Higher-order iterated sums signatures

Nikolas Tapia joint with J. Diehl (Greifswald) and K. Ebrahimi-Fard (NTNU)

FG6

Introduction

Consider a time series

$$x = (x_0, x_1, \ldots, x_N) \in \mathbb{R}^N$$
.

The goal is to extract *features* out of x, that are invariant to *time warping*.

Example

We measure the heartbeat in a patient's ECG. This is modelled as

$$y_j^{(k)} = x_{h^{(k)}(j)} + \xi_j^{(k)}, \quad j = 1, ..., M; \quad k = 1, ..., K$$

where $M \ge N$ and $h^{(k)}$: $\{1, ..., M\} \to \{1, ..., N\}$ is a (unknown) surjective non-decreasing time change.

Some invariants

Definition

A functional $F: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ is said to be invariant to *standing still* (or stuttering) if $F \circ \tau_n = F$ for all $n \geq 0$. Here $\tau_n: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ is the operator that acts by repeating the value at time n.

Some invariants

It's not hard to see that the total increment

$$x_N - x_0 = \sum_j (x_j - x_{j-1})$$

as well as

$$\sum_{j < k} (x_j - x_{j-1})(x_k - x_{k-1}), \quad \sum_j (x_j - x_{j-1})^2, \quad \sum_{j \le k} (x_j - x_{j-1})(x_k - x_{k-1})$$

are all features invariant to time warping.

Questions

- 1. Are all invariants some kind of iterated sum?
- 2. The last three expressions are linearly dependent since summing the first two gives the third. How to store only linearly independent information?

Quasisymmetric functions

Definition

A formal series $Q \in \mathbb{R}\langle Y_1, Y_2, ... \rangle$ is a *quasisymmetric function* if for all indices $i_1 < i_2 < \cdots < i_n$, $j_1 < j_2 < \cdots < j_n$ and integers $\alpha_1, \ldots, \alpha_n \ge 1$ the coefficient of the monomials $(Y_{j_1})^{\alpha_1} \cdots (Y_{j_n})^{\alpha_n}$ and $(Y_{j_1})^{\alpha_1}\cdots (Y_{j_n})^{\alpha_n}$ in Q are equal.

Theorem (Diehl, Ebrahimi-Fard, T. 2019)

Let F be a polynomial functional invariant to standing still and space translations. Then F is realized as a quasisymmetric function on the increments of x.

This answers Question 1.

Monomial basis

Different linear bases are known. Malvenuto and Reutenauer (1995) introduced the *monomial quasisymmetric* functions

$$M_{(\alpha_1,\ldots,\alpha_m)} := \sum_{i_1 < \cdots < i_m} (Y_{i_1})^{\alpha_1} \cdots (Y_{i_m})^{\alpha_m}$$

indexed by *compositions* of integers.

Definition

A composition of the integer n is a tuple $(\alpha_1, \ldots, \alpha_m)$ of positive integers such that

$$\alpha_1 + \cdots + \alpha_m = n$$
.

We call $\ell(\alpha) := m$ the length of the composition and $|\alpha| = n$ its weight.

The collection of all compositions of n is denoted by C(n).

This answers Question 2.

Quasi-shuffle algebras

The monomial quasisymmetric functions actually form a monomial basis for QSym.

The product is described by *contractions*.

Example

$$M_{(1)}M_{(1)} = 2\sum_{j < k} Y_j Y_k + \sum_j Y_j^2 = 2M_{(1,1)} + M_{(2)}.$$

Example

$$M_{(1)}M_{(3,7)} = M_{(1,3,7)} + M_{(3,1,7)} + M_{(3,7,1)} + M_{(4,7)} + M_{(3,8)}.$$

This is an example of a *quasi-shuffle algebra*.

Quasi-shuffle algebras (cont.)

Definition (Gaines 1994; Hoffman 2000)

Let \mathfrak{A} be an alphabet having a *semigroup* structure $[--]: \mathfrak{A} \times \mathfrak{A} \to \mathfrak{A}$. On the tensor algebra $T(\mathfrak{A})$ define the *quasi-shuffle product* * recursively by e*u := u =: u*e and

$$ua * vb := (u * vb)a + (ua * v)b + (u * v)[ab]$$

for $u, v \in T(\mathfrak{A})$ and $a, b \in \mathfrak{A}$.

Example

Take $\mathfrak{A} = (\mathbb{N}_+, +)$. Then $1 * 1 = 2 \cdot 11 + 2$ and

$$1*37 = 137 + 317 + 371 + 47 + 38.$$

Theorem (Hoffman, 2000)

Let $\delta: T(\mathfrak{A}) \to T(\mathfrak{A}) \otimes T(\mathfrak{A})$ be the deconcatenation coproduct. Then, $(T(\mathfrak{A}), *, \delta, |\cdot|)$ is a graded, connected, commutative and non-cocommutative Hopf algebra.

Iterated-sums signature

Notation

We set $A = \{1, \dots, d\}$ and \mathfrak{A} is the free commutative semigroup over A. For $a = [i_1 \cdots i_\ell] = [1^{k_1} \cdots d^{k_d}] \in \mathfrak{A}$, let $\Delta x_j^a = \Delta x_j^{i_1} \cdots \Delta x_j^{i_\ell} = (\Delta x_j^1)^{k_1} \cdots (\Delta x_j^d)^{k_d}$.

Definition (Diehl, Ebrahimi-Fard, T. 2019)

For $a_1, \ldots, a_p \in \mathfrak{A}$,

$$\langle \mathsf{ISS}(x)_{n,m}, a_1 \cdots a_p \rangle \coloneqq \sum_{j=n+1}^m \langle \mathsf{ISS}(x)_{n,j-1}, a_1 \cdots a_{p-1} \rangle \Delta x_j^{a_p}.$$

Example

$$\langle ISS(x)_{0,N}, [11] \rangle = \sum_{j=0}^{N} (\Delta x_j^1)^2, \quad \langle ISS(x)_{0,N}, \mathbf{1}[12] \rangle = \sum_{1 \le j < k \le N} \Delta x_j^1 \Delta x_k^1 \Delta x_k^2.$$

Iterated-sums signature (cont.)

We have the factorization

$$ISS(x)_{0,N} = \varepsilon + \sum_{a \in \mathfrak{A}} \left(\sum_{j=1}^{N} \Delta x_{j}^{a} \right) a + \sum_{a_{1},a_{2} \in \mathfrak{A}} \left(\sum_{j_{1} < j_{2}} \Delta x_{j_{1}}^{a_{1}} \Delta x_{j_{2}}^{a_{2}} \right) a_{1} a_{2} + \cdots$$

$$= \left(\varepsilon + \sum_{a \in \mathfrak{A}} \Delta x_{1}^{a} a \right) \left(\varepsilon + \sum_{a \in \mathfrak{A}} \Delta x_{2}^{a} a \right) \cdots \left(\varepsilon + \sum_{a \in \mathfrak{A}} \Delta x_{N}^{a} a \right)$$

$$= \overrightarrow{\prod_{1 \le j \le N}} \left(\varepsilon + \sum_{a \in \mathfrak{A}} \Delta x_{j}^{a} a \right)$$

Compare with

$$S(X)_{0,1} = \overrightarrow{\prod_{1 \leq j \leq N}} \exp_{\otimes}(\Delta x_j) = \overrightarrow{\prod_{1 \leq j \leq N}} \left(\varepsilon + \sum_{i \in A} \Delta x_j^i e_i + \frac{1}{2} \sum_{i_1, i_2 \in A} \Delta x_j^{i_1} \Delta x_j^{i_2} e_{i_1 i_2} + \cdots \right) + \cdots$$

Quasi-shuffle algebras (cont.)

Proposition (Diehl, Ebrahimi-Fard, T. 2019)

The Poincaré–Hilbert series of $T(\mathfrak{A})$ is

$$H(t) := \sum_{n \ge 0} t^n \dim T(\mathfrak{A})_n = \frac{(1-t)^d}{2(1-t)^d - 1}$$
$$= 1 + dt + \frac{d(3d+1)}{2}t^2 + \frac{d(13d^2 + 9d + 2)}{6}t^3 + O(t^4)$$

Compare with

$$\sum_{n\geq 0} t^n \dim T(A)_n = \frac{1}{1-td} = 1 + dt + d^2t^2 + d^3t^3 + O(t^4).$$

Iterated-sums signature (cont.)

Theorem (Diehl, Ebrahimi-Fard, T. 2019)

For each $n \leq m$, ISS $(x)_{n,m}$ is a quasi-shuffle character, i.e.

$$\langle ISS(x)_{n,m}, u * v \rangle = \langle ISS(x)_{n,m}, u \rangle \langle ISS(x)_{n,m}, v \rangle$$

for all $u, v \in T(\mathfrak{A})$.

Theorem (Chen's property; Diehl, Ebrahimi-Fard, T. 2019)

For all $n \le p \le m$ we have

$$ISS(x)_{n,p} \otimes ISS(x)_{p,m} = ISS(x)_{n,m}$$

Remark

In this case Chow's theorem fails!

$$\log_{\otimes} ISS(x)_{0,N} = \sum_{j=1}^{N} \Delta x_{j}^{1} \mathbf{1} + \dots + \sum_{j=1}^{N} \left(\Delta x_{j}^{1} \right)^{2} ([11] - \frac{1}{2} 11) + \dots$$

Hoffman's isomorphism

Definition (Hoffman, 2000)

Let $a_1, \ldots, a_n \in \mathfrak{A}$. Given $I = (i_1, \ldots, i_p) \in C(n)$ define

$$I[a_1 \ldots a_n] = [a_1 \cdots a_{i_1}][a_{i_1+1} \cdots a_{i_1+i_2}] \cdots [a_{i_1+\cdots+i_{p-1}} \cdots a_n] \in T(\mathfrak{A})$$

Theorem (Hoffman, 2000)

The linear map $\Phi_H: (T(\mathfrak{A}), \sqcup, \delta) \to (T(\mathfrak{A}), *, \delta)$ defined by

$$\Phi_{\mathsf{H}}(a_1\cdots a_n)\coloneqq \sum_{I\in C(n)}\frac{1}{i_1!\cdots i_p!}I[a_1\cdots a_n]$$

is an isomorphism of Hopf algebras.

Its inverse is given by

$$\Phi_{\mathsf{H}}^{-1}(a_1 \cdots a_n) = \sum_{I \in C(n)} \frac{(-1)^{n-p}}{i_1 \cdots i_p} I[a_1 \cdots a_n].$$

Hoffman's isomorphism (cont.)

Theorem (Diehl, Ebrahimi-Fard, T. 2019)

Let x be a time series and consider the (infinite dimensional) path $(X^a : a \in \mathfrak{A})$ where, for $a = [\mathbf{1}^{k_1} \cdots \mathbf{d}^{k_d}] \in \mathfrak{A}$ the path X^a is the piecewise linear interpolation of the path

$$n \mapsto \sum_{j=1}^n \Delta x_j^a = \sum_{j=1}^n (\Delta x_j^1)^{k_1} \cdots (\Delta x_j^d)^{k_d}.$$

Then

$$\langle S(X)_{0,N}, u \rangle = \langle ISS(X)_{0,N}, \Phi_{H}(u) \rangle$$

for all $u \in T(\mathfrak{A})$.

Higher-order iterated sums signature

Definition (Diehl, Ebrahimi-Fard, T. 2020+)

Let $1 \le p \le \infty$,

$$ISS^{(p)}(x)_{n,m} := \overrightarrow{\prod_{n < j \le m}} \left\{ \varepsilon + \sum_{r=1}^{p} \frac{1}{r!} \left(\sum_{a \in \mathfrak{A}} \Delta x_{j}^{a} a \right)^{\otimes r} \right\}.$$

Remark

If $1 , <math>ISS^{(p)}(x)$ is not a character for neither * nor \sqcup . Indeed, e.g. p = 2,

$$\langle ISS^{(2)}(x)_{n,m}, i \rangle = \sum_{j} \Delta x_{j}^{i},$$

$$\langle \mathsf{ISS}^{(2)}(x)_{n,m}, \boldsymbol{ij} \rangle = \sum_{k_1 < k_2} \Delta x_{k_1}^{\boldsymbol{i}} \Delta x_{k_2}^{\boldsymbol{j}} + \frac{1}{2} \sum_{k} \Delta x_{k}^{\boldsymbol{i}} \Delta x_{k}^{\boldsymbol{j}} = \langle \mathsf{ISS}(x)_{n,m}, \boldsymbol{ij} + \frac{1}{2} [\boldsymbol{ij}] \rangle.$$

So,

$$\langle \mathsf{ISS}^{(2)}(x)_{n,m}, ij + ji \rangle = \langle \mathsf{ISS}^{(2)}_{n,m}, i \rangle \langle \mathsf{ISS}^{(2)}_{n,m}, j \rangle.$$

Higher-order iterated sums signature (cont.)

Remark (cont.)

$$\langle ISS^{(2)}(x)_{n,m}, \mathbf{i}_{1}\mathbf{i}_{2}\mathbf{i}_{3}\rangle = \sum_{k_{1} < k_{2} < k_{3}} \Delta x_{k_{1}}^{\mathbf{i}_{1}} \Delta x_{k_{2}}^{\mathbf{i}_{2}} \Delta x_{k_{3}}^{\mathbf{i}_{3}} + \frac{1}{2} \sum_{k_{1} < k_{2}} (\Delta x_{k_{1}}^{\mathbf{i}_{1}} \Delta x_{k_{2}}^{\mathbf{i}_{2}} \Delta x_{k_{2}}^{\mathbf{i}_{3}} + \Delta x_{k_{1}}^{\mathbf{i}_{2}} \Delta x_{k_{2}}^{\mathbf{i}_{3}})$$

$$= \langle ISS(x)_{n,m}, \mathbf{i}_{1}\mathbf{i}_{2}\mathbf{i}_{3} + \frac{1}{2} [\mathbf{i}_{1}\mathbf{i}_{2}]\mathbf{i}_{3} + \frac{1}{2}\mathbf{i}_{1} [\mathbf{i}_{2}\mathbf{i}_{3}] \rangle.$$

So,

$$\langle ISS^{(2)}(x)_{n,m}, i_1 \rangle \langle ISS^{(2)}(x)_{n,m}, i_2 i_3 \rangle = \langle ISS^{(2)}(x)_{n,m}, i_1 i_2 i_3 + i_2 i_1 i_3 + i_2 i_3 i_1 - [i_1 i_2] i_3 \rangle.$$

Theorem (Diehl, Ebrahimi-Fard, T. 2020+)

We have

$$\langle \mathsf{ISS}^{(p)}(x)_{n,m}, a_1 \cdots a_\ell \rangle = \sum_{I \in C_p(\ell)} \frac{1}{i_1! \cdots i_k!} \langle \mathsf{ISS}(x)_{n,m}, I[a_1 \cdots a_\ell] \rangle.$$

Hoffmann-Ihara construction

Any invertible formal power series $f(t) = c_1t + c_2t^2 + \cdots$ induces a linear *automorphism* on $T(\mathfrak{A})$ by

$$\Phi_f(a_1\cdots a_n)\coloneqq \sum_{I\in C(n)} c_{i_1}\cdots c_{i_p} I[a_1\cdots a_n]$$

with inverse $\Phi_f^{-1} = \Phi_{f^{-1}}$.

Remark

Therefore $\Phi_H = \Phi_{\exp(t)-1}$, $\Phi_H^{-1} = \Phi_{\log(1+t)}$ and $\Phi_p := \Phi_{t+\frac{1}{2}t^2+\cdots+\frac{1}{p!}t^p}$.

Theorem (Diehl, Ebrahimi-Fard, T. 2020+)

We have

$$\langle \mathsf{ISS}^{(p)}(x)_{n,m}, a_1 \cdots a_\ell \rangle = \langle \mathsf{ISS}(x)_{n,m}, \Phi_p(a_1 \cdots a_\ell) \rangle.$$

Twisted quasi-shuffles

Definition (Diehl, Ebrahimi-Fard, T. 2020+)

For $1 \le p \le \infty$ and $u, v \in T(\mathfrak{A})$,

$$u \diamond_{\rho} v := \Phi_{\rho}^{-1}(\Phi_{\rho}(u) * \Phi_{\rho}(v)).$$

Remark

 $\diamond_1 = *$ and $\diamond_{\infty} = \sqcup$.

Theorem

The triple $H_p := (T(\mathfrak{A}), \diamond_p, \delta)$ is a commutative, non-cocommutative, graded and connected Hopf algebra. Moreover, $\Phi_p : H_p \to H$ is a Hopf isomorphism.

Corollary (Diehl, Ebrahimi-Fard, T. 2020+)

The iterated-sums signature of order p is a character over H_p .

Definition (Diehl, Ebrahimi-Fard, T. 2020+)

Given
$$f(t) = c_1 t + c_2 t^2 + \dots \in t \mathbb{R}[[t]],$$

$$\langle \mathsf{ISS}^{(f)}(x)_{n,m}, w \rangle \coloneqq \langle \mathsf{ISS}(x)_{n,m}, \Phi_f(w) \rangle$$

As before we define $u \diamond_f v = \Phi_f^{-1}(\Phi_f(u) * \Phi_f(v))$.

Theorem (Foissy, Thibon, Patras 2016)

The triple $H_f := (T(\mathfrak{A}), \diamond_f, \delta)$ is a Hopf algebra, and $\Phi_f : H_f \to H$ is a Hopf algebra isomorphism.

Remark

Foissy (2017) characterized *all* possible products on $T(\mathfrak{A})$ compatible with δ . They are given in terms of B_{∞} -algebras, of which semigroups are a special case.

Higher-order iterated sums signature (cont.)

Corollary (Diehl, Ebrahimi-Fard, T. 2020+)

The higher-order iterated sums signature associated to f is a character over H_f .

The series f also induces a map on tensor space by

$$f_{\otimes}(z) = \sum_{k=1}^{\infty} c_k z^{\otimes k}.$$

Proposition (Diehl, Ebrahimi-Fard, T. 2020+)

We have

$$ISS^{(f)}(x)_{n,m} = \overrightarrow{\prod_{n < j \le m}} \left\{ \varepsilon + f_{\otimes} \left(\sum_{a \in \mathfrak{A}} \Delta x_j^a a \right) \right\}.$$

Thanks for your attention

Questions

