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15 Mathematische Grundlagen:
Lebesguerdume. Allgemeine Hilbertriaume

15.1 Lebesgueridume

Ist ein Mafl ausgezeichnet, kann man Lebesguerdume iiber diesem Mafl betrachten.
Es sei p € P fixiert, dann hat fiir alle g, f € € der Ausdruck

(F9) = 9.0 = [ FEand2)
2
einen Sinn. Dank der Holderungleichung (siehe Abschnitt ?7?) gilt fiir ein reelles 7 mit 1 < r < oo

[CF - g < 17 I )

mit % + % = 1. Diese Ungleichung 148t sich als abstrakte Holderungleichung zweier zueiender
dualer Rdume interpretieren, wenn der Ausdruck

o= ([ |f<z>|m<dz>>i = (Ifr )"

eine Norm definiert. Die Konvexitéit folgt aus der Minkowski-Ungleichung (siehe Abschnitt 77),
die absolute Homogenitét ist offensichtlich. Die Definitheit gilt nicht ohne weitere Vorausset-
zungen an 4 etwa in der Art u(U) > 0 fur alle U € O. Ohne diese Voraussetzung miissen wir
anstelle des gesamten Raumes den Faktorraum beziiglich aller Funktionen f, fiir die (|f]", )
denselbem Wert annimmt, betrachten.

Definition: Wir bezeichnen mit L,(u) den Abschlu8 der stetigen Funktion unter der Norm
| £l Lr(p) ist damit ein Banachraum und es gilt € C L, ().

Bemerkung: Wir definieren also den L, () nicht als Abschlufl einfacher Funktionen oder als
Aquivalenzklassen von Funktionen, die sich nur auf Mengen vom Maf$ 0 unterscheiden, sondern
als Grenzwerte von Folgen stetiger Funktionen in der L,-Norm, genauer: Als Aquivalenzklassen
solcher Folgen mit demselben Grenzwert. Das entspricht der Definition der reellen Zahlen als
Grenzwerte von Folgen rationaler Zahlen.

Wir bezeichnen den Banach-Raum, der durch die Vervollstindigung der genannten Faktorrau-
mes von € in dieser Norm entsteht als L, (u)-Raum (Lebesgueraum). Der Raum L, (u) ist also
automatisch ein Banach-Raum und € ist in ihm dicht beziiglich der L,-Norm.

Der zu L, duale Raum ist der L,.. Die Rdume L, sind damit reflexiv und eher “schiefe, asym-
metrische Hilbertraume” als allgemineBanachrdume. Die duale Paarung zwischen L, (u)- und
L,.(p)-Réumen bezeichnen wir mit runden Klammern und dem Index p.

Die Elemente eines solchen Raumes werden iiblicherweise als punktweise (modulo Mengen vom
pu-MaB 0) gegebene Funktionen interpretiert. Es ist konsistenter, sich die Elemente in L, (u)-
Réumen als Grenzwerte von Folgen stetiger Funktionen beziiglich dieser Norm vorzustellen. In
diesem Sinn ist nicht klar, ob sich die Grenzwerte auch als Funktionen auf Z betrachten lassen.
Streng genommen sind die Funktionen nur in solchen Punkten z definiert, fir die u({z}) # 0
gilt. Ublicherweise werden die Elemente in L, ()-Réumen deshalb als “Klassen von Funktionen”
bezeichnet, deren Vertreter — bis auf Werte auf Mengen vom Mafi = 0 — iibereinstimmen. In
diesem Sinn ist nicht ganz klar, was denn L, (x) N € ist. Fiir uns sind stetige Funktionen aus
L, (1) solche, die Grenzwerte konstanter Folgen stetiger Funktionen sind.

11l == Ml = 1]
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Diese Vorstellung entspricht der, die man sich von den reellen Zahlen als Grenzwerte von Folgen
rationaler Zahlen macht. Diese Grenzwerte kann man sich natiirlich nicht mehr als “rationale
Zahlen” vorstellen. Sie benétigen ein vollig andere Darstellung. Unter den Folgen rationaler
Zahlen gibt es natiirlich auch solche, die gegen rationale Zahlen konvergieren, z.B. konstante
Folgen.

Fiir r = 2 ist Ly(u) ein Hilbertraum. Das entsprechende Skalarprodukt ist

(o) = f - g p) == (£ Qua) = (9. Quf) = / erents

Diese Skalarprodukt léfit sich in € definieren. Dort ist es eine allgemeine Biliniearform. Es
macht € aber nicht zu einem Hilbertraum, weil 1) die Norm in € nicht zu dieser Biliniearform
pafit und 2) diese Biliniearform auf ganz € im allgemeinen nicht definit ist. Nur in Ly ist (-, ),
nach der genannten Faktorisierung ein echtes Skalarprodukt.

Es gelten folgende Eigenschaften:

Fiir stetige f gilt || f]|» < || f]le. Das folgt aus der Ungleichung

LA = (17, 1) < supeeq [ ()] (T, ) = (supaez [£(2)])" -1 = [IfIle

Konvergente Folgen in € konvergieren auch in L, (u)
e Eine dichte Menge in € ist auch dicht in L, (u).
e Die Fortsetzung eines in € dicht definierten Operators ist auch in L, (u) dicht definiert.

e Zwei Raume L, (1) C L,,(u) sind ineinader eingebettet gdw. r < 5. Beweise!

Der Ubergang von € zu einem Lebesgueraum kann sinnvoll sein. Dazu muB es einen Grund
geben, ein besonderes Mafl p auszuzeichnen. Der Grund kann bereits im Zustandsraum Z
liegen. Es kann sein, dafl dieser Raum naturgeméf eine weitere Struktur hat. Er kénnte z.B.
eine kompakte Gruppe sein. Dann gibt es ein ausgezeichnetes Mafl, das Haarsche Mafl der
Gruppe Z. In diesem Fall ist es sinnvoll, die Aufgabe in L,(u) zu betrachten. Ein typisches
Beispiel ist das Lebesguemafl A. Es ist das Haarsche Maf§ im Euklidischen Raum, betrachtet als
additiven Gruppe (Verschiebungsgruppe). Diese Gruppe ist zwar nicht kompakt, weswegen das
Haarsche Mafl nicht eindeutig definiert ist. Das Lebesguemaf ist aber modulo eines konstanten
Faktors das einzige verschiebungsinvariante Mafl im Euklidischen Raum. Daher ist es sinnvoll,
Aufgaben im Euklidischen Raum in L, () zu betrachten.

Ist Z ein kompaktes Gebiet im Euklidischen Raum ohne Gruppenstruktur (was der typische
Fall ist), gibt es keinen Grund, eine Aufgaben in L, (\) zu betrachten. Macht man es trotzdem,
fithrt das zu Inkompaktibilitdten am Rand von Z.

Ein weiterer sinnvoller Grund, eine Aufgabe in einem L,(u) zu betrachten, kann mit der kon-
kreten Aufgabe zusammenhingen, z.B. mit einem gegebenen Operator (Zustandsdnderung).
Man kann die in € definierten Operatoren jetzt nach Lo(u) erweitern. Frage: Welcher Lo(u)
ist fiir einen gegebenen Operator besonders gut geeignet? Natiirlich der, indem der Operator
besonders gute Eigenschaften hat. Was sind besonders gute Eigenschaften:

e Beschréinktheit, bzw, besonders kleine Norm. Wenn der Operator z.B. kontraktiv ist
(Norm kleiner gleich 1), dann kann man ihn mehrfach anwenden. Wenn das nicht der
Fall ist, besteht die Gefahr, dal das mehrfache Anwenden aus dem Raum herausfiihrt.
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e Abgeleitete Operatoren — etwa adjungierte — sollten wieder bekannten Klassen von Ope-
ratoren angehoren (z.B. sollten wieder Markowoperatoren sein).

e Symmetrie (Selbstadjungiertheit). Symmetrische Operatoren lassen sich diagonalisieren,
haben ein reelles Spektrum, mit ihnen kann man gut rechnen.

e Falls Symmetrie prinzipiell nicht moglich ist (weil das Spektrum nicht reell ist), sollte der
Operator wenigstens normal sein. Ein Operator ist normal, wenn er mit seinem adjun-
gierten kommutiert.

Es stellt sich heraus, daff der richtige Raum der iiber dem stationidren Maf ist. Auf diese Idee
kann man folgendermaflen kommen:

Wir betrachten eine Trajektorie p(t) fir 0 < ¢t < oo und nehmen an, dafl sie gegen einen
Gleichgewichtszustand p(co) konvergiert. Weiter nehmen wir an, daf p(¢) eine Dichte h(t)
beziiglich eines gegebenen Mafles i hat.

Frage: Wann (fiir welches p) liegt die Trajektorie der Dichte — oder wenigstens ein grofier Teil
—in Lo(p)? Es ist klar, dal h(oo) in Lo(u) liegt, wenn u das stationdre Maf ist, denn dann ist
h(co) = 1 und das liegt iiberall. Wenn die Dichte im Gleichgewicht in Lo(p) liegt, dann liegt
sie vielleicht auch kurz davon drin oder sogar insgesamt, wenn p,y entsprechend gewéhlt wurde.

15.1.1 Allgemeine Lebesguerdume

Es sei Q : € — C* ein beliebiger positiv definiter Operator (also einer mit (g, Qg) > 0 und
((9,Qg) =0 <= ¢ =0)), dann definiert (g, f) = (g, Qg) ein Skalarprodukt und (g, Qg)'/?
eine Norm. Die Vervollstandigung von € in dieser Norm liefert einen Lo(Q), der sich genauso
behandeln 148t wie Lo(p) und in dem analoge Sétze gelten.

Es sei ein beschrankter linearer Operator Q : € — €* mit folgenden Eigenschaften gegebenen:

e (f.Qg) =(9,Qf),
® (9,Qg) >0 und ((9,Qg) =0 < g=0.

o QI =y

15.1.2 Markowoperatoren in L,

C ist dicht in L,(u). Dann ist es sinnvoll zu fragen, ob man beschriankte Operatoren in € nach
L, (1) beschrankt fortsetzen kann. Das ist ohne weiteres nicht moglich. Zum Beispiel 1a8t sich
der Projektor P, der fiir ein gegebenes zy € Z als (Pg)(z) = g(20)1 wirkt, nur fortsetzen, wenn
p({z0}) > 0.

Allerdings lassen sich Markowoperatoren, mit stationdrem Mafl p nach L, (u) fortsetzen. Es gilt
folgender

Satz: Die Erweiterung L von M in L, (u) ist — falls M*u = p — ein beschréankter Operator mit
Norm = 1 (er ist also kontraktiv).

Satz: Die bekannte Kontraktivitét von Markowoperatoren in € gilt auch fiir die L, (p)-Norm,
falls M*p = p.

Beweis: Das folgt aus der Karamata-Ungleichung (54) mit p = p und der konvexen Funktion
F(z) = |z|". Es sei g € €, dann gilt

Mgz, = (IMgl", 1) < Mlg[", 1) = {g|", M) = (|g]", 1) = llgll2,
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Aus L1 = M1 = 1 und ||1||,, = 1 folgt die Gleichheit. Das ergibt die gesuchte Gleichheit

1 N
Mgz, = (Mg, )» = (|g|", )" = llg]|L. O (76)

Wie bekannt lassen sich beschrinkte Operatoren mit der selben Norm fortsetzen. Es gilt also

L[|z, = Mg, = [M][e =1

15.1.3 Der Raum Ls(p)

Von besonderer Bedeutung ist der (reelle) Hilberraum Lo(p). Das Skalarprodukt in diesem
Raum ist

@ D= (00 = F - 9ot} = (£, Qug) = (9. Quf) = /Z F(2)g(2)uldz)

Die Fortsetzung eines Markowoperators M in Ly(u) ist kontraktiv. Das folgt aus der Unglei-
chung (??) mit der speziellen konvexen Funktion F(z) = z2. Es gilt

IMgllZ, = (Mg)*, ) < (M¢?, 1) = (¢*. M) = (¢, 1) = |l9lI2,
Damit ist bewiesen, daf§ die Fortsetzung eines Markowoperators M in Ls(p) die Norm 1 hat
(weil neben der Ungleichung auch noch M1 = 1 und ||1]|z, = 1 gilt.
15.1.4 Operatoren in Ly(x) und ihre adjungierten

Es sei M : € — € ein Markowoperator und L seine Fortsetzung in Ls(u). Als Operator im
Hilberraum koénnen wir seinen adjungierten Operator L* betrachten. Er ist durch die Gleichung

(Lf.g)u= (£, L9, f.g9 € La(p)

definiert. Es seien f, g € C. Fiir die linke Seite gilt dann

(Lf,g)u="(g-Mf,u), f,geC

Angenommen, auch L* ist die Fortsetzung eines beschrankten Operators M, : € — C, dann ist
L*g = M, g (im allgemeinen ist nicht klar, ob L*g € € fiir g € €) und auch das Skalarprodukt
auf der rechten Seite 148t sich als duale Paarung schreiben. Es gilt dann

(Lf,g)y= (g -Mf, ) =(f -Myg,p) = (f,.Lg),, f,g€C

Sollte L = L* gelten, dann ist die Existenz eines entsprechenden M, klar, es gilt M, =
M. Dieser Fall, dafl die Fortsetzung eines Markowoperators in einen Lo ein selbstadjungierter
Operator ist, ist ein besonderer Fall, was aus folgendem Satz klar wird:

Satz: Die Fortsetzung eines Markowoperators M in einen Ly(pu) sei selbstadjungiert, dann ist
das Maf}, das den Lo-Raum gebildet hat, ein stationdres Mafl von M*.

Beweis: Die Fortsetzung von M sei L. Da L = L*, gilt

<ng7:u>:<fMgau>7 fvgee

Wir setzen f = 1. Das ergibt

(9,1) = (Mg, ) = (9, M), g € €
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Aus der Beliebigkeit von g folgt M*u = p. O
Bemerkungen: Unter allen Operatoren in einem Hilbertraum spielen die selbstadjungierten
eine besondere Rolle. Sie haben z.B. reelles Spektrum und lassen sich diagonalisieren. Diese
besondere Eigenschaft erlangen Markowoperatoren also nur dann, wenn man sie in einem Lo
iiber dem stationdren Maf} betrachtet. In allen anderen Lo-Réumen ist das nicht der Fall. Wenn
man also ein Problem in einem Lo-Raum betrachten will, mufl der richtige gewéhlt werden,
namlich der iiber einem stationdren Maf.

Es ist klar, dafl ein Operator, der in € kein rein reelles Spektrum hat, in keinem Ly-Raum
selbstadjungiert sein kann. Auch in diesem Fall, ist es sinnvoll den L,-Raum iiber einem sta-
tiondren Mafl zu wéhlen. Der Operator kann sich dann als normal (kommutiert mit seinem
adjungierten) herausstellen.

Nicht jeder Operator mit rein reellem Spektrum ist selbstadjungiert in Ly(p). Man kann sogar
diagonalisierbare Matrizen finden, die diese Eigenschaft nicht haben.

Der Fall, dafl die Fortsetzung eines Markowoperators im Ly iiber einem seiner stationdren Mafe
selbstadjungiert ist, wird detailierte Balance genannt und spielt eine wichtige Rolle in der
Theorie der Markowprozesse und ihren physikalischen Anwendungen. Oft wird gerade dieser
Fall behandelt, da sich hier relativ einfach Aussagen erzielen lassen.
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