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Introduction

Classification of time series is a very active field of research.
Most methods rely on extraction of features.
Signatures®® provide features that are interesting for a number of applications.

Also useful for other tasks such as analysing control systems, pathwise solutions to Stochastic Differential

Equations, among others.

2K.-T. Chen. ,Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula“. In: Ann. of Math. (2) 65 (1957), pp. 163—178.
bT. Lyons. ,Differential equations driven by rough signals®. In: Revista Matematica Iberoamericana 14 (1998), pp. 215-310.
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Continuous-time signatures

Let X : [0, 1] — R continuous path.

Given p > 1, define the p-variation of X over the interval |s, t| C |0, 1] by
1/p

IXllpgsey:=| sup > 1X = Xul?

neP|s,t] [uv]en

The space of all paths such that || X || 5,5, < oo is denoted by VF([s, t]).

Can be generalized to functions =: [0, 1]> — R by replacing the increment X, — X, by =, .

This generalization is an essential piece in T. Lyon’s theory of rough paths.?

aT. Lyons. ,Differential equations driven by rough signals®. In: Revista Matematica Iberoamericana 14 (1998), pp. 215-310.
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Young integration

Theorem (Young?)

Let X € VP, Y € V9 With% + % > 1. The integral

t n(r)
Y,dX, = |lim Yt/(Xti+ — th.)
[ u u ZO 1

|| —0 =

is well defined and

t
/ Yu qu o Ys(Xt o Xu)
S

< Cp,q”X”p;[s,t] ” Y”q;[s,t]'

In particular, the iterated integral fX d X is well defined as longas X € VP for 1 < p < 2.

More generally, if X = (X', ..., X9) takes values in R9 then the integrals f X' dX/ are defined.

L. C. Young. ,An inequality of the Holder type, connected with Stieltjes integration®. In: Acta Mathematica 67.1 (1936), p. 251.
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Signatures

The signature of the path X : — RY js the collection of iterated integrals

S5(X)s.t —1+/ dX, + // dX, ® dX, + - /"'/qu1®-~-®qun+---

s<ur1<---<up<t

The signature satisfies

1. Chen’s identity: S(X)s.y @ S(X)yt = S(X)s.¢-
2. Reparametrization invariance: S(X o ¢)s¢ = S(X)s.¢-

3. It is the unique solution to the fixed-point equation

t
S(X)se =1+ / S(X)su ® dXy.
S
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Signatures

Additionally, the shuffle relations are satisfied:

SX)LSX) = > S,
KeSh(I,J)

This introduces some redundancy, e.g.

S(X)Y,, = S(X); S(X), , = S(X)Z,.

A way to compress the available information is to work with the so-called log-signaure
Q(X)s.t = logg S(X)st € L(RY).

Q(X) corresponds to a pre-Lie Magnus expansion w.r.t. the pre-Lie product

t u
XY = / f [dX,,dY,]
S S
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Signatures

Themap I — S(X)it defines a linear map from the tensor algebra to the reals. The shuffle relations then mean

that this map is a character, i.e. s y T
S(X)E.S(X)], = S(X)iY

where the shuffle product is recursively defined, for I = (i1, ...,i5),J = (1,...,/jm), by
ITwJ=T"whi,+(TwJS)mnm
where I’ = (i1,...,in-1),J = (1,...,jm=1) and

S(X)it: //XmﬁdXL’,’;

s<u1<---<up<t

We can think of S(X) as a formal series
S(X)s¢ = Z S(X)I,I.
i

vvvvvvv
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Signatures

Why should we care?

1. Useful for the description of the solutions of controlled systems: if Y; = V(Y;) X, then

Y, - Y, = Z Vi(Y)S(X)L, + Rs.
I

2. Captures features of X, useful for applications to Machine Learning, pattern recognition, time series analysis,
etc.

In principle hard to compute. However, if X is piecewise linear then
S(X)s,t = expg(v1) ® -+ - ® expg(Vk)

and we can use the Baker—Campbell-Hausdorff formula.?

2J. Reizenstein and B. Graham. , The iisignature library: efficient calculation of iterated-integral signatures and log signatures*. In: (2018). arXiv:
1802.08252 [cs.DS].

vvvvvvv
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https://arxiv.org/abs/1802.08252

Signatures

However:

1. For a one-dimensional signal:

Xi = X))
/"’/qu1"’qun:( tn' s).

s<u1<---<up<t

This can be cured to some extent by introducing more dimensions? and other tricks®.

2. In practice we are confronted with discrete data.
This can also be avoided by interpolation.

3. A more severe problem is tree-like equivalence.®

We propose instead a new framework operating directly at the discrete level.

aT. Lyons and H. Oberhauser. ,Sketching the order of events®. In: (2017). arXiv: 1708.09708 [stat .ML].

bE J. Kiraly and H. Oberhauser. ,Kernels for sequentially ordered data®. In: Journal of Machine Learning Research 20.31 (2019), pp. 1-45.

°B. Hambly and T. Lyons. ,Uniqueness for the signature of a path of bounded variation and the reduced path group*. In: Ann. Math. 171.1 (Mar. 2010),
pp. 109-167.
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Discrete signatures

A composition of an integer n is a sequence (i1, ..., i) with /i + -+ + iy = n.

Definition (Gessel?)

Given a composition I = (iy, . . ., ix) define

Mi(z)= ),z

J1<j2<...<Jk

For example

M2 =Dz Man= D 2,2, Maz)= ) 22
J J1<j2 J
Note that
Ma)(2)? = M@)(2) + 2M 1),

2|, M. Gessel. ,Multipartite P-partitions and inner products of skew Schur functions®. In: Combinatorics and algebra (Boulder, Colo., 1983). Vol. 34.
Contemp. Math. Amer. Math. Soc., Providence, RI, 1984, pp. 289-317.
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Discrete signatures

The map I — M;(z) defines a linear map from compositions to the reals. The product rule above can be

expressed as
M1(z)M,(z) = M1.)(2)

where the quasi-shuffle product® x is recursively defined, for I = (i1,...,15), J = (1,.. ., m), by
IxJ=U"*D)ip+ (I *xJ)jm+c(I,J)
where I’ and J’ are defined as before, and
c(I,J):=(,...oin-1,J1s-vsfmetsin+ Jm).

Given a discrete time series x = (xg, X1, .. ., XN), its discrete signature is

DS(X)nm = ) Mr(ATX)I
I

where AT'x = (Xp+1 — Xpy+ o » Xm — Xm—1)-

aM. E. Hoffman. ,Quasi-shuffle products®. In: J. Algebraic Combin. 11.1 (2000), pp. 49-68.
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Discrete signatures

Why should we care?

1. Can be used to analyse solutions of controlled recurrence equations of the form

Yie1 = Ye + V(¥ie)(Xes1 — Xk)

relevant e.g. for applications to Residual Neural Networks.??¢

2. Invariant under time warping, useful for applications to time series classification.?

3. No need to transform the data in any way. Even if x is one-dimensional we get more information, e.g.
N
2
DS(X)é}V = Z(Xj — xj_1)2 + (x§ — X0)°.
j=1

4. No need for BCH formula.

aCurrent project with P. Friz (TU) and C. Bayer (WIAS)

K. He et al. ,Deep Residual Learning for Image Recognition®. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
°E. Haber and L. Ruthotto. ,Stable architectures for deep neural networks*. In: Inverse Problems 34.1 (2018), pp. 014004, 22.

dJ. Diehl, K. Ebrahimi-Fard, and N. Tapia. , Time warping invariants of multidimensional time series®. In: (2019). arXiv: 1906 .05823 [math.RA].
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Discrete signatures

We can actually count the number of invariants.

Theorem (Diehl, Ebrahimi-Fard, T.; Novelli, Thibon?)

The number of time-warping invariants of a d -dimensional time series has generating function

- (1—1t)? d(B3d+1) , d(13d*+9d +2) ,
G(t) = p(d)t" = =1+dt t A
(£) HZ:;)C() 20-pd—1 T " 6 ’

Compare with the corresponding generating function for the shuffle algebra:

1
2.2 3,43
H(t)=——=1+dt+dt"+d’t"+---.
1—dt
4J.-C. Novelli and J.-Y. Thibon. ,Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric
functions®. In: Discrete Math. 310.24 (2010), pp. 3584—-3606.
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Discrete signatures

Theorem (Diehl, Ebrahimi-Fard, T.)

Let x be a time series and define an infinite-dimensional path X = (X*) where for a composition I, X! is the
linear interpolation of the sequence

n— M I(Ag X )
Then

d(I
S(X)g.n = DS(x)gy

where ® is Hoffman’s isomorphism?®.

In the one-dimensional case, the elementary symmetric functions

Ma ... (Ax) = Z Axjy - Axj,

arise as a left-point Riemann sum associated to a piecewise constant interpolation of x.
@M. E. Hoffman. ,Quasi-shuffle products*. In: J. Algebraic Combin. 11.1 (2000), pp. 49-68.
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Perspectives

A few possible extensions:
1. Multi-parameter data, e.g. one-dimensional time series depending on two parameters.

2. General functions on increments, e.g.
Z fi1 (Axﬁ)fiz(Aij)'

J1<J2

And some questions and ongoing projects:

1. Understanding log D S(x). Chow’s theorem.

2. Numerical experiments and use in time warping.?
3. Robustness of Residual Neural Networks.

4. Learning dynamics of Stochastic Differential Equations.?¢

aB. J. Jain. ,Making the dynamic time warping distance warping-invariant®. In: Pattern Recognition 94 (2019), pp. 35-52.

bwith C. Bayer and M. Eigel (WIAS)
‘W. S. Gray, G. S. Venkatesh, and L. A. D. Espinosa. ,Combining Learning and Model Based Control via Discrete-Time Chen-Fliess Series*. In: (2019).

arXiv: 1906.11084 [eess.SY].
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Thanks!
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