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Abstract

Padé approximant is superior to Taylor expansion when functions contain
poles. This is especially important for response functions in complex frequency
domain, where singularities are present and intimately related to resonances
and absorption. Therefore we introduce a diagonal Padé approximant for
the complex refractive index and apply it to the description of short optical
pulses. This yields a new nonlocal envelope equation for pulse propagation.
The model offers a global representation of arbitrary medium dispersion and
absorption, e.g., the fulfillment of the Kramers-Kronig relation can be estab-
lished. In practice, the model yields an adequate description of spectrally
broad pulses for which the polynomial dispersion operator diverges and can
induce huge errors.

An average evolution of the optical field can be described in terms of an envelope [3].
This strategy is especially successful when the spectrum of the oscillations is narrow,
centered around a carrier frequency ωc. A slowly-varying envelope approximation
(SVEA) leads then to an envelope equation, e.g., the nonlinear Schrödinger equation
(NSE) [1]. A recent progress in the generation of ultrashort optical pulses for which
the SVEA does not apply [8] awakened interest in new models. Moreover, even
for a longer pulse the SVEA can be broken down by self-focusing [17, 18], a steep
pulse edge [9], and supercontinuum generation [6, 5]. Therefore much effort has
been directed toward deriving a generalized envelope equation [4, 16, 12, 9, 11,
10]. Broadly speaking, such models assume an unidirectional character of the pulse
propagation instead of the SVEA. Medium dispersion is usually taken into account
by a standard polynomial dispersion operator like in the higher-order NSE.

Contrary to popular belief, the traditional dispersion operator cannot completely
quantify dispersion for ultrashort pulses. This happens when the pulse spectral
width becomes comparable with the optical transparency window [14]. Here, taking
more terms in the dispersion operator one induces huge errors far from the carrier
frequency. In this contribution we overcome the divergence by introducing a rational
Padé approximant for the medium refractive index. A local differential dispersion
operator in the envelope equation is replaced with a non-local pseudodifferential
one. With only the refractive index around ωc, we completely recover dispersion
and obtain an adequate model for spectrally broad pulses.

Medium dispersion, i.e., a relation between the wave vector k and the circular fre-
quency ω of an optical wave, is characterized by specifying the propagation constants

βm + iαm =
dmk(ω)

dωm

∣∣∣∣
ω=ωc

, m = 0, 1, 2 . . . (1)
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The latter are associated with the Taylor expansion

k(ω) =
∞∑

m=0

βm + iαm

m!
(ω − ωc)

m (2)

and with the differential operator

Dk =
∞∑

m=0

im

m!
(βm + iαm)

∂m

∂tm
(3)

acting on a complex wave amplitude. For instance, consider a linearly polarized
electromagnetic pulse with the reference frequency ωc. In the case of a purely one-
dimensional propagation along the z-axis the pulse electric field can be presented
as

E(z, t) =
1

2
Ψ(z, t)e−iωct + c.c., (4)

where Ψ(z, t) is the complex amplitude with respect to temporal oscillations in a
given space point. In what follows we also use the spectral representation of fields

E =
1

2

∑
ω

Eωe
−iωt + c.c., Ψ =

∑
Ω

ΨΩe
−iΩt

in which Eq. (4) yields that ΨΩ = Eωc+Ω. The spectral representation of the operator
Dk is given by

(DkΨ)Ω =

(
∞∑

m=0

βm + iαm

m!
Ωm

)
ΨΩ.

In a linear dispersive medium the complex amplitude is governed by a formally exact
differential equation

i∂zΨ + DkΨ = 0, (5)

where with respect to Eq. (3) the first two terms in Dk are related to the reference
wave vector β0 and the reference group velocity 1/β1. A standard redefinition

Ψ(z, t) = ψ(z, τ) exp(iβ0z), τ = t− β1z (6)

simplifies Eq. (5) to the form

i∂zψ +
∞∑

m=0

im

m!
γm

∂mψ

∂τm
= 0, (7)

where γ0 = iα0, γ1 = iα1, and γm>2 = βm + iαm. The sum in Eq. (7) is referred
to as the dispersion operator. The SVEA presupposes that ω−1

c ∂τ � 1 and that
one may break off the infinite sum. Inclusion of the nonlinear terms and a suitable
truncation of the dispersion operator transforms Eq. (7) into a general higher-order
NSE [1].
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It is important to realize that both Eq. (7) and the NSE may become incorrect
for ultrashort optical pulses even if one keeps all propagation constants in the dis-
persion operator [14]. This happens because of the prior resonance nature of the
medium response function ε(ω), where ω2ε(ω) = k2c2. Both ε(ω) and k(ω) have
singularity points in the complex plane. Therefore the convergence radius of the
Taylor expansion (2) is finite and determined by the singularity nearest to ωc. If
the pulse spectral width exceeds the convergence radius, Eq. (5) cannot be applied.
In practice, this happens if the pulse spectral width is comparable with the optical
transparency window. Here, taking more terms in Eq. (2) we improve accuracy for
ω ≈ ωc and cause huge errors for ω ' 2ωc.

A basic inadequacy of the dispersion operator for the spectrally broad pulses is
ignored by all envelope equations in which the operator (3) is used [4, 16, 12, 9,
11, 10]. Thereby the expansion (2) is presupposed to converge for all frequencies of
interest thus implying a restriction on the spectrum width and pulse duration. The
restriction is relaxed in this contribution. For this purpose we replace the polynomial
Taylor series (2) with the rational Padé approximant (see, e.g., [2]) for the complex
refractive index

n(ω) =
p0 + p1(ω − ωc) + p2(ω − ωc)

2 + · · ·
1 + q1(ω − ωc) + q2(ω − ωc)2 + · · ·

(8)

in which pm and qm are free parameters constricted by Eq. (1) with k(ω) = n(ω)ω/c.
Furthermore, the differential dispersion operator in the higher-order NSE is aban-
doned in favor of the pseudodifferential one, Dn. The latter is associated with Eq. (8)
and defined via

(DnΨ)Ω = n(ωc + Ω)ΨΩ. (9)

A principle advantage of Eq. (8) over Eq. (2) is that the former accounts for com-
plex singularities and with respect to real ω approximates n(ω) in a larger frequency
domain. Moreover, truncating the numerator and denominator of Eq. (8) to polyno-
mials of the same power (i.e., using the diagonal Padé approximant) we additionally
ensure that n(ω) remains bounded. In practice, to a good accuracy the diagonal
Padé approximant yields n(∞) = 1 and n(ω) − 1 = O(ω−2) for ω → ∞ in accord
with the physical intuition (Fig. 1). Also the numerical stiffness of the NSE, which
is determined by the highest-order term in the truncation of Dk, is considerably
reduced by transfer to Eq. (8) with the bounded n(ω).

A point to emphasize is that all singularities (and roots) of n(ω) must belong to the
lower half-plane of the complex ω plane. This general property ensures causality
and the Kramers-Kronig relation [13]. It is tested by examining both the numerator
and the denominator in Eq. (8). If necessary, the approximation order is increased.
Finally, from the mathematical point of view it is profitable to change from Dk

to Dn because the refractive index n(ω) 6= 0 for real frequencies and therefore Dn

can be inverted as opposed by k(ω) and Dk. This is an important issue because
the previously reported envelope equations for short pulses contain 1/k(ω) or (β0 +
iβ1∂t)

−1, a singular term resulting from the formal inversion of the truncated Dk ≈
β0 + iβ1∂t.
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Figure 1: Real and imaginary parts of the refractive index for fluoride glass (light
thick lines, double resonance Lorentz model for n(ω) =

√
ε(ω), Ref. [14]) and [5/5]

Padé approximant (dashed lines). For comparison, Taylor expansion of the 11th
order is also shown (solid lines). Both expansions are calculated at 800 nm (thick
points) and are locally identical. The Padé approximant offers better global prop-
erties, e.g., relative errors in the transparency window are < 1.5%.

Let us now turn to derivation of the envelope equation. We start with the following
model equation for the pulse electric field E(z, t) in a bulk Kerr media [1]

c2∂2
zE − ∂2

tD
lin = 4πχ(3)∂2

t (E
3), (10)

where Dlin(z, t) is the linear part of the electric displacement. In the spectral rep-
resentation Dlin

ω = ε(ω)Eω. Equation (10) is considered in a weakly nonlinear limit,
i.e., the nonlinear polarization on the right-hand-side is a small perturbation to the
linear terms. An arbitrary dispersion is a major focus of interest for this work, there-
fore the radial effects are neglected and the simplest cubic nonlinearity is assumed.
Account of a more sophisticated nonlinear medium response will be straightforward.
In what follows, we will use the complex amplitude representation (4). Having in
mind an arbitrary pulse duration we, however, abandon the SVEA and only assume
an unidirectional character of the pulse propagation (see below). The goal is to
present a closed equation for Ψ(z, t) compatible with Eq. (8).

Before proceeding it is useful to remind some facts concerning the linear medium
response [13]. A general linear relation between the input signal a(t) and the output
b(t) is given by the convolution

b(t) = a(t) +

∫ ∞

0

f(s)a(t− s)ds (11)

with the memory function f(s) describing the induced medium response. Equa-
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tion (11) implies a linear proportionality between the spectral components

bω = f(ω)aω, f(ω) = 1 +

∫ ∞

0

f(s)eiωsds (12)

in which the spectral function f(ω) allows an analytic continuation into the complex
ω plane. It is natural to assume that f(ω) 6= 0,∞ for real ω and that f(ω) → 1
as ω → ∞. It follows that f(ω) 6= 0,∞ in the upper half-plane, in this respect
f(ω) and 1/f(ω) have the same analytic properties and a backward transformation
is possible. Therefore, a set of the spectral functions is a commutative group with
respect to multiplication.

If the input signal is centered around the carrier frequency ωc, we can introduce two
complex amplitudes

a(t) =
1

2
A(t)e−iωct + c.c., b(t) =

1

2
B(t)e−iωct + c.c.,

and rewrite Eq. (11) as

B(t) = A(t) +

∫ ∞

0

f(s)A(t− s)eiωcsds (13)

or in a full analogy with Eq. (9)

B = DfA, (DfA)Ω = f(ωc + Ω)AΩ. (14)

For a short-range memory function f(s) one can expand A(t − s) into the Taylor
series, insert the expansion into Eq. (13), and obtain a differential representation

Df =
∞∑

m=0

im

m!
f (m)(ωc)

∂m

∂tm
, (15)

where the derivatives f (m)(ωc) are calculated from the integral representation (12).
The mapping f → Df provides a representation of the spectral functions group.
Indeed, it is easy to check that if f(ω) = g(ω)h(ω) then

DghA = Dg(DhA) = Dh(DgA) (16)

and one can invert Df by defining D−1
f = D1/f .

For a ultrashort pulse the amplitude A(t − s) changes rapidly and the Taylor ex-
pansion in Eq. (13) is not suitable. Equation (15) should be abandoned in favor of
the spectral definition (14) with a suitable approximation of f(ωc + Ω). Following
these lines we will use Dn defined by Eq. (9) and approximate n(ωc +Ω) by Eq. (8).
The group property (16) yields that Dε = D2

n and D−1
n = D1/n.

We now return to Eq. (10) and note that the material relation Dlin
ω = ε(ω)Eω

indicates that D2
nΨ is a complex amplitude for the electric displacement. Therefore

∂2
tD

lin = −1

2

[
(ωc + i∂t)

2D2
nΨ
]
e−iωct + c.c.,
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where the last expression and the representation (4) are further inserted into Eq. (10).
For simplicity the cubic harmonic term is neglected, though one may keep it in the
spirit of [7]. We write the nonlinear term as

∂2
t (E

3) ≈ −3

8

[
(ωc + i∂t)

2|Ψ|2Ψ
]
e−iωct + c.c.

and transform Eq. (10) to the form

(ic∂z)
2Ψ = T2

(
D2

nΨ + 3πχ(3)|Ψ|2Ψ
)
, (17)

where T = ωc + i∂t is introduced for brevity sake.

Ignoring first the nonlinear term in Eq. (17) we obtain (ic∂z ± TDn)Ψ = 0 for the
two counter-propagating waves. We take the first one as the main wave and account
for the small contribution of the nonlinearity by putting ic∂zΨ ≈ −TDnΨ and[

(ic∂z)
2 − T2D2

n

]
Ψ ≈ (ic∂z + TDn)(−2TDn)Ψ. (18)

Equation (17) is then simplified to the form

ic∂zΨ + (ωc + i∂t)

[
DnΨ +

3πχ(3)

2
D1/n|Ψ|2Ψ

]
= 0 (19)

which is the general envelope equation we are interested in. Equation (19) can be
applied as long as the approximation (18) holds, the latter condition replaces SVEA.
A similar condition was first introduced in [4] and was referred to as the slowly-
evolving wave approximation. It also ensures an unidirectional pulse propagation.

Let us compare Eq. (19) to previously reported envelope models. The identity
k(ω)c = ωn(ω) yields for ω = ωc + Ω that cDk = (ωc + i∂t)Dn. We use this fact to
return to Dk in Eq. (19) and formally allow for both D−1

k and representation (3).
Equation (19) takes the form

i∂zΨ + DkΨ +
3πχ(3)

2c2
(ωc + i∂t)

2

Dk

|Ψ|2Ψ = 0 (20)

which is a nonlinear counterpart of Eq. (5). Now assuming i∂t � ωc, using the
approximations

(ωc + i∂t)
2 ≈ ω2

c + 2iωc∂t, D−1
k ≈ (β0 + iβ1∂t)

−1,

and changing to ψ(z, τ) in accord with Eq. (6) we simplify Eq. (20) to a well known
nonlocal envelope equation

i∂zψ +
∞∑

m=0

im

m!
γm

∂mψ

∂τm
+

3πχ(3)

2c2
ω2

c + 2iωc∂τ

β0 + iβ1∂τ

|ψ|2ψ = 0

first introduced in [4] and then refined in [9, 11, 10]. Expanding the last fraction with
respect to i∂τ we arrive at a generalized NSE with the “optical shock” term (see,
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Figure 2: Pulse electric field E(z, t) normalized by 1/
√
χ(3) versus time for a few-

cycle pulse (left) and a sub-cycle pulse (right). Solutions are evaluated from the
Padé based propagation Eq. (19) (thin line) and the Taylor based Eq. (20) (thick
line). (a,b) z = 0; (c,d) z = 10µm; (e,f) z = 50µm.

e.g., [19, 15, 6]). Moreover, completely ignoring i∂t in the nonlinear part of Eq. (20)
and approximating D−1

k with 1/β0 we reduce Eq. (20) to the standard higher-order
NSE [1]. We conclude, that the basic Eq. (19) contains all these models as special
cases. It should be emphasized that for an ultrashort pulse the polynomial dispersion
operator can diverge and the term (β0 + iβ1∂τ )

−1 can become singular. That is why
a more general model (19) should be used. The latter, as opposed by the NSE, also
provides an adequate approximation for the medium absorption near the resonance
frequencies (see Fig. 1).

Equation (19) can be solved numerically by a straightforward application of the
split-step Fourier method [1]. Two exemplary solutions are shown in Fig. 2. The
initial pulse envelope is shaped as 1/ cosh and the reference frequency corresponds to
800 nm. The diagonal Páde approximant for the complex refractive index depicted
in Fig. 1 is used. The numerical solution is calculated using 212 harmonics for
|t| < 256π/ωc and periodic boundary conditions, the propagation distance is 50µm.
For comparison, the solutions of the Taylor expansion based Eq. (20) in which an
artificial spectral filter is implemented to avoid divergence are also shown. The
initial pulse width at half maximum of the intensity envelope is 3.75 fs (Fig. 2a) and
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0.75 fs (Fig. 2b). In the former case Eqs. (19) and (20) yield similar results. In the
latter case the deviations caused by the broad pulse spectrum are clearly seen and
Eq. (20) can not be applied.

In conclusion, to gain the most benefit from the propagation constants, one can
construct the diagonal Páde approximant for the complex refractive index n(ω) and
the corresponding pseudodifferential operator Dn. The latter, as opposed by the
standard dispersion operator, can quantify dispersion for practically any frequency
(Fig. 1). Moreover, one can guarantee the Kramers-Kronig relation and an accurate
description of medium absorption. Our results are most important with respect to
spectrally broad pulses governed by the new unidirectional Eq. (19). The model
is suitable for the further mathematical analysis of few-cycle and even sub-cycle
pulses. Equation (19) is also favorable for computing because its numerical stiffness
is reduced as compared to that of NSE. This work was supported by the DFG
Research Center MATHEON under project D 14.
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