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1 Introduction

We consider mechanical models which are driven by an external loading on a time scale
much slower than any internal time scale (like viscous relaxation times) but still much
faster than the time needed to find the thermo-dynamical equilibrium. Typical phenomena
involve dry friction, elasto-plasticity, certain hysteresis models for shape-memory alloys
and quasistatic delamination or fracture. The main feature is the rate-independency of the
system response, which means that a loading with twice (or half) the speed will lead to a
response with exactly twice (or half) the speed. We refer to [BrS96, KrP89, Vis94, Mon93]
for approaches to these phenomena involving either differential inclusions or abstract
hysteresis operators. Our method is different, as we avoid time derivatives and use energy
principles instead.

As is well-known from dry friction, such systems will not necessarily relax into a com-
plete equilibrium, since friction forces do not tend to 0 for vanishing velocities. One way
to explain this phenomenon on a purely energetic basis is via so-called “wiggly energies”,
where the macroscopic energy functional has a super-imposed fluctuating part with many
local minimizers. Only after reaching a certain activation energy it is possible to leave
these local minima and generate macroscopic changes, cf. [ACJ96, Jam96, Men02]. Here
we use a different approach which involves a dissipation distance which locally behaves
homogeneous of degree 1, in contrast to viscous dissipation which is homogeneous of de-
gree 2. This approach was introduced in [MiT99, MiT03, MTL02, GMH02] for models
for shape-memory alloys and is now generalized to many other rate-independent systems.
See [Mie03a] for a general setup for rate-independent material models in the framework
of “standard generalized materials”.

To be more specific we consider the following continuum mechanical model. Let Ω ⊂
Rd be the undeformed body and t ∈ [0, T ] the slow process time. The deformation or
displacement ϕ(t) : Ω → Rd is considered to lie in the space F of admissible deformations
containing suitable Dirichlet boundary conditions. The internal variable z(t) : Ω →
Z ⊂ Rm describes the internal state which may involve plastic deformations, hardening
variables, magnetization or phase indicators. The elastic (Gibbs) stored energy is given
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via
E(t, ϕ, z) =

∫
Ω
W (x,Dϕ(x), z(x))dx− 〈`(t), ϕ〉,

where 〈`(t), ϕ〉 =
∫
Ω
fext(t, x) ·ϕ(x)dx+

∫
∂Ω
gext(t, x) ·ϕ(x)dx denotes the external loading

depending on the process time t.
Changes of the internal variables are associated with dissipation of energy which is

given constitutively via a dissipation potential ∆ : Ω × TZ → [0,∞], i.e., an internal
process Z : [t0, t1]× Ω → Z dissipates the energy

Diss(z, [t0, t1]) =
∫ t1
t0

∫
Ω

∆(x, z(t, x), ż(t, x))dxdt.

Rate-independency is obtained via homogeneity: ∆(x, z, αv) = α∆(x, z, v) for α ≤ 0. We

associate with ∆ a global dissipation distance D̃ on the set of all internal states:

D̃(z0, z1) = inf{Diss(z[0, 1]) | z ∈ C1([0, 1]× Ω, Z), z(0) = z0, z(1) = z1 }.

In the setting of smooth continuum mechanics the evolution equations associated with
such a process are given through the theory of standard generalized materials (cf. [Mie03a]
and the references therein). They are the elastic equilibrium and the force balance for the
internal variables:

− div ∂W
∂F

(x,Dxϕ(t, x), z(t, x)) = fext(t, x)

0 ∈ ∂sub
ż ∆(x, z(t, x), ż(t, x)) + ∂W

∂z
(x,Dxϕ(t, x), z(t, x))

}
in Ω,

where boundary conditions need to be added and ∂sub denotes the subdifferential of a
convex function. Using the functionals this system can be written in abstract form as

DϕE(t, ϕ(t), z(t)) = 0, 0 ∈ ∂sub
z2
D̃(z(t), ·)[ż(t)] + DzE(t, ϕ(t), z(t)), (1.1)

which has the form of the doubly nonlinear problems studied in [CoV90].
It was realized in [MiT99, MTL02, Mie03a] that this problem can be rewritten in

a derivative-free, energetic form which does not require solutions to be smooth in time
or space. Hence, it is much more adequate for many mechanical systems. Moreover,
the energetic formulation allows for the usage of powerful tools of the modern theory
of the calculus of variations, such as lower semi-continuity, quasi- and poly-convexity
and nonsmooth techniques. A pair (ϕ, z) : [0, T ] → F × Z is called a solution of the

rate-independent problem associated with E and D̃ if (S) and (E) hold:

(S) Stability: For all t ∈ [0, T ] and all (ϕ̃, z̃) ∈ F × Z we have

E(t, ϕ(t), z(t)) ≤ E(t, ϕ̃, z̃) + D̃(z(t), z̃).

(E) Energy equality: For all t ∈ [0, T ] we have
E(t, ϕ(t), z(t)) + Diss eD(z, [0, t]) = E(0, ϕ(0), z(0))− ∫ t

0
〈 ˙̀(τ), ϕ(τ)〉dτ .

For a simple nontrivial application of the abstract theory we consider the case ϕ ≡ 0
and let

E(t, z) =
∫
Ω
a(x)

2
|Dxz(x)|2 − gext(t, x)z(x)dx on Z = H1

0(Ω)
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and D̃(z0, z1) =
∫
Ω
κ|z1(x)−z0(x)| dx with κ > 0. Then, ∆(x, z, ż) = κ|ż| and (1.1)

reduces to the partial differential inclusion

0 ∈ κ Sign(ż(t, x))− div
(
a(x)Dxz(t, x)

)
− gext(t, x), (1.2)

where Sign denotes the set-valued signum function. Our general theory using (S) & (E)
will provide a generalized solution to this problem which satisfies z ∈ BV([0, T ],L1(Ω))∩
L∞([0, T ],H1

0(Ω)) whenever gext ∈ CLip([0, T ],H−1(Ω)), see Theorem 4.6. However, using
the uniform convexity of E(t, ·) this result can be considerably improved; the theory in
[MiT03, Sect.7] provides uniqueness and z ∈ CLip([0, T ],H1

0(Ω)).
Under the assumptions that the sets F and Z are closed, convex subspaces of a suitable

Banach space and that D̃(z0, z1) = ∆(z1−z0), an existence theory was developed in the
above-mentioned work and certain refinements were added in [MiR03, Efe03, KMR03].
The purpose of this work is to provide an abstract framework for constructing solutions
to (S) & (E) without relying on any underlying linear structures in Y = F ×Z. Thus, we
hope to provide a basis for applications in genuinely nonlinear mechanical models such as
elasto-plasticity with finite strains, see [OrR99, CHM02, Mie02, Mie03a, LMD03, Mie03b].
Our existence proof is based on the commonly used time-incremental approach which leads
to minimization problems. Denoting the pair (ϕ, z) by y and letting D(y0, y1) = D̃(z0, z1)
the incremental problem takes the form

(IP) Given y0 ∈ Y and a partition 0 = t0 < t1 < . . . tN = T find y1, . . . , yk such that
E(tk, yk) = inf{ E(tk, y) +D(yk−1, y) | y ∈ Y }.

We equip the space Y with a Hausdorff topology T such that the functions E : [0, T ]×Y →
[Emin,∞] and D : Y × Y → [0,∞] are s-lower semicontinuous, where “s-” stands for
“sequentially”. Moreover, we assume that the reachable sets R(t) = { y ∈ Y | E(t, y) +
D(y0, y) ≤ E(t, y0) + CEt + 1 } are s-compact. From this we can deduce existence of
solutions for (IP).

Solutions to the time-continuous problem (S) & (E) are obtained as limits of incremen-

tal solutions for a sequence of nested partitions P (n) = {0=t
(n)
0 <t

(n)
1 < · · ·<t(n)

N(n)=T} ⊂
P (n+1) whose fineness φ(P (n)) = max{ t(n)

j − t
(n)
j−1 | j = 1, . . . , N(n) } tends to 0. Under

the assumption |∂tE(t, y)| ≤ CE all these solutions satisfy the a priori bound

DissD(Y n, [0, T ]) =
∑N(n)

j=1 D(Y n(t
(n)
j−1), Y

n(t
(n)
j )) ≤ E(0, y0)− Emin + CET.

Here Y n denotes the piecewise constant interpolant with Y n(t) = y
(n)
j for t ∈ [t

(n)
j , t

(n)
j+1).

Using this bound a generalized, abstract version of Helly’s selection principle (see Section

3) allows us to extract a subsequence such that Y nk(t)
T−→ Y ∞(t). For this we need an

additional compatibility between the topology T and the dissipation distance D, namely

that min{D(yk, y),D(y, yk)} → 0 implies yk
T−→ y. Using s-continuity of ∂tE(t, ·) and

assuming stability (S) for Y ∞ it is then straightforward to deduce the energy equality (E)
for the limit Y ∞.

The major task is to show that Y ∞ satisfies (S). For this we use the set of stable
states, shortly called the stable set:

S[0,T ] = ∪t∈[0,T ](t,S(t)) with S(t) = { y ∈ Y | E(t, y) ≤ E(t, ỹ) +D(y, ỹ) for all ỹ ∈ Y }.
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¿From the incremental problem we obtain (t
(n)
k , y

(n)
k ) ∈ S[0,T ]. Hence s-closedness of the

stable set is sufficient to conclude (t, Y ∞(t)) ∈ S[0,T ] for all t, which is exactly (S).
In Theorem 4.5 we summarize the main existence result and provide afterwards a

typical application to the Banach space setting. In Section 5 we discuss abstract condi-
tions on E and D which guarantee the s-closedness of S[0,T ]. In Section 6 we discuss a
few applications of the abstract theory to continuum mechanics. In particular, we show
how the abstract theory lays the basis for the treatment of the delamination problem in
[KMR03]. Moreover, we show that the model of brittle fracture introduced in [FrM93]
and developed further in [FrM98, DaT02, Cha03, FrL03] is a special case of our theory.
We show that the conditions posed there are equivalent to our (S) & (E) which provides
a clearer mechanical interpretation to this theory.

2 Abstract setup of the problem

We start with a topological Hausdorff space (Y,T), and we will write yk
T−→ y to denote

the convergence in this space. In fact, throughout it will be sufficient to consider sequential
closedness, compactness and continuity. We will indicate this fact by writing s-closedness,
s-compactness and s-continuity.

The first ingredient of the energetic formulation is the dissipation distance D : Y×Y →
[0,∞] satisfying D(y, y) = 0 and the triangle inequality:

D(y1, y3) ≤ D(y1, y2) +D(y2, y3) for all y1, y2, y3 ∈ Y. (A1)

We enforce neither strict positivity (i.e., D(y1, y2) = 0 for y1 6= y2 is allowed) nor symmetry
(i.e., we allow for D(y0, y1) 6= D(y1, y0) as is needed in Section 6.2). We call D(y0, y1) the
dissipation distance from y0 to y1.

One major point of the theory is the interplay between the topology T and the dis-
sipation distance. To have a typical nontrivial application in mind, one may consider
Y = { y ∈ L1(Ω,Rk) | ‖y‖L∞ ≤ 1 } equipped with the weak L1 topology and the dissipa-
tion distance D(y1, y2) = ‖y1−y2‖L1 .

For a given curve y : [0, T ] → Y we define the total dissipation on [s, t] via

DissD(y; [s, t]) = sup{∑N
1 D(y(τj−1), y(τj)) |N∈N, s=τ0<τ1< · · ·<τN=t }. (2.1)

Further we define the following set of functions:

BVD([0, T ],Y) := {u : [0, T ] → Y |DissD(u; [0, T ]) <∞}.

Note that the functions are defined everywhere and changing it at one point may increase
the dissipation. Moreover, the dissipation is additive:

DissD(y; [r, t]) = DissD(y; [r, s]) + DissD(y; [s, t]) for all r < s < t.

The second ingredient is the energy-storage functional E : [0, T ]×Y → [Emin,∞], which
is assumed to be bounded from below by a fixed constant Emin. Here t ∈ [0, T ] plays the
rôle of a (very slow) process time which changes the underlying system via changing
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loading conditions. We assume that for all y with E(t, y) <∞ the function t 7→ E(t, y) is
Lipschitz continuous, i.e.,

∂tE(·, y) : [0, T ] → R is measurable and |∂tE(t, y)| ≤ CE . (A2)

Definition 2.1 A curve y : [0, T ] → Y is called a solution of the rate-independent model
(D, E), if global stability (S) and energy equality (E) holds:

(S) For all t ∈ [0, T ] and all ŷ ∈ Y we have E(t, y(t)) ≤ E(t, ŷ) +D(y(t), ŷ).

(E) For all t ∈ [0, T ] we have

E(t, y(t)) + DissD(y; [0, t]) = E(0, y(0)) +
∫ t

0
∂tE(τ, y(τ))dτ.

The definition of solutions of (S) & (E) is such that it implies the two natural require-
ments for evolutionary problems, namely that restrictions and concatenations of solutions
remain solutions. To be more precise, for any solution y : [0, T ] → Y and any subinterval
[s, t] ⊂ [0, T ], the restriction y|[s,t] solves (S) & (E) with initial datum y(s). Moreover,
if y1 : [0, t] → Y and y2 : [t, T ] → Y solve (S) & (E) on the respective intervals and if
y1(t) = y2(t), then the concatenation y : [0, T ] → Y solves (S) & (E) as well.

We use also the following weakened version of (E):

(E)weak For all t ∈ [0, T ] we have

E(t, y(t)) + DissD(y; [0, t]) ≤ E(0, y(0)) +
∫ t

0
∂tE(s, y(s))ds.

The condition (E)weak enables concatenations of solutions, but doesn’t guarantee that
restrictions remain solutions. It is shown in [MiT03] that (S) and (E)weak together imply
that (E) holds (see our Proposition 4.4 for a simple proof).

Rate-independency manifests itself by the fact that the problem has no intrinsic time
scale. It is easy to show that y is a solution for (D, E) if and only if the reparametrized

curve ỹ : t 7→ y(α(t)), where α̇ > 0, is a solution for (D, Ẽ) with Ẽ(t, y) = E(α(t), y).
In particular, the stability (S) is a static concept and the energy balance (E) is rate-
independent, since the dissipation defined via (2.1) is scale invariant like the length of a
curve.

The major importance of the energetic formulation is that neither the given functionals
D and E(t, ·) nor the solutions y : [0, T ] → Y need to be differentiable. In particular, appli-
cations to continuum mechanics often have low smoothness. Of course, under additional
smoothness assumptions on D and E the weak energetic form (S) & (E) can be replaced
by local formulations in the form of differential inclusions like (1.1) ([CoV90, Vis01]) or
variational inequalities. See [MiT03] for a discussion of the implications between these
different formulations.

3 An abstract version of Helly’s selection principle

Since our existence result is based on incremental approximations and since the rate-
independent setting leads to a priori estimates of bounded variation in time, we provide
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here a generalization of Helly’s selection principle, which states that from a sequence
(Yn)n∈N we can select a subsequence (Ynk

)k∈N which converges pointwise.
The classical selection theorem of Helly states that a bounded sequence of monotone

functions on the real line always has a subsequence which converges pointwise everywhere.
Our result extends the following generalization which works for Banach-space valued
functions (see Thm. 3.5, Ch. 1 in [BaP86]).

Theorem 3.1 Let (X, ‖·‖) be a separable, reflexive Banach space with separable dual X∗.
Assume that for the sequence of functions Yn : [0, T ] → X there exists a constant C such
that

‖Yn‖L∞ + Diss‖·‖(Yn; [0, T ]) ≤ C.

Then, there exist a function Y ∈ BV‖·‖([0, T ], X) and a subsequence (Ynk
)k∈N such that

for all t ∈ [0, T ] we have Ynk
(t) ⇀ Y (t) in X (weak convergence).

Our theory completely avoids the setting of vector spaces. Our topology T on Y

replaces the weak topology on X, and the dissipation D replaces the norm ‖·‖.
Theorem 3.2 Let R[0,T ] = ∪[0,T ](t,R(t)) be a s-compact subset of [0, T ]× Y and V[0,T ] =
∪[0,T ](t,V(t)) ⊂ R[0,T ]. Assume that D, T, R[0,T ], and V[0,T ] satisfy the following two
compatibility conditions:

For all t1, t2 ∈ [0, T ] the functional D(·, ·) : R(t1)×R(t2) → [0,∞]

is s-lower semi-continuous.
(A3)

If (tk, yk) ∈ V[0,T ] with tk → t and min{D(yk, y),D(y, yk)} → 0,

then yk
T−→ y.

(A4)

Consider a sequence of functions Yn : [0, T ] → Y such that there exists a constant C > 0
such that DissD(Yn; [0, T ]) ≤ C for all n ∈ N. Moreover, for all t ∈ [0, T ] we have

Yn(t) ∈ R(t) for all n ∈ N and accT(Yk(t))k∈N ⊂ V(t),

where accT(yk)k∈N denotes the set of all possible accumulation points, i.e., T-limits of
subsequences.

Then, there exist a subsequence (Ynk
)k∈N and functions ϕ∞ ∈ BV([0, T ],R), Y ∞ ∈

BVD([0, T ],Y) such that the following holds:

(a) ϕnk
(t) := DissD(Ynk

, [0, t]) → ϕ∞(t) for all t ∈ [0, T ],

(b) Ynk
(t)

T−→ Y ∞(t) ∈ V(t) for all t ∈ [0, T ],
(c) DissD(Y ∞, [t0, t1]) ≤ ϕ∞(t1)− ϕ∞(t0) for all 0 ≤ t0 < t1 ≤ T .

Proof: The functions ϕn : [0, T ] → [0, C]; t 7→ DissD(Yn, [0, t]) are nondecreasing.
The scalar version of Helly’s selection principle guarantees the existence of a function
ϕ∞ : [0, T ] → [0, C] and a subsequence (nl)l∈N with ϕnl

(t) → ϕ∞(t) for all t ∈ [0, T ].
Thus, we have proved (a).

Since ϕ∞ is monotone and bounded, the set J of all its discontinuity points is at most
countable. We choose a countable set M with the following properties:

J ⊂M, M is dense in [0, T ], 0 ∈M.
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Using Yn(t) ∈ R(t) and the s-compactness of R(t) we select, by the aid of Cantor’s
diagonal process, a subsequence (nk) of the sequence (nl) such that Ynk

(t) converges in
(Y,T) for all t ∈ M . The limit of the sequence (Ynk

(t)) is denoted by Y ∞(t), such that
Y ∞ : M → Y is defined.

We now show that this subsequence also converges for t ∈ [0, T ]\M , which provides the
extension of Y ∞ to the whole interval. Fix an arbitrary t ∈ [0, T ]\M . The s-compactness

of R(t) guarantees an accumulation point Y ∞(t) ∈ V(t), i.e., Yenm(t)
T−→ Y ∞(t) for a

subsequence (Yenm) of (Ynk
). It remains to show that this accumulation point is unique.

For this we use (A3) and (A4).
Take any sequence (ti)i∈N such that ti ∈M and ti → t. Then, if ti < t, (A3) implies

D(Y ∞(ti), Y
∞(t)) ≤ lim infm→∞D(Yenm(ti), Yenm(t)) ≤ lim infm→∞ Diss(Yenm ; [ti, t])

= lim infm→∞ ϕenm(t)−ϕenm(ti) = ϕ∞(t)−ϕ∞(ti).

Similarly, if t < ti we obtain D(Y ∞(t), Y ∞(ti)) ≤ ϕ∞(ti)−ϕ∞(t) and together with the
continuity of ϕ∞ at t we conclude

min{D(Y ∞(ti), Y
∞(t)),D(Y ∞(t), Y ∞(ti))} ≤ |ϕ∞(t)−ϕ∞(ti)| → 0 for i→∞.

Now we employ (A4) which implies Y ∞(ti)
T−→ Y ∞(t). Since (Y,T) is a Hausdorff space,

the limit of a converging sequence is unique, and we conclude that (Ynk
)k∈N has exactly

one accumulation point. Thus, we have proved (b).
For assertion (c) we consider any discretization t0 = θ0 < θ1 < . . . < θN = t1 of the

segment [t0, t1]. Using Ynk
(θi)

T−→ Y ∞(θi) for i = 0, 1, . . . , N and (A3) we obtain

∑N
j=1D(Y ∞(θj−1), Y

∞(θj)) ≤ lim infk→∞
∑N

j=1D(Ynk
(θj−1), Ynk

(θj))

≤ lim infm→∞ Diss(Ynk
; [t0, t1]) = lim infm→∞ ϕnk

(t1)−ϕnk
(t0) = ϕ∞(t1)−ϕ∞(t0).

Taking the supremum on the left-hand side gives the desired estimate (c).

We now collect a few results on functions Y ∈ BVD([0, T ],Y) which will be useful later
on.

Theorem 3.3 Let V[0,T ] be a s-compact subset of [0, T ] × Y and assume that D satisfies
(A3),(A4). Furthermore assume that Y ∈ BVD([0, T ],Y) satisfies (t, Y (t)) ∈ V[0,T ] for all
t ∈ [0, T ].
(a) Then, t 7→ Y (t) is s-continuous (w.r.t. T) at all continuity points of t 7→ DissD(Y, [0, t]).
(b) For all t ∈ [0, T ] the T-limits from the right Y+(t) = limτ↘t Y (τ) and from the left
Y−(t) = limτ↗t Y (τ) are well defined. Moreover, limτ↗t DissD(Y, [τ, t]) = D(Y−(t), Y (t))
and limτ↘t DissD(Y, [t, τ ]) = D(Y (t), Y+(t)).

(c) If P (n) = {0 = t
(n)
0 < t

(n)
1 < · · · t(n)

Nn−1 < t
(n)
Nn

= T} defines a sequence of partitions

of the interval [0, T ] such that the fineness φ(P (n)) = max1≤k≤Nn t
(n)
k −t(n)

k−1 tends to 0,

then the piecewise constant interpolants Y (n) with Y (n)(t) = Y (t
(n)
k ) for t ∈ (t

(n)
k−1, t

(n)
k ]

lie in BVD([0, T ],Y), and for almost all t ∈ [0, T ] we have Y (n)(t)
T−→ Y (t). In fact,

the convergence holds for all t except in the (at most countable) set of jump points of
t 7→ DissD(Y, [0, t]).
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Proof: Let t be a continuity point of t 7→ DissD(Y, [0, t]). Then

lim
τ↗t

D(Y (τ), Y (t)) ≤ lim
τ↗t

DissD(Y, [τ, t]) = DissD(Y, [0, t])− lim
τ↗t

DissD(Y, [0, τ ]) = 0.

Using (A4) we obtain limτ↗t Y (τ) = Y (t). Similarly we can show that limτ↘t Y (τ) = Y (t).
Thus, we have proven (a).

Fix an arbitrary t in [0, T ] and consider a monotone increasing sequence (tn)n∈N with
tn ↗ t. All points (tn, Y (tn)) lie in the set V[0,T ] and therefore we can select a subsequence
(nk)k∈N with Y (tnk

) → y∗. We let Y−(t) := y∗ and have to show that Y−(t) = limτ↗t Y (τ):
The function t 7→ DissD(Y, [0, t]) is nondecreasing and bounded. This fact implies the
existence of the limit v−(t) := lims↗t DissD(Y, [0, s]). Let ε > 0 be arbitrary. There exists
a number s0 < t such that for all s ∈ (s0, t) holds

v−(t)− ε ≤ DissD(Y, [0, s]) ≤ v−(t)

and therefore D(Y (s), Y (s1)) ≤ ε for all s, s1 with s0 < s < s1 < t. Using (A3) and
tnk

→ t we obtain

D(Y (s), Y−(t)) ≤ lim inf
k→∞

D(Y (s), Y (tnk
)) ≤ ε (3.1)

which in conjunction with (A4) implies that Y−(t) = limτ↗t Y (τ).
On the one hand, the estimate D(Y (s), Y (t)) ≤ DissD(Y, [s, t]) and the additivity of

the dissipation give DissD(Y, [0, s]) + D(Y (s), Y (t)) ≤ DissD(Y, [0, t]). Taking the limit
s↗ t, using Y (s) → Y−(t) and (A3), we obtain

v−(t) +D(Y−(t), Y (t)) ≤ DissD(Y, [0, t]). (3.2)

On the other hand, for each partition P = {0 = t0 < t1 < . . . tN−1 < tN = t} of the
interval [0, t] with tN−1 > s0 we obtain by using the triangle inequality and (3.1)

N∑
j=1

D(Y (tj−1), Y (tj))≤DissD(Y, [0, tN−1]) +D(Y (tN−1), Y−(t)) +D(Y−(t), Y (t))

≤ v−(t) + ε+D(Y−(t), Y (t)).

(3.3)

Taking the supremum over all partitions and using that ε > 0 is arbitrary we infer with
(3.2) that DissD(Y, [0, t]) = D(Y−(t), Y (t)) + v−(t). ¿From this we find

lim
τ↗t

DissD(Y, [τ, t]) = D(Y−(t), Y (t)) + v−(t)− lim
τ↗t

DissD(Y, [0, τ ]) = D(Y−(t), Y (t)).

Likewise we can show the existence of Y+(t) = limτ↘t Y (τ) and limτ↘t DissD(Y, [t, τ ]) =
D(Y (t), Y+(t)). This proves (b).

Since Y is s-continuous at all t except in the at most countable set of jump points of
t 7→ DissD(Y, [0, t]), part (c) follows immediately.
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4 Existence via time-incremental problems

The major task is now to develop an existence theory for the initial value problem, i.e.,
to find a solution in the above sense which additionally satisfies y(0) = y0. In general, we
should not expect uniqueness without imposing further conditions like smoothness and
uniform convexity of E(t, ·) and D, see [MiT03].

Existence of solutions is shown via time-incremental minimization problems. For this
we assume that the functionals E(t, ·) : Y → [Emin,∞] and D : Y × Y → [0,∞] are s-
lower semicontinuous. In the standard case Y is a closed, convex and bounded subset of
a reflexive Banach space (like the Sobolev space W1,p(Ω,Rm) with p ∈]1,∞[) equipped
with weak topology T, and hence Y is compact. Then, s-lower semicontinuity of E and D
in (Y,T) is the same as the classical weak sequential lower semicontinuity in the calculus
of variations, see e.g. [Dac89].

The stability condition (S) can be rephrased by defining the stable sets

S(t) := { y ∈ Y | E(t, y) <∞, E(t, y) ≤ E(t, ŷ) +D(y, ŷ) for all ŷ ∈ Y },
S[0,T ] := { (t, y) ∈ [0, T ]× Y | y ∈ S(t) } = ∪t∈[0,T ](t,S(t)).

Then, (S) simply means that y(t) ∈ S(t) for all t ∈ [0, T ]. The properties of the stable
sets turn out to be crucial for deriving existence results.

For the time discretizations we choose discrete times 0 = t0 < t1 < . . . < tN = T
and seek for a yk which approximates the solution y at tk, i.e., yk ≈ y(tk). Our energetic
approach has the major advantage that the values yk can be found incrementally via
minimization problems. Since the methods of the calculus of variations are especially
suited for applications in material modeling this will allow for a rich field of applications.

In our general setting the incremental problem takes the following form:

(IP) For y0 ∈ S(0) ⊂ Y find y1, . . . , yN ∈ Y such that

yk ∈ arg min{ E(tk, y) +D(yk−1, y) | y ∈ Y } for k = 1, . . . , N. (4.1)

Here “arg min” denotes the set of all minimizers. The following result shows that (IP)
is intrinsically linked to (S) & (E). Without any smallness assumptions on the time steps,
the solutions of (IP) satisfy properties which are closely related to (S) & (E).

Theorem 4.1 Let (A1) and (A2) hold. Any solution of the incremental problem (4.1)
satisfies the following properties:

(i) yk is stable for time tk, i.e., yk ∈ S(tk);

(ii)
∫

[tk−1,tk]
∂sE(s, yk)ds ≤ E(tk, yk)− E(tk−1, yk−1) +D(yk−1, yk)

≤ ∫
[tk−1,tk]

∂sE(s, yk−1)ds for k = 1, . . . , N ;

(iii) E(tj, yj) +
∑j

k=1D(yk−1, yk) ≤ E(0, y0) + CEtj.

Proof: (i) The stability follows from minimization properties of the solutions and the
triangle inequality. For all ŷ ∈ Y and we have

E(tk, ŷ) +D(yk, ŷ) = E(tk, ŷ) +D(yk−1, ŷ) +D(yk, ŷ)−D(yk−1, ŷ)

≥ E(tk, yk) +D(yk−1, yk) +D(yk, ŷ)−D(yk−1, ŷ) ≥ E(tk, yk).
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(ii) The first estimate is deduced from yk−1 ∈ S(tk−1) as follows:

E(tk, yk) +D(yk−1, yk)− E(tk−1, yk−1) =

E(tk−1, yk)+
∫
[tk−1,tk]

∂sE(s, yk)ds+D(yk−1, yk)−E(tk−1, yk−1) ≥
∫
[tk−1,tk]

∂sE(s, yk)ds.

Since yk ∈ arg min{ E(tk, y) +D(yk−1, y) | y ∈ Y } the second estimate follows via

E(tk, yk)− E(tk−1, yk−1) +D(yk−1, yk)

≤ E(tk, yk−1)− E(tk−1, yk−1) +D(yk−1, yk−1) =
∫

[tk−1,tk]
∂sE(s, yk−1)ds.

(4.2)

(iii) This estimate is obtained by adding up the second estimate in (ii) for k = 1, . . . , j.

For each incremental solution (yk)k=1,...,N of (IP) we define two piecewise constant
functions which attain the values yk at tk and are constant in-between: Y P is continuous
from the right and Ŷ P is continuous from the left. Summing up the estimates (ii) in
Theorem 4.1 over k = j, . . . ,m we find the following two-sided energy estimate:

Corollary 4.2 Let (A1) and (A2) hold and let P be any partition of [0, T ]. Then, any
solution (yk)k=0,...,N of (IP) satisfies, for 0 ≤ j < m ≤ N , the two-sided energy inequality

E(tj, Y
P (tj)) +

∫ tm
tj
∂sE(s, Ŷ P (s))ds≤ E(tm, Y

P (tm)) + DissD(Y P , [tj, tm])

≤ E(tj, Y
P (tj)) +

∫ tm
tj
∂sE(s, Y P (s))ds.

So far, we have not yet proved the existence of solutions to (IP). However, the above
theorem already indicates that we can use induction arguments to provide compactness
and hence existence results. We define first the reachable sets

R[0,T ] := { (t, y) ∈ [0, T ]× Y | E(t, y)+D(y0, y) ≤ E(0, y0)+CEt+ 1 }
and R(t) := { y ∈ Y | (t, y) ∈ R[0,T ] }.

(4.3)

With (A2) we conclude R(s) ≤ R(t) for s < t. As a consequence we have R[0,T ] ⊂
[0, T ] × R(T ). The following two assumptions will ensure the existence of a solution to
(IP).

The set R(T ) is s-compact in (Y,T). (A5)

For all t ∈ [0, T ] and all ŷ ∈ R(T ) the mapping y 7→ E(t, y)+D(ŷ, y)

is s-lower semi-continuous on R(t) ⊂ Y.
(A6)

Using (A6) it is easy to see that R[0,T ] is a closed subset of [0, T ]×Y. Hence, together
with (A5) we conclude that each R(t), and R[0,T ] are s-compact.

Theorem 4.3 Let (A1), (A2), (A5), and (A6) hold. Then, (IP) has a solution.

Proof: The proof works by induction over k = 1, . . . , N , since y0 is given.
In step k the value yk−1 is given and we have to find yk ∈ arg min E(tk, y)+D(yk−1, y).

Since yk−1 was the minimizer in the previous step we have yk−1 ∈ R(tk−1). In fact, by
(iii) in Theorem 4.1 we have E(tk−1, yk−1)+D(y0, yk−1) ≤ E(0, y0)+CEtk−1.
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Let (yl)l∈N be an infimizing sequence for E(tk, ·)+D(yk−1, ·) with E(tk, y
l)+D(yk−1, y

l) ≤
infy∈Y {E(tk, y) +D(yk−1, y)} + 1 for all l ∈ N. Following the estimate (4.2) in Theorem
4.1 we obtain yl ∈ R(tk) for all l ∈ N. Using (A5) and (A6) we conclude the existence of

y∗ ∈ R(tk) and a subsequence ylm with ylm
T−→ y∗. Moreover,

E(tk, y
∗) +D(y0, y

∗) ≤ lim inf
m→∞

E(tk, y
lm) +D(yk−1, y

lm) = inf
y∈Y

{E(tk, y) +D(yk−1, y)} .

Hence, we let yk = y∗ and the induction step is completed.

The existence of solutions for the time-continuous problem (S) & (E) is now established
by extracting a suitable subsequence of approximate solutions obtained from incremental
problems and by showing that the limit is a solution. We first give a rough overview of
the proof which illuminates the structure and the assumptions needed.

Proposition 4.3 and Theorem 4.1 show that S(t) is not empty for each t ∈ [0, T ]. For
all incremental solutions the points (tk, yk) lie in the set

V[0,T ] := R[0,T ] ∩ S[0,T ] = ∪t∈[0,T ](t,V(t)) where V(t) = R(t) ∩ S(t).

To construct approximate solutions we choose a sequence (P (n))n∈N of discretizations

whose fineness φ(P (n)) = max{ t(n)
j −t(n)

j−1 | j = 1, . . . , Nn } tends to 0. Moreover, we

assume that the sequence is nested, i.e., P (n) ⊂ P (n+1). We write shortly Y n = Y P (n)

(Ŷ n = Ŷ P (n)) for the right (left) continuous, piecewise constant interpolant associated
with the partitions P (n).

The dissipation bound (iii) of Theorem 4.1 provides an a priori bound in BVD([0, T ],Y):

DissD(Y n, [0, T ]) ≤ E(0, y0)− Emin + CET.

Using the abstract version of Helly’s selection principle allows us to extract a subsequence

(nl)l∈N such that for all t ∈ [0, T ] the sequence Y nl(t)
T−→ Y ∞(t) with

DissD(Y ∞, [t0, t1]) ≤ lim
l→∞

DissD(Y nl , [t0, t1]).

For this result we need to impose the two additional conditions from above: 1) D :
R(T ) × R(T ) → [0,∞] is s-lower semicontinuous (see (A3)), 2) (tk, yk) ∈ V[0,T ] with

tk → t and min{D(yk, y),D(y, yk)} → 0 implies yk
T−→ y (see (A4)).

Now we need to show that Y ∞ is a solution of (S) & (E). Stability is obtained via the
stability of the incremental solutions at the discretization points which become dense in
the limit of n→∞. For this we need to assume that

V[0,T ] is s-compact. (A7)

This is certainly the most restrictive assumption and it will be considered in the next
section in more detail.

Using Corollary 4.2 it is easy to give conditions which guarantee that Y ∞ satisfies
(E)weak. From this we obtain energy equality (E) via using the stability (S). The following
result relies on the additional assumption:

For almost every t ∈ [0, T ] the map y 7→ ∂tE(t, y)

is s-continuous on R(t).
(A8)
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Theorem 4.4 Let y ∈ BVD([0, T ],Y) with y(t) ∈ V(t) ⊂ S(t) for t ∈ [0, T ]. If (A1),
(A2) and (A8) hold and if y is continuous for all t except on a set, which is at most
countable, then for all 0 ≤ r < s ≤ T we have the opposite energy inequality

E(s, y(s)) + DissD(y, [r, s]) ≥ E(r, y(r)) +
∫ s

r
∂tE(t, y(t))dt. (4.4)

Proof: We consider the equidistant partition P (n) with tk = r+k(s−r)/n of the segment

[r, s]. Moreover, we set yk = y(tk) and Ŷ n for the piecewise constant interpolant which is
continuous from the left. As in Corollary 4.2 (see also the proof of part (ii) of Theorem
4.1), where only the stability was used, we obtain the lower estimate

E(s, y(s)) + DissD(Ŷ n, [r, s])− E(r, y(r)) ≥ ∫ s

r
∂tE(t, Ŷ n(t))dt.

Here the left-hand side is a lower bound for the left-hand side in (4.4). The right-hand
side converges by Lebesgue’s majorated convergence theorem. For this, use (A8) and

Ŷ n(t) → y(t), see Proposition 3.3(c). This proves the result.

Now we are ready to turn the above construction into a rigorous existence proof.

Theorem 4.5 Let the conditions (A1)–(A8) be satisfied. Assume additionally that

E : R[0,T ] → [Emin,∞] is s-lower semicontinuous. (A9)

Then for each y0 ∈ S(0) there is at least one solution y ∈ BVD([0, T ],Y) of (S)& (E) with
y(0) = y0.

Moreover, for the above incremental approximations there exists a subsequence (Y nk)k∈N
in BVD([0, T ],Y) with the following convergence properties for k →∞:

(i) For all t ∈ [0, T ] we have Y nk(t)
T−→ y(t).

(ii) For 0 ≤ r < s ≤ T we have DissD(Y nk , [r, s]) → DissD(y, [r, s]).

(iii) For all t ∈ [0, T ] we have E(t, Y nk(t)) → E(t, y(t)).

Remark 1. Assumption (A6) follows immediately from (A9) and (A3).
Remark 2. If E(t, ·) : R(t) → [Emin,∞] is s-lower semicontinuous for all t ∈ [0, T ], then
assumption (A2) implies that (A9) also holds.
Proof: Proposition 4.3 provides the existence of a solution for the incremental problem
(4.1) for any partition. We take a sequence of hierarchical partitions P (n) = {0 =
tn0 , t

n
1 , . . . , t

n
Nn

= T} which is nested, i.e., P (n) ⊂ P (n+1), and whose fineness tends to 0,
i.e., φ(P (n)) = max{ tnj−tnj−1 | j = 1, . . . , Nn } → 0. For each partition P (n) we have an
incremental solution (ynk )k=0,...,Nn and we define the two piecewise constant functions Y n

(continuous from the right) and and Ŷ n (continuous from the left).
Using R(r) ⊂ R(s) for r < s we conclude that Y n(t) ∈ R(t) for all t and n. To apply

our selection result in Theorem 3.2 we have to show that the accumulation points of each

sequence (Y n(t))n∈N lie in V(t) = S(t)∩R(t). We fix t and assume Y nm(t)
T−→ y, then we

know that Y nm(t) = ynm
k with t ∈ [tnm

k , tnm
k+1). Since V[0,T ] is s-compact, (tnm

k , ynm
k ) ∈ V[0,T ],

tnm
k → t and ynm

k

T−→ y, we conclude y ∈ V(t) as desired.
Thus, the selection principle is applicable and we obtain a subsequence (Y nk)k∈N which

converges for all t and its limit Y ∞ satisfies Y ∞(t) ∈ V(t) ⊂ S(t) and

DissD(Y ∞, [r, s]) ≤ lim
k→∞

DissD(Y nk , [r, s]) =: ϕ∞(s)−ϕ∞(r) (4.5)
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for 0 ≤ r < s ≤ T . In order to show that the desired solution y is this particular Y ∞ we
have to prove that the stability condition (S) and the energy equality (E) holds.

To prove the energy equality (E) together with the convergence results stated in (ii)
and (iii) we introduce the real-valued functions ek, ϕk, wk and ŵk via

ek(t) := E(t, Y nk(t)), ϕk(t) := DissD(Y nk , [0, t]),

wk(t) :=
∫ t

0
∂tE(s, Y nk(s))ds, ŵk(t) :=

∫ t

0
∂tE(s, Ŷ nk(s))ds.

Using Corollary 4.2 and (A2) we obtain for all t and all k the two-sided energy estimate

ŵk(t)− CEφk ≤ ek(t) + ϕk(t)− E(0, y0) ≤ wk(t) + 2CEφk,

where φk = φ(P (nk)) denotes the fineness of the partitions. For grid points t ∈ P (nk) the
estimate holds without the corrections ±2CEφk. For general points we use the fact that
Y nk is piecewise constant and (A2) (i.e., |∂tE| ≤ CE).

In the limit k →∞ the left-hand and the right-hand side converge to the same limit
w∞(t) =

∫ t

0
∂tE(s, Y ∞(s)) ds by (A8) and Proposition 3.3(a). Using ϕk(t) → ϕ∞(t) we

conclude that the limit e∞(t) := limk→∞ ek(t) exists. Moreover, by (A9) and (4.5) we
have

E(t, Y ∞(t)) + DissD(Y ∞, [0, t]) ≤ e∞(t) + ϕ∞(t) = E(0, y0) + w∞(t),

which is (E)weak. Together with the opposite inequality derived in Proposition 4.4 we
obtain (E).

In particular, this means E(t, Y ∞(t)) + DissD(Y ∞, [0, t]) = e∞(t) + ϕ∞(t) in addition
to E(t, Y ∞(t)) ≤ e∞(t) and DissD(Y ∞, [0, t]) ≤ ϕ∞(t). This implies equality in both cases
and (ii) and (iii) are established.

Our solution concept is such that solutions are well-defined for all t ∈ [0, T ] in contrast
to definitions for almost every t ∈ [0, T ]. In particular, both, the left-hand limit y−(t) and
the right-hand limit y+(t), may differ from y(t). However, if y is a solution of (S) & (E),
then also y− and y+ are solutions (with a possible change of initial value in the latter
case).

Moreover, the energy equality and stability imply that at jump points the following
identities hold:

E(t, y−(t)) = E(t, y(t))+D(y−(t), y(t)), E(t, y(t)) = E(t, y+(t))+D(y(t), y+(t)),

D(y−(t), y+(t)) = D(y−(t), y(t))+D(y(t), y+(t)).
(4.6)

Note that all three points y(t), y−(t), y+(t) lie in the stable set S(t).
We formulate now a special version of Theorem 4.5, which is based on Banach spaces

and which is easy to apply to several models in continuum mechanics.

Theorem 4.6 Let Y1 and Y be Banach spaces. Suppose that Y1 is compactly embedded in
Y and that { y ∈ Y1 | ‖y‖Y1 ≤ 1 } is closed in Y . The dissipation distance D : Y × Y → R
is the Y -norm, i.e., D(y1, y2) = ‖y1 − y2‖Y . Furthermore the functional E : [0, T ]× Y →
[Emin,∞] has the following properties:

(a) E is s-lower semicontinuous on [0, T ]× Y (with respect to the norm topology of Y ).
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(b) For some real numbers c1 > 0, C2 and α > 1 we have

E(t, y) ≥ c1‖y‖αY1
− C2 (i.e., E(t, y) = ∞ for y ∈ Y \ Y1). (4.7)

(c) The map ∂tE(t, ·) : Y1 → R is s-continuous with respect to the norm topology Y .

(d) There exists C3 such that |∂tE(t, y)| ≤ C3(1+‖y‖Y1) for all t ∈ [0, T ] and y ∈ Y1.

Then, for each y0 ∈ S(0) there exists at least one solution y ∈ BVD([0, T ], Y )∩B([0, T ], Y1)
of (S)& (E) with y(0) = y0 and all the conclusions of Theorem 4.5 also hold.

Here B([0, T ], Y1) denotes the set of mappings y such that t 7→ ‖y(t)‖Y1 is bounded.

Before giving the proof of this result, we show that it provides a generalized solution to
(1.2), i.e., to the partial differential inclusion 0 ∈ κ(x) Sign(ż(t, x))−div(a(x)Dxz(t, x))−
gext(t, x) with z(t, ·)|∂Ω = 0. To this end take Y = L1(Ω), Y1 = H1

0(Ω) and D and E
as defined for (1.2). Since E is quadratic, the assumptions (a) and (b) hold with α = 2.
Moreover, with gext ∈ CLip([0, T ],H−1(Ω)) we obtain |∂tE(t, z)| = |〈∂tgext(t), z〉| ≤ C‖z‖H1 .

Proof: Since we want to use Theorem 4.5, one putative problem is the absence of an
estimate similar to (A2). The main idea of our proof is to solve the problem (S) & (E) on
the set BY1

R (0) := { y ∈ Y1 | ‖y‖Y1 ≤ R } equipped with the Y -topology and to show that
the constructed solution doesn’t depend on R. In the sequel these problems are called
restricted problems.

The proof is done in three steps:
Step 1: Show that the problem (S) & (E) on the set BY1

R (0) equipped with the Y -topology
has a solution yR for all R ≥ ‖y0‖Y1 .
Step 2: Give a number rst such that all solutions of the restricted problems with R ≥
‖y0‖Y1 as well as possible solutions of the problem on Y lie in BY1

rst(0).
Step 3: Give a number Rdist such that for all y which are stable on the set BY1

rst(0) the

inequality E(t, y) ≤ E(t, ŷ) +D(y, ŷ) holds for all ŷ ∈ Y \BY1
Rdist

(0).

If these three steps are completed, it easy to see that each solution obtained for any
R > max{rst, Rdist} remains a solution for any R̂ > R. Hence, each such solution is a
solution of the full problem. We now work out Step 1 to 3.

Step 1: Let R > ‖y0‖Y1 . We define the space Y as BY1
R (0) and equip it with the Y -

topology. From the compact embedding of Y1 in Y and the Y -closedness of the Y1-balls
in Y it follows that Y is a compact, topological Hausdorff space.

We need to verify all the assumptions of Theorem 4.5.
Each stable point y ∈ Y for the problem (S) & (E) on Y is also stable for the restricted

problem on Y. Hence, y0 is stable at the time t = 0 for the restricted problem. Using
(a) and (b) we infer that conditions (A8) and (A9) hold on Y. Since D(y1, y2) is equal to
‖y1− y2‖Y , conditions (A1), (A3) and (A4) follow immediately. Using (d) we obtain that
the assumption (A2) holds on Y with CE = C3(1+R).

The map y 7→ E(t, y) +D(y0, y) is s-lower semicontinuous. Hence the set R(T ) of the
restricted problem is s-closed in Y. Since Y is a compact, condition (A5) holds.

Using Theorem 5.1 from below we obtain condition (A7) from (A5) and the Y -
continuity of the dissipation distance. Thus, Step 1 is proved.

Step 2: We give an a priori bound for ‖y‖Y1 for all solutions y of the whole or of the
restricted problems. If y is a solution, then y(t) is stable for all t ∈ [0, T ]. Using y ∈ S(t),
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(4.7) and assumption (d), we get the following estimate

c1‖y‖αY1
−C2 ≤ E(t, y) ≤ E(t, y0)+D(y, y0) ≤ E(0, y0)+t [C3(1+‖y0‖Y1)]+‖y−y0‖Y . (4.8)

Since Y1 is continuously embedded in Y there exists a K > 0 such that ‖y‖Y ≤ K‖y‖Y1

for all y ∈ Y1. Hence, using (4.8) we obtain

c1‖y‖αY1
− C2 −K‖y‖Y1 ≤ E(0, y0) + t [C3(1+‖y0‖Y1)] +K‖y0‖Y1 . (4.9)

The last estimate implies that there exists a number rst > 0 such that

‖y‖Y1 ≤ rst for all y ∈ ∪t∈[0,T ]S(t).

Therefore all solutions of the whole problem or of the restricted problems lie in BY1
rst(0).

This proves Step 2.

Step 3: Suppose y is stable on BY1
rst(0) at a time t ∈ [0, T ] and that there exists ŷ ∈ Y1

such that
E(t, y) > E(t, ŷ) +D(y, ŷ). (4.10)

Our aim is to give an a priori upper bound for the Y1-norm of ŷ. Using the stability of
the point y on BY1

rst(0) and assumption (d), we obtain the following estimate:

E(t, y) ≤ E(t, y0) +D(y, y0) ≤ E(0, y0) + t [C3(1+‖y0‖Y1)] +D(y, y0)

≤ E(0, y0) + T [C3(1+rst)] + 2rst.

Combining this estimate, (4.10) and (4.7) we obtain

E(0, y0) + T [C3(1+rst)] + 2rst ≥ E(t, y) > E(t, ŷ) +D(y, ŷ) ≥ c1‖ŷ‖αY1
− C2. (4.11)

The last estimate allows us to give an a priori upper bound Rdist for the norm of ŷ, i.e.,
for all ŷ with ‖ŷ‖ > Rdist the estimate

E(t, y) ≤ E(t, ŷ) +D(y, ŷ)

holds. Thus, Step 3 is proved.

5 Closedness of the stable set

The major assumption of our existence result in Theorem 4.5 is the s-compactness of
V[0,T ] stated in (A7). Since V[0,T ] = S[0,T ] ∩ R[0,T ] is a subset of the s-compact set R[0,T ],
it suffices to show that S[0,T ] (or just S[0,T ] ∩R[0,T ]) is s-closed.

Before deriving abstract results in this direction we give two simple nontrivial appli-
cations of the theorem and thus highlight that the choice of the topology T is crucial. For
both examples let Y = L1(Ω) with Ω ⊂ Rd open and bounded, and choose the dissipation
distance D(y0, y1) = ‖y1−y0‖Y =

∫
Ω
|y1(x)−y0(x)|dx.

For the first example consider

E1(t, y) =
∫
Ω
a(x)|y(x)|α−g(t, x)y(x)dx,
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where a(x) ≥ a0 > 0, α > 1, and g ∈ C1([0, T ],L∞(Ω)). Since E1(t, ·) is convex and lower
semi-continuous, the set R(T ) is a closed convex set which lies in the intersection of an
L1-ball and an Lα-ball. Hence, taking T to be the weak topology on Y, we obtain that
the s-compactness condition (A5) holds. Note that R(T ) is not compact in the norm
topology of L1(Ω). The stable sets for E1 are given by

S1(t) = { y ∈ L1(Ω) | |y(x)|β−2y(x) ∈ [g(t,x)−cD
a(x)α

, g(t,x)+cD
a(x)α

] for a.a. x ∈ Ω },
which shows that they are s-closed with respect to T, since they are convex and closed
in the norm topology. Hence, with T as weak topology in Y = L1(Ω) all conditions of
Theorem 4.5 can be satisfied.

For the second example consider the nonconvex energy functional

E2(t, y) =
∫
Ω

1
2
|Dy(x)|2+f(t, x, y(x))dx for y ∈ H1(Ω) and +∞ else,

where f : [0, T ]×Ω×R→ R and ∂tf are continuous and bounded. Now, R(T ) is already
compact in the norm topology of Y = L1(Ω), since it is closed and contained in a Y1-ball,
where Y1 = H1(Ω) is compactly embedded in Y . With these properties, it can be shown
that with T as strong topology of L1(Ω) all conditions of Theorem 4.6 can be satisfied.

As a first abstract result we show that s-continuity of D on V[0,T ] leads to s-closedness,
since then E is also s-continuous.

Theorem 5.1 Let (A2) hold. Assume that E is s-lower semicontinuous on [0, T ]×Y and
that D is s-continuous on Y× Y. Then, E : S[0,T ] → [Emin,∞) is s-continuous as well and
the set S[0,T ] is s-closed.

Proof: For (s, ys), (t, yt) ∈ S[0,T ] we have by stability

−CE |t−s| − D(ys, yt) ≤ E(t, yt)−E(s, ys) ≤ CE |t−s|+D(yt, ys).

This estimate together with the s-continuity of D implies the s-continuity of E .

Now, consider a sequence (tk, yk)k∈N in S[0,T ] with tk → t∗ and yk
T−→ y∗. It remains

to show that y∗ ∈ S(t∗). For an arbitrary y ∈ Y we have E(tk, yk) ≤ E(tk, y) +D(yk, y) for
all k ∈ N. Taking the limit k →∞ the s-continuities yield E(t∗, y∗) ≤ E(t∗, y) +D(y∗, y).
Since y ∈ Y is arbitrary, it follows that y∗ ∈ S(t∗).

The next result is a strengthened version of the previous one.

Theorem 5.2 Let (A2) hold. Assume that for each sequence (tk, yk)k∈N with (tk, yk) ∈
S[0,T ], tk → t∗ and yk

T−→ y∗ in Y the following condition holds:

∀ y ∈ Y : lim inf
k→∞

[E(tk, yk)−D(yk, y)
] ≥ E(t∗, y∗)−D(y∗, y). (5.1)

Then, the set S[0,T ] is s-closed.

Proof: Let y ∈ Y be arbitrary. We have to show that E(t∗, y∗) ≤ E(t∗, y) + D(y∗, y).
Since (tk, yk) ∈ S[0,T ] we have the following estimates

E(t∗, y∗) = E(t∗, y∗)−E(tk, yk)+E(tk, yk) ≤ E(t∗, y∗)−E(tk, yk)+E(tk, y)+D(yk, y)

= E(t∗, y)+D(y∗, y) + (E(tk, y)−E(t∗, y))− [E(tk, yk)−D(yk, y)−E(t∗, y∗)+D(y∗, y)].
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Taking the limit k →∞, using (A2) (i.e., |∂tE| ≤ CE) and condition (5.1) we obtain the
desired result.

For an application to the delamination problem we use the following result, which uses
s-continuity of E and some approximation property for D. This approximation property
is weaker than the continuity assumed in Theorem 5.1.

Theorem 5.3 Let (A1), (A2), (A3), (A5), and (A9) hold and assume that there exists
an s-closed set M[0,T ] with S[0,T ] ⊂M[0,T ] ⊂ [0, T ]×Y such that E : M[0,T ] → [Emin,∞] is
s-continuous. Moreover, assume that D satisfies the following condition:

For all (t, ŷ), (tk, yk) ∈ S[0,T ] with (tk, yk)
T−→ (t, y)

there exists ŷk ∈M(tk) such that

ŷk
T−→ ŷ and lim inf

k→∞
D(yk, ŷk) ≤ D(y, ŷ).

(5.2)

Then, the set S[0,T ] is s-closed.

Remark: For the case that Y is a Banach space, M[0,T ] = [0, T ]×Y, and D(y, ŷ) = ∆(ŷ−y)
with c1‖y‖ ≤ ∆(y) ≤ c2‖y‖, we simply choose ŷk = ŷ−y+yk. ThenD(yk, ŷk) = ∆(ŷ−y) =
D(y, ŷ), and the assumption holds trivially.

Proof: Take any sequence (tk, yk) ∈ S[0,T ] with (tk, yk)
T−→ (t, y). We have to show that

y ∈ S(t). Obviously, we have (t, y) ∈M[0,T ].
For arbitrary ŷ ∈ S(t) we choose ŷk ∈ M(tk) ⊃ S(tk) according to condition (5.2).

Using the s-continuity of E and yk ∈ S(tk) we obtain

E(t, y) = limk→∞ E(tk, yk) ≤ lim infk→∞ E(tk, ŷk) +D(yk, ŷk)

= limk→∞
(
E(tk, ŷk) +D(y, ŷ)

)
+ lim infk→∞

(
D(yk, ŷk)−D(y, ŷ)

)

≤ E(t, ŷ) +D(y, ŷ).

Thus, the function Jy : Y → [Emin,∞]; ỹ 7→ E(t, ỹ)+D(y, ỹ) assumes values in [E(t, y),∞]
only, if it is restricted to S(t).

Define βy := inf{ J(ỹ) | ỹ ∈ Y }, then obviously y ∈ S(t) if and only if βy ≥ E(t, y) =
Jy(y). Arguing as in the proof of Theorems 4.1 and 4.3 we find that the infimum βy
is attained at a point y∗ ∈ Y and that y∗ ∈ S(t). Hence, we conclude βy = Jy(y

∗) ≥
E(t, y) = Jy(y). This implies y ∈ S(t) as desired.

In [FrL03] an even weaker sufficient condition for s-closedness of the stable sets is used.
The set M[0,T ] and the s-continuity of E are needed no longer but (5.2) is replaced by

For all (t, ŷ), (tk, yk) ∈ S[0,T ] with (tk, yk)
T−→ (t, y)

there exists ŷk ∈ Y such that

ŷk
T−→ ŷ and lim inf

k→∞
E(tk, ŷk)+D(yk, ŷk) ≤ E(t, ŷ)+D(y, ŷ).

(5.3)

The corresponding result is not formulated in the given abstract way, but is called ‘transfer
of jump sets’ in that specific context, see Thm. 2.1 in [FrL03] and our Section 6.3.
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6 Applications to continuum mechanics

The flexibility of the energetic formulation allows for several applications in continuum
mechanics. Concerning the notations we refer to the introduction. Recall that F denotes
the set of admissible deformations ϕ : Ω → Rd and Z denotes the set of internal states
z : Ω → Z. In the abstract setting we used y = (ϕ, z) ∈ Y = F × Z and D(y1, y2) =

D̃(z1, z2).
The energetic formulation is as above: A pair (ϕ, z) : [0, T ] → F × Z is called a

solution of the rate-independent problem associated with D and E if the global stability
(S) and the energy equality (E) hold:

(S) For all t ∈ [0, T ] and all (ϕ̂, ẑ) ∈ F × Z we have

E(t, ϕ(t), z(t)) ≤ E(t, ϕ̂, ẑ) + D̃(z(t), ẑ).

(E) For all t ∈ [0, T ] we have

E(t, ϕ(t), z(t)) + DissD(z; [0, t]) = E(0, ϕ(0), z(0)) +
∫ t

0
∂tE(s, ϕ(s), z(s))ds.

The associated incremental problem reads

(ϕk, zk) ∈ arg min{ E(tk, ϕ̂, ẑ) +D(zk−1, ẑ) | (ϕ̂, ẑ) ∈ F × Z }. (6.1)

A specific feature occurs if E(t, ϕ, z) depends only locally on z, in the sense that at x ∈ Ω
the integral over Ω uses z only through its point value z(x). Hence, z can be eliminated
pointwise. We define the condensed energy density Ψcond and the update function Zupdate

for the internal variable via

Ψcond(zold;x, F ) := min{W (x, F, z) +D(x, zold, z) | z ∈ Z },
Zupdate(zold;x, F ) ∈ arg min{W (x, F, z) +D(x, zold, z) | z ∈ Z }. (6.2)

With this we obtain a functional Econd(zold; t, ϕ) =
∫

Ω
Ψcond(zold; Dϕ)dx− 〈`ext(t), ϕ〉 and

the solution of (6.1) is equivalent to finding ϕk ∈ arg min{ Econd(zk−1; tk, ϕ̂) | ϕ̂ ∈ F } and
then letting zk = Zupdate(zk−1; Dϕk). For more details we refer to [Mie03a, Mie03b].

The above condensation is very useful for computational purposes and it also allows for
an existence theory for (IP) in the case of finite-strain elasto-plasticity, see [Mie03b]. How-
ever, for the mathematical theory associated with the time-continuous problem (S) & (E)
it seems advantageous to reduce the problem to the z-variable alone. The major difficulty
in considering the pair y = (ϕ, z) is that ϕ ∈ F does not appear in the dissipation. Hence,
by (S), ϕ(t) will always be a global minimizer of E(t, ·, z(t)). But otherwise we have no
control over the temporal oscillations in the approximate functions ϕN : [0, T ] → F .

A first possible approach to tackle this difficulty is to introduce the reduced energy
functional

E red(t, z) = min{ E(t, ϕ, z) | ϕ ∈ F }.
However, in general we will lose the exact control, since E red is no longer explicit. In par-
ticular, the differentiability of t 7→ E red(t, z) is no longer valid in general. At the moment
there is only one way out, which is not always acceptable: We simply restrict ourselves to
problems where the minimizer ϕ = Φ(t, z) of E(t, ·, z) is unique and depends continuously
on (t, z). Then, E red(t, z) = E(t,Φ(t, z), z) and ∂tE red(t, z) = ∂tE(t,Φ(t, z), z).
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The same assumption is needed if we keep the ϕ-variable. In this second approach the
bottleneck is the assumption (A4) which states that the dissipation controls convergence
in Y = F × Z. Of course, this has to be true only on V[0,T ] = R[0,T ] ∩ S[0,T ]. Note that
(ϕ, z) ∈ S(t) already implies ϕ = Φ(t, z). Hence, (A4) can be satisfied by assuming that

(A4) holds for D̃ : Z × Z → [0,∞] and that Φ is continuous.
This uniqueness assumption will be used in Sections 6.1 and 6.2, see also [MTL02,

MiR03, KMR03]. However, in Section 6.3 this uniqueness can be dispensed off.

6.1 Phase transformations in shape-memory alloys

We assume that, in each microscopic point x ∈ Ω, an elastic material is free to choose
one of p crystallographic phases and that the elastic energy density W is then given by
Wj(Dϕ). If the model is made on the mesoscopic level, then the internal variables are
phase portions z(j) ∈ [0, 1] for the j-th phase. We set Z = { z ∈ [0, 1]p ⊂ Rp | ∑p

1 z
(j) = 1 }

and Z = L1(Ω, Z) ⊂ L1(Ω,Rp). The material properties are given via a mixture function
W : Rd×d × Z → [0,∞], see [MTL02, GMH02]. The dissipation can be shown to have
the form D(z0, z1) = ψ(z1−z0) with ψ(v) = max{σm · v |m = 1, . . . ,M } ≥ Cψ|v|, where
σm ∈ Rp are thermodynamically conjugated threshold values.

So far we are unable to prove existence results for this model in its full generality.
However, the case with only two phases (p = 2) has been treated in [MTL02] under the
additional assumption that the elastic behavior is linear and both phases have the same
elastic tensor. In this case, one sets z = (θ, 1−θ) with θ ∈ [0, 1]. It can be shown that E is
a quadratic functional in θ ∈ L1(Ω, [0, 1]) ⊂ L2(Ω). It then follows that the compactness
condition (A5) holds for Y = F×L1(Ω, [0, 1]) equipped with the weak topology where F is
a suitable (affine) subspace of H1(Ω) equipped with the weak topology. The compactness
of V[0,T ] (see (A7)) involves a careful analysis using H-measures to show that the non
convex sets S(t) are weakly closed.

In a microscopic model there are no phase mixtures allowed, i.e., we assume z ∈ Zp :=
{e1, e2, . . . , ep} ⊂ Rp, where ej is the j-th unit vector. Thus, the functions z ∈ Z are
like characteristic functions which indicate exactly one phase at each material point. The
dissipation is assumed as above, but now the elastic energy contains an additional term
measuring the surface area of the interfaces between the different regions:

E(t, ϕ, z) =
∫
Ω
W (Dϕ, z)dx+ σ

∫
Ω
|Dz| − 〈`ext(t), ϕ〉,

where σ is a positive constant and
∫

Ω
|Dz| is

√
2 times the area of all interfaces. Here

Z = { z : Ω → Zp |
∫
Ω
|Dz| <∞} and we set E(t, ϕ, z) = +∞ for z 6∈ Z.

Hence, after minimization with respect to ϕ we still have Ê(t, z) ≥ γ + σ
∫

Ω
|Dz|.

This term provides for R(T ) (cf. (A5)) an a priori bound in BV(Ω,Rp) and hence we
conclude compactness in Y = L1(Ω, Z) equipped with the norm topology. Under the
usual additional conditions for the elastic stored-energy densities Wj we obtain for each
z0 ∈ Z a solution (ϕ, z) with ϕ ∈ B([0, T ] ,W1,2(Ω,Rd)) and z ∈ BV([0, T ],L1(Ω,Rp)) ∩
B([0, T ] ,BV(Ω,Rp)) with z(t) ∈ Z for all t ∈ [0, T ]. We refer to [Mai03] for more details.
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6.2 A delamination problem

In this section we provide a simple model for rate-independent delamination and refer to
[KMR03] for a better model and the detailed analysis. The simplicity of the model is
chosen to remove all unnecessary distractions and to focus the attention to the intricate
interplay of the different continuity properties in the suitable topologies.

Consider a body Ω ⊂ Rd which is given by an open, bounded, and path-connected
domain and let all admissible deformations ϕ : Ω → Rd be equal to ϕDir at a boundary
part ΓDir of the interior of the closure of Ω, i.e., of int(cl(Ω)), of positive surface measure.
Assume that int(cl(Ω)) differs from Ω by a finite set of sufficiently smooth hypersurfaces
Γj, j = 1, . . . , n, along which the body is glued to itself. This means that with Γ :=⋃n
j=1 Γj we have int(cl(Ω)) = Ω ∪ Γ. We assume that the two sides of the body are

glued together along these surfaces and that the glue is softer than the material itself.
Upon loading, some parts of the glue may break and thus lose their effectiveness. The
remaining fraction of the glue which is still effective is denoted by the internal state
function z : Γ → [0, 1].

We let Z = { z : Γ → [0, 1]|z measurable } ⊂ L1(Γ). The dissipation distance D̃(z0, z1)
is proportional to the amount of glue that is broken from state z0 to state z1:

D̃(z0, z1) = cD
∫
Γ
z0(y)−z1(y)da(y) for z0 ≥ z1 on Γ and +∞ else.

Here we explicitly forbid the healing of the glue by setting D̃ equal ∞, if z0 6≥ z1.
The energy is given by the elastic energy in the body, the elastic energy in the glue,

and the potential of the external loadings:

E(t, ϕ, z) =
∫

Ω
W (Dϕ)dx+

∫
Γ
z(y)Q(y, [[ϕ]]Γ(y))da(y)− 〈`ext(t), ϕ〉,

where for y ∈ Γ the vector [[ϕ]]Γ(y) denotes the jump of the deformation ϕ across the
interface Γ and Q(y, ·) is the potential defining the elastic properties of the glue.

For simplicity we assume further that W provides linearized elasticity and that Q
is quadratic as well. Then there is a unique minimizer ϕ = Φ(t, z) ∈ F := {φ ∈
H1(Ω,Rd) | φ|ΓDir

= ϕDir } of E(t, ·, z). We let Y = Z × (F ∩ BH1

R (ϕDir)) and choose for

T the trace of the weak topology in L1(Γ) × H1(Ω). Instead of
T−→ we then use ⇀. It

is immediate that (A1), (A3) and (A5) hold. We also assume `ext ∈ CLip([0, T ],H−1(Ω))
which implies that (A2) and (A8) hold.

The two important facts here are (i) that the linear mapping ϕ 7→ [[ϕ]]Γ ∈ L2(Γ) is
compact (i.e., ϕ ⇀ ϕ∗ in H1(Ω) implies [[ϕk]]Γ → [[ϕ∗]]Γ in L2(Γ)), because of the compact
embedding of H1/2(Γ) into L2(Γ), and (ii) that zk ⇀ z∗ in Z implies Φ(t, zk) → Φ(t, z)
in H1(Ω). We refer to [KMR03, Lem.2.1] for the proof of this delicate continuity result.
Clearly, y = (ϕ, z) ∈ S(t) implies ϕ = Φ(t, z); hence, assumption (A4) holds, since

convergence in D̃ implies strong L1-convergence of the z-component and by continuity of
Φ also of the ϕ-component.

The remaining conditions are the s-lower semicontinuity of E in (A9) and the s-
closedness of V[0,T ] in (A7), where the weak topologies have to be used. The former
condition is obtained, as E is convex and quadratic in ϕ and linear in z. Note that for a
weakly convergent sequence (ϕk, zk) the trilinear term

∫
Γ
zkQ([[ϕk]]Γ) da converges, since

Q([[ϕk]]Γ) converges strongly in L1(Γ) and zk
∗
⇀ z in L∞(Γ), as Z ⊂ L∞(Γ).
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The latter condition (A7) is obtained using Theorem 5.3 where we use the set M[0,T ] =
{ (Φ(t, z), z) | z ∈ Z } which is s-closed in [0, T ]×Y by the weak continuity of Φ. More-
over, the construction of the sequences ŷk in condition (5.2) is obtain in the form ŷk =
(Φ(tk, ẑk), zk) where ẑk is constructed in Lemma 6.1 below. The weak continuity of E on
M[0,T ] again follows from (ii) above, since weak convergence of zk implies strong conver-
gence of Φ(tk, zk) in H1(Ω).

Lemma 6.1 Let ẑ, z, zk ∈ Z = { z : Γ → [0, 1] |z measurable } ⊂ L1(Γ) be given such that
z ≤ ẑ and zk ⇀ z. Then, there exists a sequence (ẑk)k∈N satisfying zk ≤ ẑk ∈ Z, ẑk ⇀ ẑ

and limk→∞ D̃(zk, ẑk) = D̃(z, ẑ).

Proof: Given ẑ, z, zk ∈ Z we define ak = max{0, zk−ẑ} and bk = min{0, zk−ẑ}, which
satisfy 0 ≤ ak ≤ 1−ẑ, −ẑ ≤ bk ≤ 0, and ak+bk = zk−ẑ. After choosing a subsequence we
have

ak ⇀ a, bk ⇀ b with a+b = z−ẑ ≤ 0.

We let c(x) = a(x)/(−b(x)) where b(x) < 0 and c(x) = 0 elsewhere. Then, 0 ≤ c ≤ 1,
a+cb = 0, and the functions ẑk := ẑ+ak+cbk satisfy ẑk ≥ ẑ+ak+bk = zk and ẑk ≤ ẑ+ak ≤
1. Hence, ẑk ∈ Z and ẑk ⇀ ẑ+a+cb = ẑ.

Since for zk ≤ ẑk we have D̃(zk, ẑk) = cD
∫

Γ
ẑk−zk da, we immediately find

lim
k→∞

D̃(zk, ẑk) = cD
∫

Γ
ẑ−zda = D̃(zk, ẑk)

by using weak convergence. This proves the result.

Altogether, we have shown that, for each initial state z0 and each loading `ext ∈
CLip([0, T ],H−1(Ω)) such that z0 is stable, this simplified delamination problem (S) & (E)
has a solution (ϕ, z) with ϕ ∈ L∞([0, T ],H1(Ω)) and z ∈ BV eD([0, T ],Z). Recall that the
condition on z is equivalent to the monotonicity z(s) ≥ z(t) on Γ for s < t and that then

Diss eD(z, [s, t]) = D̃(z(s), z(t)).

6.3 A rate-independent model for brittle fracture

In [FrM93, FrM98, DaT02, Cha03] the following fracture model is developed and analyzed.
There, also the existence of solutions is established. Here, we want to show that this model
is a special case of our abstract formulation. We do not give all the details which can be
found in the above-mentioned papers. In this example the interesting point is that the
internal variable z is the crack itself, which is considered to be a closed subset of the body
Ω ⊂ R2. Hence, the underlying space Y = Z will be a highly nonlinear set.

The undeformed body is given by the bounded Lipschitz domain Ω ⊂ R2. The dissipa-
tive variable z ∈ Z is taken to be a closed subset K of Ω, which has at most N connected
components:

Y = Z = KN := {K ⊂ Ω |K closed, π0(K) ≤ N }.
The topology T on this set is defined via the Hausdorff metric

dH(K0, K1) = max{dist(K0, K1), dist(K1, K0)},
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which turns (KN ,T) into a compact metric space. The dissipation is defined to be propor-
tional (with constant 1 here) to the opening length of the crack. Using the one-dimensional
Hausdorff measure H1 it takes the form

D(K0, K1) =

{
H1(K1\K0) for K0 ⊂ K1,

+∞ else.

This definition of D satisfies the triangle inequality (A1), however, it is highly unsym-
metric and takes the value +∞ whenever parts of a crack want to close again. Our lower
semi-continuity property (A3) of D : KN×KN → [0,∞] now easily follows from GoÃla̧b’s
theorem, see [DaT02, Cha03]. Our assumption (A4) can be replaced by the monotonicity
properties arising from the definition of D.

To avoid confusion with the notations in [Cha03] we denote our energy functional by
E(t,K) instead of E(t, z) as above. It is defined via minimization of the elastic energy

Ig,K(u) :=
∫

Ω\K Ae(u):e(u)dx

where A ∈ Lin(R2×2) is a positive definite tensor and e(u) = 1
2
(Du+(Du)T). As candi-

dates one has to consider all elastic displacements u ∈ LD(Ω\K) satisfying the Dirichlet
boundary condition u = g(t) on ΓD\K:

E(t,K) := inf{ Ig(t),K(u) | u ∈ LD(Ω\K,R2), (u−g(t))|ΓD\K = 0 },

where LD(Ω̃) := {u ∈ L2
loc(Ω̃,R2) | e(u) ∈ L2(Ω̃,R2×2

sym) }. It is shown in [Cha03] that the
minimum is always attained at a minimizer u = U(g(t), K) (not necessarily unique), that
E : [0, T ]×KN → [0,∞] is lower semi-continuous (cf. (A9)), and that the derivative ∂tE
takes the form

∂tE(t,K) = 2
∫
Ω\K Ae(U(g(t), K)):e(ġ(t))dx. (6.3)

In [FrM98] the fracture problem is formulated as continuous monotone evolution
satisfying the following three axioms. We use the notations from [Cha03] but we replace
E(g(t), K) here with our notation E(t,K) +D(∅, K).

Given K0 ∈ KN and g ∈ W1,1([0, T ],H1(Ω,R2)) find K : [0, T ] → KN such that

(i) K0 ⊂ K(s) ⊂ K(t) for 0 ≤ s ≤ t ≤ T ,

(ii) for t ∈ (0, T ]: E(t,K(t))+D(∅, K(t)) ≤ E(t, K̃)+D(∅, K̃) for K̃ ⊃ ∪s<tK(s),

(iii) for 0 ≤ s < t ≤ T we have E(t,K(t))+D(∅, K(t)) ≤ E(t,K(s))+D(∅, K(s)).

Using the suggestion from [FrM98], the problem is solved in [Cha03] via the incre-
mental problem (IP) and it is shown that the limit functions satisfy (i), (ii), (ii)0 and the
energy balance (iii)∗:

(ii)0 E(0, K(0))+D(∅, K(0)) ≤ E(0, K̃)+D(∅, K̃) for K0 ⊂ K̃ ∈ KN ,

(iii)∗ d
dt

(
E(t,K(t))+D(∅, K(t))

)
= 2

∫
Ω\K Ae(U(g(t), K(t))):e(ġ(t))dx.

The conditions (iii) and (iii)∗ are equivalent for so-called monotone loadings g(t) = tg∗.
We show that this formulation is equivalent to our energetic formulation (S) & (E), if

we assume that K0 = K(0). The case K0 6= K(0) will be discussed afterwards.
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Theorem 6.2 Assume that K : [0, T ] → KN satisfies K(0) = K0. Then, the conditions
(i), (ii), (ii)0 and (iii)∗ hold if and only if (S)& (E) hold:

(S) for all t ∈ [0, T ] and all K̃ ∈ KN : E(t,K(t)) ≤ E(t, K̃) +D(K(t), K̃),

(E) for 0 ≤ s < t ≤ T : E(t,K(t)) + DissD(K, [s, t]) = E(s,K(s)) +
∫ t

s
∂
∂t
E(r,K(r))dr.

Proof: First note that the monotonicity (i) is equivalent to DissD(K, [0, T ]) <∞. This
implies that DissD(K, [s, t]) = D(K(s), K(t)). Thus, integrating (iii)∗ and using (6.3)
gives the energy balance (E):

E(t,K(t)) + DissD(K, [s, t]) =

E(t,K(t)) +D(K(s), K(t)) = E(s,K(s)) +
∫ t

s
∂
∂t
E(r,K(r))dr.

To see the connections of (ii) and (ii)0 with our stability concept (S) we introduce the
left-hand limit K−(t) = ∪s<tK(s). Of course, K−(0) = K(0) = K0. Hence the condition
(ii)0 is contained in (ii) if we allow for t = 0 there as well. From our definition of D, (ii)
and (ii)0 take the form

(ii)D for t ∈ [0, T ] : E(t,K(t))+D(K−(t), K(t)) ≤ E(t, K̃) +D(K−(t), K̃) for K̃ ∈ KN ,

since “∅” can be replaced by any set K∗ ⊂ K−(t). It is shown in [DaT02], Prop. 6.1, that
there exists a countable jump set J ⊂ [0, T ] such that K−(t) = K(t) for all t ∈ [0, T ]\J .
For these t this condition is simply our stability condition K(t) ∈ S(t). At jump points
with K−(t) 6= K(t) we first note that K−(t) is stable as well and that the energy balance
implies E(t,K−(t)) = E(t,K(t))+D(K−(t), K(t)), see (4.6). Thus, for t ∈ J , we conclude
stability of K(t) as follows:

E(t,K(t)) = E(t,K−(t))−D(K−(t), K(t))
(1)
= E(t, K̃)+D(K−(t), K̃)−D(K−(t), K(t))
(2)
= E(t, K̃)+D(K−(t), K̃) for all K̃ ∈ KN ,

where (1) uses the stability of K−(t) and (2) uses the triangle inequality (which is in fact
an equality due to monotonicity). Thus, (S) is established.

The opposite conclusion that (S) & (E) implies (i) to (iii)∗ is now immediate.

In the case K0 6= K(0) condition (ii)0 is more complicated. This problem is due to the
fact that the state K0 was not assumed to be stable. Assuming stability of K0 it is easy
to see that K(0) = K0 holds. If this is not the case, the state K(0) is stable and there
is an energy drop right before t = 0 with E(0, K0) > E(0, K(0))+D(K0, K(0)) such that
the energy balance does not hold.

More recently, an alternative approach to the fracture problem was given in [FrL03],
where the restriction on the number of components of the cracks can be dropped com-
pletely. There Y is the set of all closed subsets of Ω and the deformations u are now
allowed to lie in the set SBV(Ω), the set of special functions of bounded variation.
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