, T ;W 1,p(Ω\Γ;Rd)). Consider u∗m ∈ X∗

defined by the dual pairing 〈u∗m, v〉X :=
∫ t

0

∫
Ω\ΓC

DWp(e(um(s))) : e(v(s)) dx + 〈`m(s), v(s)〉 ds for all
v ∈ X. It clearly fulfills u∗m ∈ A(um) and (4.15) and (4.16) yield that u∗m⇀u∗ in X∗, with u∗ defined
by 〈u∗, v〉X :=

∫ t

0

∫
Ω\ΓC

µ(s) : e(v(s)) dx + 〈`(s), v(s)〉 ds. We now check that lim supm→∞〈u∗m, um〉X ≤
〈u∗, u〉X . To do so, we test the reformulation (3.42) of the momentum equation satisfied by (um, wm, zm)

with um, integrate in time, and take the lim supm→∞. Thus,

lim sup
m→∞

∫ t

0

(∫

Ω\ΓC

DWp(e(um)) : e(um) dx+ 〈`m, um〉
)

ds

≤ − lim inf
m→∞

∫ t

0

∫

Ω\ΓC

DR2(e(
.
um)) : e(um) dxds

︸ ︷︷ ︸
=

∫
Ω\ΓC

R2(e(um(t)))− R2(e(um(0))) dx

− lim inf
m→∞

∫ t

0

∫

Ω\ΓC

DW2(e(um)) : e(um) dxds

− lim inf
m→∞

∫ t

0

∫

Γ

k
2 zm

∣∣[[um
]]∣∣2 dS ds+ lim sup

m→∞

∫ t

0

∫

Ω\ΓC

BΘ(wm) : e(um) dxds+ lim sup
m→∞

∫ t

0

〈F, um〉 ds

≤ −
∫ t

0

∫

Ω\ΓC

DR2(e(
.
u)) : e(u) dxds

︸ ︷︷ ︸
=

∫
Ω\ΓC

R2(e(u(t)))− R2(e(u0)) dx

−
∫ t

0

∫

Ω\ΓC

(
DW2(e(u))− BΘ(w)

)
: e(u) dxds

−
∫ t

0

∫

Γ

k
2 z
∣∣[[u
]]∣∣2 dS ds+

∫ t

0

〈F, u〉 ds

=

∫ t

0

(∫

Ω\ΓC

µ : e(u) dx+ 〈`, u〉
)

ds.

(4.20)

Here, we have used the chain rule formula
∫ t

0

∫
Ω\ΓC
DR2(e(

.
um)) : e(um) dx ds =

∫
Ω\ΓC

R2(e(um(t))) −
R2(e(um(0))) dx for every m ∈ N, and its analogue in the limit m → ∞. Then, second inequality
follows from convergences (4.6a), (4.6b), (4.6c) (which in particular yields that

∫
Ω\ΓC

R2(e(um(t))) dx→∫
Ω\ΓC

R2(e(u(t))) dx for all t ∈ [0, T ]), and (4.6j). The last equality is due to (4.17). Thus, we have
u∗ ∈ A(u) by [Att84, p. 356, Lemma 3.57] and the sum rule (3.41) for A = ∂F yields that there exists
˜̀∈ X∗ with ˜̀(s) ∈ ∂ IC(u(s)) for a.a. s ∈ (0, t), such that

〈u∗, v〉X =

∫ t

0

∫

Ω\ΓC

µ(s) : e(v(s)) dx+ 〈`(s), v(s)〉 ds =
∫ t

0

∫

Ω\ΓC

DWp(e(u(s))) : e(v(s)) dx+ 〈˜̀(s), v(s)〉 ds
(4.21)

for all v ∈ X. We conclude that ` = ˜̀ and µ = DWp(e(u)). Then, (4.18) holds by the fundamental
lemma of the calculus of variations, upon choosing v(s, x) := ϕ(s)v(x) for any ϕ ∈ C∞

0 (0, t) and any
v ∈ W 1,p(Ω\Γ;Rd). Thus, inserting this in (4.17), we find that the triple (u,w, z) complies with (3.42),
and hence (3.29a) holds true.

4.2 Step 2: Passage to the limit in the semistability condition

We now prove that the pair (u, z) complies with the semistability condition (3.30) for any test function
z̃ ∈ ZSBV = SBV(Γ; {0, 1}). To do so, we follow a well-established procedure in the analysis of rate-
independent systems. Viz., we prove that for all t ∈ (0, T ] there exists a mutual recovery sequence (or

22



MRS, for short) (z̃m)m ⊂ ZMM (whose dependence on t is omitted) such that z̃m → z̃ in L1(Γ) as m→ ∞,
and

lim sup
m→∞

(Φk,m(um(t), z̃m) + R1(z̃m−zm(t))− Φk,m(um(t), zm(t)))

≤ Φk(u(t), z̃) + R1(z̃−z(t))− Φk(u(t), z(t)).
(4.22)

Since Φk,m(um(t), z̃m) + R1(z̃m−zm(t))− Φk,m(um(t), zm(t)) ≥ 0 for all m ∈ N and all t ∈ [0, T ] in view
of the semistability (3.30) for the Modica-Mortola solutions (um, zm), from (4.22) we will immediately
deduce the desired semistability for the limit functions (u, z).

Proposition 4.2 (Mutual recovery sequences for the SBV-adhesive systems) Keep k ∈ N fixed.
Let (3.7), (3.8), (3.12), and (3.14) hold true. Let Φm,k and Φk be given by (3.17) and (3.19). Let (um)m
satisfy (4.6a) and let (zm)m ⊂ SBV(ΓC; {0, 1}) with zm semistable for Φm,k(um, ·) fulfill zm

∗
⇀ z in

SBV(ΓC; {0, 1}). Then, for every z̃ ∈ ZSBV there is a sequence (z̃m)m ⊂ ZMM with z̃m → z̃ in L1(Γ) such
that (4.22) holds.

Proof: We draw the definition of the MRS (z̃m)m from the proof of [Tho13a, Lemma 3.5] and, for
the reader’s convenience, we outline here the main steps in the construction, referring to [Tho13a] for
all details. We suppose that Φk(u(t), z̃) < ∞ and R1(z̃−z(t)) < ∞, i.e. that z̃ ≤ z(t) a.e. (otherwise,
the recovery sequence is trivial). For (4.22) to hold, it is also necessary that Φk,m(um(t), z̃m) < ∞ and
R1(z̃m−zm(t)) < ∞. Therefore, in [Tho13a] the construction from the proof of Thm. 4.4 in [MM77,
Mod87] is suitably adapted to accommodate the latter constraint. Viz., one sets

z̃m := max{0,min{(ẑm−δm), zm(t)}} with δm := ‖ẑm−z̃+z(t)−zm(t)‖1/2L1(Γ). (4.23)

Here, (ẑm)m is the classical recovery sequence used in [MM77, Mod87] to prove the Γ-lim sup condition
of Thm. 4.4. In particular, this sequence (ẑm)m ⊂ L1(Γ) fulfills

ẑm → z̃ in L1(Γ), lim sup
m→∞

Gm(ẑm) ≤ Gb(z̃). (4.24)

By definition, we have 0 ≤ z̃m ≤ zm(t) ≤ 1 a.e. on Γ. It follows from (4.24) and (4.6e) that δm → 0.
Exploiting this, it can be shown that z̃m → z̃ in L1(Γ), hence R1(z̃m−zm(t)) → R1(z̃−z(t)). Since
(z̃m)m is bounded in L∞(Γ), we immediately have z̃m → z̃ in Lq(Γ) for all 1 ≤ q < ∞. Combining this
convergence with (4.6e) and (4.9), we then infer

{
limm→∞

∫
Γ

k
2 (z̃m−zm(t)) |[[um(t)]]|2 dS =

∫
Γ

k
2 (z̃−z(t)) |[[u(t)]]|2 dS,

limm→∞
∫
Γ
a0(zm(t)−z̃m) dS =

∫
Γ
a0(z(t)−z̃) dS.

(4.25)

Repeating the very same calculations as in the proof of [Tho13a, Lemma 3.5], one can also show that

lim sup
m→∞

(Gm(z̃m)−Gm(zm(t))) ≤ Gb(z̃)− Gb(z(t)).

This concludes the proof of (4.22).

4.3 Bonus: energy and enthalpy equalities in the adhesive case

In the following we establish that the mechanical energy (3.31), the enthalpy (3.33) and the total energy
(3.35) inequalities hold even as equalities in the adhesive setting, cf. Theorem 3.1. For the proof, we will
confine ourselves to the SBV-adhesive system. Let us stress that the respective equalities indeed hold
for the Modica-Mortola adhesive system and they can be proved along the same lines as in what follows,
arguing on the approximating system via time-discretization constructed in Appendix A.1, to which we
refer for more details.

We start with proving in Prop. 4.3 the opposite relation in the mechanical energy inequality (3.31), for
any solution triple (u, z, w) of the SBV-adhesive system. In [Rou10, RR11] this was obtained by applying
a Riemann-sum argument on the semistability inequality and by testing the momentum balance by the
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solution
.
u of the adhesive system. In our setting, however, the momentum balance cannot be tested by.

u, as test functions are required to have W 1,p-regularity in Ω\ΓC, cf. (3.24). To avoid testing with
.
u, we

adopt the Riemann-sum technique also for the momentum balance: For an equidistant partition of [0, T ],

0 = t0 < tN1 < . . . < tNN = T with tNi − tNi−1 = τN , (4.26)

we test the adhesive momentum inclusion (3.42) at time tNi−1 by the differences uNi − uNi−1
∫

Ω\ΓC

(
DR2(e(

.
uNi−1))+DW2(e(u

N
i−1))− BΘN

i−1 +DWp(e(u
N
i−1)

)
:e(uNi − uNi−1) dx

+ 〈λNi−1, u
N
i − uNi−1〉 = 〈FN

i , u
N
i − uNi−1〉

(4.27)

with λNi−1 ∈W 1,p(Ω\ΓC;Rd)∗ s.t. λNi−1 ∈ ∂Fk(u
N
i−1, z

N
i−1); here and in what follows, we use the abbrevia-

tions
uNi := u(tNi ), u̇Ni := u̇(tNi ), λNi := λ(tNi )...... (4.28)

Then we will exploit convexity inequalities for W2,Wp and IC. Let us point out that the semistability
condition is valid for all t ∈ [0, T ], whereas the momentum balance (3.29a) holds only for almost every
t ∈ (0, T ). Hence, the sequence of partitions (τN )N with τN → 0 as N → ∞ has to be carefully chosen
such that (4.27) holds for every tNi involved.

Proposition 4.3 (Upper estimate for the mechanical energy) Let k ∈ N be fixed. Let (3.7), (3.8),
(3.12), and (3.14) hold true. Let (u, z, w) be an energetic solution to the SBV-adhesive system. Then the
mechanical energy inequality (3.31) also holds in the opposite direction, i.e. for all t ∈ [0, T ]

Φk

(
u(t), z(t)

)
+

∫ t

0

2R2(e(
.
u)) ds+VarR1

(z; [0, t]) ≥ Φk

(
u0, z0

)
+

∫ t

0

∫

Ω\ΓC

Θ(w)B:e(.u) dxds+
∫ t

0

〈F, .u〉 ds.
(4.29)

Hence, we have mechanical energy equality for the adhesive systems.

Proof: Consider a sequence of partitions (4.26) with τN → 0 as N → ∞, such that (4.27) is well defined
for all N ∈ N. Since W2 and Wp are convex, we have

N∑

i=1

∫

Ω\ΓC

(
DW2(e(u

N
i−1)) + DWp(e(u

N
i−1))

)
:e(uNi −uNi−1) dx

≤
N∑

i=1

∫

Ω\ΓC

(
W2(e(u

N
i ))+Wp(e(u

N
i ))−W2(e(u

N
i−1))−Wp(e(u

N
i−1))

)
dx

=

∫

Ω\ΓC

(
W2(e(u(T )))+Wp(e(u(T )))−W2(e(u0))−Wp(e(u0))

)
dx

(4.30)

For the right-hand side of (4.27) we obtain

∑N

i=1
〈FN

i−1, u
N
i −uNi−1〉 =

∑N

i=1

∫ ti

ti−1

〈F (s), .u(s)〉+ 〈FN
i−1 − F (s),

.
u(s)〉︸ ︷︷ ︸

→0

, (4.31)

where the second term tends to 0 due to the regularity (3.12a) of F and (4.6a) of u. For all k ∈ N we have
that λNi−1 ∈ ∂Fk(u

N
i−1) is given by 〈λNi−1, v〉 = 〈`Ni−1, v〉 +

∫
ΓC
kzNi−1[[u

N
i−1]]·[[v]] dS with `Ni−1 ∈ ∂IC(u

N
i−1).

Exploiting the convexity of IC and that IC(u
N
i−1) = IC(u

N
i ) = 0 we find

N∑

i=1

〈`Ni−1, u
N
i −uNi−1〉+

N∑

i=1

∫

ΓC

kzNi−1

[[
uNi−1

]]
·
[[
uNi −uNi−1

]]
dS ≤ 0 +

N∑

i=1

∫ tNi

tNi−1

∫

ΓC

kzNi−1

[[
uNi−1

]]
·
[[uN

i −uN
i−1

τN

]]
dS ds

=

N∑

i=1

∫ tNi

tNi−1

∫

ΓC

kzNi−1

[[
uNi−1

]]
·
[[.
uNi−1

]]
dS ds

︸ ︷︷ ︸
↓

+

N∑

i=1

∫ tNi

tNi−1

∫

ΓC

kzNi−1

[[
uNi−1

]]
·
[[uN

i −uN
i−1

τN
− .
uNi−1

]]
dS ds

︸ ︷︷ ︸
↓∫ T

0

∫

ΓC

kz
[[
u
]]
·
[[.
u
]]
dS ds 0 , (4.32)

24



where the convergence of the Riemann-sums is due to (4.6a) and (4.6c). To obtain that the second
term on the right-hand side tends to 0 one uses that ‖z‖L∞ ≤ 1 and then applies Hölder’s inequality in
L2(0, T ;L2(ΓC;Rd) together with

N∑

i=1

∫ ti

ti−1

∥∥uN
i −uN

i−1

τN
− .
uNi−1

∥∥2
W 1,2(Ω\ΓC;Rd)

dt =

N∑

i=1

τN
∥∥uN

i −uN
i−1

τN

∥∥2
W 1,2+τN‖.uNi−1‖2W 1,2−2τN 〈u

N
i −uN

i−1

τN
,
.
uNi−1〉

→ ‖.u‖2L2(0,T ;W 1,2) + ‖.u‖2L2(0,T ;W 1,2) − 2‖.u‖2L2(0,T ;W 1,2) = 0 ,

(4.33)

where the convergence of the Riemann-sums is due to (4.6a).
For the term involving the viscous dissipation we have

N∑

i=1

∫

Ω\ΓC

DR2(e(
.
uNi−1)) : e(u

N
i −uNi−1) dx

=

N∑

i=1

∫

Ω\ΓC

(tNi −tNi−1)DR2(e(
.
uNi−1)) :e(

.
uNi−1)) dx

︸ ︷︷ ︸
↓

+

N∑

i=1

∫ tNi

tNi−1

∫

Ω\ΓC

DR2(e(
.
uNi−1)) :e(

uN
i −uN

i−1

τN
− .
uNi−1) dx ds

︸ ︷︷ ︸
↓∫ T

0

∫

Ω\ΓC

DR2(e(
.
u)) :e(

.
u) dx ds 0 , (4.34)

where the convergence of the Riemann-sums is again due to (4.6a) and the convergence to 0 of the second
term is obtained using (4.33). It remains to analyze the term involving the thermal stresses, i.e.

N∑

i=1

∫

Ω\ΓC

−BΘN
i−1 :e(u

N
i −uNi−1) dx

=
N∑

i=1

∫ tNi

tNi−1

∫

Ω\ΓC

−BΘN
i−1 :e(

.
uNi−1) dx ds

︸ ︷︷ ︸
↓

+
N∑

i=1

∫ tNi

tNi−1

∫

Ω\ΓC

−BΘN
i−1 :e(

uN
i −uN

i−1

τN
− .
uNi−1) dx ds

︸ ︷︷ ︸
↓∫ T

0

∫

Ω\ΓC

−BΘ(w) :e(
.
u) dx ds 0 ,

(4.35)

where we exploited (4.6a), (4.6j), and again (4.33). Collecting (4.30)–(4.35) leads to
∫ T

0

〈F, .u〉 ds ≤
∫

Ω\ΓC

(
W2(e(u(T )))+Wp(e(u(T )))−W2(e(u0))−Wp(e(u0))

)
dx

+

∫ T

0

∫

Ω\ΓC

2R2(e(
.
u))− BΘ(w) :e(

.
u) dx ds+

∫ T

0

∫

ΓC

kz
[[
u
]]
·
[[.
u
]]
dS ds

(4.36)

Now, a similar estimate for the surface energy has to be established. As in [Rou10] we therefore test
the semistability inequality at time tNi−1 with zNi . Summing up over i ∈ {0, . . . , N} yields

N∑

i=1

∫

ΓC

k
2 z

N
i−1

∣∣[[uNi−1

]]∣∣2 dS + Gb(z
N
i−1) ≤

N∑

i=1

∫

ΓC

k
2 z

N
i

∣∣[[uNi−1

]]∣∣2 dS + Gb(z
N
i ) + R1(z

N
i − zNi−1)

=

N∑

i=1

∫

ΓC

k
2 z

N
i

∣∣[[uNi
]]∣∣2 dS + Gb(z

N
i ) + R1(z

N
i − zNi−1) +

N∑

i=1

∫

ΓC

k
2 z

N
i

(∣∣[[uNi−1

]]∣∣2 − |
[[
uNi
]]∣∣2) dS .

(4.37)

Scooping the left-hand side to the right, exploiting the cancellation of redundant terms and using that
the last term in (4.37) can be expressed via the chain rule, leads to

0 ≤
∫

ΓC

k
2 z(T )

∣∣[[u(T )
]]∣∣2 dS −

∫

ΓC

k
2 z0
∣∣[[u0

]]∣∣2 dS + Gb(z(T ))− Gb(z0) + R1(z(T )− z0)

−
N∑

i=1

∫ tNi

tNi−1

∫

ΓC

kzNi
[[
u(s)

]][[.
u(s)

]]
dS ds .

(4.38)
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For the last term in (4.38) we calculate

−
N∑

i=1

∫ tNi

tNi−1

∫

ΓC

kzNi
[[
u(s)

]][[.
u(s)

]]
dS ds

≤ −
N∑

i=1

∫ tNi

tNi−1

∫

ΓC

kzNi
[[
uNi
]][[.
uNi
]]
dS ds

︸ ︷︷ ︸
↓

+
N∑

i=1

∫ tNi

tNi−1

∫

ΓC

kzNi
(∣∣[[u

]]
−
[[
uNi
]]∣∣∣∣[[.uNi ]]

∣∣+
∣∣[[.u]]−[[.uNi ]]

∣∣∣∣[[u
]]∣∣)dS ds

︸ ︷︷ ︸
↓

−
∫ T

0

∫

ΓC

kz
[[
u
]][[.
u
]]
dS ds 0 ,

where above the convergence of the Riemann-sums is due to u ∈W 1,2(0, T ;W 1,2
ΓD

(Ω\Γ;Rd)) by (4.6a) and
z ∈ L∞((0, T )× ΓC) by (4.6c). Altogether we have obtained

0 ≤
∫

ΓC

k
2 z(T )

∣∣[[u(T )
]]∣∣2 dS−

∫

ΓC

k
2 z0
∣∣[[u0

]]∣∣2 dS+Gb(z(T ))−Gb(z0)+R1(z(T )−z0)−
∫ T

0

∫

ΓC

kz
[[
u
]][[.
u
]]
dS ds .

(4.39)
The bulk (4.36) and the surface (4.39) estimates yield the upper mechanical energy estimate (4.29) for
the SBV-adhesive system.

The analog of Prop. 4.3 is obtained for the Modica-Mortola adhesive system, upon repeating the steps
for the surface energy with the regularization Gm instead of Gb in (4.37)–(4.39).

We are now in the position to conclude the following

Corollary 4.4 (Enthalpy and total energy equality) Let the assumptions of Proposition 4.3 hold.
Let (u, z, w) be an (approximable) energetic solution to the SBV-adhesive contact system (cf. Thm. 4.3).
Then the enthalpy (3.33) and the total energy (3.35) estimates hold as equalities for (u, z, w).

Proof: First of all, we deduce from the mechanical energy equality the convergence of the viscous
dissipation, i.e. ∫ t

0

2R2(e(
.
um)) ds→

∫ t

0

2R2(e(
.
u)) ds, (4.40)

where (um, zm, wm) are the solutions of the Modica-Mortola adhesive systems and (u, z, w) is the solution
of the SBV-adhesive system. Indeed, arguing as in [Rou10, RR11] we develop the chain of inequalities
(4.41) below. There, the first inequality is obtained by lower semicontinuity and convergences (4.6a),
(4.6c), while the second one relies on the mechanical energy equality for the Modica-Mortola adhesive
systems. The third equality is due to um → u strongly in Lp(0, T ;W 1,p(Ω\ΓC;Rd)) by Thm. 4.1, assump-
tion (4.5) and convergence (4.6j), while the mechanical energy equality for the SBV-adhesive systems is
exploited for the last equality.

∫ t

0

2R2(e(
.
u)) ds+VarR1

(z; [0, t]) ≤ lim inf
m→∞

∫ t

0

2R2(e(
.
um)) ds+VarR1

(zm; [0, t])

≤ lim sup
m→∞

Φm,k(u
0
m, z

0
m)− Φm,k(um(t), zm(t)) +

∫ t

0

∫

Ω\ΓC

Θ(wm)B :e(
.
um) dx ds+

∫ t

0

〈F, .um〉 ds

= Φk(u(0), z(0))− Φk(u(t), z(t)) +

∫ t

0

∫

Ω\ΓC

Θ(w)B :e(
.
u) dx ds+

∫ t

0

〈F, .u〉 ds

=

∫ t

0

2R2(e(
.
u)) ds+VarR1

(z; [0, t]) .

(4.41)

Since VarR1
(zm; [0, t]) → VarR1

(z; [0, t]) by (4.6c), from (4.41) we deduce the convergence (4.40) of the
viscous dissipation, as well as (4.14).

Combining (4.14) and (4.40) with convergences (4.6a), (4.6c) and (4.6j) allows us to pass with m→ ∞
in the weak enthalpy equality of the Modica-Mortola adhesive systems and to obtain that the limit, i.e.
the respective relation for the SBV-adhesive system, again is an equality. Finally, the total energy equality
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for the SBV-adhesive system is deduced by summing up the mechanical energy and the enthalpy equality.

While the analog of Corollary 4.4 holds for the Modica-Mortola adhesive contact system, for the
brittle delamination system, however, our methods to gain energy equalities fail in the very first step, as
the following remark highlights.

Remark 4.5 (Failure of the methods in the brittle setting) As described along with (4.27), we
have to avoid the occurrence of

.
u in nonlinear, p-dependent terms due to a lack of regularity. In the

adhesive setting we therefore test the momentum inclusion at time tNi−1 by u(tNi )−u(tNi−1) and exploit
convexity inequalities for Wp and IC, cf. estimates (4.30) and (4.32). For the analogue of (4.32) in the
brittle setting, one would have to estimate the term 〈lNi−1, u(t

N
i )−u(tNi−1)〉 with lNi−1 ∈ ∂J∞(uNi−1, z(t

N
i−1)).

This cannot be done by convexity inequalities because z(tNi−1)[[u(t
N
i )]] 6= 0 is not excluded a.e. on ΓC,

therefore J∞(uNi , z(t
N
i−1)) = ∞ is possible. Clearly this problem does not occur in the adhesive setting.

5 From SBV-adhesive contact to SBV-brittle delamination

In this section we deduce the existence of energetic solutions for the SBV-brittle delamination systems.
This will be done by passing to the brittle limit k → ∞ with the SBV-adhesive contact systems.

During the limit passage as k → ∞ the properties of the surface energy functionals Fk from (3.40)
change dramatically: their smooth contributions Jk(·, zk) for adhesive contact from (3.39) are supposed
to approximate the nonsmooth functionals J∞(·, z) for the brittle constraint from (3.43). In addition,
also a suitable convergence of their functional derivatives is required in order to pass to the limit in the
weak formulation of the momentum balance, see (3.29a) and (3.29b), respectively.

Testing the adhesive momentum balance (3.29a) with functions suited for the brittle equation (3.29b),
i.e. functions in the set Uz(t) from (3.25), would need

for all v ∈ Uz(t) :

∫

Γ

kzk(t)
[[
uk(t)

]]
·
[[
v
]]
dx

!−→ 0 as k → ∞ (5.1)

for a.a. t ∈ (0, T ), where (uk, zk, wk)k are the SBV-adhesive solutions suitably converging to a limit
(u, z, w). But as we only have that

∫
ΓC
kzk(t)|[[uk(t)]]|2dS ≤ C, while

∫
ΓC
zk(t)|[[v]]|2dS → 0 only without

the prefactor k, the integral in (5.1) might even blow up to ∞. Hence, we have to avoid dealing with (5.1),
i.e. passing to the limit in (3.29a) with fixed test functions v ∈ Uz(t). Instead, we intend to construct a
suitable recovery sequence (vk)k for the test functions v ∈ Uz(t), which satisfies

Jk(vk, zk(t)) =

∫

ΓC

k
2 zk(t)

∣∣[[vk
]]∣∣2 dx = 0 for all k ∈ N and for all t ∈ [0, T ] . (5.2)

Additionally (vk)k has to feature a convergence suited to recover the bulk terms. In other words, for
every k ∈ N, v has to be modified in such a way that the support of [[vk]] fits to the null set of zk and,
as k → ∞, also vk → v suitably in the bulk. For obvious reasons, this convergence necessitates that the
supports of zk converge to the support of z in the sense that, for a.a. t ∈ (0, T ) it holds

supp zk(t) ⊂ supp z(t) +Bρ(k,t)(0) for all k ∈ N and ρ(k, t) → 0 as k → ∞ , (5.3)

where Bρ(k,t)(0) is the open ball around 0 of radius ρ(k, t). The above inclusion has to be understood
as Ld−1(supp zk(t)\(supp z(t) + Bρ(k,t)(0))) = 0. This so-called support convergence cannot be deduced
from the convergence of functions in a particular metric. It is rather a fine property of sequences being
semistable for the perimeter functional, as we will establish in Section 6.

Nonetheless, apart from this, the convergence of the bulk terms requires vk → v strongly in the
respective Sobolev space over the domain Ω− ∪ M̂ ∪ Ω+ with M̂ = supp z(t). The strong convergence of
the recovery sequence can be gained from a result in [Lew88], which, for general M̂ (of bad regularity),
is only valid in W 1,p(Ω− ∪ M̂ ∪ Ω+;Rd) with p > d. This is the ultimate reason for the regularization
of p-growth in the bulk energy. Like in Section 4.1, we cannot directly pass to the limit with the term
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of p-growth in the momentum inequality (3.29a), i.e. here with
∫
Ω\ΓC

DWp(e(uk(t)):e(vk − uk(t)) dx, as
we again have to identify the weak limit of the sequence (DWp(e(uk)))k. In fact, we will rather use the
construction of (vk)k to show that the sequence of functionals (Fk)k from (3.40) Mosco-converges to the
functional F∞ from (3.44), cf. Prop. 5.3 in Sec. 5.1. This will allow us to conclude convergence in the
sense of graphs of the corresponding maximal monotone subdifferential operators and hence, to carry out
the limit passage in the equivalent subdifferential reformulation (3.42). For the reader’s convenience, we
recall the following definition, see e.g. [Att84, Sec. 3.3, p. 295].

Definition 5.1 (Mosco-convergence) Let X be a Banach space and consider the (proper) functionals
Fk : X → R∞, and F : X → R∞. We say that the sequence (Fk)k Mosco-converges as k → ∞ to the
functional F, if the following two conditions hold:
– lim inf inequality: for every u ∈ X and (uk)k ⊂ X there holds

uk⇀u weakly in X ⇒ lim inf
k→∞

Fk(uk) ≥ F (u); (5.4)

– lim sup inequality: for every v ∈ X there exists a sequence (vk)k ⊂ X such that

vk → v strongly in X and lim sup
k→∞

Fk(vk) ≤ F (v). (5.5)

A closely related concept is the one of graph convergence of a sequence of maximal monotone operators:
by [Att84, p. 373, Thm. 3.66], Mosco-convergence of lower semicontinuous and convex functionals implies
the one of the corresponding subdifferential operators. We recall (see [Att84, p. 360, Def. 3.58]) that,
given Ak, A : X ⇒ X∗ (set-valued) maximal monotone operators defined on a Banach space X,

(Ak)k converges in the sense of graphs in X to A ⇔





∀ (u, u∗)∈X×X∗ with u∗∈A(u),
∃ (uk, u∗k)k ⊂ X×X∗ with u∗k∈Ak(uk) :

(uk, u
∗
k) → (u, u∗) strongly in X ×X∗ .

(5.6)

After outlining the features of our approach, let us now state the main result of this paper.

Theorem 5.1 (Adhesive contact approximation of SBV-brittle delamination) Assume (3.7),
(3.8) and (3.12). Let (uk, wk, zk)k be a sequence of approximable solutions of the SBV-adhesive contact
system, supplemented with initial data (u0k, θ

0
k, z

0
k)k fulfilling (3.14) and (4.1). Suppose that, as k → ∞

u0k⇀u0 in W 1,p(Ω\Γ;Rd), θ0k → θ0 in Lω1(Ω), z0k
∗
⇀ z0 in L∞(Γ), and (5.7)

Φk(u
0
k, z

0
k) → Φb(u0, z0). (5.8)

Then, there exist a (not relabeled) subsequence, and a triple (u,w, z), such that convergences (4.6)
hold for (uk, wk, zk) as k → ∞ and (u,w, z) is an energetic solution to the SBV-brittle delamination
system, fulfilling the semistability condition (3.30) for all t ∈ [0, T ]. In addition we have that

uk → u in Lp(0, T ;W 1,p(Ω\ΓC;Rd)) and Φk(uk, zk) → Φb(u, z) . (5.9)

Furthermore, the positivity property (4.2) holds.

Proof: The proof follows the scheme outlined in Section 3.5.
Step 0 : selection of converging subsequences. For the sequence (uk, wk, zk)k, estimates (3.48)–

(3.53) are valid and thus convergences (4.6) can be obtained in the very same way as in the proof of Thm.
4.3. Furthermore, notice that

sup
k∈N

sup
t∈[0,T ]

Φk(uk(t), zk(t)) ≤ C ⇒ k

2

∫

Γ

zk(t)|
[[
uk(t)

]]
|2 dS ≤ C for all t ∈ [0, T ], k ∈ N. (5.10)

Now, it follows from (4.6b) via Sobolev trace theorems that [[uk]] → [[u]] in C0([0, T ]; C0(Γ;Rd)). Hence, we
obtain [[u]]·n ≥ 0, and also taking into account (4.6d) we find that

∫
Γ
zk(t)|[[uk(t)]]|2 dS →

∫
Γ
z(t)|[[u(t)]]|2 dS
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for all t ∈ [0, T ]. Therefore, thanks to (5.10) we easily conclude that the limit pair (u, z) fulfills the brittle
constraint z[[u]] = 0 a.e. on (0, T )× Γ.

The proof of Steps 1 and 2, momentum balance and semistability, will be carried out in
Sections 5.1 and 5.2, respectively. The mechanical energy inequality (3.31) and the enthalpy inequality
(3.33) can be obtained by the very same lower semicontinuity arguments as in Step 3 and Step 4 of the
proof of Thm. 4.3, and the same for the positivity of the temperature, that is why we do not repeat it.

5.1 Step 1: limit passage in the momentum equation via recovery sequences

In this section we pass from adhesive to brittle in the subdifferential formulations of the momentum
balance. As already mentioned, this will be done with the aid of a recovery sequence (vk)k for the test
functions v ∈ Uz(t) of the brittle momentum balance, which has to satisfy (5.2). The construction of
this recovery sequence relies on the following Proposition 5.2. It was developed in [MRT12, Cor. 4.10] in
order to pass from (Sobolev-) gradient delamination to Griffith-type delamination in the rate-independent
setting. Its proof is based on a Hardy inequality derived in [Lew88, p. 190], which requires p>d.

In this section we will often indicate that x = (x1, y) ∈ Ω is composed of the x1-component and
y := (x2, . . . , xd) ⊂ Rd−1. Moreover, in view of assumption (3.7c), we suppose without loss of generality
that Ω is rotated in such a way that the normal n on Γ points in the x1-direction. Furthermore, for
simplicity in the notation of ξM̂ρ and vρ (cf. (5.11) below), we will often omit the t-dependence of ρ.

Proposition 5.2 (Recovery sequence for the test functions, [MRT12, Cor. 2])
Keep t ∈ [0, T ] fixed. Let z(t) ∈ L∞(ΓC) and let M̂(t) := supp z(t). Let dM̂ (t, x) := minx̂∈M̂(t) |x − x̂|
for all x ∈ Ω±. Let v(t) ∈ W 1,p(Ω− ∪ M̂(t) ∪ Ω+;Rd), with p > d, such that v(t) = 0 on ΓD in the trace
sense. With ξM̂ρ (t, x) := min{ 1

ρ(t) (dM̂ (t, x)− ρ(t))+, 1} set

vρ(t, x1, y) := vsym(t, x1, y) + ξM̂ρ (t, x1, y) vanti(t, x1, y) , (5.11)

where vsym(t, x1, y) := 1
2 (v(t, x1, y) + v(t,−x1, y)) and vanti(t, x1, y) := 1

2 (v(t, x1, y)− v(t,−x1, y)). Then,
for a.a. t ∈ (0, T ) the following statements hold:

(i) vρ(t) → v(t) strongly in W 1,p(Ω− ∪ Ω+;Rd) as ρ(t) → 0,

(ii) v(t) ∈W 1,p(Ω− ∪ M̂(t) ∪ Ω+;Rd) ⇒ vρ(t) ∈W 1,p(Ω− ∪ (M̂(t) +Bρ(t)(0)) ∪ Ω+;Rd),
(iii) [[v(t)]] · n ≥ 0 on Γ ⇒ [[vρ(t)]] · n ≥ 0 on Γ .

We apply the construction of Proposition 5.2 to tailor a recovery sequence (vk)k for any test function
v ∈ Uz(t). For our purpose, the radii ρ = ρ(k, t) in Prop. 5.2 are given by

ρ(k, t) := inf{ρ > 0 : supp zk(t) ⊂ supp z(t) +Bρ(0)} . (5.12)

As proved in the forthcoming Propositions 6.6 and 6.7, we have ρ(k, t) → 0 as k → ∞ for all t ∈ [0, T ].

Then, statement (ii) ensures that the sequence (vk)k, vk := vρ(k,t), does not jump on supp zk(t) for
a.a. t ∈ (0, T ). Moreover, [[vρ(k,t)]] · n ≥ 0 on Γ as given by statement (iii), while (i) guarantees the
desired convergence vρ(k,t) → v(t), only if ρ(k, t) → 0 as k → ∞. This is shown in Proposition 6.6 for
supp z(t) = ∅ and in Proposition 6.7 for supp z(t) 6= ∅.

The above recovery sequence will now be used to state the Mosco-convergence of several functionals
involved in the adhesive momentum balance.

Proposition 5.3 Assume (3.7c).
(1) Let (zk)k ⊂ SBV(Γ; {0, 1}) with zk

∗
⇀ z in SBV(Γ; {0, 1}) as k → ∞ and X := W 1,p(Ω\ΓC;Rd).

Then, the functionals Jk(·, zk) (3.39) Mosco-converge in X as k → ∞ to J∞(·, z) (3.43).
(2) Let the assumptions of (1) hold. Then, the sequence (Fk(·, zk))k (3.40) Mosco-converges in X as

k → ∞ to F∞(·, z) (3.44).
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(3) Let X := Lp(0, T ;W 1,p(Ω\ΓC;Rd)). For zk, z satisfying (4.6c) and any t ∈ (0, T ] consider the
functionals

F̃k(·, zk) : X → [0,∞], F̃k(v, zk) :=

∫ t

0

∫

Ω\ΓC

Wp(e(v(s))) dx+ Fk(v(s), zk(s)) ds , (5.13a)

F̃∞(·, z) : X → [0,∞], F̃∞(v, z) :=

∫ t

0

∫

Ω\ΓC

Wp(e(v(s))) dx+ F∞(v(s), z(s)) ds . (5.13b)

Then the sequence (F̃k(·, zk))k Mosco-converges to the functional F̃∞(·, z) in X.

Proof: Ad (1): The lim inf inequality (5.4) immediately follows from the fact that Jk(uk, zk) ≥ 0 for
all k ∈ N. This has to be combined with the observation that the limit pair (u, z) fulfills z[[u]] = 0 on Γ,
which can be checked arguing in the same way as throughout Step 0 of the proof of Thm. 5.1.

The lim sup condition (5.5) is proved by associating with each v ∈W 1,p(Ω\Γ;Rd) s.t. J∞(v, z)<∞,
i.e. z[[v]] = 0 on Γ, the recovery sequence

vk(x1, y) :=





vsym(x1, y) + ξsupp z
ρ(k) (x1, y) vanti(x1, y) if supp z 6= ∅ and supp zk 6⊂ supp z ,

v(x1, y) if supp zk ⊂ supp z ,

v(x1, y) if supp z = ∅ .
(5.14)

For the non-trivial construction in the first line of (5.14) the radius ρ(k) > 0 is defined by (5.12). If
supp zk ⊂ supp z, it is ρ(k) = 0 according to (5.12) and there is no need to modify v. The construction
for the case supp z = ∅ is due to Proposition 6.6 stating that, if supp z = ∅, then also supp zk = ∅ from
a particular index k0 on. For supp z 6= ∅ the construction is the one from Proposition 5.2. The sequence
(vk)k strongly converges to v in X by (i) of Prop. 5.2. From (ii) and (5.12) it follows that zk[[vk]] = 0

for every k ∈ N, hence Jk(vk, zk) = J∞(v, z) = 0 and (5.5) is verified.
Clearly, (2) is an obvious consequence of (1), also taking into account that, the construction of the

recovery sequence (vk)k preserves the non-penetration constraint, cf. (iii) in Prop. 5.2.
Ad (3): Consider v ∈ X = Lp(0, T ;W 1,p(Ω\ΓC;Rd)). Again, the lim inf inequality (5.4) is

easy to check. As for the lim sup, for a.a. s ∈ (0, t) fixed a recovery sequence for v(s) = v(s, x1, y)

is given by vk(s) = vk(s, x1, y) from (5.14). We prove that vk → v strongly in X. Statement (i)
of Prop. 5.2 yields that vk(s) → v(s) strongly in W 1,p(Ω\ΓC;Rd), whence ‖vk(s)‖W 1,p(Ω\ΓC;Rd) →
‖v(s)‖W 1,p(Ω\ΓC;Rd) pointwise a.e. in (0, t). Moreover, due to ξM̂ρ(k)(s, ·) ∈ [0, 1] for a.a. s ∈ (0, t), con-
struction (5.14) gives ‖vk(s)‖W 1,p(Ω\ΓC;Rd) ≤ ‖v(s)‖W 1,p(Ω\ΓC;Rd) with ‖v(·)‖W 1,p(Ω\ΓC;Rd) ∈ Lp(0, t).
Thus, vk → v in Lp(0, t;W 1,p(Ω\ΓC;Rd)) due to the dominated convergence theorem.

Now, we want to carry out the limit passage in the momentum balance from adhesive to brittle
exploiting convergences (4.6). As in Section 4.1, we observe that, there exists µ ∈ Lp′

(0, T ;Lp′
(Ω)) such

that, up to the extraction of a further (not relabeled) subsequence there holds

DWp(e(uk))⇀µ in Lp′
(0, T ;Lp′

(Ω)). (5.15)

Furthermore, a comparison in the reformulation (3.42) of the adhesive momentum equation for (uk, wk, zk)k
yields a bound for the sequence (λk)k ⊂ Lp′

(0, T ;W 1,p(Ω\Γ;Rd)∗) such that λk(t) ∈ ∂uFk(uk(t), zk(t))

for almost all t ∈ (0, T ) and (uk, wk, zk, λk) fulfill (3.42). Therefore, up to a subsequence,

λk⇀λ in Lp′
(0, T ;W 1,p(Ω\Γ;Rd)∗). (5.16)

Convergences (5.15)–(5.16), combined with (4.6a)–(4.6h) allow us to show, as for (4.17), that the quintuple
(u,w, z, µ, λ) for almost all t ∈ (0, T ) and all v ∈W 1,p(Ω\ΓC;Rd) fulfills

∫

Ω\ΓC

(
DR2(e(

.
u(t)))+DW2(e(u(t)))−BΘ(w(t))+µ(t)

)
:e(v) dx+〈λ(t), v〉 = 〈F(t), v〉 . (5.17)

Thus, to be able to conclude that (5.17) is the momentum inclusion for the SBV-brittle limit, as in
Section 4.1 we have to identify the limits

µ(t) = DWp(e(u(t))) and λ(t) ∈ ∂uF∞(u(t), z(t)) for a.a. t ∈ (0, T ). (5.18)
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For this, we exploit the Mosco-convergence of the functionals F̃k(·, zk) defined in (5.13): indeed, we will
apply the following Lemma 5.4 to the graph-convergent sequence (∂uF̃k(·, zk))k.

Lemma 5.4 Let X be a reflexive Banach space and (Ak)k a sequence of maximal monotone operators
Ak : X ⇒ X∗ which converge in the sense of graphs to a maximal monotone operator A. Then the
following holds

(uk, u
∗
k) ∈ X ×X∗ with u∗k ∈ Ak(uk),

uk ⇀ u in X, u∗k ⇀ u∗ in X∗,

lim supk→∞ 〈u∗k, uk〉X ≤ 〈u∗, u〉X





⇒ (u, u∗) ∈ X ×X∗ with u∗ ∈ A(u) . (5.19)

The proof can be retrieved from the lines of the proof of [Att84, p. 361, Prop. 3.59].
We then obtain the following result on the limit passage in the momentum balance, where, as in Propo-

sition 4.1, the identification (5.18) again implies the strong convergence of (uk)k in Lp(0, T ;W 1,p(Ω\ΓC;Rd)).

Proposition 5.5 (Passage to the limit in the momentum equation as k → ∞)
Assume (3.7), (3.8), (3.12), (3.14), and let (uk, wk, zk)k be a sequence of energetic solutions to the SBV-
adhesive contact systems, for which convergences (4.6) to a limit triple (u,w, z) hold as k → ∞. Then,
(u,w, z) satisfy the weak formulation (3.29b) of the momentum equation in the brittle case. In addition,
there holds

uk → u strongly in Lp(0, T ;W 1,p(Ω\ΓC;Rd)) and
(
Φbulk(uk)+F̃k(uk, zk)

)
→
(
Φbulk(u)+F̃∞(u, z)

)
.

(5.20)

Proof: To prove (5.18) we are going to show that u∗ ∈ X∗ (with X := Lp(0, T ;W 1,p(Ω\ΓC;Rd))) given
by 〈u∗, v〉X :=

∫ t

0

∫
Ω
µ(s) : e(v(s)) dx+〈λ(s), v(s)〉 ds is such that u∗ ∈ ∂uF̃∞(u, z). To this aim, we observe

that the sequence (u∗k)k ⊂ X∗ defined by 〈u∗k, v〉X :=
∫ t

0

∫
Ω
DWp(e(uk(s))) : e(v(s)) dx+ 〈λk(s), v(s)〉 ds

fulfills u∗k ∈ ∂uF̃k(uk, zk) and u∗k⇀u∗ in X∗. Then, we apply Lemma 5.4 to the sequence of maximal
monotone subdifferential operators (Ak)k given by Ak := ∂uF̃k(·, zk) : X ⇒ X∗ and verify the lim sup-
estimate in (5.19). For this, we again test (3.42) by uk, integrate in time, and take the lim supk→∞.
Thus, the very same calculations as throughout (4.20) give

lim sup
k→∞

∫ t

0

(∫

Ω\ΓC

DWp(e(uk)) : e(uk) dx+ 〈λk, uk〉
)

ds ≤
∫ t

0

(∫

Ω\ΓC

µ : e(u) dx+ 〈λ, u〉
)

ds. (5.21)

Hence, u∗ ∈ ∂uF̃∞(u, z) and we conclude (5.18) as in the proof of Prop. 4.1.
For the convergence of the energies in (5.20) it has to be shown that Jk(uk, zk) → 0. This is obtained

by testing the adhesive momentum inequality (3.29a) by the recovery sequence (vk)k constructed via
(5.11) for the brittle limit solution u. Rearranging the terms in (3.29a), and exploiting that zk[[vk]] = 0

a.e. on ΓC by construction, yields for a.a. t ∈ (0, T ) that

0 ≤
∫

ΓC

kzk
∣∣[[uk

]]∣∣2 dx ≤
∫

Ω\ΓC

(
DR2(e(

.
uk))+DW2(e(uk))−BΘ(wk)+DWp(e(uk))

)
:e(vk−uk) dx− 〈F, vk−uk〉

−→ 0 as k → ∞,

since both vk → u and uk → u strongly inW 1,p(Ω\ΓC;Rd) for a.a. t ∈ (0, T ). Hence
∫
ΓC
kzk
∣∣[[uk]]

∣∣2 dx→ 0

as k → ∞ for a.a. t ∈ (0, T ).

5.2 Step 2: closedness of semistable sets

We now prove that the limit pair (u, z) complies with the semistability condition (3.30) by constructing
a mutual recovery sequence, cf. Sec. 4.2, for the semistable sequence (zk)k ⊂ L∞(0, T ; SBV(ΓC; {0, 1}))
fulfilling (4.6c). This construction is carried out in Proposition 5.7 below. It uses notation from the
theory of BV-spaces, which can be found in Appendix A.2, cf. in particular Def. A.9, A.10. In order
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to guarantee that R1(z̃k − zk) < ∞ for the mutual recovery sequence (z̃k)k, we would like to apply
a construction similar to the one developed in [TM10] for Sobolev-gradients, which mainly consists of
considering the minimum of the stable sequence and the test function z̃. To deal with the gradient terms
one exploits a chain rule formula for Sobolev-functions and the Lipschitz continuous minimum function,
cf. [MM72]. A corresponding chain rule formula for distributional derivatives, see [ADM90], is more
complicated to apply, as it also involves a kind of tangential differential. For our purposes however, the
following Theorem 5.2 on the decomposability of BV-functions, will provide an alternative construction
that allows us to circumvent this general chain rule formula.

Theorem 5.2 ([AFP05, Th. 3.84] Decomposability of BV -functions)
Let D ⊂ Rm. Let v1, v2 ∈ BV(D) and let E be a set of finite perimeter in D, with its reduced boundary
FE oriented by the generalized inner normal νE . Let vi±FE denote the traces on FE ∩ D and XE the
characteristic function of the set E. Assume that v+1FE

and v−2FE
exist for Hm−1-a.a. x ∈ FE ∩D. Then

w := v1XE + v2XD\E ∈ BV(D) if and only if
∫

FE∩D

|v+1FE
− v−2FE

| dHm−1 <∞ . (5.22)

If w ∈ BV(D) then the measure Dw is represented by

Dw := Dv1bE1 +Dv2bE0 + (v+1FE
− v−2FE

)νE ⊗Hm−1b(FE ∩D) , (5.23)

where E1 and E0 denote the measure-theoretic interior and exterior of E,

Since the three Radon-measures Dv1bE1, Dv2bE0, and (v+1FE
− v−2FE

)νE ⊗Hm−1b(FE ∩D) in (5.23) have
disjoint supports in D, we conclude that

|Dw|(D) = |Dv1|(E1) + |Dv2|(E0) +

∫

FE∩D

|(v+1FE
− v−2FE

)| dHm−1 . (5.24)

We then have the following result (see [Tho13a] for the proof).

Lemma 5.6 Let D ⊂ Rm and v ∈ BV(D) with a ≤ v ≤ b Lm-a.e. in D for constants a, b ∈ R. Assume
that Γ is a Hm−1-rectifiable set oriented by ν and denote by v±Γ the traces of v on Γ. Then a ≤ v±Γ (x) ≤ b

for Hm−1-a.a. x ∈ D.

In the proof of the following result we will apply Thm. 5.2 and Lemma 5.6 with D = Γ and m = d−1.

Proposition 5.7 (Passage to the limit in the semistability condition as k → ∞)
Assume (3.8), (3.12), (3.14), and let (uk, zk)k be a sequence of energetic solutions to the SBV-adhesive
contact system, for which convergences (4.6a)–(4.6f) hold as k → ∞. Then, the limit pair (u, z) fulfills
the semistability condition (3.30) with the energy Φb.

Proof: To prove (3.30) with Φb, it is sufficient to show for a.a. t ∈ (0, T )

∀z̃ ∈ ZSBV : Φsurf
b

([[
u(t)

]]
, z(t)

)
≤ Φsurf

b

([[
u(t)

]]
, z̃
)
+ R1(z̃ − z(t)). (5.25)

We will check (5.25) for t ∈ (0, T ) fixed, thus we will omit the variable t from now on. We verify the
following MRS-condition: Let (zk)k ⊂ SBV(ΓC; {0, 1}) be a semistable sequence for the energies (Φk)k,
with zk

∗
⇀ z in SBV(ΓC; {0, 1}). Then, for all z̃∈Z there is a sequence (z̃k)k⊂SBV(ΓC; {0, 1}) so that

lim sup
k→∞

(
Φk

([[
uk
]]
, z̃k
)
− Φk

([[
uk
]]
, zk
)
+ R1(z̃k − zk)

)
≤ Φb

([[
u
]]
, z̃
)
− Φb

([[
u
]]
, z
)
+ R1(z̃ − z) . (5.26)

In the proof of (5.26), we may suppose that z̃≤z a.e. in ΓC, hence R1(z̃−z)<∞ (indeed, if there exists a
Ld−1-measurable set B ⊂ Γ with Ld−1(B) > 0 and z̃ > z on B, then R1(z̃ − z) = ∞ and (5.26) trivially
holds). To avoid trivial cases, we also suppose that Φb

(
[[u]], z̃

)
<∞, hence 0≤ z̃≤1 and z̃[[u]] = 0 a.e. on

Γ. To construct a mutual recovery sequence we set

z̃k := z̃XAk
+ zk(1− XAk

), where Ak := {x ∈ Γ : 0 ≤ z̃(x) ≤ zk(x)} =: [0 ≤ z̃ ≤ zk] . (5.27)

32



With this choice we ensure that 0 ≤ z̃k ≤ zk a.e. in ΓC. Note that ΓC\Ak = [zk < z̃] = [zk = 0] ∩ [z̃ = 1].

Since zk, z̃ ∈ SBV(ΓC; {0, 1}) are the characteristic functions of sets Zk, Z of uniformly bounded, finite
perimeter, and relying on Prop. A.8, we find that

∃C > 0 ∀ k ∈ N : P (Ak,ΓC) = P (ΓC\Ak,ΓC) ≤ P (Zk,ΓC) + P (Z,ΓC) ≤ C.

Additionally, Lemma 5.6 implies that |z̃−zk| ≤ 1, |z̃| ≤ 1 as well as |zk| ≤ 1 Hd−2-a.e. on the respective
reduced boundaries. Hence, Thm. 5.2 can be applied, yielding that z̃k ∈ BV(Γ) for all k ∈ N.

We now observe that, as zk → z in L1(ΓC) and z̃≤z a.e. in ΓC, the definition (5.27) of z̃k yields that
z̃k → z̃ a.e. in ΓC. Now, since (z̃k)k is bounded in L∞(Γ) by construction, this pointwise convergence
improves to z̃k → z̃ in Lq(Γ) for all 1 ≤ q <∞. Using that 0 ≤ z̃k ≤ zk a.e. on Γ, we have that

lim sup
k→∞

k

2

∫

Γ

(z̃k−zk)|
[[
uk
]]
|2 dS ≤ 0 =

∫

Γ

(
J∞(

[[
u
]]
, z̃)−J∞(

[[
u
]]
, z)
)
dS. (5.28)

Hence, in order to conclude the lim sup estimate (5.26), it remains to prove that

lim sup
k→∞

(
Gb(z̃k)− Gb(zk) + R1(z̃k − zk)

)
≤ lim sup

k→∞

(
Gb(z̃k)− Gb(zk)

)
+ lim sup

k→∞
R1(z̃k−zk) (5.29)

and we estimate the different terms in (5.29) separately.
Due z̃k → z̃ in L1(Γ) and the fact that z̃k ≤ zk for all k ∈ N by construction we conclude that

R1(z̃k − zk) → R1(z̃ − z) as k → ∞.
Thus, to deduce the estimate for Gb, it remains to show that

lim sup
k→∞

(
|Dz̃k|(ΓC)−|Dzk|(ΓC)

)
≤ |Dz̃|(ΓC)−|Dz|(ΓC) . (5.30)

For this we recall that z̃k = z̃XAk
+ zk(1−XAk

) as well as zk = zk(XAk
+(1−XAk

)) and we express their
derivatives, i.e. the Radon measures Dz̃k and Dzk, with the aid of formulae (5.23) and (5.27). Thus, by
(5.24) we obtain

|Dz̃k|(ΓC) =|Dz̃|(A1
k) + |Dzk|(A0

k) +

∫

FAk∩ΓC

|z̃+−z−k | dHd−2 , (5.31)

where we applied Theorem A.5, guaranteeing the existence of the traces z̃±k on the different parts of the
reduced boundaries, and (5.24) to justify the equality in (5.31). Similarly we find

−|Dzk|(ΓC) =− |Dzk|(A1
k)− |Dzk|(A0

k)−
∫

FAk∩ΓC

|z+k −z−k | dHd−2 . (5.32)

We note that both |Dz̃k|(A0
k) = 0 and −|Dzk|(A0

k) = 0 in (5.31) and (5.32). We now prove that the
boundary terms in (5.31) + (5.32) can be estimated as follows for all k ∈ N:

∫

FAk∩ΓC

|z̃+−z−k | dHd−2 −
∫

FAk∩ΓC

|z+k −z−k | dHd−2 ≤
∫

FAk∩ΓC

|z̃+ − z̃−| dHd−2. (5.33)

To verify estimate (5.33) we use the information on the traces stated in Lemma 5.6 and distinguish
between all possible relations. On FAk ∩ ΓC it holds 0 ≤ z̃+ ≤ z+k and 0 ≤ z−k < z̃− Hd−2-a.e.. Hence,
for Hd−2-a.a. x ∈ FAk ∩ F(ΓC\Ak) ∩ ΓC with

z+k ≤ z−k it is z̃+ ≤ z+k ≤ z−k < z̃−, i.e. |z̃+−z−k | < |z̃+ − z̃−| ,
z+k > z−k it is either z̃+ ≤ z−k < z+k ≤ z̃−, i.e. |z̃+−z−k | ≤ |z̃+ − z̃−| ,

or z̃+ ≤ z−k < z̃− ≤ z+k , i.e. |z̃+−z−k | ≤ |z̃+ − z̃−| ,
or z−k < z̃− ≤ z̃+ ≤ z+k , i.e. |z̃+−z−k | ≤ |z+k − z−k | ,
or z−k < z̃+ ≤ z+k ≤ z̃−, i.e. |z̃+−z−k | ≤ |z+k − z−k | ,
or z−k < z̃+ < z̃− ≤ z+k , i.e. |z̃+−z−k | ≤ |z+k − z−k | .
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Using these estimates and denoting by E the set of points, where one of the latter three relations holds,
we find that

∫

FAk∩ΓC

|z̃+−z−k | dHd−2 −
∫

FAk∩ΓC

|z+k −z−k | dHd−2 ≤
∫

FAk∩ΓC\E
|z̃+−z̃−| dHd−2 − 0 ≤

∫

FAk∩ΓC

|z̃+−z̃−| dHd−2 .

Thus, (5.33) holds. In total we have obtained that the left-hand side of (5.30) can be estimated by

lim sup
k→∞

(
|Dz̃k|(ΓC)− |Dzk|(ΓC)

)
≤ lim sup

k→∞

(
|Dz̃|(A1

k) +

∫

FAk∩ΓC

|z̃+ − z̃−| dHd−2 − |Dzk|(A1
k)
)

≤ |Dz̃|(Γ)− lim inf
k→∞

|Dzk|(A1
k).

(5.34)

Therefore, to establish (5.30) it remains to show that

− lim inf
k→∞

|Dzk|(A1
k) ≤ −|Dz|(Γ). (5.35)

To this aim, we first choose a (not relabeled) subsequence (zk)k such that the lim inf is attained. Then,
we introduce the sets Un :=

⋃∞
k=n(ΓC\Ak) . Since Ld−1(ΓC\Ak) → 0 as k → ∞ we may choose a further

subsequence s.t.
∑∞

k=1 L
d−1(ΓC\Ak) <∞. Hence for this subsequence, Ld−1(Un) <∞ and Ld−1(Un) → 0

as n → ∞. We set limn→∞ Un = N and put Γn := ΓC\Un, which satisfies Γn ⊂ Ak for all k ≥ n. Then,
also Γ1

n ⊂ A1
k as well as Γ1

n ⊆ Γ1
n+1 ⊂ Γ1

C for all n ∈ N by Cor. A.11, 2.). Since Ld−1(N) = 0 we conclude
that (ΓC\N)1 = Γ1

C by Cor. A.11, 1.). This proves that Γ1
n → Γ1

C as n→ ∞. Note that ΓC ⊂ Rd−1 is an
open set, i.e. for all x ∈ ΓC there exists a constant rx > 0 such that Br(x) ⊂ ΓC for all r ≤ rx. Hence
Γ1

C = ΓC. Keep n ∈ N fixed. Then the sets Γ1
n ⊂ A1

k can be used to find a set independent of k ≥ n, so
that the lower semicontinuity of the total variation functional can be exploited on Γ1

n for the sequence
zk

∗
⇀ z in SBV(ΓC; {0, 1}) and we have ensured that Γ1

n → ΓC. Indeed, for all k ≥ n we have

− lim inf
k→∞

|Dzk|(A1
k) ≤ − lim inf

k→∞
|Dzk|(Γ1

n) ≤ −|Dz|(Γ1
n) → −|Dz|(ΓC) as n→ ∞ .

This finishes the proof of (5.35). Thus we conclude that the mutual recovery sequence (z̃k)k given by
(5.27) satisfies the lim sup-estimate (5.26).

6 Support property of semistable sequences

We now investigate fine properties of the sequence (zk)k, which are exploited for proving the convergence
of the momentum equation as k → ∞ in Section 5.1. We will deduce such properties from the sole feature
of semistability of the sequence (zk)k with respect to the functionals Φk(uk, ·).

The statement of the main result of this section, Thm. 6.1 below, is given for a generic sequence
(zk)k ⊂ L∞(0, T ; SBV(Γ; {0, 1})) fulfilling the semistability condition (3.30). We refer to Remark 6.10
for further comments in this connection.

Theorem 6.1 (Support convergence) Assume (3.7c). Let (zk)k ⊂ L∞(0, T ; SBV(Γ; {0, 1})) fulfill
semistability (3.30) for all k ∈ N. Suppose that

zk(t)
∗
⇀ z(t) in SBV(ΓC; {0, 1}) for all t ∈ [0, T ] (6.1)

for some z ∈ L∞(0, T ; SBV(Γ; {0, 1})). Set

ρ(k, t) := inf{ρ > 0 : supp zk(t) ⊂ supp z(t) +Bρ(0)} for all t ∈ [0, T ] and all k ∈ N. (6.2)

Then, for all t ∈ [0, T ] we have support convergence, i.e.

supp zk(t) ⊂ supp z(t) +Bρ(k,t)(0) and ρ(k, t) → 0 as k → ∞. (6.3)
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Note that convergence (6.3) is one part of Hausdorff convergence. Indeed, recall that, for any fixed
t ∈ [0, T ] the sequence (supp zk(t))k Hausdorff converges to supp z(t) if, in addition to (6.3), we also have

∃ (ρ̃(k, t))k : supp z(t) ⊂ supp zk(t) +Bρ̃(k,t)(0) and ρ̃(k, t) → 0 as k → ∞. (6.4)

As we will see, (6.4) can be concluded directly from (6.1), so that we will obtain the Hausdorff convergence
of sequence of supports in Corollary 6.8.

Since the solutions (zk)k of the thermal delamination problems satisfy the semistability (3.30) for
all t ∈ [0, T ], hereafter in most of the arguments for proving Thm. 6.1 we will suppose t ∈ (0, T ) fixed
and omit indicating the dependence of the functions and of the radii on t. Moreover, all the ensuing
calculations only involve functions defined on the interface ΓC ⊂ Rd−1, hence we will use the abbreviation

m := d− 1 .

The main idea we will develop is the following: Thanks to the SBV-gradient term in the energies
Φk(uk, ·) and Φb(u, ·) (cf. (3.19), (3.22)), the delamination parameters zk, z in the adhesive and brittle
SBV-models are characteristic functions zk, z ∈ SBV(ΓC; {0, 1}) of sets Zk, Z ⊂ ΓC with finite perimeter.
Furthermore, since the bulk energy is independent of zk and since Jk(uk, z̃) ≤ Jk(uk, zk) for all z̃ ≤ zk,

the semistability of zk for Φk(uk, ·), k ∈ N ∪ {∞}, implies the semistability of the underlying set Zk for
the energy term S(·) := bP (·,ΓC)− a0L

m(·), i.e.

S(Zk) ≤ S(Z̃) + R1(z̃ − zk) with S(Z) := bP (Z,ΓC)− a0L
m(Z) . (6.5)

Therefore, in the following arguments we will confine ourselves to working with (6.5). In particular, from
(6.5), we will deduce that stable sets have the so-called property a, see (6.6), which, in turn, will allow
us to conclude the support convergence (6.3). Property a is a very weak type of regularity of sets, but
which at least prevents a set from having outward cones. This notion of regularity was introduced in the
works by Campanato for open sets, see e.g. [Cam63, p. 177] or [Cam64, p. 138], and in this context also
used in e.g. [Gia83, GR01, Gri02, DHM00]. Property a, which we here prove for semistable sets of finite
perimeter, is of the following form

∀y ∈ supp zk ∀ρ? ∈ (0, R) : Lm(Zk ∩Bρ?
(y)) ≥ a(ΓC)ρ

m
? , (6.6a)

∀y ∈ supp zk ∀ρ? ≥ R : Lm(Zk ∩Bρ?
(y)) ≥ a(ΓC)R

m , (6.6b)

where R, a(ΓC) > 0, given in (6.24), are constants depending on ΓC, m and the parameters b, a0 and a1.
Let us remark that every set of finite perimeter E ⊂ ΓC satisfies a lower bound on the volume of the

following form:

Let x0 ∈ FE ∩ ΓC. Then,
∃R0 ∈ (0, dist(x0, ∂ΓC)) ∀ρ ∈ (0, R0) : min{Lm(E ∩Bρ(x0)),L

m(Bρ(x0)\E)} ≥ βρm ,
(6.7)

where β is a dimensional constant; see [AFP05, Lemma 3.58, p. 156] for more details. However, since
(6.6) holds with an upper bound R on the radii ρ?, uniform for all points y ∈ supp zk, it obviously is a
stronger property than (6.7).

Finally, let us mention that estimates of the type (6.6) were also proved in the context of image
processing via the Mumford-Shah functional, see e.g. [FF97, Lemma 3.14] or [AFP05, p. 351]. However,
there, it is established for the (m−1)-dimensional Hausdorff-measure of the jump sets of SBV-quasi-
minimizers and the respective estimate is called a lower density estimate.

To prove support convergence (6.3) and property a, i.e. (6.6), we will resort to refined tools from
geometric measure theory. Once again, we refer the reader for Appendix A.2 for the background.

Before starting with the proofs of Thm. 6.1 and (6.6), we first motivate heuristically the reasons why
support convergence may fail in general and how the SBV(ΓC; {0, 1})-setting allows us to deduce property
a, as well as (6.3).
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Preliminary considerations. First of all, one should be aware that elements z ∈ SBV(ΓC; {0, 1})
(or in general z ∈ L1(ΓC)) are given by equivalence classes of functions differing on Lm- null sets, only.
Hence, in this setting, the support supp z and the null set Nz are rather defined similarly to the context
of measures [Fed69, p. 60] by

supp z := ∩{A |A closed, Lm(Z\A) = 0} and Nz := ΓC\ supp z , (6.8)
where Z := {x ∈ ΓC | z(x) 6= 0} . (6.9)

This definition yields supp z closed and Nz open, and for continuous functions it coincides with the
conventional definition. Further, observe that, for any B ⊂ Rm with Lm(B) > 0, denoting by XB the
characteristic function of B, there holds

Lm(B ∩Br(y)) > 0 for all r > 0 and all y ∈ suppXB . (6.10)

Another consequence of (6.8) is the following result.

Corollary 6.1 Let z ∈ L1(ΓC). Then supp z + Bρ(k)(0) → supp z as ρ(k) → 0, in the sense that
Lm((supp z +Bρ(k)(0))\ supp z) → 0 as ρ(k) → 0.

Proof: First assume that supp z = ∅. Then ∅ + Bρ(k)(0) = ∅ so that the statement holds true. Now,
assume that x ∈ supp z + Bρ(k)(0) for all ρ(k) > 0. Then x 6∈ Nz, because Nz is an open set. The
thesis follows, observing that by monotonicity (Lm(Nz ∩ (supp z + Bρ(k)(0))))k converges to Lm(Nz ∩
∩k∈N(supp z +Bρ(k)(0))) as ρ(k) → 0.

While for every fixed z ∈ L1(ΓC) we have supp z+Bρ(k)(0) → supp z as ρ(k) → 0, support convergence
(6.3) is in general not true for arbitrary sequences zk → z in L1(ΓC) with supp z 6= ∅. Clearly, for any
sequence zk → z in L1(ΓC), which can attain values in the whole interval [0, 1], there is a sequence (ρ(k))k
with ρ(k) ≥ 0 such that supp zk ⊂ supp z + Bρ(k)(0). This is due to the boundedness of ΓC. But not
necessarily ρ(k) → 0 as k → ∞, as can be seen from the following counterexample:

Example 6.2 Let z = 1 on a closed set Z ⊂ int ΓC and z = 0 otherwise, and for all k ∈ N let
zk = z on Z and zk = 1/k on ΓC\Z. Then zk → z uniformly on ΓC. But for all k ∈ N we have
supp zk = ΓC 6→ supp z = Z and hence, inf(ρ) = ρ(k) = dist(supp z, ∂ΓC) for all k ∈ N, cf. (6.2). Thus,
supp zk ⊂ supp z +Bρ(k)(0), but ρ(k) 6→ 0.

To exclude situations as above it is essential that zk(x) ∈ {0, 1} a.e. on ΓC, which is indeed given by the
space SBV(ΓC; {0, 1}). Hence, zk is the characteristic function of the finite-perimeter set Zk as in (6.9).

However, working in SBV(ΓC; {0, 1}) in general neither ensures

Zk = supp zk Lm-a.e. on Γ, (6.11)

nor support convergence (6.3). This can be seen from Example 6.3 below, which is constructed in the
spirit of [Giu84, p. 24, Rem. 1.27] or [AFP05, p. 154, Ex. 3.53]. In fact, (6.11) and (6.3) will be deduced
only by exploiting an additional qualification, namely the semistability (6.5).

Example 6.3 Let Q := (0, 1)2. The set of points with rational coordinates Q∩Q2 is countable and can
be arranged in a sequence (qj)j . For every j ∈ N and every k ∈ N we define the open ball B(qj , rjk) with
radius rjk := 1/(4k · 2j) and center in qj . Then, L2(B(qj , rjk)) = π/(16k2 ·22j) and P (B(qj , rjk), Q) =

π/(2k ·2j). For all k ∈ N we set Zk := ∪j∈NB(qj , rjk) and as k → ∞ we obtain that

L2(Zk) ≤
∑∞

j=1
L2(B(qj , rjk)) = π/(8k2) → 0 , P (Zk, Q) ≤

∑∞

j=1
P (B(qj , rjk),ΓC) = π/k → 0 .

Hence zk → z in L1(Q), where Z = ∅ (which can be identified with Q ∩ Q2, in the sense that the
respective indicator functions differ on a set of null Lebesgue measure). The perimeters as well converge,
since P (Zk, Q) → 0 = P (Q∩Q2, Q). Notice that, since Q∩Q2 ⊂ Zk ⊂ Q the sets Zk are dense in Q for all
k ∈ N. Hence, by formula (6.8) we have supp zk = Q for all k ∈ N, whereas supp z = ∅. This discrepancy
is due to the fact that (Zk)k converge to a dense set of zero L2-measure, while L2(Zk) < L2(supp zk)

because the topological boundary ∂Zk of the sets Zk is of positive L2-measure. Thus, supp zk 6→ supp z.
In particular, support convergence (6.3) does not hold, because ∅+Bρ(k)(0) = ∅ and hence supp zk 6⊂ ∅
for any ρ(k) > 0.

36



Examples 6.2 and 6.3 suggest that there are two reasons for the failure of support convergence (6.3)
under convergence (6.1):

1. supp z = ∅ and supp zk 6= ∅ for all k ∈ N . (6.12a)
2. supp z 6= ∅ and ρ(k) 6→ 0 as k → ∞. (6.12b)

Now, in the ensuing Propositions 6.6 and 6.7 we will exclude (6.12a) and (6.12b), respectively, for
semistable sequences (zk)k. Let us now roughly outline our argument. Because of zk → z in L1(ΓC)

by (6.1), we observe that zk → 0 in L1(Nz). For the associated finite-perimeter sets Zk as in (6.9) we
have

Lm(Zk ∩Nz) → 0 as k → ∞. (6.13)

In other words, Zk ∩ Nz turns into a set with arbitrarily small Lm-measure. On the other hand, from
(6.12a) and (6.12b) we will deduce that there exist points yk ∈ supp zk ∩Nz and a fixed radius ρ? < R

such that Bρ?
(yk) ∩ ΓC ⊂ Nz. Hence, Zk ∩Bρ?

(yk) ⊂ Zk ∩Nz. Now, taking into account property a, we
will then arrive at a contradiction to (6.13). Hence, we will rule out (6.12a) and (6.12b).

Outline of the proof of Theorem 6.1. As the key ingredient we will prove property a, i.e. (6.6),
for semistable sets in Theorem 6.3. The proof of Theorem 6.1 will be completed by deducing support
convergence for the case supp z = ∅ in Proposition 6.6 and for the case supp z 6= ∅ in Proposition 6.7, by
exploiting Theorem 6.3.

The main tool to prove (6.6) is a relative isoperimetric inequality in ΓC ∩Bρ(y), i.e. in ΓC intersected
with a ball Bρ(y) with center in y ∈ ΓC and radius ρ > 0. The isoperimetric constant CΓC solely depends
on the cone defining the cone property of the convex domain ΓC ⊂ Rm and on the space dimension m.
In particular, CΓC is independent of the choice of y ∈ ΓC and ρ > 0. Thus, setting ρ > 0 sufficiently large
such that ΓC ∩Bρ(y) = ΓC yields a relative isoperimetric inequality in ΓC.

Theorem 6.2 (Uniform relative isoperimetric inequality) [Tho13b, Thm. 3.2]] Let m > 1 be an
integer and ΓC ⊂ Rm a convex domain. Let A ⊂ ΓC be a set of finite perimeter in ΓC. There exists a
constant CΓC , such that for all y ∈ ΓC and for all ρ > 0 it is

min
{
Lm(A ∩ (ΓC ∩Bρ(y))),L

m((ΓC ∩Bρ(y))\A)
}m−1

m ≤ CΓCP (A, (ΓC ∩Bρ(y))) , (6.14)

where the constant CΓC solely depends on the cone defining the cone property of the convex domain
ΓC ⊂ Rm, on its diameter and on the space dimension m.

Remark 6.4 (On the uniform relative isoperimetric inequality) The assumption of convexity on
the Lipschitz-domain ΓC is essential for the proof of the uniform relative isoperimetric inequality in Thm.
6.2 for the following reasons: The proof exploits that every domain ΓC ∩ Bρ(y) for y ∈ ΓC satisfies the
cone property with a cone of the same opening angle as the one of ΓC. This is due to the fact that the
intersection angle α(y) of the boundary ∂ΓC and a ball Bρ(y) with center y ∈ ΓC is at least 90◦ for a
convex domain ΓC. Hence, the cone defining the cone property for ΓC ∩Bρ(y) may have a smaller height
than the one for ΓC, but the opening angles of the cones are the same. In this case the cones can be
scaled to the same size by a suitable scaling of ΓC ∩ Bρ(y). In contrast, for a non-convex domain ΓC,
the intersection angle α(y) can degenerate to zero as the center y moves along the boundary ∂ΓC away
from a reentrant corner, see Fig. 6.1. Therefore, the opening angle of the cone differs for every domain
ΓC ∩ Bρ(y) in dependence of the location of y ∈ ΓC. Thus, in the non-convex case, the cones of ΓC and
ΓC ∩Bρ(y) cannot be transformed into each other simply by scaling.

Proof of property a for semistable sets, (6.6). In the following we deduce (6.6) for zk being
semistable w.r.t. Φk(uk, ·), hence w.r.t. S(·) (cf. (6.5)), for every k ∈ N ∪ {∞} fixed. The proof of (6.6)
is developed by contradiction, i.e. instead of (6.6) we have

∃ y ∈ supp zk ∃ ρ? ∈ (0, R) : Lm(Zk ∩Bρ?
(y)) < a(ΓC)ρ

m
? , (6.15a)

∃ y ∈ supp zk ∃ ρ? > R : Lm(Zk ∩Bρ?
(y)) < a(ΓC)R

m, (6.15b)
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ΓC

y

α(y)

Figure 6.1: The intersection angle α(y) → 0 as y moves from the reentrant corner to the right.

where the constants R and a(ΓC) will be determined in what follows (cf. (6.24)). In the following lines,
we will drop the index k and use the notation

A(y) := Z ∩Bρ?
(y) for all ρ? > 0 . (6.16)

In particular, our aim is to show that, assuming the validity of (6.15), the semistability (6.5) of a
set Z for S (resp. its characteristic function z), is violated for a particular test function z̃ being the
characteristic function of a suitable set Z̃. Since we are working in SBV(ΓC; {0, 1}) this test function z̃

can be constructed by “cutting off” a suitable subset of A(y) = Z ∩ Bρ?
(y) More detailed, this cut-off

will yield that Z̃1 ⊂ Z1. Additionally, it may generate a new surface and we have to ensure that this new
surface is smaller than the surface of the part which is cut off. To show the existence of a suitable cut-off
for A(y) of sufficiently small Lm-measure we are going to check that

0<Lm(A(y))<Mρ?
⇒ ∃ ρ ∈ [ρ?/2, ρ?] : 0 < Hm−1(A(y) ∩ ∂Bρ(y)) <

1
2P (A(y),ΓC ∩Bρ(y)) , (6.17a)

where Mρ?
:= min{I(ΓC, ρ?, y)/2, I(ΓC, ρ?, y)/(ωm(2CΓCm)m), bm/(2CΓC(a0+a1))

m} (6.17b)
with I(ΓC, ρ?, y) := Lm(ΓC ∩Bρ?/2(y)) and ωm := Lm(B1(0)) , (6.17c)

where ρ? is from (6.15). In order to verify implication (6.17a) we assume the contrary, i.e.

Lm(A(y)) < Mρ?
and ∀ρ∈ [ρ?/2, ρ?] : Hm−1(A(y) ∩ ∂Bρ(y)) ≥ 1

2P (A(y),ΓC ∩Bρ(y)) . (6.18)

For the contradiction argument we will use the volume formula, cf. [EG92, Chap. 3.4.4, Prop. 1, p. 118]

∀R > 0 : y ∈ A ⊂ Rm, A ⊂ BR(y) ⇒ Lm(A) =

∫ R

0

Hm−1(A ∩ ∂Bρ(y)) dρ (6.19)

and we will exploit the uniform relative isoperimetric inequality in ΓC intersected with balls, cf. (6.14).

Lemma 6.5 Assume (3.7c). Let A(y) be given by (6.16). Then implication (6.17a) is true.

Proof: We assume that (6.17a) is false, i.e. we have (6.18), instead. By (6.17b) it is Lm(A(y)) =

Lm(Z ∩Bρ?
(y)) < Mρ?

≤ Lm(ΓC ∩Bρ?/2(y))/2 and hence, as A(y) ⊂ ΓC, we have

∀ρ ∈ [ρ?/2, ρ?] : min{Lm(A(y)∩(ΓC∩Bρ(y))),L
m((ΓC∩Bρ(y))\A(y))}=Lm(A(y) ∩Bρ(y)) . (6.20)

Moreover, applying the relative isoperimetric inequality (6.14) on the estimate in (6.18) yields that for
all ρ ∈ [ρ?/2, ρ?] it is

Hm−1(A(y) ∩ ∂Bρ(y)) ≥
1

2CΓC

Lm(A(y) ∩Bρ(y))
m−1
m , (6.21)
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where Hm−1(A(y) ∩ ∂Bρ(y)) = d
dρL

m(A(y) ∩ Bρ(y)) by (6.19). Since Lm(A(y) ∩ Bρ(y)) > 0 for all

ρ ∈ [ρ?/2, ρ?], we can divide by Lm(A(y) ∩Bρ(y))
m−1
m in (6.21). Integration over ρ ∈ (ρ?/2, ρ?) with the

substitution u = Lm(A(y) ∩Bρ(y)), du = Hm−1(A(y) ∩ ∂Bρ(y)) dρ then yields

I : =

∫ ρ?

ρ?/2

Lm(A(y) ∩Bρ(y))
1−m
m Hm−1(A(y) ∩ ∂Bρ(y)) dρ =

∫ b

a

u
1−m
m du =

[
mu

1
m

]b
a

= m
(
Lm(A(y) ∩Bρ?

(y))
1
m − Lm(A(y) ∩Bρ?/2(y))

1
m

)
,

where we have used a = Lm(A(y)∩Bρ?/2(y)) and b = Lm(A(y)∩Bρ?
(y)) for shorter notation. Altogether,

(6.21) then implies I ≥ (2CΓC)
−1
∫ ρ?

ρ?/2
dρ = ρ?/(4CΓC). This leads to the contradiction

0 <
ρ?

4CΓCm
≤
(
Lm(A(y) ∩Bρ?

(y))
1
m − Lm(A(y) ∩Bρ?/2(y))

1
m

)
<
( I(ΓC, ρ?, y)

ωm(2CΓCm)m

)1/m
≤ ρ?

4CΓCm
,

where we neglected −Lm(A(y) ∩ Bρ?/2(y))
1
m < 0 and exploited that Lm(A(y) ∩ Bρ?

(y)) < I(ΓC,ρ?,y)
ωm(2CΓCm)m

by (6.17b) and the prerequisite in (6.17a). The last inequality in the above chain is due to the very
definition (6.17c) of I(ΓC, ρ?, y). We conclude that (6.18) is false, thus (6.17a) holds true.

In Thm. 6.3 below we derive property a by leading its converse, i.e. (6.15), to a contradiction to
the semistability of Z, with the aid of implication (6.17a). For this, we choose a(ΓC) and R such that
Lm(A(y)) < a(ΓC)R

m implies Lm(A(y)) < Mρ?
: in fact, we estimate the constant Mρ?

, cf. formulae
(6.17b) & (6.17c), from below in terms of a(ΓC)ρ

m
? . To do so, we exploit that the Lipschitz domain ΓC

satisfies the uniform cone property with a cone C(θ, h, ξ) of opening angle θ, height h and axis ξ. In
particular, there is a radius r > 0 such that

∀x ∈ ∂ΓC ∀y ∈ Br(x) : y + C(θ, h, ξx) ⊂ ΓC . (6.22)

Since, for all ρ? > 0, a cone C(θ, ρ?, ξ) of height ρ? is proportional to the ball of radius ρ? by a constant
k(θ) > 0, we find

∀x ∈ ∂ΓC ∀ρ? ∈ (0, 2h) : Lm(ΓC ∩Bρ?/2(x)) ≥ Lm(C(θ, ρ?/2, ξx)) = 2−mk(θ)ωmρ
m
? . (6.23)

In view of (6.17b) and (6.23) we choose

a(ΓC) := 2−mk(θ)ωm/max{2, ωm(2CΓCm)m, (2CΓC(a0 + a1))
m} and R ≤ min{2h, 2mω−1/m

m b} . (6.24)

Hence, (6.24) now allows us to verify property a.

Theorem 6.3 (Property a for semistable elements) Assume (3.7c). Let k ∈ N ∪ {∞} and zk the
characteristic function of the finite perimeter set Zk, semistable for Φ(uk, ·), hence for S(·). Then property
a in (6.6) holds with the constants a(ΓC) and R given by (6.24).

Proof: For simpler notation we again drop the index k within this proof. Let Z be a set of finite
perimeter and z its characteristic function, semistable for S(·), i.e. (6.5) holds true. Let y ∈ supp z be
given by (6.15) with the respective constants R > 0 and a(ΓC) determined by (6.24). Hence in both cases
of (6.15) we have Lm(Z ∩Bρ?

(y)) < Mρ?
with Mρ?

from (6.17b) and thus, implication (6.17a) is valid.
We test the semistability of Z, in particular (6.5), with the characteristic function z̃ of the set

Z̃ := Z\(A(y) ∩ Bρ(y)), with ρ ∈ [ρ?/2, ρ?] such that estimate (6.17a) holds. In particular, the above
construction of z̃ ensures that z̃ ≤ z, so that R1(z̃ − z) =

∫
ΓC
a1(z − z̃) dS. Moreover, in view of Def.

A.9, A.13 and (A.44), it yields Jz̃ = FZ\(FA(y) ∩ Bρ(y)) ∪ (A(y) ∩ ∂Bρ(y)). Hence, (6.5) leads to the
following relation

bP (A(y),ΓC ∩Bρ(y)) ≤ (a0 + a1)L
m(A(y) ∩Bρ(y)) + bHm−1(A(y) ∩ ∂Bρ(y)) . (6.25)

Property (6.17a) implies that P (A(y),ΓC ∩Bρ(y)) > 0. Hence, (6.25) is equivalent to

b ≤ (a0 + a1)
Lm(A(y) ∩Bρ(y))

P (A(y),ΓC ∩Bρ(y))
+ b

Hm−1(A(y) ∩ ∂Bρ(y))

P (A(y),ΓC ∩Bρ(y))
, (6.26)
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where Hm−1(A(y)∩∂Bρ(y))/P (A(y),ΓC∩Bρ(y)) <
1
2 by (6.17a). Also note that the relative isoperimetric

inequality (6.14) ensures

0 < Lm(A(y) ∩Bρ(y)) = min{Lm(A(y) ∩ (ΓC ∩Bρ(y))),L
m((Bρ(y) ∩ ΓC)\A(y))} . (6.27)

Hence, one more application of (6.14) in (6.26), together with (6.27) and (6.17b) yields

(a0 + a1)
Lm(A(y) ∩Bρ(y))

P (A(y),ΓC ∩Bρ(y))
≤ (a0 + a1)CΓCL

m(A(y) ∩Bρ(y))
1
m < b/2 . (6.28)

Inserting these estimates into (6.26) then generates the contradiction 1<1, which concludes the proof.

Proof of Theorem 6.1. With the aid of Theorem 6.3 we are now in a position to verify the support
convergence. In the case of supp z = ∅ we will apply estimate (6.6b) with ρ? := diamΓC (the diameter
of ΓC), while the case supp z 6= ∅ will follow from estimate (6.6a). We start with the case supp z = ∅ and
show that (6.12a) is excluded.

Proposition 6.6 (Support convergence of semistable sequences if supp z = ∅) Assume (3.7c).
Let (zk)k, z ⊂ L∞(0, T ; SBV(Γ; {0, 1})) be as in Thm. 6.1. Assume that supp z(t) = ∅ at some t ∈ (0, T ).
Then, there is an index k0(t) ∈ N such that also supp zk(t) = ∅ for all k ≥ k0(t).

Proof: Since supp z(t) = ∅ and zk(t)
∗
⇀ z(t) in SBV(ΓC; {0, 1}), we have zk(t) → 0 in L1(ΓC). For

every k ∈ N we choose a point yk ∈ supp zk. Moreover, we fix ρ? := diamΓC. This choice ensures
that ΓC ⊂ Bρ?

(yk) for all k ∈ N. Hence, zk(t) → 0 in L1(ΓC) is equivalent to Lm(Zk ∩ Bρ?
(yk)) → 0.

Thus, there is an index k0 ∈ N such that property a, i.e. (6.6b), is violated for all k ≥ k0, which is in
contradiction to the semistability of zk for Φk. Therefore, we conclude that zk ≡ 0 for all k ≥ k0.

Proposition 6.7 (Support convergence for semistable sequences if supp z 6= ∅) Assume (3.7c)
and supp z 6= ∅. Let (zk), z ⊂ L∞(0, T ; SBV(Γ; {0, 1})) be as in Thm. 6.1. Then the support convergence
(6.3) holds true.

Proof: Fix t∈(0, T ) outside a set of null Lebesgue measure, such that convergence (6.1) and semistability
(6.5) hold for (zk(t))k. For shorter notation we omit to indicate the time-dependence of zk and ρ(k).
Let us proceed by contradiction and assume that (6.3) does not hold. The sequence (ρ(k))k is uniformly
bounded by the boundedness of ΓC. Hence, we can find a subsequence converging to the lim sup of the
whole sequence lim supk→∞ ρ(k) =: ρ0. Moreover, due to zk → z in L1(ΓC), there is a further subsequence
which converges pointwise a.e. on ΓC. For this subsequence the contradiction to (6.3) reads

supp zk ⊂ supp z +Bρ(k)(0) for all k ∈ N and ρ(k) → ρ0 > 0 as k → ∞ . (6.29)

Because of ρ0 > 0 we can find a further subsequence and an index k0 such that

ρ(k) > ρ0/2 for all k ≥ k0 . (6.30)

Assume that Lm(supp zk ∩Nz) > 0 (otherwise ρ(k) = 0). Then, also Lm(Zk ∩Nz) > 0. Thus, in view of
(6.10) for every k ≥ k0 there is a point yk ∈ supp zk ∩Nz with the property

dist(yk, supp z) ≥ ρ0/2 and thus Bρ0/4(yk) ∩ ΓC ⊂ Nz . (6.31)

Hereby, ρ0/4 > 0 satisfies either ρ0/4 ∈ (0, R) or ρ0/4 > R for R as in (6.24). Correspondingly, since the
functions zk are semistable, the sets Zk ∩Bρ0/4(yk) satisfy property a with either (6.6a) or (6.6b).

However, the convergence zk → z pointwise Lm-a.e. implies that for every ε ∈ (0, 1) and Lm-a.a.
y ∈ Nz there is an index k(y, ε) such that for all k ≥ k(y, ε) it holds |zk(y)| = |zk(y)− z(y)| < ε, hence

zk
∗
⇀ z in SBV(Γc; {0, 1}) ⇒ Lm(Zk ∩Bρ0/4(yk)) ≤ Lm(Zk ∩Nz) → 0 as k0 ≤ k → ∞
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for the finite perimeter sets Zk underlying the characteristic functions zk. Therefore, necessarily, there
is an index k? > k0 such that for all k ≥ k? the property a, (6.6), is violated, which is in contradiction
to the semistability of zk. Therefore, ρ0 > 0 does not hold. This implies that ρ(k) → 0 for the whole
sequence (ρ(k))k and hence support convergence holds for the whole sequence (zk)k.

Combining the results on support convergence with the strong L1-convergence of semistable sequences
finally allows us to conclude the Hausdorff convergence of the respective supports.

Corollary 6.8 (Hausdorff convergence of the supports) Let the assumptions of Theorem 6.1 hold
true. Then, for all t ∈ [0, T ] the sequence of closed sets (supp zk(t))k Hausdorff converges to supp z(t).

Proof: Again, within this proof we omit to indicate the variable t. Since support convergence (6.3)
holds true by Propositions 6.6 and 6.7, it remains to verify convergence (6.4). For this, note that
supp zk = (supp zk ∩ supp z) ∪ (supp zk\ supp z) and for the latter term we have convergence according
to (6.3). Thus, only the first term is relevant for (6.4) and thereto we may w.l.o.g. consider the case
supp zk ⊂ supp z for all k ∈ N.

Let x ∈ ∂ supp z be arbitrary but fixed. Hence, for all ε > 0 we have Lm(Z ∩ Bε(x)) > 0. Moreover,
due to zk → z in L1(ΓC) there holds Lm(((Z\Zk)∪ (Zk\Z))∩Bε(x)) → 0. Thus, there is an index k(x, ε)
such that, for all k ≥ k(x, ε) it is Lm(Zk ∩ Bε(x)) > 0. But this implies dist(∂ supp zk, ∂ supp z) → 0 as
k → ∞ and hence (6.4).

Remark 6.9 We note that Propositions 6.6 and 6.7 only require the semistability of the delamination
variables (zk)k of the SBV-adhesive contact systems: The semistability of the limit function z is not
needed. Nonetheless, the proof of the semistability for the limit function is completely independent from
the support convergence property (6.3).

Remark 6.10 (Generality) The results of Theorem 6.3 and Propositions 6.6 & 6.7 are solely based on
semistability and strong L1-convergence. In other words, further properties of the delamination models
such as temperature dependence or visco-elasticity have no influence. In particular, Propositions 6.6 and
6.7 also hold for energetic solutions in the fully rate-independent setting, where solutions are characterized
as satisfying an energy balance and a global stability condition, see (1.6).

Remark 6.11 (Open problem: from brittle SBV-delamination to Griffith-type delamination)
It remains an open problem if it is possible to get rid of the SBV-gradient regularization, like in [MRT12]
in the limit passage from Sobolev gradient to Griffith-type delamination. In the present context, this
would mean passing to zero with the coefficient b in the gradient term Gb(z) := bP (Z,ΓC) contributing
to the energy Φb.

Seemingly, the main difficulty attached to the limit passage as b → 0 is the proof of the support
convergence (5.3), which in turn would be crucial for passing to the limit in the momentum equation
in this case as well. More specifically, we highlight that Theorem 6.3 excludes the presence of subsets
Zk ∩Bρ?

(yk) with Lm(Zk ∩Bρ?
(yk)) < Mρ?

. The bound Mρ?
on the measure of Zk ∩Bρ?

(yk) explicitly
involves the constant b > 0, see (6.17b). In fact, the passage from SBV-brittle delamination to Griffith-
type delamination as b → 0 would bring along a loss of uniform boundedness in SBV(ΓC) for the sequence
(zb)b of delamination variables for the SBV-brittle delamination systems. Indeed, only the uniform
bound in L∞(ΓC) would remain. Hence, the limit of a semistable sequence (zb)b ⊂ SBV(ΓC; {0, 1}) with
zb

∗
⇀ z in L∞(ΓC) would be an L∞-function, only, which can of course contain concentrating subsets.

Indeed, for b → 0, the uniform lower bound on the measure of subsets Zk ∩ Bρ?
(yk) is lost and the

larger the perimeters of the approximating functions may get, the smaller the subsets preventing support
convergence may become.

7 A different scaling for passage from adhesive to brittle

In what follows we briefly discuss an alternative scaling, in the mechanical energy and in the dissipation
potential, for taking the brittle limit as k → ∞ in the SBV-adhesive contact system. Namely, we
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scale the dissipation density R1 by the factor 1
k , and accordingly introduce the dissipation distance

R̃k
1 : L1(Γ)× L1(ΓC) → [0,+∞],

For k ∈ N : R̃k
1

(
z̃−z) :=

∫

Γ

Rk
1(z̃−z) dS =





∫

Γ

a1
k
|z̃−z| dS if z̃ ≤ z a.e. in Γ,

+∞ otherwise,
(7.1a)

for k = ∞ : R̃∞
1

(
z̃−z) :=

{
0 if z̃ ≤ z a.e. in Γ,
+∞ otherwise.

(7.1b)

We also consider the scaled mechanical energies

For k ∈ N : Φ̃k(u, z) := Φbulk(u) + Φ̃surf
k (

[[
u
]]
, z) with Φbulk from (3.15) and

Φ̃surf
k (

[[
u
]]
, z) :=

∫

Γ

(
IC(x)

([[
u
]])

+ Jk(
[[
u
]]
, z) + I[0,1](z)−

1

k
a0z

)
dS +

1

k
Gb(z),

(7.2a)

for k = ∞ : Φ̃∞(u, z) := Φbulk(u) + Φ̃surf
∞ (

[[
u
]]
, z) with

Φ̃surf
∞ (

[[
u
]]
, z) :=

∫

Γ

(
IC(x)

([[
u
]])

+ J∞(
[[
u
]]
, z) + I[0,1](z)

)
dS,

(7.2b)

Comparing (7.2a) with (3.19), note that the terms −a0z and Gb(z) now are also scaled by 1/k, so that,
in the new limit energy (7.2b) they are premultiplied by the factor 0. Observe that Φ̃∞ is now defined
on the space W 1,p(Ω\Γ;Rd)× L∞(ΓC).

We shall refer to the systems associated with (R̃k
1 , Φ̃k), and with (R̃∞

1 , Φ̃∞) as the rescaled SBV-
adhesive contact system, and rescaled SBV-brittle delamination system, respectively.

The ultimate reason for this new scaling resides in the semistability condition arising in the limit as
k → ∞. In fact, in the latter context the semistability may encompass additional information on the
mechanism triggering crack initiation, as we expound below.

Remark 7.1 (The different scalings and interpretation of the semistability) The semistability
condition for the SBV-brittle system defined in Section 3.3, i.e. with the dissipation potential R1 from
(3.23) and the mechanical energy Φb from (3.15) and (3.22), with J∞([[u(t)]], z(t)) = 0 ultimately reads

∀z̃ ∈ ZSBV with z̃ ≤ z : Gb(z(t))−
∫

ΓC

a0z(t) dS ≤ Gb(z̃)−
∫

ΓC

a0z̃ dS + R1(z̃ − z(t)) . (7.3)

In other words, a decrease of the semistable function z in time, i.e. crack growth, seems to be rather
induced by the perimeter regularization than by the attempt of reducing the mechanical stresses in the
specimen.

With the alternative scaling from (7.1a) & (7.2a) leading to R̃∞
1 and Φ̃k, the semistability condition

(3.30) of the rescaled SBV-adhesive contact system, with k ∈ N fixed, is equivalent to

∀z̃ ∈ ZSBV :

∫

ΓC

k2zk(t)|
[[
uk(t)

]]
|2 dS + Gb(zk(t))−

∫

ΓC

a0zk(t) dS

≤
∫

ΓC

k2z̃|
[[
uk(t)

]]
|2 dS + Gb(z̃)−

∫

ΓC

a0z̃ dS + R1(z̃ − zk(t)) .

(7.4)

Testing (7.4) with z̃ = 0 and exploiting that R1(0− zk(t)) + a0
∫
ΓC
zk(t) ds ≤ (a0 + a1)L

d−1(ΓC) = C we
find the following estimates

P (Zk(t),Ω) ≤ C/b and
∫

ΓC

k2zk(t)|
[[
uk(t)

]]
|2 ds ≤ C (7.5)

with a constant C uniform for all k ∈ N; again, Zk is the set associated to the indicator function
zk. By compactness we can thus conclude the existence of a subsequence (zk)k ⊂ L∞((0, T ) × ΓC) ∩
BV([0, T ];L1(ΓC)) with (zk(t))k ⊂ SBV(ΓC; {0, 1}) for all t ∈ [0, T ], such that zk(t)

∗
⇀ z(t) in SBV(ΓC; {0, 1})

for all t ∈ [0, T ]. This provides the additional regularity information z(t) ∈ SBV(ΓC; {0, 1}) for all
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t ∈ [0, T ], for the function z which is approximated by the sequence (zk)k, semistable for the rescaled
SBV-adhesive systems. Passing to the limit k → ∞ in these semistability inequalities results in

Φ̃surf
∞ (

[[
u(t)

]]
, z(t)) ≤ Φ̃surf

∞ (
[[
u(t)

]]
, z̃) + R̃∞

1 (z̃ − z) for all z̃ ∈ L∞(ΓC), (7.6)

Clearly, (7.6) for semistable z(t) and competitors z̃ ∈ L∞(ΓC) trivially reads 0 ≤ 0 for all z̃ ≤ z(t) and
0 ≤ ∞ otherwise. Nevertheless, at least formally, (7.6) inherits a non-trivial meaning by the very fact
that it arises in the limit of (7.4). Indeed, in view of the complementarity conditions (2.11) for Signorini
contact, and taking into account that zk ∈ {0, 1}, we find for every k ∈ N

∫

ΓC

k2zk|
[[
uk
]]
|2 dS =

∫

Zk∩[|[[uk]]|>0]

|σ(uk(t), u̇k(t), θk(t))n|2 dS ≤ C , (7.7)

provided that we dispose of sufficiently smooth solutions such that the term on the right-hand side makes
sense. From (7.7) we read that the adhesive model accounts for magnitude of the normal stresses. Now,
under the assumption of convergence and sufficient regularity of the solutions, and taking into account
that Ld−1([zk(t)|[[uk(t)]]| > 0]) → 0, the rescaled brittle model in the limit as k → ∞ therefore may
contain an information of the form

∫

Z∩∂[|[[u]]|>0]

|σ(u(t), u̇(t), θ(t))n|2 dS . (7.8)

Roughly speaking, this conveys the information that, a decrease of the semistable function z is not only
triggered by the perimeter regularization but possibly also by the mechanical stresses.

Clearly, for every k ∈ N there exists an energetic solution (uk, zk, wk) to the the rescaled SBV-adhesive
contact system. Concerning the limiting behaviour of the sequence (uk, zk, wk)k as k → ∞, the analogue
of Thm. 5.1 holds.

Theorem 7.1 Assume (3.7), (3.8) and (3.12). Let (uk, wk, zk)k be a sequence of approximable solutions
of the rescaled SBV-adhesive contact system, supplemented with initial data (u0k, θ

0
k, z

0
k)k fulfilling (3.14)

(4.1), (5.7), and

Φ̃k(u
0
k, z

0
k) → Φ̃∞(u0, z0) as k → ∞. (7.9)

Then, there exist a (not relabeled) subsequence, and a triple (u,w, z), such that convergences (4.6) hold
for (uk, wk, zk)k as k → ∞, and (u,w, z) is an energetic solution to the rescaled SBV-brittle delamination
system. In addition, the analogue of (5.9) and the positivity property (4.2) hold.

Proof: We just outline how the proof for Thm. 5.1 can be adapted to the present setting, following the
scheme presented in Sec. 3.5.

First of all, observe that the compactness argument for the sequence (uk, wk, zk)k is the same as in
the proof of Thms. 4.3 and 5.1: indeed, as already observed in (7.5), the sequence (zk)k has a uniformly
bounded perimeter, i.e. (zk)k ⊂ L∞(0, T ; SBV(ΓC; {0, 1})) is bounded.

The limit passage as k → ∞ in the momentum balance is obtained by adapting the arguments from
Secs. 5.1, which in turn hinge on the support convergence for semistable sequences. The latter can be
proved arguing in the very same way as in Sec. 6, starting from the following basic observation: Also in
the rescaled setting, the delamination parameters zk fulfill

S(Zk) ≤ S(Z̃) + R1(z̃ − zk) with S(Z) := bP (Z,ΓC)− a0L
m(Z) , (7.10)

(where Zk is the set of finite perimeter associated to the characteristic function zk).
The limit passage in the semistability condition follows the lines of Sec. 5.2, and the analogue of Prop.

5.7 holds. We just dwell on the discussion of Case B in the proof: in the rescaled setting, the state
space for z is Z = L∞(Γc). Again R̃∞

1 (z̃ − z) <∞ only if z̃ ≤ z a.e. in ΓC. For such z̃ ∈ Z we define the
recovery sequence as follows:

z̃k :=

{
rk(z̃k) if z̃ ∈ ZSBV,

rk(z) if z̃ ∈ Z\ZSBV,
with rk(ζ) := ζXAk

+ zk(1− XAk
) as in (5.27). (7.11)
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The construction of z̃k from (5.27) ensures that both
∫
ΓC
a0(zk−z̃k) dS+R1(z̃k−zk) ≤ (a0+a1)L

d−1(ΓC)

and P (Z̃k,ΓC) = P (Ak,ΓC) ≤ C. Thus we conclude that limk→∞ 1
k

( ∫
ΓC
a0(zk− z̃k) dS + R1(z̃k−zk) +

P (Z̃k,ΓC) − P (Zk,ΓC)
)
= 0. Combining these observations with (5.28) yields (5.26) for the rescaled

SBV-adhesive and SBV-brittle systems.
Finally, the passages to the limit in the mechanical energy and in the weak enthalpy equality are the

same as in the proofs of Thms. 4.3 and 5.1.

A Appendix

A.1 Time-discretization for the Modica-Mortola adhesive system

In this section we outline the proof of Theorem 4.2. We perform a semi-implicit time-discretization: for
a given time-step τ > 0, we consider the equidistant partition {t0τ = 0 < . . . < tjτ = jτ < . . . < tJτ

τ = T}
of [0, T ]. Hereafter, given any family {φj}Jτ

j=1, we will denote the backward difference operator by

Dtφ
j :=

φj−φj−1

τ
. (A.1)

We approximate the data F , f by local means, i.e. setting F j
τ := 1

τ

∫ tjτ
tj−1
τ

F (s)ds and f jτ := 1
τ

∫ tjτ
tj−1
τ

f(s)ds

for all j = 1, . . . , Jτ . Then, from F j
τ and f jτ we define Fj

τ ∈ W 1,p(Ω\Γ;Rd)∗ as in (3.13). Furthermore,
for technical reasons related to the existence proof of Problem A.1 below, we need to approximate H and
h by means discrete data {Hj

τ}Jτ
j=1, {hjτ}Jτ

j=1 with

Hj
τ ∈W 1,2(Ω)∗, hjτ ∈ H1/2(∂Ω)∗ for all j = 1, . . . , Jτ , (A.2)

and analogously define Hj
τ ∈W 1,2(Ω)∗ as in (3.13). Finally, we approximate the initial datum u0 with a

sequence {u0,τ} ⊂W 1,γ
ΓD

(Ω\Γ;Rd) (with γ > max{p, 2ω
ω−1}, see Problem A.1) such that

lim
τ↓0

γ
√
τ‖e(u0,τ )‖Lγ(Ω;Rd) = 0, u0,τ → u0 in W 1,p(Ω;Rd) as τ → 0. (A.3)

We consider the following time-discrete approximation of the Modica-Mortola adhesive system. Therein,
we add to the momentum equation the regularizing term τ |e(u)|γ−2e(u), with γ > max{p, 2ω

ω−1} and
ω > 2d

d+2 as in (3.8b): this enables us to apply to system (A.5)–(A.6) below some existence results from
the theory of pseudo-monotone operators, see the proof of Lemma A.3. Equations (A.5) and (A.6) are
coupled with the time-incremental minimization problem (A.7), whose solutions in particular fulfill the
discrete flow rule (A.8). However, (A.7) contains more information than (A.8). It will enable us to prove
the discrete mechanical energy inequality (A.11) and semistability (A.12) in Lemma A.5, which in turn
play a crucial role in the proof of the a priori estimates of Prop. A.6. For further comments on Problem
A.1, we refer to Remark A.2 below.

Problem A.1 Let γ > max{p, 2ω
ω−1}. Given

u0τ = u0,τ , u−1
τ = u0,τ − τ

.
u0, z0τ = z0, w0

τ = w0, (A.4)

find {(ujτ , wj
τ , z

j
τ )}Jτ

j=1, with ujτ ∈ W 1,γ(Ω\Γ;Rd), wj
τ ∈ W 1,2(Ω\Γ), and zjτ ∈ H1(Γ), fulfilling for all

j = 1, ..., Jτ the recursive scheme consisting of
- the (boundary-value problem for the) discrete momentum equation:

∫

Ω\ΓC

(
DR2(e

(
Dtu

j
τ

)
)+DW2(e(u

j
τ ))−BΘ(wj

τ )+DWp(e(u
j
τ ))+τDWγ(e(u

j
τ ))
)
:e(v−ujτ ) dx

+

∫

Γ

kzjτ
[[
ujτ
]]
·
[[
v−ujτ

]]
dS ≥ 〈Fj

τ , v−ujτ 〉

for all v ∈W 1,p(Ω\Γ;Rd) with
[[
v(x)

]]
∈ C(x) for a.a.x ∈ Γ,

(A.5)

where we use the notation Wγ(e) :=
1
γ |e|γ−2e : I : e, with I ∈ Rd×d the identity tensor;
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- the (boundary-value problem for the) discrete enthalpy equation: for all ζ ∈W 1,2(Ω\Γ)
∫

Ω\ΓC

Dtw
j
τ ζ dx+

∫

Ω\ΓC

K(e(ujτ ), w
j
τ )∇wj

τ ·∇ζ dx+

∫

ΣC

η(
[[
uj−1
τ

]]
, zjτ )

[[
Θ(wj

τ )
]][[
ζ
]]
dS

=

∫

Ω\ΓC

(
2R2(e

(
Dtu

j
τ

)
)−Θ(wj

τ )B:e
(
Dtu

j
τ

))
ζ dx−

∫

Γ

ζ|+Γ+ζ|−Γ
2

a1Dtz
j
τ dS + 〈Hj

τ , ζ〉;
(A.6)

- the time-incremental minimization problem for the delamination parameter

zjτ ∈ Argminz∈H1(Γ)

{
τR1

(
z−zj−1

τ

τ

)
+Φk,m(uj−1

τ , z)

}
. (A.7)

Remark A.2 We highlight that the time-incremental minimization (A.7) is decoupled from equations
(A.5)–(A.6): indeed, starting from (uj−1

τ , zj−1
τ ) one first solves (A.7) and then plugs zjτ in system (A.5)–

(A.6), which can be handled via the theory of pseudo-monotone operators. The carefully designed
coupling between (A.5)–(A.6) and (A.7) will be heavily exploited in the proof of Lemma A.15 below.
Observe that the Euler-Lagrange equation for (A.7) yields the discrete version of the flow rule (2.14), i.e.

∂F (zj−1
τ ; zjτ ) +

1

2
k
∣∣[[ujτ

]]∣∣2 + m

2
g′(zjτ )−

1

m
∆zjτ − a0 − a1 3 0 a.e. inΓ, (A.8)

with F (zj−1
τ ; z) =

∫
Γ

(
I(−∞,0]

( z−zj−1
τ

τ

)
+ I[0,1](z)

)
dS and ∂F (zj−1

τ ; ·) : L2(Γ) ⇒ L2(Γ) its subdifferen-
tial. However, (A.7) and (A.8) are not equivalent because of the nonconvexity of g, which brings about
additional analytical difficulties with respect to the adhesive contact systems considered in [RR11, RR13].

Lemma A.3 Assume (3.7), (3.8), (3.12), (3.14). Then, Problem A.1 admits at least one solution.

Sketch of the proof. The existence of a solution zjτ to (A.7) follows from the lower semicontinuity and
coercivity properties of the functional Φk,m, via the direct method in the Calculus of Variations. We then
plug zjτ in (A.5)–(A.6) and prove the existence of solutions by suitably adapting the argument for [RR11,
Lemma 7.4], where the time-discretization scheme for a thermal adhesive contact model similar to the
Modica-Mortola system was analyzed.

The key idea is to apply to the elliptic system (A.5)–(A.6) a Leray-Lions type existence theorem (see,
e.g., [Rou05, Chap. 2]). To do so, one needs to verify that the main part of the (pseudo-monotone)
operator involved in (A.5)–(A.6), is strictly monotone, and that said operator is coercive in the space
W 1,γ(Ω\Γ;Rd)×W 1,2(Ω\Γ) for the unknown (u,w). For this coercivity property, the term τWγ(e(u)) =

τ |e(u)|γ−2e(u) in the discrete momentum equation plays a crucial role, as it compensates the growth of
the quadratic terms on the left-hand side of (A.6), with the right-hand side of (A.5). Indeed, in order
to prove the coercivity of the operator underlying (A.5)–(A.6), it is necessary to test (A.6) by wj

τ , and
from this derive a bound for ‖wj

τ‖W 1,2(Ω\ΓC). The related calculations involve an estimate for the term∣∣∫
Ω
2R2(e

(
Dtu

j
τ

)
)wj

τ dx
∣∣, as well as the following estimate

∣∣∣∣∣

∫

Ω\ΓC

Θ(wj
τ )B:e

(
Dtu

j
τ

)
wj

τ dx

∣∣∣∣∣ ≤
1

16τ
‖wj

τ‖2L2(Ω) +
C

τ

∫

Ω\ΓC

∣∣e(ujτ )−e(uj−1
τ )

∣∣2 ∣∣(wj
τ )

2/ω+1
∣∣ dx

≤ 1

8τ
‖wj

τ‖2L2(Ω) +
C

τ

(
‖e(ujτ )‖pω

Lpω (Ω;Rd×d)
+ ‖e(uj−1

τ )‖pω

Lpω (Ω;Rd×d)
+ 1
)

(A.9)

≤ 1

8τ
‖wj

τ‖2L2(Ω) +
τ

8C
‖ujτ‖γW 1,γ(Ω\ΓC;Rd)

+ τC‖uj−1
τ ‖γ

W 1,γ(Ω\ΓC;Rd)
+ Cτ ,

where we have used the placeholder pω := 2ω
ω−1 . In (A.9), the first estimate is due to Hölder’s inequa-

lity and to the growth condition (3.9) for Θ, the second one again derives from Hölder’s and Young’s
inequalities. For the third estimate (where Cτ is a positive constant depending on τ), we have also
exploited the fact that γ > pω which yields, via the Young inequality, that

1

τ

(
‖e(ujτ )‖pω

Lpω (Ω;Rd×d)
+ ‖e(uj−1

τ )‖pω

Lpω (Ω;Rd×d)

)
≤ ν‖ujτ‖γW 1,γ(Ω\ΓC;Rd)

+ Cν ν̃C‖uj−1
τ ‖γ

W 1,γ(Ω\ΓC;Rd)
+ Cν̃
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for every ν, ν̃ > 0, and suitable constants Cν and Cν̃ . Then, choosing ν = τ
8C we can absorb the second

term on the right-hand side of (A.9) into the left-hand side of the discrete momentum equation tested
by ujτ , whereas the first summand is estimated by the left-hand side of (A.6) tested by wj

τ . The term
involving ‖uj−1

τ ‖γ
W 1,γ(Ω\Γ;Rd)

is estimated from the previous step. With analogous calculations one deals
with the term

∣∣∫
Ω
2R2(e

(
Dtu

j
τ

)
)wj

τ dx
∣∣. The reader is referred to the proof of [RR11, Lemma 7.4] for all

details.

We now introduce the interpolants of the discrete solutions {(ujτ , wj
τ , z

j
τ )}Jτ

j=1.

Notation A.4 (Interpolants) For τ > 0 fixed, the left-continuous and right-continuous piecewise
constant, and the piecewise linear interpolants of the family {ujτ}Jτ

j=1 are respectively the functions
uτ , uτ , uτ : (0, T ) →W 1,γ

ΓD
(Ω\Γ;Rd) defined by

uτ (t) = ujτ , uτ (t) = uj−1
τ , uτ (t) =

t− tj−1
τ

τ
ujτ +

tjτ − t

τ
uj−1
τ for t ∈ (tj−1

τ , tjτ ]. (A.10)

In the same way, we denote by wτ , wτ , zτ and zτ , the piecewise constant interpolants of the elements
{wj

τ}Jτ
j=1 and {zjτ}Jτ

j=1, and by wτ and zτ the related piecewise linear interpolants. We shall also consider
the interpolants Fτ and Hτ of the Jτ -tuples {Fj

τ}Jτ
j=1 and {Hj

τ}Jτ
j=1. Finally, we use the notation tτ for the

left-continuous piecewise constant interpolant associated with the partition, i.e. t̄τ (t) = tjτ if tj−1
τ < t ≤ tjτ .

Lemma A.5 Assume (3.7), (3.8), (3.12), (3.14). Define Φτ (u, z) := Φk,m(u, z) + τ
∫
Ω\Γ Wγ(e(u)) dx.

Then, for all τ > 0 the approximate solutions (uτ , uτ , wτ , zτ , uτ , wτ , zτ ) fulfill the “discrete mechanical
energy” inequality

Φτ

(
uτ (t), zτ (t)

)
+

∫ t̄τ (t)

0

(∫

Ω\Γ
2R2

(
e
(.
uτ
))

+

∫

Γ

a1|
.
zτ | dS

)
ds

≤ Φτ

(
u0,τ , z0) +

∫ t̄τ (t)

0

(∫

Ω\ΓC

Θ(wτ )B:e
(.
uτ
)
dx+ 〈Fτ ,

.
uτ 〉
)
ds,

(A.11)

and the “discrete semistability” for a.a. t ∈ (0, T )

Φτ

(
uτ (t), zτ (t)

)
≤ Φτ

(
uτ (t), z̃

)
+ R1(z̃ − zτ (t)) for all z̃ ∈ ZMM with z̃ ≤ zτ (t) on Γ. (A.12)

Proof: For notational simplicity we will develop the calculations in terms of the discrete solutions
{(ujτ , wj

τ , z
j
τ )}Jτ

j=1. It follows from the time-incremental minimization (A.7) and the definition (3.17) of
Φk,m that zjτ ≤ zj−1

τ a.e. on Γ, and

R1(z
j
τ−zj−1

τ ) +

∫

Γ

(
k
2 z

j
τ |
[[
uj−1
τ

]]
|2−a0zjτ

)
dS + Gm(zjτ ) ≤

∫

Γ

(
k
2 z

j−1
τ |

[[
uj−1
τ

]]
|2−a0zj−1

τ

)
dS + Gm(zj−1

τ ).

(A.13)
Now, let us choose in (A.5) the (admissible) test function v = uj−1

τ and change sign in the inequa-
lity. Then, we use the elementary estimates DR2(e

(
Dtu

j
τ

)
):e(ujτ−uj−1

τ ) = τ2R2(e
(
Dtu

j
τ

)
) as well as

DWn(e(u
j
τ )):e(u

j
τ−uj−1

τ ) ≥ Wn(e(u
j
τ )) − Wn(e(u

j−1
τ )) for n = 2, p, γ, and kzjτ [[u

j
τ ]] · [[ujτ−uj−1

τ ]] ≥
k
2 z

j
τ |[[ujτ ]]|2 − k

2 z
j
τ |[[uj−1

τ ]]|2. Thus, we obtain
∫

Ω\Γ

(
W2(e(u

j
τ ))+Wp(e(u

j
τ ))+τWγ(e(u

j
τ ))
)
dx+ τ

∫

Ω\Γ
2R2(e

(
Dtu

j
τ

)
)dx+

∫

Γ

k
2 z

j
τ |
[[
ujτ
]]
|2

≤
∫

Ω\Γ

(
W2(e(u

j−1
τ ))+Wp(e(u

j−1
τ ))+τWγ(e(u

j−1
τ ))

)
dx+ τ

∫

Ω\Γ
Θ(wj

τ )B:e
(
Dtu

j
τ

)
)dx

+

∫

Γ

k
2 z

j
τ |
[[
uj−1
τ

]]
|2 + τ 〈Fj

τ ,Dtu
j
τ 〉 .

(A.14)

Hence, we add (A.13) and (A.14), observing that the term
∫
Γ

k
2 z

j
τ |[[uj−1

τ ]]|2dS cancels out. Upon summing
over the index j, we thus arrive at the discrete mechanical energy inequality (A.11).
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From (A.7) it also follows that

R1(z
j
τ−zj−1

τ ) + Φk,m(uj−1
τ , zjτ ) ≤ R1(z̃−zj−1

τ ) + Φk,m(uj−1
τ , z̃)

for all z̃ ∈ H1(Γ) with z̃ ≤ zj−1
τ on Γ, whence we immediately conclude (A.12).

As a consequence of Lemma A.5, we have the following result.

Proposition A.6 (A priori estimates) Assume (3.7), (3.8), (3.12), and let (u0, z0, θ0) be a triple of
initial data complying with (3.14) and the semistability condition (4.3). Then, there exist constants
S0 > 0 and, for every 1 ≤ r < d+2

d+1 , S
0
r > 0, such that for all τ, m, k > 0 and for all approximate

solutions (uτ , wτ , zτ , uτ , wτ , zτ ) the following estimates hold
∥∥uτ
∥∥
L∞(0,T ;W 1,p

ΓD
(Ω\ΓC;Rd))

+
∥∥uτ
∥∥
L∞(0,T ;W 1,p

ΓD
(Ω\ΓC;Rd))

+
∥∥uτ
∥∥
W 1,2(0,T ;W 1,2

ΓD
(Ω\ΓC;Rd))

≤ S0 , (A.15a)

∥∥uτ
∥∥
L∞(0,T ;W 1,γ

ΓD
(Ω\ΓC;Rd))

≤ S0

γ
√
τ
, (A.15b)

sup
t∈[0,T ]

Φτ (uτ (t), zτ (t)) ≤ S0, (A.15c)

∥∥zτ
∥∥
L∞((0,T )×Γ)

+
∥∥zτ
∥∥
BV([0,T ];L1(Γ))

≤ S0 , (A.15d)
∥∥wτ

∥∥
L∞(0,T ;L1(Ω))

+
∥∥∥wτ

∥∥∥
BV([0,T ];W 1,r′ (Ω\ΓC)∗)

≤ S0, (A.15e)
∥∥wτ

∥∥
Lr(0,T ;W 1,r(Ω\ΓC))

≤ Sr for any 1 ≤ r < d+2
d+1 (A.15f)

where r′ = r
r−1 is the conjugate exponent of r. Estimates (A.15d), (A.15e), (A.15f) respectively hold for

zτ , zτ , wτ and wτ , as well.

The proof relies on the energy inequality (A.11) and on a suitable test of the discrete enthalpy equation
(A.6). The calculations are identical to those performed for [RR11, Lemma 7.7], to which the reader is
referred. We can now develop the

Proof of Theorem 4.2. We follow the steps outlined in Sec. 3.5. However, we only detail the passage
to the limit in the discrete semistability condition (A.12), since the remaining steps can be performed as
in the proof of [RR11, Thm. 6.1], see also the arguments developed here in Section 4.
Step 0: selection of converging subsequences. Let (τj)j be a vanishing sequence of time-steps.
Arguing in the very same way as in the proof of Thm. 4.3, it can be checked that, there exists a triple
(u,w, z) such that, up to a (not relabeled) subsequence, for the approximate solutions of Problem A.1
(cf. Notation A.10), the following convergences hold as j → ∞:

uτj⇀u in L∞(0, T ;W 1,p
ΓD

(Ω\Γ;Rd)) ∩W 1,2(0, T ;W 1,2
ΓD

(Ω\Γ;Rd)),

uτj → u in C0([0, T ];W 1−ε,p
ΓD

(Ω\Γ;Rd))
(A.16)

uτj
∗
⇀ u in L∞(0, T ;W 1,p

ΓD
(Ω\Γ;Rd)), uτj → u in L∞(0, T ;W 1−ε,p

ΓD
(Ω\Γ;Rd)),

uτj (t) → u(t) in W 1−ε,p
ΓD

(Ω\Γ;Rd)) for all t ∈ [0, T ]
(A.17)

and for all ε ∈ (0, 1]. Besides, (A.15b) yields that

τj
∥∥|e(uτj )|γ−2e(uτj )

∥∥
Lγ/(γ−1)((0,T )×(Ω\ΓC);Rd×d)

≤ S0τ
1/γ
j → 0 as τj → 0. (A.18)

Furthermore, taking into account estimate (A.15c) and the fact that z 7→ Φτ (u, z) has bounded sublevels
in H1(Γ), and using an infinite-dimensional version of Helly’s principle (see e.g. [MT04, Thm. 6.1]),
we find that there exists z ∈ L∞(0, T ;H1(Γ)) ∩ BV([0, T ];L1(Γ)), with 0 ≤ z(t, x) ≤ 1 for almost all
(t, x) ∈ (0, T )× Γ, such that

zτj , zτj
∗
⇀ z in L∞(0, T ;H1(Γ)), zτj (t), zτj (t)

∗
⇀ z(t) in H1(Γ) for all t ∈ [0, T ]. (A.19)
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On account of the compact embedding H1(Γ) b Lq(Γ) for all 1 ≤ q <∞, we also have

zτj (t), zτj (t) → z(t) in Lq(Γ) for all t ∈ [0, T ] and 1 ≤ q <∞, whence (A.20)

VarR1
(z; [s, t]) = lim

τj→0

∫ t

s

∫

Γ

a1|
.
zτj (r)| dSdr for all 0 ≤ s ≤ t ≤ T (A.21)

(recall definition (3.32) of VarR1
). Thirdly, by the same tokens we conclude that there exists w ∈

Lr(0, T ;W 1,r(Ω\Γ)) ∩ BV([0, T ];W 1,r′(Ω\Γ)∗) such that

wτj , wτj ⇀ w in Lr(0, T ;W 1,r(Ω\Γ)),
wτj , wτj → w in Lr(0, T ;W 1−ε,r(Ω\Γ)) ∩ Lq(0, T ;L1(Ω)) ∀ ε ∈ (0, 1], 1 ≤ q <∞ ,

(A.22)

wτj (t)
∗
⇀ w(t) in W 1,r′(Ω\Γ)∗ for all t ∈ [0, T ]. (A.23)

Finally, let us observe that, thanks to (A.19) and (A.20), we have Gm(z(t)) ≤ lim infτj→0 Gm(zτj (t)) for
all t ∈ [0, T ]. Therefore, also in view of the previous convergences (A.16)–(A.18), we conclude

Φk,m(u(t), z(t)) ≤ lim inf
τj→0

Φτj (uτj (t), zτj (t)). (A.24)

Step 1: momentum equation. Relying on convergences (A.16)–(A.18), (A.19), (A.20)–(A.22), as well
as on the convergence Fτ → F in L2(0, T ;W 1,2(Ω\Γ;Rd)∗) ∩W 1,1(0, T ;W 1,p(Ω\Γ;Rd)∗), and arguing in
the very same way as in the proof of Step 1 for Theorem 4.3, it is possible to pass to the limit in the
discrete momentum inclusion (A.5) for the approximating solutions, and conclude that (u,w, z) comply
with the weak formulation (3.29a) of the momentum inclusion in the adhesive case.
Step 2: semistability condition. Like in the proof of Thm. 4.3 and Thm. 5.1, in order to show that
the pair (u, z) fulfills the semistability condition (3.30), we need to verify for the sequence (uτj , zτj )j
the mutual recovery sequence condition. Viz., that for all t∈ [0, T ] and for all z̃ ∈ ZMM = H1(Γ) with
R1(z̃ − z) <∞, there is a sequence (z̃j)j (t-dependence omitted) so that z̃j⇀z̃ in H1(Γ) as j → ∞ and

lim sup
τj→0

(
Φτj (uτj (t), z̃j)+R1(̃zj−zτj (t))−Φτj (uτj (t), zτj (t))

)
≤Φk,m(u(t), z̃)+R1(z̃−z(t))−Φk,m(u(t), z(t)).

(A.25)
Notice that, for (A.25) to hold, it is necessary that z̃j ∈ H1(Γ) ∩ L∞(Γ) and

0 ≤ z̃j ≤ zτj (t) ≤ 1 a.e. in Γ. (A.26)

For (z̃j)j , we use the construction from the proof of [TM10, Thm. 3.14], and set

z̃j := min{(z̃−δj)+, zτj (t)} =

{
z̃−δj if (z̃−δj)+ ≤ zτj (t),

zτj (t) if (z̃−δj)+ > zτj (t)
with δj := ‖zτj (t)−z(t)‖

1/2
L2(Γ). (A.27)

Clearly, (z̃j)j fulfill (A.26). In view of (A.20), δj → 0 as j → ∞. Let us now verify that (z̃j)j complies
with (A.25). First of all, the very same argument as in [TM10] yields that (z̃j)j ⊂ H1(Γ), and that z̃j⇀z̃

in H1(Γ), hence z̃j → z̃ in Lq(Γ) for all 1 ≤ q < ∞. Therefore, on account of (A.19) we immediately
have that limτj→0 R1(z̃j−zτj (t)) = R1(z̃−z(t)). Furthermore, also in view of (A.17) we have





limτj→0

∫
Γ

k
2

(
z̃j−zτj (t)

)
|[[uτj (t)]]|2 dS =

∫
Γ

k
2 (z̃−z(t)) |[[u(t)]]|2 dS,

limτj→0

∫
Γ
a0(zτj (t)−z̃j) dS =

∫
Γ
a0(z(t)−z̃) dS,

limτj→0

∫
Γ

m
2

(
g(z̃j)−g(zτj (t))

)
dS =

∫
Γ

m
2 (g(z̃)−g(z(t))) dS

(A.28)

with g(z) = z2(1−z)2. Repeating the very same calculations as for [TM10, Thm. 3.14], it can also be
checked that

lim sup
τj→0

∫

Γ

1

2m

(
|∇z̃j |2−|∇zτj (t)|2

)
dS ≤

∫

Γ

1

2m

(
|∇z̃|2−|∇z(t)|2

)
dS. (A.29)

Then, (A.25) ensues from (A.28) and (A.29).
Step 3: mechanical energy inequality. The mechanical energy inequality (3.31) can be obtained via
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the very same lower semicontinuity argument as in Step 3 of the proof of Thm. 4.3.
Steps 4: enthalpy inequality. The previously proved convergences, as well as the fact that Hτj → H in
L1(0, T ;W 1,r(Ω\Γ Rd)∗), allow us to take the limit of the discrete enthalpy equation (A.6) with positive
test functions ζ. Arguing in the very same way as in Step 4 of the proof of Thm. 4.3, we prove the weak
enthalpy inequality (3.33).
Positivity of the temperature. Repeating the comparison argument from the proof of [RR11, Lemma
7.4] (the related calculations rely in particular on (3.10) in the present paper), it is possible to show that,
if there exists θ∗ > 0 such that θ0(x) ≥ θ∗ for almost all x ∈ Ω, then

w(x, t) ≥ 1

C ′T + h(θ∗) + 1
for a.a. (x, t) ∈ Ω× (0, T ), (A.30)

where the constant C ′ only depends on the problem data. Then, (4.2) ensues.

We are now in the position to briefly sketch the proof of Proposition 3.13: Estimates (3.48)–(3.53)
follow by lower semicontinuity arguments. Indeed, we start from the time-discretization of the Modica-
Mortola system. For the related approximate solutions, the estimates of Prop. A.6 hold, with a constant
independent of the time-step τ , and of the parameters m and k. In view of the convergences (A.16)–(A.24)
of the approximate solutions, such estimates are inherited by the approximable energetic solutions of the
Modica-Mortola delamination system. This yields the bounds (3.48)–(3.53), with a constant independent
of m and k. Then, the convergences stated in Thm. 4.3 and again lower semicontinuity arguments ensure
that (3.48)–(3.53) are also valid for the approximable energetic solutions of the SBV-adhesive system,
uniformly w.r.t. the parameter k.

A.2 Tools from the theory of BV-functions

In order to make this paper as self-contained as possible, below we collect all the measure-theoretic
definitions and tools from the theory of BV-functions which have been used. In what follows, D ⊂ Rm

will denote a bounded set and XD, with XD(x) = 1 if x ∈ D, XD(x) = 0 otherwise, its characteristic
function. In Sections 1–6, all the statements below apply to D = Γ and m = d− 1.

Definition A.7 ([AFP05, Def. 3.35] Sets of finite perimeter) Let E be an Lm-measurable subset
of Rm. For any open set D ⊂ Rm the perimeter of E in D, denoted by P (E,D), is the variation of the
characteristic function XE in D, i.e.

P (E,D) := sup

{∫

E

divϕdx
∣∣ϕ ∈ C1

c(D)m, ‖ϕ‖L∞(D) ≤ 1

}
. (A.31)

We say that E is a set of finite perimeter in D if P (E,D) <∞. Here, C1
c(D)m is the space of continuously

differentiable functions v : D → Rm with compact support in D.

Theorem A.1 ([AFP05, Th. 3.36]) For any set E of finite perimeter in D the distributional deriva-
tive DXE is an Rm-valued finite Radon measure in D. Moreover, P (E,D) = |DXE |(D) and a generalized
Gauss-Green formula holds:

∫

E

divϕdx = −
∫

D

νE · ϕd|DXE | for all C1
c(D)m , (A.32)

where DXE = νE |DXE | is the polar decomposition of DXE , i.e. νE ∈ L1(D, |DXE |)m is the Radon-
Nikodým density for the measure DXE with respect to the measure |DXE |.

Proposition A.8 ([AFP05, Prop. 3.38] Properties of the perimeter)
1. The mapping E 7→ P (E,D) is lower semicontinuous w.r.t. local convergence in measure in D.

2. The mapping E 7→ P (E,D) is local, i.e. P (E,D) = P (F,D) whenever |D ∩
(
(E\F ) ∪ (F\E)| = 0.

3. It holds P (E,D) = P (Rm\E,D) and

P (E ∪ F,D) + P (E ∩ F,D) ≤ P (E,D) + P (F,D) . (A.33)
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Theorem A.2 ([AFP05, Th. 3.40] Coarea formula in BV) For v ∈ L1
loc(D) the variation on any

open set D⊂Rm is defined by V (v,D) := sup
{ ∫

D
u divϕdx

∣∣ϕ ∈ C1
c(D)m, ‖ϕ‖∞ = 1

}
. It holds

V (v,D) =

∫ ∞

−∞
P ({x ∈ D | v(x) > t}, D) dt . (A.34)

In particular, if v ∈ BV(D) the set {v > t} has finite perimeter for L1-a.a. t ∈ R and

|Dv|(B) =

∫ ∞

−∞
|DX{v>t}|(B) dt , Dv(B) =

∫ ∞

−∞
DX{v>t}(B) dt (A.35)

for any Borel set B ⊂ D.

Definition A.9 ([AFP05, Def. 3.54] Reduced boundary) Let E be an Lm-measurable subset of
Rm and D the largest open set such that E is locally of finite perimeter in D. We define the reduced
boundary FE as the collection of all points x ∈ supp |DXE | ∩D such that the limit

νE(x) := lim
%→0

DXE(B%(x))

|DXE |(B%(x))
(A.36)

exists in Rm and satisfies |νE(x)| = 1. The function νE : FE → Sm−1 is called the generalized inner
normal to E; here, Sm−1 denotes the unit sphere in Rm.

Definition A.10 ([AFP05, Def. 3.60] Points of density t, essential boundary) For all t ∈ [0, 1]

and every Lm-measurable set E ⊂ Rm we denote by Et the set
{
x ∈ Rm

∣∣ lim
%→0

Lm(E ∩B%(x))

Lm(B%(x))
= t

}
(A.37)

of all points where E has density t. We denote by ∂∗E the essential boundary of E, i.e. the set Rm\(E0∪E1)

of points where the density is either 0 or 1. Moreover, E1 can be considered as the measure-theoretic
interior and E0 as the measure-theoretic exterior of the set E.

Corollary A.11 The measure-theoretic interior has the following properties:
1. Let N ⊂ D with Lm(N) = 0. Then N1 = ∅ and (D\N)1 = D1.

2. Let A ⊂ B ⊂ D. Then A1 ⊂ B1 ⊂ D1.

The next theorem, which is due to Federer, states that FE is the relevant part of the boundary, since
D\(E0 ∪ FE ∪ E1) is a Hm−1-negligible set.

Theorem A.3 ([AFP05, Th. 3.61] Federer) Let E be a set of finite perimeter in D. Then

FE ∩D ⊂ E1/2 ⊂ ∂∗E and Hm−1(D\(E0 ∪ FE ∪ E1)) = 0 . (A.38)

In particular, E has density either 0 or 1/2 or 1 at Hm−1-a.a. x ∈ D and Hm−1-a.a. x ∈ ∂∗E ∩ D

belongs to FE.

Definition A.12 ([AFP05, Def. 3.63] Approximate limit) Let v ∈ L1
loc(D)m. We say that v has

an approximate limit at x ∈ D if there exists v̄ ∈ Rm such that

lim
%→0

∫

B%(x)

|v(y)− v̄| dy = 0 . (A.39)

The set Sv of points where this property does not hold is called the approximate discontinuity set. For any
x∈D\Sv the vector v̄, uniquely determined by (A.39), is called approximate limit of v at x and denoted
by ṽ(x).

We will use the notation

B+
% (x, ν) := {y ∈ B%(x) | 〈y − x, ν〉 > 0}, B−

% (x, ν) := {y ∈ B%(x) | 〈y − x, ν〉 < 0} .
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Definition A.13 ([AFP05, Def. 3.67] Approximate jump points) Let v∈L1
loc(D)m and x∈D.

We say that x is an approximate jump point of v if there exist a, b∈Rm and ν∈Sm−1 so that a 6=b and

lim
%→0

∫

B+
% (x,ν)

|v(y)− a| dy = 0 , lim
%→0

∫

B−
% (x,ν)

|v(y)− b| dy = 0 . (A.40)

The triple (a, b, ν), uniquely determined by (A.40) up to a permutation of (a, b) and a change of sign of
ν, is denoted by (v+, v−, νv(x)). The set of approximate jump points of v is denoted by Jv.

Definition A.14 ([AFP05, Def. 2.57] Rectifiable sets) Let E ⊂ Rm be an Hk-measurable set. The
set E is countably k-rectifiable if there exist countably many Lipschitz functions fi : Rk → Rm such that

E ⊂ ∪∞
i=0fi(Rk) ; (A.41)

E is countably Hk-rectifiable if there are countably many Lipschitz functions fi : Rk→Rm so that

Hk
(
E\ ∪∞

i=0 fi(Rk)
)
= 0 . (A.42)

Clearly, k-rectifiability implies Hk-rectifiability.

Theorem A.4 ([AFP05, Th. 3.59] De Giorgi) Let E be an Lm-measurable subset of Rm. Then FE

is countably (m−1)-rectifiable and |DXE | = Hm−1bFE.

By the Besicovitch derivation theorem [AFP05, Th. 2.22] one obtains that for any set of finite perimeter
E that |DXE | is concentrated on FE. Hence, in this case, by Thm. A.4 the Gauss-Green formula (A.32)
can be rewritten as

∫

E

divϕdx = −
∫

FE

νE · ϕdHm−1 for all ϕ ∈ C1
c (D)m . (A.43)

Due to Thm. A.4 the perimeter of E can be computed by

P (E,D) = Hm−1(D ∩ ∂∗E) = Hm−1(D ∩ E1/2) . (A.44)

This can be used to rewrite the coarea formula (A.34) using the essential boundary of level sets

|Du|(B) =

∫ ∞

−∞
Hm−1

(
B ∩ ∂∗{u > t}

)
dt for all Borel sets B ⊂ D . (A.45)

Theorem A.5 ([AFP05, Th. 3.77] Traces on interior rectifiable sets) Let v ∈ BV(D)m and let
Γ ⊂ D be a countably Hm−1-rectifiable set oriented by ν. Then, for Hm−1-a.a. x ∈ Γ there exist v+Γ (x),
v−Γ (x) ∈ Rm such that

lim
%→0

∫

B+
% (x,ν(x))

|v(y)− v+Γ (x)| dy = 0 , lim
%→0

∫

B−
% (x,ν(x))

|v(y)− v−Γ (x)| dy = 0 . (A.46)

Moreover, DvbΓ = (v+Γ − v−Γ )⊗ νHm−1bΓ.
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