
Mathematical Modelling and AnalysisVolume 9 Number 1, 2004, pages 1{16c 2004 TechnikaDYNAMICS OF MULTISECTIONSEMICONDUCTOR LASERSJ. SIEBER1, M. RADZIUNAS2 and K. R. SCHNEIDER21 University of BristolDept. of Eng. Math., Queen's Building, University of Bristol, BristolBS8 1TR, United KingdomE-mail: jan.sieber@bristol.ac.uk2 Weierstrass Institute for Applied Analysis and Stochastics, BerlinMohrenstr. 39, 10117 Berlin, GermanyE-mail: radziunas@wias-berlin.de, schneider@wias-berlin.deABSTRACTWe investigate the longitudinal dynamics of multisection semiconductor lasers based on amodel where a hyperbolic system of partial di�erential equations is nonlinearly coupledwith a system of ordinary di�erential equations. We present analytic results of that system:global existence and uniqueness of an initial-boundary value problem, existence of attract-ing invariant manifolds of low dimension. The ow on these manifolds is approximatelydescribed by the so-called mode approximations that are systems of ordinary di�erentialequations. Finally, we present a detailed numerical bifurcation analysis of the two-modeapproximation system and compare it with the simulated dynamics of full PDE model.Key words: laser dynamics, invariant manifold theory, hyperbolic systems of partialdi�erential equations, model reduction, bifurcation analysis1. MOTIVATIONIn commercial and private communication, the exchange of multimedial in-formation growths rapidly. Thus, the corresponding data traÆc increasesexponentially and is characterized by the shift from voice communication topackage oriented data traÆc. This fact implies a big challenge for a strongincrease of the data transmission rate. Due to their inherent speed, semicon-ductor lasers are of great interest as optical devices for fast data regeneration(reampli�cation, retiming, reshaping) in future photonic networks. Typically,these devices have a non-stationary working regime. As an example we men-tion the regime of high-frequency oscillations. Multisection lasers allow one



2 J. Sieber, M. Radziunas, K. Schneiderto generate and to control such nonlinear e�ects by designing the longitudinalstructure of the device (see, e.g., [16; 19; 25; 28]).However, prototyping of multisection semiconductor lasers is very expensiveand time consuming. The goal of this paper is to demonstrate that mathe-matical models can be used to study the longitudinal dynamics of such lasersand to optimize their working regime.We focus on the traveling-wave model, a linear hyperbolic system of partialdi�erential equations (PDEs) which is nonlinearly coupled with a system ofordinary di�erential equations (ODEs). It models the longitudinal dynamicsof edge emitting multisection semiconductor lasers by the interaction of twophysical variables: the complex light amplitude (in fact, its spatially slowlyvarying envelope), which is spatially resolved in the longitudinal direction ofthe laser and described by the linear hyperbolic PDE subsystem, and thee�ective carrier density within the active zone of the device, which is section-wise spatially averaged and described by the ODE subsystem.This model has the advantage of meeting two seemingly contradictory cri-teria, accuracy and simplicity (or rather accessibility to a detailed bifurcationanalysis). On one hand, it is accurate enough to describe all phenomena ofinterest to the engineers. Moreover, it can easily be made more realistic bygradually incorporating secondary physical e�ects that may play a role in lim-iting the performance of a particular device. On the other hand, it allows oneto reduce the model to a low-dimensional system of ODEs by exploiting thefact that the carrier density operates on a much slower time-scale than thelight amplitude. These ODEs in turn are accessible to a detailed bifurcationanalysis using standard software like AUTO [10]. Only this bifurcation analy-sis gives insight into the mechanisms behind many nonlinear phenomena andis able to reveal e�ects (for example excitability [27]) that may be invisible inpure parameter studies.Both aspects of the traveling-wave model have been implemented in the nu-merical code LDSL (Longitudinal Dynamics of Semiconductor Lasers). Hence,this numerical tool provides engineers, laser physicists, and mathematicianswith a whole hierarchy of models allowing them to \switch on or o�" physicale�ects to gain insight which of these e�ects causes the particular phenomenonthey are interested in. Besides numerical integration of the model equationsthis tool solves also the spectral problem of the model equations, allows toanalyse the dynamics of individual longitudinal modes and in certain casesenables e�ectively to compare the solutions provided by the PDE model andthe reduced mode approximation systems. This modeling approach has beenused quite successfully in the recent past to design new devices exhibitinghigh-frequency oscillations [7; 8; 28].In this paper we focus more on the aspect of model reduction than extension,mostly because this part is more thoroughly supported by mathematical the-ory. The paper is organized as follows: In section 2 we describe the traveling-wave model and give a detailed physical interpretation of all coeÆcients andvariables. In section 3 we show that the corresponding initial-boundary value



Dynamics of multisection semiconductor lasers 3problem is well-posed. In section 4 we introduce a small parameter exploitingthe di�erence in the time-scale between light and carrier density. In section 5we investigate the spectral properties of the in�nite-dimensional linear part.Section 6 combines the results of the previous sections to derive conditionsguaranteeing that the traveling-wave model can be reduced to an ODE sys-tem. In section 7 by showing a detailed two-parameter bifurcation diagram wedemonstrate how useful the reduced model can be. We link this bifurcationdiagram to a parameter study with a more realistic version of the traveling-wave model. In the last section we draw conclusions and give an outlook onfuture projects.2. THE COUPLED TRAVELING WAVE MODEL WITH NON-LINEAR GAIN DISPERSIONThe coupled traveling wave model, a hyperbolic system of PDEs coupled witha system of ODEs, describes the longitudinal e�ects in narrow edge-emittinglaser diodes [1; 15; 23]. It has been derived from Maxwell's equations for anelectro-magnetic �eld in a periodically modulated waveguide [1; 3] assumingthat transversal and longitudinal e�ects can be separated. In this section
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Figure 1. Typical geometric con�guration of the domain in a laser with 3 sections.we introduce the corresponding system of di�erential equations, explain thephysical interpretation of its coeÆcients and specify some physically sensibleassumptions about these coeÆcients.The dynamics in a multi-section laser is described by the evolution of thefollowing quantities. The variable  (t; z) 2 C 2 describes the complex ampli-tude of the slowly varying envelope of the optical �eld split into a forwardand a backward traveling wave. The variable p(t; z) 2 C 2 describes the cor-responding nonlinear polarization of the material. Both quantities dependon time and the one-dimensional spatial variable z 2 [0; L] (the longitudinaldirection within the laser; see Fig. 1). A prominent feature of multi-sectionlasers is the splitting of the overall interval [0; L] into sections, that is, msubintervals Sk that represent sections with separate electric contacts. Wetreat the carrier density within the active zone of the waveguide as a section-wise spatially averaged quantity n(t) 2 Rm (see Fig. 1). In dimensionlessform, the coupled traveling-wave model can be posed as an initial-boundary



4 J. Sieber, M. Radziunas, K. Schneidervalue problem for  , p, and n that reads as follows@t (t; z) = ��@z + �(n(t); z) �i�(z)�i�(z) @z + �(n(t); z)� (t; z) + �(n(t); z) p(t; z);(2.1)@tp(t; z) = [i
r(n(t); z)� �(n(t); z)] � p(t; z) + �(n(t); z) (t; z); (2.2)ddtnk(t) = Ik � nk(t)�k � Plk [Gk(nk(t)) � �k(nk(t))] ZSk  (t; z)� (t; z) dz�Plk �k(nk(t)) Re�ZSk  (t; z)�p(t; z) dz� ; k = 1 : : :m (2.3)subject to the inhomogeneous boundary conditions for   1(t; 0) = r0 2(t; 0) + �(t),  2(t; L) = rL 1(t; L) (2.4)and the initial conditions (0; z) =  0(z), p(0; z) = p0(z), n(0) = n0. (2.5)The Hermitian transpose of the C 2 -vector  is denoted by  � in (2.3). Wewill de�ne the appropriate function spaces and discuss the possible solutionconcepts in section 3. The quantities and coeÆcients appearing above havethe following meaning (see also Tab. 1 and Fig. 1). L is the length of the laser.typical range explanation (t; z) C2 optical �eld, forward and backward traveling wavep(t; z) C2 nonlinear polarizationnk(t) R+ spatially averaged carrier density in section SkIm dk R frequency detuningRe dk < 0, O(1) decay rate due to internal losses�H;k (0; 10) negative of line-width enhancement factor~gk � 1 di�erential gain in active section Sk�k (�10; 10) real coupling coeÆcient for the optical �eld  due to Bragg grating in DFB section�k � 0, O(1) amplitude of the gain curve�k O(102) half width at half maximum of the gain curve
r;k O(10) central frequency of the gain curveIk O(10�2) current injection�k O(102) spontaneous lifetime of the carriersP (0;1) scale of ( ; p) (can be chosen arbitrarily)r0, rL C, jr0j; jrLj < 1 facet reectivitiesTable 1.Ranges and explanations of the variables and coeÆcients appearing in (2.1)-(2.4). Seealso [3] to inspect their relations to the originally used physical quantities and scales.The laser is subdivided into m sections Sk of length lk with starting pointszk for k = 1 : : :m. We scale the system such that l1 = 1 and set zm+1 = L.



Dynamics of multisection semiconductor lasers 5Thus, Sk = [zk; zk+1]. All coeÆcients are supposed to be spatially constantin each section and to depend only on the carrier density in that section, thatis, for z 2 Sk we have�(z) = �k; �(n; z) = �k(nk); �(n; z) = �k(nk); �(n; z) = �k(nk):Tab. 1 collects the physical interpretation and the sensible ranges of all co-eÆcients and variables. The model for the growth coeÆcient �k(nk) 2 C insection Sk is �k(�) = dk + (1 + i�H;k)Gk(�)� �k(�)where dk 2 C accounts for the static internal losses (hence, Re dk < 0) and thestatic frequency detuning, and �H;k 2 R+ is the negative of the linewidth en-hancement (or Henry) factor. A section Sk is either passive, then the functionsGk and �k are identically zero, or Sk is active. In the active case Gk : R ! Ris a smooth strictly monotone increasing function satisfying Gk(1) = 0. Itslimits are lim�!�1Gk(�) = �1, lim�!1Gk(�) = 1. Typically, an aÆnemodel for Gk in active sections is reasonably accurate, that is,Gk(�) = ~gk � (� � 1)with a di�erential gain ~gk = G0k(1) > 0. In active sections Sk, that is, ifGk 6� 0, the gain amplitude �k(�) is bounded for � < 1. Moreover, wesuppose that �k, 
r;k, and �k : R ! R are smooth and Lipschitz continuous,and �k(�) > 1 for all �. For passive sections Sk the variable nk is decoupledfrom all other equations and can be dropped from the system.The polarization function p and equation (2.2) has been included into thecoupled traveling wave model for a more realistic account of nonlinear gaindispersion e�ects [3; 28]. Now, the frequency dependence of waveguide mate-rial gain is modeled by a Lorentzian function with an amplitude �, half widthat half maximum �, centered at the frequency 
r. That is, a monochromaticlight-wave  1(t; z) = ei!t'(z) in an uncoupled, and a stationary waveguide(� = 0, _n = 0) is ampli�ed or damped according to the equation@z j'(z)j2 = 2 �Re�(z) + �(z)�2(z)(! �
r(z))2 + �2(z)� j'(z)j2:The facet reectivities r0 and rL in (2.4) are complex with modulus lessthan 1. The inhomogeneity �(t) is complex and models an optical input atthe facet z = 0. We assume it to be L2 in time on �nite time intervals topermit a discontinuous optical input.The form of the right-hand-side of the equation (2.3) for the carrier densitycan be clari�ed by introducing the Hermitian formgk(�) �� p� ;�'q�� = 1lk ZSk ( �(z); p�(z))�Gk(�)��k(�) 12�k(�)12�k(�) 0 ��'(z)q(z)� dz.(2.6)



6 J. Sieber, M. Radziunas, K. SchneiderUsing the notationfk(�; ( ; p)) = Ik � ��k � Pgk(�) �� p� ;� p�� (2.7)for � 2 R and  ,', p, q 2 L2 (Sk; C 2 ) the carrier density equation (2.3) readsddtnk = fk(nk; ( ; p)) for k = 1 : : :m. (2.8)Other secondary physical e�ects have been incorporated into the numericalcode LDSL which was developed for the simulation and analysis of longitudi-nal dynamics in multi-section lasers. As example we mention the e�ects ofnonlinear gain compression, that is, the dependence of G on j j2, and spatialhole burning, i.e., treating n as a fully spatially resolved variable [7; 28]. Theparameter study by direct simulations of the extended model equations shownin Fig. 3 has taken both e�ects into account. However, even after an inclusionof these e�ects, the traveling-wave model can describe the behaviour of semi-conductor lasers still only approximately. Thus, in this paper we focus on theanalysis of the traveling-wave model in the rather simple form (2.1){(2.4).3. EXISTENCE THEORYIn a �rst step we investigate in which sense system (2.1){(2.3) generates asemiow depending smoothly on its initial values and all parameters. Wewant to write (2.1){(2.3) as an abstract evolution equation in the formddtu = Au+ g(u), u(0) = u0 (3.1)in a Hilbert space V where A is a linear di�erential operator that gener-ates a strongly continuous semigroup S(t), and g is smooth in V . A nat-ural space for the variables  and p is L2 ([0; L]; C 2 ), such that V could beL2 ([0; L]; C 2 ) � L2 ([0; L]; C 2 ) � Rm for u = ( ; p; n). However, the inhomo-geneity � in the boundary condition (2.4) poses a conceptual diÆculty in thisframework. Common approaches are boundary homogenization (used in [18])or appending � as an auxiliary variable and an additional equation of theform ddt�(t) = a(t)where a is the derivative of � (used in [12]). Then, the nonlinearity g inthe evolution equation depends explicitly on t and it has the same regularitywith respect to t as the time derivative of �. Hence, both approaches require ahigh degree of regularity of � in time which is quite unnatural as the laser stillworks with discontinuous input such as square waves. An alternative would



Dynamics of multisection semiconductor lasers 7be the introduction of a concept of \weakly mild" solutions as it was done in[13]. However, this would require the extension of all needed classical resultsof the theory of strongly continuous semigroups to this type of solutions.Here, we choose an approach that is similar to that in [12] but does notrequire any regularity of the inhomogeneity. We introduce the auxiliary space-dependent variable a(t; x) (x 2 [0;1)) satisfying the equation@ta(t; x) = @xa(t; x) (3.2)and change the boundary condition for z = 0 in (2.4) into 1(t; 0) = r0 2(t; 0) + a(t; 0).One may think of an in�nitely long �bre [0;1) storing all future opticalinputs and transporting them to the laser facet z = x = 0 by the transportequation (3.2). If we choose a(0; x) = �(x) as initial value for a, than thevalue of a at the boundary x = 0 at time t is �(t). In this way, the formerlyinhomogeneous boundary condition becomes linear in the variables  and arequiring no regularity for a. We choose a weighted norm L2� for a, that is,ka(t; �)k2 = R10 ja(t; x)j2(1 + x2)� dx with � < �1=2. In this way, we permitthe input to be L1 but still keep V as a Hilbert space.With this modi�cation we can work within the framework of the theoryof strongly continuous semigroups [17]. The variable u has the components( ; p; n; a) 2 V = L2 ([0; L]; C 2 )�L2 ([0; L]; C 2 )�Rm�L2� ([0;1); C ). We havea certain freedom how to choose the splitting of the right-hand-side betweenA and g. We keep A as simple as possible, including only the unboundedterms A2664 pna3775 := 266664��@z 1@z 2�00@xa 377775 .The domain of de�nition of A isD(A) = f( ; p; n; a) 2 H 1 ([0; L]; C 2 )�L2 ([0; L]; C 2 )�Rm � H 1� ([0;1); C ) : 1(0) = r0 2(0) + a(0);  2(L) = rL 1(L)g.In this way, A generates a strongly continuous semigroup S(t) in V [22]. Thenonlinearity g is smooth because it is a superposition operator of smoothcoeÆcient functions, and all components either depend only linearly on thein�nite-dimensional components  and p, or map into Rm . Then, an a-prioriestimate implies the following theorem.Theorem 1 (global existence and uniqueness). For any T > 0 thereexists a unique mild solution u(t) of (3.1) in [0; T ]. Furthermore, if the initial



8 J. Sieber, M. Radziunas, K. Schneidervalue u0 is in the domain of de�nition of A, then u(t) is a classical solutionof (3.1).This theorem implies the existence of a semiow S(t;u) that is stronglycontinuous in t and smooth with respect to u and parameters. The a-prioriestimate has to be slightly more subtle than in [18]. It uses the fact that thesame functions Gk and �k appear on the right-hand-side of (2.1) and on thatof (2.3) but with opposing signs. Due to this fact the functionP2 k (t)k2 + mXk=1 lk(nk(t)� n�)remains non-negative for suÆciently small n� and, hence, bounded, giving riseto a bounded invariant ball in V ; see [22] for details.4. INTRODUCTION OF A SMALL PARAMETERFor all results about the long-time behavior of system (2.1){(2.3) we restrictourselves to autonomous boundary conditions for  , that is, 1(t; 0) = r0 2(t; 0),  2(t; L) = rL 1(t; L). (4.1)The inhomogeneous case is an open question for future work. However, un-derstanding the dynamics of the autonomous laser is not only an intermediatestep but an important goal in itself since many experiments and simulationsfocus on this case; see for example [8] for further references.An examination of system (2.1){(2.3) reveals that the space dependent sub-system is linear in  and p:@t� p� = H(n)� p� . (4.2)The linear operatorH(n) = 0B@��@z + �(n) �i��i� @z + �(n)� �(n)�(n) i
r(n)� �(n)1CA (4.3)acts fromY := f( ; p) 2 H 1 ([0; L]; C 2 )� L2 ([0; L]; C 2 ) : 1(0) = r0 2(0),  2(L) = rL 1(L)g



Dynamics of multisection semiconductor lasers 9into X = L2 ([0; L]; C 2 )�L2 ([0; L]; C 2 ). H(n) generates a C0-semigroup Tn(t)acting in X . Its coeÆcients �, and, for each n 2 Rm , �(n), 
r(n), �(n)and �(n) are linear operators in L2 ([0; L]; C 2 ) de�ned by the correspondingcoeÆcients in (2.1), (2.2). The maps �; �;�;
r : Rm ! L(L2 ([0; L]; C 2 )) aresmooth.Furthermore, we observe that Ik and ��1k in (2.7) are approximately twoorders of magnitude smaller than 1 (see Tab. 1). Hence, we can introducea small parameter " and set P = " in (2.3), such that the carrier densityequation (2.8) reads asddtnk = fk (nk; E) = "(Fk(nk)� gk(nk)[E;E]) (4.4)for E 2 X where the coeÆcients in Fk(nk) = "�1(Ik � nk��1k ) are of order 1.Although " is not directly accessible, we treat it as a parameter and considerthe limit " ! 0 while keeping Fk �xed. At " = 0, the carrier density n isconstant. It enters the linear subsystem (4.2) as a parameter. Consequently,the spectral properties of H(n) with �xed n determine the longtime behaviorof the system for " = 0. In particular, we are interested in such values of nwhich imply an isolated non-empty but �nite set of eigenvalues ofH(n) locatedexactly on the imaginary axis. In this case, we can expect a �nite-dimensionalinvariant manifold to persist for nonzero " in the spirit of Fenichel's geometricsingular perturbation theory [11]. Thus, we would like to understand thespectral properties of the operator H for �xed n and their correspondence tothe growth of the semigroup Tn generated by H in the next step.5. SPECTRAL PROPERTIES OF OPERATOR HWe drop the argument n in this paragraph for brevity. The long-time behaviorof the semigroup T generated by H can be described by the following theorem(see [22] for details of the proof):Theorem 2. Let �0 = 1LPmk=1Re�klk < 0, denote W = fi
r;k � �k : k =1; : : : ;mg, and let � be in the interval (maxfReW ; �0g; 0). Then, there existsa splitting of X = X1�X2 into two H-invariant subspaces where X1 is �nite-dimensional and the semigroup T restricted to X2 decays according to rate�: kT (t)jX2k �Me�t for a constant M � 1 and all t � 0.Since T is neither an analytical nor an eventually compact semigroup thereare no general theorems implying our result. However, the operator H has acharacteristic function h(�) de�ned in C n W (note that ReW < �1). Thefunction h is analytic in C n W and known explicitly. Hence, most questionsabout the spectrum of H can be answered by �nding the roots of h. Inparticular, the spectrum of H is discrete in C nW , that is, it consists only of



10 J. Sieber, M. Radziunas, K. Schneidereigenvalues of �nite algebraic multiplicity. In order to obtain our result, wehave to distinguish two cases, r0rL = 0 (that is, (4.1) are Dirichlet boundaryconditions) and r0rL 6= 0 (corresponds to periodic boundary conditions).It turns out that the semigroup T is eventually di�erentiable if r0rL = 0.In this case, we can split X into two H-invariant subspaces. One correspondsto the spectrum close to W . Thus, H is bounded and T decaying in this sub-space. The semigroup T restricted to the complementary invariant subspaceis eventually compact. Hence, the desired result follows from the theory ofeventually compact semigroups [9].If r0rL 6= 0 (the hyperbolic case), we treat the operator as a perturbationof its diagonal part similar to [20]. Before applying the same result as [20],the invariant subspace corresponding to the spectrum close to W has to besplit o� and treated separately in the same way as in the case r0rL = 0.In essence, Theorem 2 implies that we can treat H like a matrix: Thedominant eigenvalues determine the growth of the corresponding semigroup.6. MODEL REDUCTIONLet us assume that there exists a simple connected open set U � Rm of carrierdensities n such that H(n) has a uniform spectral gap for all n 2 U in a stripof the negative complex half-plane fz 2 C : � � Re z � �=kg (� < 0, integerk > 2), and that the dominant part of the spectrum of H(n) is �nite. Hence,the spectral projection Pc(n) onto the H(n)-invariant subspace correspondingto the dominant part of the spectrum has a constant rank q > 0. Thisspectral gap assumption is quite natural and follows (in conjunction withTheorem 2) for example from the existence of non-trivial dynamics that isuniformly bounded for " ! 0 (e.g., relative equilibria, i.e., solutions of theform E(t) = E0ei!t, n = const) if r0rL = 0. We can split any E 2 X intoE = B(n)Ec + Es where B(n) is a basis of ImPc(n) depending smoothly onn, Ec 2 C q , and Es 2 X is E �Pc(n)B(n)Ec. The map R : X �U ! C q �Ugiven by (E; n) ! (B(n)�1Pc(n)E; n) is well de�ned, smooth and Lipschitzcontinuous on any closed subset of X � U . Then, the main model reductiontheorem is as follows.Theorem 3 (model reduction). Let "0 > 0 be suÆciently small, � 2(�; 0), and N be a closed bounded subset of C q � U . Then, for all " 2 [0; "0)there exists a Ck manifold C � X � Rm satisfying:i. (Invariance) C is S(t; �)-invariant relative to R�1N . That is, if (E; n) 2 C,t � 0, and S([0; t]; (E; n)) � R�1N , then S([0; t]; (E; n)) � C.ii. (Representation) C can be represented as the graph of a map which maps(Ec; n; ") 2 N � [0; "0)! ([B(n) + "�(Ec; n; ")]Ec; n) 2 X � Rm ;where � : N � [0; "0) ! L(C q ;X) is Ck�2 with respect to all arguments.



Dynamics of multisection semiconductor lasers 11Denote the X-component of C byEX(Ec; n; ") = [B(n) + "�(Ec; n; ")]Ec 2 X.iii. (Exponential attraction) Let � � X � Rm be a bounded set with R� � Nand a positive distance to the boundary of N . Then, there exist a constantM and a time tc � 0 with the following property: For any (E; n) 2 � thereexists a (Ec; nc) 2 N such thatkS(t+ tc; (E; n))� S(t; (EX (Ec; nc; "); nc))k �Me�tfor all t � 0 with S([0; t+ tc]; (E; n)) � �.iv. (Flow) The ow on C\R�1N is di�erentiable with respect to t and governedby the following system of ODEs:ddtEc = �Hc(n) + "a1(Ec; n; ") + "2a2(Ec; n; ")�(Ec; n; ")�Ecddtn = "F (Ec; n; ") (6.1)where Hc(n) = B(n)�1H(n)Pc(n)B(n)a1(Ec; n; ") = �B(n)�1Pc(n)@nB(n)F (Ec; n; ")a2(Ec; n; ") = B(n)�1@nPc(n)F (Ec; n; ")(Id� Pc(n))F (Ec; n; ") = (Fk(nk)� gk(nk)[EX (Ec; nc; "); EX(Ec; nc; ")])mk=1 .The idea to choose n-dependent coordinates for E in the construction ofa reduced model was introduced already in [1] by physicists. This choicehas the advantage that the graph of the center manifold itself enters theow (6.1) on the center manifold only in the form O("2)�. This fact has beenpointed out �rst in [24] where the same model reduction result has been provenfor ODEs of similar structure (big linear system coupled to a slow system)using Fenichel's theorem for singularly perturbed systems of ODEs [11]. SinceFenichel's theorem is not available for in�nite-dimensional systems, we have toadapt the proof of Fenichel [11] to our case starting from the general results in[4; 5; 6] about invariant manifolds of semiows in Banach spaces. In particular,we apply the cut-o� modi�cations done in [11] only to the �nite-dimensionalcomponents Ec and n outside of the set N of interest. Moreover, we adapt themodi�cations such that the invariant manifold for " = 0 is compact withoutboundary as required by the theorems in [4].Truncating all terms of orderO("2) in (6.1) gives rise to a system of ODEs inC q �Rm , where all terms in the right-hand-side can be expressed analytically



12 J. Sieber, M. Radziunas, K. Schneideras functions of the eigenvalues of H . The truncated system (6.1)ddtEc = [Hc(n) + "a1(Ec; n; ")]Ecddtnk = " (Fk(nk)� gk(nk)[B(n)Ec; B(n)Ec]) (6.2)is called the mode approximation. It is an implicit system of ODEs becausethe eigenvalues of H are given only implicitly as roots of the characteristicfunction h of H . The dimension of (6.1) is typically low: q is often either 1or 2. The consideration of mode approximations has proven to be extremelyuseful for numerical and analytical investigations of longitudinal e�ects inmulti-section semiconductor lasers; see for example [2; 21; 27] and section 7for a demonstration.7. PARAMETER STUDY AND BIFURCATION ANALYSIS FORA LASER SUBJECT TO DELAYED OPTICAL FEEDBACKIn this section we demonstrate how the traveling wave model helps to detectand understand nonlinear phenomena occuring in multi-section lasers by abifurcation analysis using the mode approximations and the subsequent sys-tematic parameter study for the full model. We investigate a three-sectionlaser where S1 is a single-mode DFB laser (i.e., �1 6= 0, G1 6� 0), S2 is apassive phase tuning section (i.e., �2 = G2 = �2 = _n2 = 0), and S3 is anampli�er section (i.e., �3 = 0, �3 = 0, G3 6� 0). Since rL 6= 0, this deviceresembles the classical experiment of a single-mode semiconductor laser whichis subject to delayed optical feedback. Section S1 plays the role of the single-mode laser and the sections S2 and S3 form an integrated cavity providingdelayed optical feedback from the facet at z = L. In this three-section setupthe two most important parameters, the feedback strength and the feedbackphase '�Im d2 can be tuned continuously in the experiment by changing thecurrents I2 and I3 into the sections S2 and S3 (up to feedback strengths closeto 1).Bifurcation analysis Since numerical bifurcation analysis tools like AUTO [10]are available for systems of ODEs only, the mode approximations justi�ed inTheorem 3 are extremely helpful.It turns out that the number q of critical eigenvalues of H(n) is 2 for allrelevant carrier densities n. Thus, Theorem 3 applies with q = 2 and m = 2(the carrier density n2 is constant since section S2 is passive). The centermanifold C has dimension 6 as it is a graph over C 2 �R2 . The ow of (6.2) isstill symmetric with respect to complex rotation of Ec. Hence, we can reduceit to a 5-dimensional system of ODEs. In this system, equilibria correspond torelative equilibria of the original traveling-wave model and periodic solutionsto self-pulsations, i.e., modulated rotating-wave solutions. Fig. 2 shows the
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Figure 2. Bifurcation diagram for the two-mode approximation (truncated (6.1) withq = 2) in the parameter plane ('; I3) (see [7] for the particular parameter values).results of two-parameter numerical continuations of the physically most rele-vant codimension-1 bifurcation curves in the parameter plane ('; I3), The twodi�erent islands of self-pulsations are clearly visible along with their borders.The nature of these borders and bifurcation theory serve as a guide for ex-periment and simulation to investigate interesting phenomena that otherwisecould be missed due to hysteresis or limited basins of attraction. Most notably,there are stable invariant tori with strong resonances above the torus bifur-cation curve, excitability above the homoclinic bifurcation curve, and perioddoubling and chaos at the border of the undamped relaxation oscillations.Parameter study for the full PDE System Figure 3 gives an overview overall stable stationary states and non-stationary regimes that can be found bydirect simulation in the parameter plane ('; I3) in the full PDE system (2.1){(2.3). For the simulation, we also included the additional physical e�ectsmentioned at the end of section 2 to match the experimental results as closelyas possible. See [7] for a full description of the traveling wave model used inthe simulation.The two large domains of periodic solutions within each period of ' arequite prominent in Fig. 3 as well. The Hopf and the saddle-node curves can berecognized in the simulation and give a full account of the number and stabilityof all present stationary states in Fig. 3. The shadings in Fig. 3 mark thedi�erent stable non-stationary regimes in the ('; I3) parameter plane observed
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