The geometry of the space of branched Rough Paths

Nikolas Tapia¹, joint work w. Lorenzo Zambotti²

¹NTNU Trondheim ²Sorbonne-Unversité

Feb. 6, 2019 @ MPI MiS Leipzig

Introduction

Rough paths were introduced by Terry Lyons near the end of the 90's to deal with stochastic integration (and SDEs) in a path-wise sense.

Some years later Massimiliano Gubinelli introduced controlled rough paths, and brached Rough Paths a decade after Lyons' work.

In 2014, Martin Hairer introduced Regularity Structures which generalize branched Rough Paths.

All of these objects consist of a mixture of algebraic and analytic properties.

Given $x \in C^1$ and $V \in C^{\infty}$, consider

$$\dot{\mathbf{y}}_t = \mathbf{V}(\mathbf{y}_t) \dot{\mathbf{x}}_t.$$

How can we get a local description of y? Note that, setting $\delta \psi_{st} \coloneqq \psi_t - \psi_s$,

$$R_{st}^1 \coloneqq \delta y_{st} - V(y_s) \delta x_{st} = \int_s^t (V(y_u) - V(y_s)) \dot{x}_u \, \mathrm{d}u = o(|t-s|).$$

We can be more precise. Set
$$R_{st}^2 \coloneqq \delta y_{st} - V(y_s)\delta x_{st} - V'(y_s)V(y_s)\frac{(\delta x_{st})^2}{2}$$
.

$$\begin{aligned} R_{st}^{2} &= \int_{s}^{t} (V(y_{u}) - V(y_{s})) \dot{x}_{u} \, \mathrm{d}u - V'(y_{s}) V(y_{s}) \int_{s}^{t} \int_{s}^{u} \dot{x}_{r} \, \mathrm{d}r \, \dot{x}_{u} \, \mathrm{d}u \\ &= V'(y_{s}) \int_{s}^{t} \delta y_{su} \dot{x}_{u} \, \mathrm{d}u - V'(y_{s}) V(y_{s}) \int_{s}^{t} \int_{s}^{u} \dot{x}_{r} \, \mathrm{d}r \, \dot{x}_{u} \, \mathrm{d}u + o(|t-s|^{2}) \\ &= V'(y_{s}) \int_{s}^{t} \int_{s}^{u} V(y_{r}) \dot{x}_{r} \, \mathrm{d}r \, \dot{x}_{u} \, \mathrm{d}u - V'(y_{s}) V(y_{s}) \int_{s}^{t} \int_{s}^{u} \dot{x}_{r} \, \mathrm{d}r \, \dot{x}_{u} \, \mathrm{d}u + o(|t-s|^{2}) \\ &= V'(y_{s}) \int_{s}^{t} \int_{s}^{u} (V(y_{r}) - V(y_{s})) \dot{x}_{r} \, \mathrm{d}r \, \dot{x}_{u} \, \mathrm{d}u + o(|t-s|^{2}) \\ &= o(|t-s|^{2}) \end{aligned}$$

Geometric rough paths

Geometric rough paths (signatures) have recently found a number of applications in Data Analysis and Statistical Learning.

For a smooth path x, one defines its signature $S(x) : [0,1]^2 \to T(\mathbb{R}^d)^*$ as

$$\langle S(x)_{s,t}, e_{i_1\cdots i_n} \rangle = \int_s^t \int_s^{t_{n-1}} \cdots \int_s^{t_1} \mathrm{d} x_{u_1}^{i_1} \mathrm{d} x_{u_2}^{i_2} \cdots \mathrm{d} x_{u_n}^{i_n}$$

i.e. S(x) is the collection of all iterated integrals of the components of x. Here, $e_{i_1\cdots i_n} \coloneqq e_{i_1} \otimes \cdots \otimes e_{i_n}$ is a basis element of $T(\mathbb{R}^d) \coloneqq \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d \otimes \mathbb{R}^d) \oplus \cdots$

For example:

$$\langle S(x)_{s,t}, e_i \rangle = x_t^i - x_s^i$$

$$\langle S(x)_{s,t}, e_{ij} \rangle = \int_s^t (x_u^i - x_s^i) \, \mathrm{d} x_u^j, \quad \langle S(x)_{s,t}, e_{ii} \rangle = \frac{(x_t^i - x_s^i)^2}{2}$$

The vector space $T(\mathbb{R}^d)$ can be made into an algebra in two ways: the tensor (or concatenation) product, and the *shuffle product*.

Example:

$$e_i \sqcup e_j = e_{ij} + e_{ji}, \quad e_{ij} \sqcup e_{pq} = e_{ijpq} + e_{ipjq} + e_{pijq} + e_{ipqj} + e_{piqj} + e_{piqj} + e_{pqij}.$$

It also carries two coproducts: the deconcatenation coproduct Δ and the deshuffling coproduct $\Delta_{\sqcup \sqcup}.$

In fact, $(\mathcal{T}(\mathbb{R}^d), \otimes, \Delta_{\sqcup})$ and $(\mathcal{T}(\mathbb{R}^d), \sqcup, \Delta)$ are Hopf algebras, dual to one another.

The family of iterated integrals satisfies the so-called *shuffle relation*, implied by the integration-by-parts formula:

$$\langle S(x)_{s,t}, e_{i_1\cdots i_n} \sqcup e_{i_{i+1}\cdots i_{n+m}} \rangle = \langle S(x)_{s,t}, e_{i_1\cdots i_n} \rangle \langle S(x)_{s,t}, e_{i_{n+1}\cdots i_{n+m}} \rangle.$$

For example, for n = 1, m = 1 we recover integration by parts:

$$\int_{s}^{t} \int_{s}^{u} \mathrm{d}x_{u_{1}}^{i} \mathrm{d}x_{u_{2}}^{j} + \int_{s}^{t} \int_{s}^{u} \mathrm{d}x_{u_{1}}^{j} \mathrm{d}x_{u_{2}}^{i} = \int_{s}^{t} \mathrm{d}x_{u}^{i} \int_{s}^{t} \mathrm{d}x_{u}^{j}.$$

It also satisfies the following identity, called *Chen's rule*, a generalization of $\int_{s}^{u} + \int_{u}^{t} = \int_{s}^{t}$: $\langle S(x)_{s,t}, e_{i_{1}\cdots i_{n}} \rangle = \langle S(x)_{s,u} \otimes S(x)_{u,t}, \Delta e_{i_{1}\cdots i_{n}} \rangle$ A classical theorem by Young tells us that the integration operator

$$I(f,g) \coloneqq \int_0^1 f_s \, \mathrm{d}g_s$$

can be extended continuously from $C^0 \times C^1 \to C^1$ to $C^{\alpha} \times C^{\beta} \to C^{\beta}$ if and only if $\alpha + \beta > 1$.

Thus, finding the signature S(x) as above is only possible for paths in C^{α} for $\alpha > \frac{1}{2}$.

Theorem (Lyons–Victoir (2007))

Given $\alpha < \frac{1}{2}$ with $\alpha^{-1} \notin \mathbb{N}$ and $x \in C^{\alpha}$, there exists a map $X : [0,1]^2 \to T((\mathbb{R}^d))$ such that $X_{s,t}$ is multiplicative, $X_{s,u} \otimes X_{u,t} = X_{s,t}$ and $|\langle X_{s,t}, e_{i_1\cdots i_k} \rangle| \leq |t-s|^{k\gamma}$. It also satisfies $\langle X_{s,t}, e_i \rangle = \delta x_{st}^i$.

Branched rough paths

Let $(\mathcal{H}, \cdot, \Delta)$ be the Butcher–Connes–Kreimer Hopf algebra.

As an algebra, \mathcal{H} is the commutative polynomial algebra over the set \mathcal{T} of non-planar trees decorated by some alphabet A.

The product is simply the disjoint union of forests, e.g.

The empty forest 1 acts as the unit.

The coproduct $\boldsymbol{\Delta}$ is described in terms of admissible cuts. For example

$$\Delta' \overset{d}{\underset{a}{\flat}} c = \bullet c \otimes \overset{d}{\underset{a}{\flat}} + \bullet d \otimes \overset{b}{\underset{a}{\flat}} c + \overset{d}{\underset{b}{\flat}} \otimes \overset{c}{\underset{a}{\flat}} + \bullet c \bullet d \otimes \overset{b}{\underset{a}{\flat}} + \bullet c \overset{d}{\underset{b}{\flat}} \otimes \bullet a$$

Consider again, for smooth x and V,

$$\dot{y}_t = V(y_t) \dot{x}_t.$$

Theorem (B-Series expansion (Gubinelli, 2010))

We have the expansion

$$\delta y_{st} = \sum_{\tau \in \mathcal{T}} \frac{1}{\sigma(\tau)} V_{\tau}(y_s) \langle X_{st}, \tau \rangle$$

Here V_{τ} is the *elementary differential*

$$V_{[\tau_1\cdots\tau_k]}(y)=V^{(k)}(y)V_{\tau_1}(y)\cdots V_{\tau_k}(y).$$

Example

$$V_{\bullet}(y) = V'(y)V(y), \quad V_{\bullet}(y) = V''(y)^2V(y)^3.$$

The factor $\langle X_{st}, \tau \rangle$ is defined recursively:

$$\langle X_{st}, [\tau_1 \cdots \tau_k] \rangle = \int_s^t \langle X_{su}, \tau_1 \rangle \cdots \langle X_{su}, \tau \rangle \dot{x}_u \mathrm{d}u$$

Example:

$$\langle X_{st}, \downarrow \rangle = \frac{1}{2}(x_t - x_s)^2, \quad \langle X_{st}, \checkmark \rangle = \frac{1}{12}(x_t - x_s)^5$$

Let G be the multiplicative functionals (characters) on \mathcal{H} .

Definition (Gubinelli (2010))

A branched Rough Path is a map $X : [0,1]^2 \rightarrow G$ such that

$$|X_{su} \star X_{ut} = X_{st}, \quad |\langle X_{st}, \tau \rangle| \lesssim |t-s|^{\gamma|\tau|}.$$

Example: let $(B_t)_{t\geq 0}$ be a Brownian motion, set $\langle X_{st}, \bullet \rangle \coloneqq B_t - B_s$ and

$$\langle X_{st}, [\tau_1 \cdots \tau_k] \rangle = \int_s^t \langle X_{su}, \tau_1 \rangle \cdots \langle X_{su}, \tau_k \rangle dB_u.$$

That is:

$$\langle X_{st}, \mathbf{v} \rangle = \int_{s}^{t} \left(\int_{s}^{u} \mathrm{d}B_{r} \right) \left(\int_{s}^{u} \mathrm{d}B_{r} \right) \mathrm{d}B_{u} = \int_{s}^{t} (B_{u} - B_{s})^{2} \mathrm{d}B_{u}.$$

Let \mathcal{C}_k be the continuous functions in k variables vanishing when consecutive variables coincide.

Gubinelli (2003) defines an exact cochain complex

$$0 \to \mathbb{R} \to \mathscr{C}_1 \xrightarrow{\delta_1} \mathscr{C}_2 \xrightarrow{\delta_2} \mathscr{C}_3 \xrightarrow{\delta_3} \cdots$$

that is $\delta_{k+1} \circ \delta_k = 0$ and im $\delta_k = \ker \delta_{k+1}$.

Remark

If $F \in \ker \delta_2$ then there exists $f \in \mathcal{C}_1$ such that $F_{st} = f_t - f_s$. If $C \in \ker \delta_3$ then there exists $F \in \mathcal{C}_2$ such that $C_{sut} = F_{st} - F_{su} - F_{ut}$.

In general, none of these operators are injective: if $F = G + \delta_{k-1}H$ then $\delta_k F = \delta_k G$.

Can do more if we restrict to smaller spaces: let \mathscr{C}_2^{μ} be the $F \in \mathscr{C}_2$ such that

$$\|F\|_{\mu} \coloneqq \sup_{s < t} \frac{|F_{st}|}{|t - s|^{\mu}} < \infty.$$

Similarly, \mathscr{C}_{3}^{μ} are the $C \in \mathscr{C}_{3}$ such that $\|C\|_{\mu} < \infty$ for some suitable norm.

Theorem (Gubinelli (2004))

There is a unique linear map $\Lambda : \mathscr{C}_3^{1+} \cap \ker \delta_3 \to \mathscr{C}_2^{1+}$ such that $\delta_2 \Lambda = \operatorname{id}$. In each of \mathscr{C}_3^{μ} for $\mu > 1$ it satisfies

$$\|\wedge C\|_{\mu} \leq rac{1}{2^{\mu}-2} \|C\|_{\mu}.$$

Chen's rule reads

$$\langle X_{st},\tau\rangle=\langle X_{su},\tau\rangle+\langle X_{ut},\tau\rangle+\langle X_{su}\otimes X_{ut},\Delta'\tau\rangle.$$

or

$$\delta_2 F_{sut}^{\tau} = \langle X_{su} \otimes X_{ut}, \Delta' \tau \rangle$$

where $F_{st}^{\tau} \coloneqq \langle X_{st}, \tau \rangle$.

The norm on \mathscr{C}_3 is such that the bound for X implies $\delta_2 F^{\tau} \in \mathscr{C}_3^{\gamma|\tau|}$.

The integer $N \coloneqq \lfloor \gamma^{-1} \rfloor$ is special. Let G_N denote the multiplicative maps on the subcoalgebra

$$\mathscr{H}_N \coloneqq \bigoplus_{n=0}^N \mathscr{H}_{(n)}.$$

Theorem (Gubinelli (2010))

Suppose $X : [0,1]^2 \to G_N$ satisfies $|\langle X_{st}, \tau \rangle| \leq |t-s|^{\gamma|\tau|}$. Then there exists a unique map $\hat{X} : [0,1]^2 \to G$ on \mathcal{H} such that $\hat{X}|_{\mathcal{H}_N} = X$.

Proof.

Suppose $|\tau| = N + 1$ is a tree and set $C_{sut}^{\tau} = \langle X_{su} \otimes X_{ut}, \Delta' \tau \rangle$. First one shows that $C^{\tau} \in \ker \delta_3$ by using the coassociativity of Δ' . The bound above implies that $C^{\tau} \in \mathscr{C}_3^{\gamma|\tau|}$. Therefore C^{τ} lies in the domain of Λ and we can set

$$\langle X_{st}, \tau \rangle \coloneqq (\Lambda C^{\tau})_{st}.$$

Continue inductively.

The previous argument works only because $\gamma |\tau| > 1$ i.e. $|\tau| > N$.

If $\gamma | \tau | \le 1$, for any $g^{\tau} \in C^{\gamma | \tau |}$ (Hölder space) the function

 $G_{st}^{\tau} \coloneqq F_{st}^{\tau} + \delta_1 g_{st}^{\tau}$

also satisfies $\delta_2 G_{sut}^{\tau} = \langle X_{su} \otimes X_{ut}, \Delta' \tau \rangle$.

Let X and X' be two BRPs coinciding on $\mathcal{H}_{(1)}$.

Fix τ with $|\tau| = 2$ and let $F_{st}^{\tau} \coloneqq \langle X_{st}, \tau \rangle$, $G_{st}^{\tau} \coloneqq \langle X'_{st}, \tau \rangle$.

Then $\delta_2 F^{\tau} = \delta_2 G^{\tau}$ so there is $g^{\tau} \in \mathscr{C}_1$ such that

$$F_{st}^{\tau} = G_{st}^{\tau} + \delta_1 g_{st}^{\tau}.$$

Moreover $g^{\tau} \in C^{2\gamma}$.

This suggests that there might be an action of

$$\mathfrak{D}^{\gamma} \coloneqq \{ (\boldsymbol{g}^{\tau})_{|\tau| \le N} : \boldsymbol{g}^{\tau} \in C^{\gamma|\tau|}, \boldsymbol{g}_0^{\tau} = 0 \}$$

on the space \mathbf{BRP}^{γ} of branched Rough Paths.

Theorem (T.-Zambotti (2018))

Let $\gamma \in (0, 1)$ such that $\gamma^{-1} \notin \mathbb{N}$. There is a regular action of \mathfrak{D}^{γ} on **BRP**^{γ}.

This means we have a mapping

$$\mathfrak{D}^{\gamma} imes \mathsf{BRP}^{\gamma}
i (g, X) \to gX \in \mathsf{BRP}^{\gamma}$$

such that

- g'(gX) = (g' + g)X for all $g, g' \in \mathfrak{D}^{\gamma}$ and,
- for every pair $X, X' \in \mathbf{BRP}^{\gamma}$ there exists a *unique* $g \in \mathfrak{D}^{\gamma}$ such that X' = gX.

BRP^{γ} is a *principal homogeneous space* for \mathfrak{D}^{γ} .

Very rough sketch of proof

If $\gamma > \frac{1}{2}$ the result is easy: just set

$$\langle gX_{st}, \bullet_i \rangle = \langle X_{st}, \bullet_i \rangle + \delta g_{st}^{\bullet_i}$$

and $\langle gX, \tau \rangle$ for $|\tau| \ge 2$ is given by the Sewing Lemma.

If $\frac{1}{3} < \gamma < \frac{1}{2}$ the action is the same in degree 1. In degree 2 we must have

$$\delta_2 \langle gX, \phi_i^j \rangle_{sut} = (\delta x_{su}^j + \delta g_{su}^{\phi_j}) (\delta x_{ut}^i + \delta g_{ut}^{\phi_i}).$$

The canonical choice (Young integral)

$$\int_{s}^{t} (\delta x_{su}^{j} + \delta g_{su}^{\bullet j}) d(x_{u}^{i} + g_{u}^{\bullet i})$$

is not well defined since $2\gamma < 1$.

In higher degrees the expressions are more complicated.

We handle this by constructing an *anisotropic* geometric Rough Path \bar{X} such that

$$\langle X_{st}, \tau \rangle = \langle \bar{X}_{st}, \psi(\tau) \rangle$$

where $\psi : (\mathcal{H}, \cdot, \Delta) \to (\mathcal{T}(\mathcal{T}_n), \sqcup, \overline{\Delta})$ is the Hairer–Kelly map.

Anisotropic means that letters (trees) are allowed to have different weights.

In addition to the standard grading by the number of letters we have a weight function, e.g.

$$\omega\left(\bullet a\otimes \overset{\bullet}{\bullet} \overset{c}{\bullet} \overset{b}{b}\right)=3\gamma.$$

More concretely, \bar{X} is a character over the shuffle algebra on the alphabet \mathcal{T}_N .

Single trees become letters in $T(\mathcal{T}_N)$, hence they are in degree one!

Set

$$\langle g\bar{X},\tau\rangle \coloneqq \langle \bar{X},\tau\rangle + \delta g^{\tau}.$$

Then define

$$\langle gX, \tau \rangle = \langle g\bar{X}, \psi(\tau) \rangle.$$

1 Lifting of Chen's rule to the Lie algebra g. If $X_{st} = \exp_{\star}(\alpha_{st})$ then

$$\alpha_{st} = \mathsf{BCH}(\alpha_{su}, \alpha_{ut}) = \alpha_{su} + \alpha_{ut} + \mathsf{BCH}'(\alpha_{su}, \alpha_{ut}).$$

- **2** We use an explicit BCH formula due to Reutenauer.
- We use the Lyons-Victoir (2007) method but in a constructive way, without invoking the axiom of choice.
- ④ However, the action is not unique nor canonical. The construction depends on a finite number of arbitrary choices.
- **(5)** We are able to construct γ -regular \mathcal{H} -rough paths over any $x \in C^{\gamma}(\mathbb{R}^d)$.

Next goals

- **(**) Understand the algebraic picture. The action gX is not very easy to compute.
- Relation with modification of products as explored in Ebrahimi-Fard, Patras, T. and Zambotti (2017).
- **③** Actions of an appropriate \mathfrak{D}^{γ} for the geometric case.
- G Clarify what the action means for controlled paths and RDEs.

Danke schön!