Zahlentheorie, Geometrie und Physik

Holger Stephan

Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin

27. Tag der Mathematik

4. Mai 2024, TU Berlin

Übersicht 2

Worum geht es?

- ► Zahlentheorie: Das Rechnen mit ganzen oder rationalen Zahlen.
- ► Geometrie: Hier: euklidische (keine analytische) Geometrie
- Physik: In der Geometrie finden wir die physikalischen Gesetze Gerade = gleichförmige Bewegung Kreis = Rotation

Flächeninhalt = Abstand mal Geschwindigkeit

= Radius mal Umfang

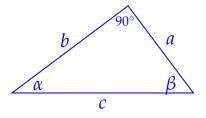
Zahlentheorie

- Am wenigsten nützlich?
- ► Gauß: Königin der Mathematik
- Typische Aufgabe: Diophantische Gleichungen. Beschränkung auf (ganze oder) rationale Zahlen.
- ▶ Probleme mit reellen Zahlen:
 - ightharpoonup Überabzählbarkeit: x = y im allgemeinen nicht berechenbar!
 - Numerik: $0 = 10^{-16}$?
- ► Vorteile von rationalen Zahlen:
 - ► Lineare Gleichungssysteme sind lösbar
 - ► Lösungen enthalten mehr Information (weniger ist mehr!)
 - ▶ Nachteil: Nullstellen von Polynomen (Wurzelziehen) geht nicht!?

Der Satz des Pythagoras

In einem rechtwinkligen Dreieck ist die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat.

$$c^2 = a^2 + b^2$$



Zahlentheorie sucht nach ganzzahligen Lösungen der Gleichung.

Verallgemeinerungen des Satzes des Pythagoras:

$$d^2 = a_1^2 + ... + a_n^2$$

Diagonale im Quader

$$\frac{1}{h^2} = \frac{1}{a_1^2} + \dots + \frac{1}{a_n^2}$$

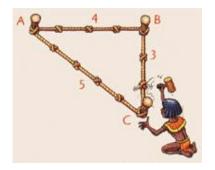
 $\frac{1}{h^2} = \frac{1}{a_1^2} + ... + \frac{1}{a_n^2}$ Höhe im rechtwinkligen Simplex

$$A^2 = A_1^2 + ... + A_n^2$$

Flächen des rechtwinkligen Simplex

Der Satz des Pythagoras in der Anwendung

Ägyptischer Ingenieur (Harpedonapt, Seilspanner) bei der Arbeit



Heute: Handwerker legen einen rechten Winkel mit drei Zollstöcken: 2.00m, 1.60m, 1.20 m

Parametrischen Lösung der diophantischen Gleichung $a^2 + b^2 = c^2$

Alle Lösungen (a, b, c) ergeben sich aus zwei Parametern u und v als

im Natürlichen

a = a b = b $c = \sqrt{a^2 + b^2}$ $a = u^2 - v^2$ b = 2uv $c = u^2 + v^2$

Probe:
$$a^2 + b^2 \stackrel{?}{=} c^2$$

im Reellen

Na und?

Bedeutung einer parametrischen Lösung

$$a^{2} + b^{2} = c^{2}$$

 $(u^{2} - v^{2})^{2} + (2uv)^{2} = (u^{2} + v^{2})^{2}$

- ▶ Ein quadratischer Ausdruck zweier Parameter u und v ergibt eine Länge $\implies u$ und v haben eine physikalische Einheit: Wurzel aus einer Länge: $[\sqrt{cm}]$
- ▶ Eine verborgene Struktur: Wenn man aus zwei Größen u und v mit der Einheit $[\sqrt{cm}]$ mit Hilfe quadratischer Ausdrücke drei Längen bildet, $a = u^2 - v^2$, b = 2uv und $c = u^2 + v^2$, dann kann man daraus ein rechtwinkliges Dreieck konstruieren.
- ▶ Jeder quadratische Ausdruck aus *u* und *v* ist eine Länge!!!
- Parameter müssen nicht ganzzahlig sein!!!

Weitere ganzzahlige Größen

Jeder quadratische Ausdruck von u und v ist eine Länge.

"Einfache quadratische Ausdrücke sind leicht zu findende Längen."

$$a = 2uv$$

$$b = u^{2} - v^{2} = (u+v)(u-v)$$

$$c = u^{2} + v^{2}$$

$$R = \frac{1}{2}(u^{2} + v^{2})$$

$$p = \frac{1}{2}(a+b+c) = u(u+v)$$

$$r = \frac{1}{2}(b+c-a)\tan\frac{\alpha}{2} = v(u-v)$$

$$S = \frac{1}{2}ab = uv(u+v)(u-v)$$

$$= pr$$

- 1. Kathete
- 2. Kathete

Hypotenuse

Umkreisradius (Satz d. Thales)

Halber Umfang

Inkreisradius

Flächeninhalt in [cm²]

Geometrie des rechtwinkligen Dreiecks

Das rechtwinklige Dreieck ⇒

- ⇒ Satz des Pythagoras
- ⇒ diophantische Gleichung
- ⇒ parametrische Lösung
- ⇒ innere Struktur im rechtwinkligen Dreieck
- ⇒ weitere Eigenschaften, Zusammenhänge

Wie geht es weiter?

Heronische Dreiecke

- ► Allgemeines Dreieck mit drei ganzzahligen Seiten?
- ▶ Berechnung des Flächeninhaltes mit Heronischer Formel:

$$S = \frac{1}{4}\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}$$

(Heron von Alexandria, vermutlich 1.Jh.n.Chr.)

► Ergibt diophantische Gleichung

$$16S^{2} = (a+b+c)(-a+b+c)(a-b+c)(a+b-c) =$$

$$= 2a^{2}b^{2} + 2b^{2}c^{2} + 2c^{2}a^{2} - a^{4} - b^{4} - c^{4}$$

Parametrische Lösung von Brahmagupta (598 – 668 n.Chr.)

$$a = n(m^{2} + k^{2})$$

$$b = m(n^{2} + k^{2})$$

$$c = (m+n)(mn - k^{2})$$

$$\Rightarrow S = mnk(m+n)(mn - k^{2})$$

Unschön?!

Gebrochene oder ganze Zahlen?

- Die Griechen kannten zwei Sorten von Zahlen: Größen und Verhältnisse.
- Streckenlängen (natürliche Zahlen mit Einheit)
 kann man nur addieren.
 Multiplikation von Längen ergibt eine neue Einheit (Fläche).
 Physikalisch: Extensive Größen
- Streckenverhältnisse (rationale Zahlen) haben keine Einheit.
 Man kann sie multiplizieren (manchmal auch addieren).
 Physikalisch: Intensive Größen
- ► Kardinalzahlen und Ordnungszahlen
 Größen und Verhältnisse
 Extensive und Intensive Größen

Winkelfunktionen ...

... sind Streckenverhältnisse und sind rational, wenn die Seitenlängen natürliche Zahlen sind.

Definition von Sinus und Cosinus

Winkel:
$$\frac{AK}{H} = \cos \alpha = \frac{b}{c}$$

 $\frac{GK}{H} = \sin \alpha = \frac{a}{c}$

► Trigonometrischer Satz des Pythagoras:

$$a^{2} + b^{2} = c^{2} \iff \frac{a^{2}}{c^{2}} + \frac{b^{2}}{c^{2}} = 1 \iff \sin^{2} \alpha + \cos^{2} \alpha = 1$$

Mathematisch äquivalente Aufgabe: Finde Winkel α derart, daß sin α und cos α rational sind.

Ganze Winkel ← Halbe Winkel

$$\sin^{2} \alpha + \cos^{2} \alpha = 1 \iff \sin^{2} \alpha = 1 - \cos^{2} \alpha = (1 + \cos \alpha)(1 - \cos \alpha)$$
$$\iff \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha} = \tan \frac{\alpha}{2}$$

In unserem Fall:

$$\sin \alpha = \frac{a}{c} = \frac{2uv}{u^2 + v^2}, \quad \cos \alpha = \frac{b}{c} = \frac{u^2 - v^2}{u^2 + v^2} \implies \tan \frac{\alpha}{2} = \frac{v}{u}$$

Umkehrung gilt auch:

$$\tan\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha} \implies \sin\alpha = \frac{2\tan\frac{\alpha}{2}}{1 + \tan^2\frac{\alpha}{2}}, \cos\alpha = \frac{1 - \tan^2\frac{\alpha}{2}}{1 + \tan^2\frac{\alpha}{2}}$$

Erkenntnis: Dreieck ist pythagoräisch \iff tan $\frac{\alpha}{2}$ ist rational.

Gute Idee (merken!): Tangens des halben Winkel ist rational.

Die Gaußsche Idee

Carl Friedrich Gauß (1777–1855):

Winkelfunktionen rational \Longrightarrow Strecken ganzzahlig Tangens vom halben Winkel rational \Longrightarrow Winkelfunktionen rational

Sinussatz:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$
 (2×Umkreisradius)

$$\sin \alpha = \frac{a}{2R}$$
, $\sin \beta = \frac{b}{2R}$, $\sin \gamma = \frac{c}{2R}$

Ansatz:
$$\tan \frac{\alpha}{2} = \frac{v}{u}$$
, $\tan \frac{\beta}{2} = \frac{s}{t}$,

Ist auch tan $\frac{\gamma}{2}$ rational? (Es gilt stets: $\alpha + \beta + \gamma = 180^{\circ}$)

$$\tan\frac{\gamma}{2} = \tan\frac{180^{\circ} - \alpha - \beta}{2} = \dots = \frac{su - tv}{tu + sv}$$

Wann sind die Seiten ganzzahlig?

Wenn der Tangens von allen halben Winkeln rational ist, dann sind auch die Sinuswerte der Winkel rational.

$$\tan \frac{\alpha}{2} = \frac{v}{u}$$
, $\tan \frac{\beta}{2} = \frac{s}{t}$, $\tan \frac{\gamma}{2} = \frac{su - tv}{tu + sv}$

$$\sin \alpha = \frac{2uv}{u^2 + v^2}, \ \sin \beta = \frac{2st}{s^2 + t^2}, \ \sin \gamma = \frac{2(tu + sv)(su - tv)}{(s^2 + t^2)(u^2 + v^2)}$$

Sinussatz:
$$\sin \alpha = \frac{a}{2R}$$
, $\sin \beta = \frac{b}{2R}$, $\sin \gamma = \frac{c}{2R}$

⇒ Die Seiten sind ganzzahlig wenn Umkreisradius = Hauptnenner

$$4R = (s^2 + t^2)(u^2 + v^2)$$

Die Gaußsche parametrische Lösung

$$a = 2R \sin \alpha$$
, $b = 2R \sin \beta$, $c = 2R \sin \gamma$, $4R = (s^2 + t^2)(u^2 + v^2)$

$$\sin \alpha = \frac{2uv}{u^2 + v^2}, \ \sin \beta = \frac{2st}{s^2 + t^2}, \ \sin \gamma = \frac{2(tu + sv)(su - tv)}{(s^2 + t^2)(u^2 + v^2)}$$

$$a = uv(s^2 + t^2)$$

$$b = st(u^2 + v^2)$$

$$c = (tu + sv)(su - tv)$$

Ist auch der Flächeninhalt ganzzahlig?

$$S = \frac{1}{4}\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}$$

Heronische Formel

$$S^{2} = \frac{a+b+c}{2} \cdot \frac{-a+b+c}{2} \cdot \frac{a-b+c}{2} \cdot \frac{a+b-c}{2} =$$

$$= p \cdot p_{A} \cdot p_{B} \cdot p_{C} \cdot \frac{a+b-c}{2} =$$

$$a = uv(s^{2} + t^{2}), b = st(u^{2} + v^{2}), c = (tu + sv)(su - tv)$$

$$p = su(tu + sv)$$

$$p_{A} = tu(su - tv)$$

$$p_{B} = sv(su - tv)$$

$$p_{C} = tv(tu + sv)$$

$$S = \sqrt{p \cdot p_{A} \cdot p_{B} \cdot p_{C}} =$$

$$= \sqrt{(stuv)^{2}(tu + sv)^{2}(su - tv)^{2}} = stuv(tu + sv)(su - tv)$$

Der Flächeninhalt ist ganzzahlig.

Interessante Größen im Dreieck \dots

r – Radius des Inkreises r_A , r_B , r_C – Radii des Ankreises p – halber Umfang p_A , p_B , p_C – Seitenabschnitte $p_C = \frac{a+b-c}{2}$ p_B r_A r_A p_C B p_C A_B p_A p_B

... und ihre Längen

$$a = uv(s^{2} + t^{2})$$

$$b = st(u^{2} + v^{2})$$

$$c = (tu + sv)(su - tv)$$

$$4R = (s^{2} + t^{2})(u^{2} + v^{2})$$

$$S = stuv(tu + sv)(su - tv)$$

$$p = su(tu + sv)$$

$$p_{A} = tu(su - tv)$$

$$p_{B} = sv(su - tv)$$

$$p_{C} = tv(tu + sv)$$

- ► Parametrisierung mit vier Parametern *u*, *v*, *s*, *t*.
- Einheiten: s, t = [A], u, v = [B],Länge = $[A^2B^2]$ Jede neu gefundene Länge muß die Einheit $[A^2B^2]$ haben.

Weitere Produkte für den Flächeninhalt

Flächeninhalt S setzt sich aus Produkten zusammen, z.B.

$$S = stuv(tu + sv)(su - tv) = \left(su(tu + sv)\right) \left(tv(su - tv)\right) \left(tu(su - tv)\right) \left(su(su - tv)\right)$$

$$S = pr = p_A r_A = p_B r_B = p_C r_C$$

$$p = su(tu + sv) \implies r = tv(su - tv)$$

 $p_A = tu(su - tv) \implies r_A = sv(tu + sv)$
 $p_B = sv(su - tv) \implies r_B = tu(tu + sv)$
 $p_C = tv(tu + sv) \implies r_C = su(su - tv)$

Herleitung von Formeln

$$r_A + r_B + r_C - r = s^2 u^2 + t^2 v^2 + s^2 v^2 + t^2 u^2 = (s^2 + t^2)(u^2 + v^2) = 4R$$

$$r_A + r_B + r_C = 4R + r$$

Geometrisch schwer zu beweisen, aber jetzt sehr einfach:

Weitere Formeln (h sind die Höhen):

$$\frac{1}{r} = \frac{1}{r_A} + \frac{1}{r_B} + \frac{1}{r_C} = \frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}$$

Summe inverser extensiver Größen? Kennen wir doch irgendwoher?

Parallel geschaltete Widerstände:
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
Badewannenaufgabe:
$$\frac{1}{T} = \frac{1}{T_1} + \frac{1}{T_2} + \frac{1}{T_3}$$

Weitere Zusammenhänge

► Heronische Gleichung

$$16S^{2} = (a+b+c)(-a+b+c)(a-b+c)(a+b-c) =$$

$$= 2a^{2}b^{2} + 2b^{2}c^{2} + 2c^{2}a^{2} - a^{4} - b^{4} - c^{4}$$

Physikalische Aufgabe:

Beschreibe die zyklische Durchmischung zwischen drei Töpfen.

Wenn die Mischungsraten a^2 , b^2 und c^2 sind, dann entstehen (gedämpfte) Oszillationen mit der Frequenz S (Imaginärteil der entsprechenden Eigenwerte).

Was stört die Ästhetik?

► Asymmetrie in den Winkeln:

$$\tan \frac{\alpha}{2} = \frac{v}{u}$$
, $\tan \frac{\beta}{2} = \frac{s}{t}$, $\tan \frac{\gamma}{2} = \frac{su - tv}{tu + sv}$

► Asymmetrie in den Seiten:

$$a = uv(s^2 + t^2), b = st(u^2 + v^2), c = (tu + sv)(su - tv)$$

 $S = stuv(tu + sv)(su - tv)$

▶ Besser sieht folgende Parametrisierung von Winkel aus:

$$\tan \frac{\psi}{2} = \frac{v}{u}$$
, $\tan \frac{\theta}{2} = \frac{t}{s}$, $\tan \frac{\varphi}{2} = \frac{y}{x}$

... und der Flächeninhalt sei S = stuvxy

Wir suchen jetzt das geometrische Objekt und die dazugehörenden Gleichung zur gegebenen Parametrisierung.

Eine symmetrische Parametrisierung

► Parametrisierung der Winkel:

$$\tan \frac{\psi}{2} = \frac{v}{u}$$
, $\tan \frac{\theta}{2} = \frac{t}{s}$, $\tan \frac{\varphi}{2} = \frac{y}{x}$

Flächeninhalt: S = stuvxy

- ▶ Einheit von u, v sei [A], von t, s sei [B] von y, x sei [C].
- ▶ Einheit des Flächeninhaltes: $[A^2B^2C^2]$
- ► Einheit einer Länge: [ABC]
- Es gibt 8 Möglichkeiten, aus u, v, t, s, y, x Längen zu bilden:

$$S = p_a \cdot r_a = p_b \cdot r_b = p_c \cdot r_c = p_d \cdot r_d = \sqrt{p_a \cdot p_b \cdot p_c \cdot p_d}$$

Heronische Formel im Sehnenviereck

Im Dreieck:

$$16S^{2} = (-a+b+c)(a-b+c)(a+b-c)(a+b+c) =$$

$$= 2p_{A} \cdot 2p_{B} \cdot 2p_{C} \cdot 2p =$$

$$= 2a^{2}b^{2} + 2b^{2}c^{2} + 2c^{2}a^{2} - a^{4} - b^{4} - c^{4}$$

Im Sehnenviereck:

$$16S^{2} = (-a+b+c+d)(a-b+c+d)(a+b-c+d)(a+b+c-d) =$$

$$= 2p_{a} \cdot 2p_{b} \cdot 2p_{c} \cdot 2p_{d}$$

$$= 2a^{2}b^{2} + 2a^{2}c^{2} + 2b^{2}c^{2} + 2a^{2}d^{2} + 2b^{2}d^{2} + 2c^{2}d^{2} +$$

$$+ 8abcd - a^{4} - b^{4} - c^{4} - d^{4}$$

Parametrische Lösung einer diophantischen Gleichung

$$p_a = tvy$$
, $p_b = svx$, $p_c = tux$, $p_d = suy$

$$p_a = \frac{1}{2}(-a+b+c+d)$$

$$p_b = \frac{1}{2}(+a-b+c+d)$$

$$p_c = \frac{1}{2}(+a+b-c+d)$$

$$p_d = \frac{1}{2}(+a+b+c-d)$$

$$a = \frac{1}{2}(-p_a + p_b + p_c + p_d) = \frac{1}{2}(-tvy + svx + tux + suy)$$

$$b = \frac{1}{2}(+p_a - p_b + p_c + p_d) = \frac{1}{2}(+tvy - svx + tux + suy)$$

$$c = \frac{1}{2}(+p_a + p_b - p_c + p_d) = \frac{1}{2}(+tvy + svx - tux + suy)$$

$$d = \frac{1}{2}(+p_a + p_b + p_c - p_d) = \frac{1}{2}(+tvy + svx + tux - suy)$$

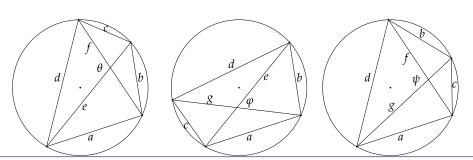
 $16S^{2} = (-a+b+c+d)(a-b+c+d)(a+b-c+d)(a+b+c-d)$

Probe klappt!

Was sind ψ , θ , φ für Winkel im Sehnenviereck?

$$\tan \frac{\psi}{2} = \frac{v}{u}$$
, $\tan \frac{\theta}{2} = \frac{t}{s}$, $\tan \frac{\varphi}{2} = \frac{y}{x}$

Aus vier Strecken a,b,c,d kann man drei nichtkongruente Sehnenvierecke mit gleichem Flächeninhalt bilden. Jedes dieser drei Sehnenvierecke besitzt zwei von drei Diagonalen e,f,g, die sich unter einem der Winkel φ,θ,ψ schneiden.



Weitere ganzzahlige Längen?

- ► Sind auch die Diagonalen ganzzahlig? ... und der Umkreisradius?
- ➤ Satz des Ptolemäus in drei Sehnenvierecken: (Claudius Ptolemäus, der Astronom, etwa 100 – 160 n.Chr.)

$$ef = ac + bd = uvxy(s^{2} + t^{2})$$

$$eg = ad + bc = stuv(x^{2} + y^{2})$$

$$fg = ab + cd = stxy(u^{2} + v^{2})$$

$$e^{2} = \frac{ef \cdot eg}{fg} = \frac{(ac + bd)(ad + bc)}{ab + cd} = u^{2}v^{2}\frac{(s^{2} + t^{2})(x^{2} + y^{2})}{(u^{2} + v^{2})}$$

$$4R = \frac{S}{efg} = \sqrt{(s^{2} + t^{2})(u^{2} + v^{2})(x^{2} + y^{2})}$$

➤ Satz: Diagonalen sind ganzzahlig genau dann, wenn es auch der Umkreisradius ist!

Zusammenfassung

- ► Euklidische Geometrie und physikalische Fragestellungen führen auf Gleichungen ...
- ... die man im Bereich der rationalen Zahlen betrachten kann.
- Ihre parametrische Lösung offenbart eine tieferliegende Struktur. Es ist genau die Struktur, die zum betreffenden Objekt gehört.
- Weitere, bisher unbekannte Erkenntnisse, können gewonnen werden.
- Man sieht, in welche Richtung eine Verallgemeinerung gehen sollte.
- ⇒ Kenntnisse der euklidische Geometrie und der Bruchrechnung sind sinnvoll.

