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15 Mathematische Grundlagen:

Lebesgueräume. Allgemeine Hilberträume

15.1 Lebesgueräume

Ist ein Maß ausgezeichnet, kann man Lebesgueräume über diesem Maß betrachten.
Es sei µ ∈ P fixiert, dann hat für alle g, f ∈ C der Ausdruck

(f, g)µ = 〈f · g, µ〉 =

∫

Z

f(z)g(z)µ(dz)

einen Sinn. Dank der Hölderungleichung (siehe Abschnitt ??) gilt für ein reelles r mit 1 < r <∞

|〈f · g, µ〉| ≤ 〈|f |r, µ〉1/r〈|f |r
′

, µ〉1/r
′

mit 1
r
+ 1

r′
= 1. Diese Ungleichung läßt sich als abstrakte Hölderungleichung zweier zueiender

dualer Räume interpretieren, wenn der Ausdruck

‖f‖r := ‖f‖Lr
:= ‖f‖Lr(µ) :=

(
∫

Z

|f(z)|rµ(dz)

)
1

r

=
〈

|f |r, µ
〉

1

r

eine Norm definiert. Die Konvexität folgt aus der Minkowski-Ungleichung (siehe Abschnitt ??),
die absolute Homogenität ist offensichtlich. Die Definitheit gilt nicht ohne weitere Vorausset-
zungen an µ etwa in der Art µ(U) > 0 für alle U ∈ O. Ohne diese Voraussetzung müssen wir
anstelle des gesamten Raumes den Faktorraum bezüglich aller Funktionen f , für die 〈|f |r, µ〉
denselbem Wert annimmt, betrachten.
Definition: Wir bezeichnen mit Lr(µ) den Abschluß der stetigen Funktion unter der Norm
‖f‖r. Lr(µ) ist damit ein Banachraum und es gilt C ⊂ Lr(µ).
Bemerkung: Wir definieren also den Lr(µ) nicht als Abschluß einfacher Funktionen oder als
Äquivalenzklassen von Funktionen, die sich nur auf Mengen vom Maß 0 unterscheiden, sondern
als Grenzwerte von Folgen stetiger Funktionen in der Lr-Norm, genauer: Als Äquivalenzklassen
solcher Folgen mit demselben Grenzwert. Das entspricht der Definition der reellen Zahlen als
Grenzwerte von Folgen rationaler Zahlen.
Wir bezeichnen den Banach-Raum, der durch die Vervollständigung der genannten Faktorrau-
mes von C in dieser Norm entsteht als Lr(µ)-Raum (Lebesgueraum). Der Raum Lr(µ) ist also
automatisch ein Banach-Raum und C ist in ihm dicht bezüglich der Lr-Norm.
Der zu Lr duale Raum ist der Lr′ . Die Räume Lr sind damit reflexiv und eher “schiefe, asym-
metrische Hilberträume” als allgemineBanachräume. Die duale Paarung zwischen Lr(µ)- und
Lr′(µ)-Räumen bezeichnen wir mit runden Klammern und dem Index µ.
Die Elemente eines solchen Raumes werden üblicherweise als punktweise (modulo Mengen vom
µ-Maß 0) gegebene Funktionen interpretiert. Es ist konsistenter, sich die Elemente in Lr(µ)-
Räumen als Grenzwerte von Folgen stetiger Funktionen bezüglich dieser Norm vorzustellen. In
diesem Sinn ist nicht klar, ob sich die Grenzwerte auch als Funktionen auf Z betrachten lassen.
Streng genommen sind die Funktionen nur in solchen Punkten z definiert, für die µ({z}) 6= 0
gilt. Üblicherweise werden die Elemente in Lr(µ)-Räumen deshalb als “Klassen von Funktionen”
bezeichnet, deren Vertreter – bis auf Werte auf Mengen vom Maß = 0 – übereinstimmen. In
diesem Sinn ist nicht ganz klar, was denn Lr(µ) ∩ C ist. Für uns sind stetige Funktionen aus
Lr(µ) solche, die Grenzwerte konstanter Folgen stetiger Funktionen sind.
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Diese Vorstellung entspricht der, die man sich von den reellen Zahlen als Grenzwerte von Folgen
rationaler Zahlen macht. Diese Grenzwerte kann man sich natürlich nicht mehr als “rationale
Zahlen” vorstellen. Sie benötigen ein völlig andere Darstellung. Unter den Folgen rationaler
Zahlen gibt es natürlich auch solche, die gegen rationale Zahlen konvergieren, z.B. konstante
Folgen.
Für r = 2 ist L2(µ) ein Hilbertraum. Das entsprechende Skalarprodukt ist

(f, g)µ = 〈f · g, µ〉 == 〈f,Qµg〉 = 〈g,Qµf〉 =

∫

Z

f(z)g(z)µ(dz)

Diese Skalarprodukt läßt sich in C definieren. Dort ist es eine allgemeine Biliniearform. Es
macht C aber nicht zu einem Hilbertraum, weil 1) die Norm in C nicht zu dieser Biliniearform
paßt und 2) diese Biliniearform auf ganz C im allgemeinen nicht definit ist. Nur in L2 ist (·, ·)µ
nach der genannten Faktorisierung ein echtes Skalarprodukt.
Es gelten folgende Eigenschaften:

• Für stetige f gilt ‖f‖r ≤ ‖f‖C. Das folgt aus der Ungleichung

‖f‖rr = 〈|f |
r, µ〉 ≤ supz∈Z |f(z)|

r〈✶, µ〉 =
(

supz∈Z |f(z)|
)r
· 1 = ‖f‖r

C

• Konvergente Folgen in C konvergieren auch in Lr(µ)

• Eine dichte Menge in C ist auch dicht in Lr(µ).

• Die Fortsetzung eines in C dicht definierten Operators ist auch in Lr1(µ) dicht definiert.

• Zwei Räume Lr1(µ) ⊂ Lr2(µ) sind ineinader eingebettet gdw. r1 ≤ r2. Beweise!

Der Übergang von C zu einem Lebesgueraum kann sinnvoll sein. Dazu muß es einen Grund
geben, ein besonderes Maß µ auszuzeichnen. Der Grund kann bereits im Zustandsraum Z

liegen. Es kann sein, daß dieser Raum naturgemäß eine weitere Struktur hat. Er könnte z.B.
eine kompakte Gruppe sein. Dann gibt es ein ausgezeichnetes Maß, das Haarsche Maß der
Gruppe Z. In diesem Fall ist es sinnvoll, die Aufgabe in Lr(µ) zu betrachten. Ein typisches
Beispiel ist das Lebesguemaß λ. Es ist das Haarsche Maß im Euklidischen Raum, betrachtet als
additiven Gruppe (Verschiebungsgruppe). Diese Gruppe ist zwar nicht kompakt, weswegen das
Haarsche Maß nicht eindeutig definiert ist. Das Lebesguemaß ist aber modulo eines konstanten
Faktors das einzige verschiebungsinvariante Maß im Euklidischen Raum. Daher ist es sinnvoll,
Aufgaben im Euklidischen Raum in Lr(λ) zu betrachten.
Ist Z ein kompaktes Gebiet im Euklidischen Raum ohne Gruppenstruktur (was der typische
Fall ist), gibt es keinen Grund, eine Aufgaben in Lr(λ) zu betrachten. Macht man es trotzdem,
führt das zu Inkompaktibilitäten am Rand von Z.
Ein weiterer sinnvoller Grund, eine Aufgabe in einem Lr(µ) zu betrachten, kann mit der kon-
kreten Aufgabe zusammenhängen, z.B. mit einem gegebenen Operator (Zustandsänderung).
Man kann die in C definierten Operatoren jetzt nach L2(µ) erweitern. Frage: Welcher L2(µ)
ist für einen gegebenen Operator besonders gut geeignet? Natürlich der, indem der Operator
besonders gute Eigenschaften hat. Was sind besonders gute Eigenschaften:

• Beschränktheit, bzw, besonders kleine Norm. Wenn der Operator z.B. kontraktiv ist
(Norm kleiner gleich 1), dann kann man ihn mehrfach anwenden. Wenn das nicht der
Fall ist, besteht die Gefahr, daß das mehrfache Anwenden aus dem Raum herausführt.
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• Abgeleitete Operatoren – etwa adjungierte – sollten wieder bekannten Klassen von Ope-
ratoren angehören (z.B. sollten wieder Markowoperatoren sein).

• Symmetrie (Selbstadjungiertheit). Symmetrische Operatoren lassen sich diagonalisieren,
haben ein reelles Spektrum, mit ihnen kann man gut rechnen.

• Falls Symmetrie prinzipiell nicht möglich ist (weil das Spektrum nicht reell ist), sollte der
Operator wenigstens normal sein. Ein Operator ist normal, wenn er mit seinem adjun-
gierten kommutiert.

Es stellt sich heraus, daß der richtige Raum der über dem stationären Maß ist. Auf diese Idee
kann man folgendermaßen kommen:
Wir betrachten eine Trajektorie p(t) für 0 ≤ t ≤ ∞ und nehmen an, daß sie gegen einen
Gleichgewichtszustand p(∞) konvergiert. Weiter nehmen wir an, daß p(t) eine Dichte h(t)
bezüglich eines gegebenen Maßes µ hat.
Frage: Wann (für welches µ) liegt die Trajektorie der Dichte – oder wenigstens ein großer Teil
– in L2(µ)? Es ist klar, daß h(∞) in L2(µ) liegt, wenn µ das stationäre Maß ist, denn dann ist
h(∞) = ✶ und das liegt überall. Wenn die Dichte im Gleichgewicht in L2(µ) liegt, dann liegt
sie vielleicht auch kurz davon drin oder sogar insgesamt, wenn p0 entsprechend gewählt wurde.

15.1.1 Allgemeine Lebesgueräume

Es sei Q : C−→ C∗ ein beliebiger positiv definiter Operator (also einer mit 〈g,Qg〉 ≥ 0 und
(〈g,Qg〉 = 0 ⇐⇒ g = 0)), dann definiert (g, f) = 〈g,Qg〉 ein Skalarprodukt und 〈g,Qg〉1/2

eine Norm. Die Vervollständigung von C in dieser Norm liefert einen L2(Q), der sich genauso
behandeln läßt wie L2(µ) und in dem analoge Sätze gelten.
Es sei ein beschränkter linearer Operator Q : C−→ C∗ mit folgenden Eigenschaften gegebenen:

• 〈f,Qg〉 = 〈g,Qf〉,

• 〈g,Qg〉 ≥ 0 und (〈g,Qg〉 = 0 ⇐⇒ g = 0.

•

• Q✶ = µ

15.1.2 Markowoperatoren in Lr

C ist dicht in Lr(µ). Dann ist es sinnvoll zu fragen, ob man beschränkte Operatoren in C nach
Lr(µ) beschränkt fortsetzen kann. Das ist ohne weiteres nicht möglich. Zum Beispiel läßt sich
der Projektor P, der für ein gegebenes z0 ∈ Z als (Pg)(z) = g(z0)✶ wirkt, nur fortsetzen, wenn
µ({z0}) > 0.
Allerdings lassen sich Markowoperatoren, mit stationärem Maß µ nach Lr(µ) fortsetzen. Es gilt
folgender
Satz: Die Erweiterung L von M in Lr(µ) ist – falls M∗µ = µ – ein beschränkter Operator mit
Norm = 1 (er ist also kontraktiv).
Satz: Die bekannte Kontraktivität von Markowoperatoren in C gilt auch für die Lr(µ)-Norm,
falls M∗µ = µ.
Beweis: Das folgt aus der Karamata-Ungleichung (54) mit p = µ und der konvexen Funktion
F (x) = |x|r. Es sei g ∈ C, dann gilt

‖Mg‖rLr

= 〈|Mg|r, µ〉 ≤ 〈M|g|r, µ〉 = 〈|g|r,M∗µ〉 = 〈|g|r, µ〉 = ‖g‖rLr
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Aus L✶ = M✶ = ✶ und ‖✶‖Lr
= 1 folgt die Gleichheit. Das ergibt die gesuchte Gleichheit

‖Mg‖Lr
= 〈|Mg|r, µ〉

1

r = 〈|g|r, µ〉
1

r = ‖g‖Lr
� (76)

Wie bekannt lassen sich beschränkte Operatoren mit der selben Norm fortsetzen. Es gilt also

‖L‖Lr
= ‖M‖Lr

= ‖M‖C = 1

15.1.3 Der Raum L2(µ)

Von besonderer Bedeutung ist der (reelle) Hilberraum L2(µ). Das Skalarprodukt in diesem
Raum ist

(g, f)µ = (f, g)µ = 〈f · g, µ〉 = 〈f,Qµg〉 = 〈g,Qµf〉 =

∫

Z

f(z)g(z)µ(dz) .

Die Fortsetzung eines Markowoperators M in L2(µ) ist kontraktiv. Das folgt aus der Unglei-
chung (??) mit der speziellen konvexen Funktion F (x) = x2. Es gilt

‖Mg‖2L2
=

〈

(Mg)2 , µ
〉

≤
〈

Mg2, µ
〉

=
〈

g2,M∗µ
〉

=
〈

g2, µ
〉

= ‖g‖2L2

Damit ist bewiesen, daß die Fortsetzung eines Markowoperators M in L2(µ) die Norm 1 hat
(weil neben der Ungleichung auch noch M✶ = ✶ und ‖✶‖L2

= 1 gilt.

15.1.4 Operatoren in L2(µ) und ihre adjungierten

Es sei M : C−→ C ein Markowoperator und L seine Fortsetzung in L2(µ). Als Operator im
Hilberraum können wir seinen adjungierten Operator L∗ betrachten. Er ist durch die Gleichung

(Lf, g)µ = (f,L∗g)µ, f, g ∈ L2(µ)

definiert. Es seien f, g ∈ C. Für die linke Seite gilt dann

(Lf, g)µ = 〈g ·Mf, µ〉, f, g ∈ C

Angenommen, auch L∗ ist die Fortsetzung eines beschränkten Operators M+ : C−→ C, dann ist
L∗g = M+g (im allgemeinen ist nicht klar, ob L∗g ∈ C für g ∈ C) und auch das Skalarprodukt
auf der rechten Seite läßt sich als duale Paarung schreiben. Es gilt dann

(Lf, g)µ = 〈g ·Mf, µ〉 = 〈f ·M+g, µ〉 = (f,L∗g)µ, f, g ∈ C

Sollte L = L∗ gelten, dann ist die Existenz eines entsprechenden M+ klar, es gilt M+ =
M. Dieser Fall, daß die Fortsetzung eines Markowoperators in einen L2 ein selbstadjungierter
Operator ist, ist ein besonderer Fall, was aus folgendem Satz klar wird:
Satz: Die Fortsetzung eines Markowoperators M in einen L2(µ) sei selbstadjungiert, dann ist
das Maß, das den L2-Raum gebildet hat, ein stationäres Maß von M∗.
Beweis: Die Fortsetzung von M sei L. Da L = L∗, gilt

〈g ·Mf, µ〉 = 〈f ·Mg, µ〉, f, g ∈ C

Wir setzen f = ✶. Das ergibt

〈g, µ〉 = 〈Mg, µ〉 = 〈g,M∗µ〉, g ∈ C
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Aus der Beliebigkeit von g folgt M∗µ = µ. �

Bemerkungen: Unter allen Operatoren in einem Hilbertraum spielen die selbstadjungierten
eine besondere Rolle. Sie haben z.B. reelles Spektrum und lassen sich diagonalisieren. Diese
besondere Eigenschaft erlangen Markowoperatoren also nur dann, wenn man sie in einem L2

über dem stationären Maß betrachtet. In allen anderen L2-Räumen ist das nicht der Fall. Wenn
man also ein Problem in einem L2-Raum betrachten will, muß der richtige gewählt werden,
nämlich der über einem stationären Maß.
Es ist klar, daß ein Operator, der in C kein rein reelles Spektrum hat, in keinem L2-Raum
selbstadjungiert sein kann. Auch in diesem Fall, ist es sinnvoll den L2-Raum über einem sta-
tionären Maß zu wählen. Der Operator kann sich dann als normal (kommutiert mit seinem
adjungierten) herausstellen.
Nicht jeder Operator mit rein reellem Spektrum ist selbstadjungiert in L2(µ). Man kann sogar
diagonalisierbare Matrizen finden, die diese Eigenschaft nicht haben.
Der Fall, daß die Fortsetzung eines Markowoperators im L2 über einem seiner stationären Maße
selbstadjungiert ist, wird detailierte Balance genannt und spielt eine wichtige Rolle in der
Theorie der Markowprozesse und ihren physikalischen Anwendungen. Oft wird gerade dieser
Fall behandelt, da sich hier relativ einfach Aussagen erzielen lassen.
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