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Introduction

Classification of time series is a very active field of research.

Most methods rely on extraction of features.

Signaturesa,b provide features that are interesting for a number of applications.

Also useful for other tasks such as analysing control systems, pathwise solutions to Stochastic Differential
Equations, among others.

aK.-T. Chen. „Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula“. In: Ann. of Math. (2) 65 (1957), pp. 163–178.
bT. Lyons. „Differential equations driven by rough signals“. In: Revista Matemática Iberoamericana 14 (1998), pp. 215–310.
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Continuous-time signatures

Let X : [0, 1] → Ò continuous path.

Definition

Given p ≥ 1, define the p-variation of X over the interval [s, t ] ⊆ [0, 1] by

‖X ‖p ;[s,t ] B
©­« sup
π∈P[s,t ]

∑
[u,v ]∈π

|Xv − Xu |
pª®¬
1/p

.

The space of all paths such that ‖X ‖p ;[s,t ] < ∞ is denoted by Vp([s, t ]).

Can be generalized to functions Ξ : [0, 1]2→ Ò by replacing the increment Xv − Xu by Ξu,v .

This generalization is an essential piece in T. Lyon’s theory of rough paths.a
aT. Lyons. „Differential equations driven by rough signals“. In: Revista Matemática Iberoamericana 14 (1998), pp. 215–310.
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Young integration

Theorem (Younga)

Let X ∈ Vp ,Y ∈ Vq with 1
p +

1
q > 1. The integral∫ t

s
Yu dXu B lim

|π |→0

n(π)∑
i=0

Yt i (Xt i+1 − Xt i )

is well defined and ����∫ t

s
Yu dXu −Ys(Xt − Xu)

���� ≤ Cp,q ‖X ‖p ;[s,t ]‖Y ‖q ;[s,t ].

In particular, the iterated integral
∫
X dX is well defined as long as X ∈ Vp for 1 ≤ p < 2.

More generally, if X = (X 1, . . . ,X d ) takes values in Òd then the integrals
∫
X i dX j are defined.

aL. C. Young. „An inequality of the Hölder type, connected with Stieltjes integration“. In: Acta Mathematica 67.1 (1936), p. 251.
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Signatures

Definition

The signature of the path X : [0, 1] → Òd is the collection of iterated integrals

S (X )s,t B 1 +

∫ t

s
dXu +

∫ t

s

∫ u

s
dXv ⊗ dXu + · · · +

∫
· · ·

∫
s<u1<···<un<t

dXu1 ⊗ · · · ⊗ dXun + · · ·

Theorem

The signature satisfies

1. Chen’s identity: S (X )s,u ⊗ S (X )u,t = S (X )s,t .

2. Reparametrization invariance: S (X ◦ϕ)s,t = S (X )s,t .

3. It is the unique solution to the fixed-point equation

S (X )s,t = 1 +

∫ t

s
S (X )s,u ⊗ dXu .
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Signatures

Additionally, the shuffle relations are satisfied:

S (X )Is,tS (X )
J
s,t =

∑
K ∈Sh(I ,J )

S (X )Ks,t .

This introduces some redundancy, e.g.

S (X )
j i
s,t = S (X )

i
s,tS (X )

j
s,t − S (X )

i j
s,t .

A way to compress the available information is to work with the so-called log-signaure

Ω(X )s,t B log⊗ S (X )s,t ∈ L(Ò
d ).

Ω(X ) corresponds to a pre-Lie Magnus expansion w.r.t. the pre-Lie product

X .Y B

∫ t

s

∫ u

s
[dXv , dYu]
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Signatures

The map I 7→ S (X )Is,t defines a linear map from the tensor algebra to the reals. The shuffle relations then mean
that this map is a character, i.e.

S (X )Is,tS (X )
J
s,t = S (X )

I�J
s,t

where the shuffle product is recursively defined, for I = (i1, . . . , in), J = (j1, . . . , jm), by

I � J = (I ′� J )in + (I � J ′)jm

where I ′ = (i1, . . . , in−1), J ′ = (j1, . . . , jm−1) and

S (X )Is,t =

∫
· · ·

∫
s<u1<···<un<t

dX i1
u1 · · · dX

in
un .

Remark

We can think of S (X ) as a formal series

S (X )s,t =
∑
I

S (X )Is,t I .
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Signatures

Why should we care?

1. Useful for the description of the solutions of controlled systems: if ÛYt = V(Yt ) ÛXt then

Yt −Ys =
∑
I

VI (Ys)S (X )
I
s,t + Rs,t .

2. Captures features of X , useful for applications to Machine Learning, pattern recognition, time series analysis,
etc.

In principle hard to compute. However, if X is piecewise linear then

S (X )s,t = exp⊗(v1) ⊗ · · · ⊗ exp⊗(vk )

and we can use the Baker–Campbell–Hausdorff formula.a
aJ. Reizenstein and B. Graham. „The iisignature library: efficient calculation of iterated-integral signatures and log signatures“. In: (2018). arXiv:

1802.08252 [cs.DS].
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Signatures

However:

1. For a one-dimensional signal: ∫
· · ·

∫
s<u1<···<un<t

dXu1 · · · dXun =
(Xt − Xs)

n

n !
.

This can be cured to some extent by introducing more dimensionsa and other tricksb.

2. In practice we are confronted with discrete data.

This can also be avoided by interpolation.

3. A more severe problem is tree-like equivalence.c

We propose instead a new framework operating directly at the discrete level.
aT. Lyons and H. Oberhauser. „Sketching the order of events“. In: (2017). arXiv: 1708.09708 [stat.ML].
bF. J. Király and H. Oberhauser. „Kernels for sequentially ordered data“. In: Journal of Machine Learning Research 20.31 (2019), pp. 1–45.
cB. Hambly and T. Lyons. „Uniqueness for the signature of a path of bounded variation and the reduced path group“. In: Ann. Math. 171.1 (Mar. 2010),

pp. 109–167.
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Discrete signatures

A composition of an integer n is a sequence (i1, . . . , ik ) with i1 + · · · + ik = n .

Definition (Gessela)

Given a composition I = (i1, . . . , ik ) define

MI (z ) B
∑

j1<j2<...<jk

z i1
j1
· · · z ik

jk
.

For example
M(1)(z ) =

∑
j

z j , M(1,1) =
∑
j1<j2

z j1z j2, M(2)(z ) =
∑
j

z 2j .

Note that
M(1)(z )

2 = M(2)(z ) + 2M(1,1).
aI. M. Gessel. „Multipartite P -partitions and inner products of skew Schur functions“. In: Combinatorics and algebra (Boulder, Colo., 1983). Vol. 34.

Contemp. Math. Amer. Math. Soc., Providence, RI, 1984, pp. 289–317.
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Discrete signatures

The map I 7→ MI (z ) defines a linear map from compositions to the reals. The product rule above can be
expressed as

MI (z )MJ (z ) = MI?J (z )

where the quasi-shuffle producta ? is recursively defined, for I = (i1, . . . , in), J = (j1, . . . , jm), by

I ? J = (I ′? J )in + (I ? J
′)jm + c(I , J )

where I ′ and J ′ are defined as before, and

c(I , J ) B (i1, . . . , in−1, j1, . . . , jm−1, in + jm).

Definition

Given a discrete time series x = (x0, x1, . . . , xN ), its discrete signature is

DS (x )n,m =
∑
I

MI (∆
m
n x )I

where ∆mn x = (xn+1 − xn, . . . , xm − xm−1).
aM. E. Hoffman. „Quasi-shuffle products“. In: J. Algebraic Combin. 11.1 (2000), pp. 49–68.
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Discrete signatures

Why should we care?

1. Can be used to analyse solutions of controlled recurrence equations of the form

yk+1 = yk +V (yk )(xk+1 − xk )

relevant e.g. for applications to Residual Neural Networks.a,b,c

2. Invariant under time warping, useful for applications to time series classification.d

3. No need to transform the data in any way. Even if x is one-dimensional we get more information, e.g.

DS (x )
(2)
0,N =

N∑
j=1

(xj − xj−1)
2 , (xN − x0)

2.

4. No need for BCH formula.
aCurrent project with P. Friz (TU) and C. Bayer (WIAS)
bK. He et al. „Deep Residual Learning for Image Recognition“. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
cE. Haber and L. Ruthotto. „Stable architectures for deep neural networks“. In: Inverse Problems 34.1 (2018), pp. 014004, 22.
dJ. Diehl, K. Ebrahimi-Fard, and N. Tapia. „Time warping invariants of multidimensional time series“. In: (2019). arXiv: 1906.05823 [math.RA].
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Discrete signatures

We can actually count the number of invariants.

Theorem (Diehl, Ebrahimi-Fard, T.; Novelli, Thibona)

The number of time-warping invariants of a d -dimensional time series has generating function

G (t ) B
∞∑
n=0

cn(d )t
n =

(1 − t )d

2(1 − t )d − 1
= 1 + d t +

d (3d + 1)

2
t 2 +

d (13d 2 + 9d + 2)

6
t 3 + · · · .

Compare with the corresponding generating function for the shuffle algebra:

H (t ) =
1

1 − d t
= 1 + d t + d 2t 2 + d 3t 3 + · · · .

aJ.-C. Novelli and J.-Y. Thibon. „Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric
functions“. In: Discrete Math. 310.24 (2010), pp. 3584–3606.
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Discrete signatures

Theorem (Diehl, Ebrahimi-Fard, T.)

Let x be a time series and define an infinite-dimensional path X = (X I ) where for a composition I , X I is the
linear interpolation of the sequence

n 7→ MI (∆
n
0x ).

Then
S (X )I0,N = DS (x )

Φ(I )
0,N

where Φ is Hoffman’s isomorphisma.

In the one-dimensional case, the elementary symmetric functions

M(1,1,...,1)(∆x ) =
∑

j1<···<jn

∆xj1 · · ·∆xjn

arise as a left-point Riemann sum associated to a piecewise constant interpolation of x .
aM. E. Hoffman. „Quasi-shuffle products“. In: J. Algebraic Combin. 11.1 (2000), pp. 49–68.
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Perspectives

A few possible extensions:

1. Multi-parameter data, e.g. one-dimensional time series depending on two parameters.

2. General functions on increments, e.g. ∑
j1<j2

fi1(∆xj1)fi2(∆xj2).

And some questions and ongoing projects:

1. Understanding logDS (x ). Chow’s theorem.

2. Numerical experiments and use in time warping.a

3. Robustness of Residual Neural Networks.

4. Learning dynamics of Stochastic Differential Equations.b,c

aB. J. Jain. „Making the dynamic time warping distance warping-invariant“. In: Pattern Recognition 94 (2019), pp. 35–52.
bwith C. Bayer and M. Eigel (WIAS)
cW. S. Gray, G. S. Venkatesh, and L. A. D. Espinosa. „Combining Learning and Model Based Control via Discrete-Time Chen-Fliess Series“. In: (2019).

arXiv: 1906.11084 [eess.SY].
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Thanks!
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