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Abstract

The main result of this paper is the global well-posedness of the Cauchy problem to the

2D Navier-Stokes system with the initial data u0 ∈ BUC(O) and the external force F ∈

C
`

[0,∞), L∞(O)
´

on the manifold O = S
1
× R, i.e., the fluid flow is supposed to be periodic

in one of the spatial directions whereas in the unbounded direction only uniform boundedness

is assumed. However, to obtain uniqueness we need to make assumptions which suppresses

additional pressure gradients. For this aim Riesz operators on L∞(O) used to define p(t) ∈

BMO(O). For time-independent forces the solutions are shown to grow at most cubically in

the time t.

Mathematical Subject Classification (2000). 35Q30, 76D03, 76D05

Keywords. 2D Navier-Stokes problem, spatially non-decaying initial data, Riesz operators,

Helmholtz projection.

1 Introduction

Our study is motivated by the analysis of spatial dynamics of the time independent Navier-Stokes

system near the instability threshold of a fully symmetric steady state in cylindrical domains

(x1, y) ∈ R×Ω, where Ω is the cross section. A variety of bounded solutions to the Navier-Stokes

system, that are uniformly close to the basic steady state, were found in Poiseuille, Couette-Taylor

and Kolmogorov problems. The study of the Cauchy problem in the functional space that includes

all solutions found in that way can not be restricted to the phase space Lp(R×Ω) with p ∈ [1,∞)

since not only a variety of x1-periodic solutions with different periods, but also bump and (multi)

pulse solutions should be considered as the initial data cf. [19, 4, 3, 5]. The natural question is to

find a functional space where the Navier-Stokes system is globally well posed for any initial data

and which contains all spatially inhomogeneous solutions found by the bifurcation analysis. To

our knowledge the first step in this direction was done in [23], where it is shown that in the 3D
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Couette-Taylor problem slightly above the instability threshold all solutions starting L∞ close to

the Couette flow exist for all t ∈ [0,∞) and stay L∞ close to it.

The main purpose of this work is to develop this program for the two-dimensional problem

that goes back to the celebrated Kolmogorov question. Suppose that the fluid motion in R2 is

generated by the action of a volume force F ∗. We denote coordinates on R2 as (x1, x2). Defining

the Grashof number G := ‖F ∗‖∞ L3

ν2 , where ν is the viscosity and L is the unit length, and taking

the velocity units ν
L we arrive at the following non-dimensional form of the governing equations





∂u

∂t
+ (u · ∇)u+ grad p = ∆u+ F, ∇·u = 0,

u|t=0 = u0,
(1.1)

where F = Gf with ‖f‖∞ = 1 is the forcing, u = (u1, u2)
T is the velocity field and p is the

pressure. A.N. Kolmogorov (see [22]) suggested to take

F = (Gf(x2), 0)T with f(x2) = sin(x2) (1.2)

and to study how the dynamics of the problem changes if the parameter G ∈ R+ increases. There

are various reformulations of Kolmogorov’s original question (e.g., [8, 12]), but it is still unclear if

the Navier-Stokes equations are dynamically nontrivial on T2, i.e. when the additional periodicity

assumptions

u(t, x1, x2) = u(t, x1, x2 + 2π), u(t, x1, x2) = u(t, x1 + 2π/α, x2) (1.3)

and the mean flow condition

Q
def
=

∫ 2π

0

∫ 2π/α

0

u dx1 dx2 = (0, 0)T (1.4)

are imposed.

The Kolmogorov flow provides us with an important hydrodynamical example of the isotropic

and negative eddy viscosity, see [15]. Recall that eddy transport coefficients are used to characterize

the way a given basic cellular flow responds to weak large-scale perturbations. Negative eddy

viscosity has been used as an explanation of common instabilities in astrophysical and geophysical

flows, for instance, for the differential rotation of the Sun.

Stability and bifurcation of the basic steady state U∗(x2) = (U(x2), 0)T, p = const of the

problem (1.1)-(1.4) were studied in [22, 20, 2]. It was demonstrated that for U(x2) = G sinx2

the minimal critical Grashoff number G0 =
√

2 corresponds to the wave number α = 0 with the

stability exponent λ(α,G0) = 0 and that the neutral curve of stability α 7→ G(α) is monotone. It

was demonstrated in [2, 1] that the same is true for more general forcing terms. That is why the

loss of stability and the eventual transition to turbulence is especially interesting for α = 0, i.e.

for the problem in the unbounded domain O = R
1 × S

1.

In [3],[6] the existence of a family of stationary, spatially periodic solutions of the problem (1.1),

(1.3) was demonstrated that limit in pulse or front solutions. The family of these stationary solu-

tions u(ε;x1, x2) can be described by the expansion u(ε;x1, x2) = U∗(x2)+εγ(εx1)(
√

2 sinx2, 1)T+

O(ε2), where ε2 = G−G0 and γ(z) is any bounded solution of the equation

d

dz

(
γ̈ +

2

3
γ − 2

9
γ3

)
= 0. (1.5)
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Notice that the investigation of stability of homoclinic and heteroclinic solutions found in that

way requires the study of Navier-Stokes dynamics in the space of spatially non-decaying solutions

in the domain O.

Since stationary solutions mentioned above are not only bounded, but also smooth it is rea-

sonable to study the dynamics generated by the Navier-Stokes system in the space BUC(O) of

bounded uniformly continuous functions or in L∞(O). For these phase spaces the existence of the

global-in-time solutions for the Kolmogorov or Poiseuille problem, where Ω = S
1 and Ω = [−1, 1]

respectively, was not established so far. In such open systems there is of course the problem that

the mean flow is not defined from the equation, see Section 4.4 for non-uniqueness results due

to this effect. This means that the proper choice of the function space for u and p is a delicate

matter: it should include all physically interesting solutions and it should exclude any kind of

unreasonable examples.

A recent survey on the existence of the spatially decaying solutions to the Navier-Stokes prob-

lem in various bounded and unbounded domains in Rn, n ≥ 2, is given in [7]. Most of the results

are devoted either to Lp theory, p ∈ (1,∞), or to the exterior problem, where solutions with finite

Dirichlet integral are considered. Asymptotical self-similar decay to 0 for all small initial data in

R2 is shown in [14]. None of them covers the Kolmogorov problem on R2 or O. Recently, several

articles on the local existence, regularity and decay properties of solutions to the Navier-Stokes

problem in Rn were published (see [21] and the references therein). In these papers it is supposed

that the fluid fills the entire space and is not subjected to any external force. The specific features

of such problems are the absence of the determining parameters like Reynolds or Grashof numbers

and the presence of the full symmetry group of the Navier-Stokes system. That is why shift and

dilation invariant estimates play the crucial role in the analysis.

Moreover, the Cauchy problem for the Navier-Stokes system without a forcing term was studied

in [17, 16, 18] for the initial data in BUC(Rn), n = 2, 3. These papers and [11], where a localized

force F ∈ L2(R2) is allowed, are most closely related to our study. They provide global well-

posedness and an a priori bound of the type C exp(C exp(Ct)) for spatially localized forcing. Our

main result is the similar global well-posedness of the Cauchy problem to the Navier-Stokes system

(1.1) with u0 ∈ BUC(O) and F ∈ C
(
[0,∞),L∞(O)

)
, but our a priori bounds will be polynomial

for bounded forcing.

To obtain these bounds and uniqueness we have to make assumptions on the pressure which

suppresses additional pressure gradients. As in [17] we use Riesz operators on L∞(O) to define

p(t) ∈ BMO(O), see Section 2. In the 2D situation a very helpful tool is the vorticity equation

∂tω − ∆ω + (u·∇)ω = rotF, with ω
∣∣
t=0

= rotu0,

where ω = ∂2u1 − ∂1u2, which yields an L∞(O) bound for ω by the maximum principle, namely

‖ω(t)‖∞ ≤ ‖ω(0)‖∞ +

∫ t

0

‖ rotF (s)‖∞ds. (1.6)

The problem is to return back to the velocity field u : O 7→ R2 via

div u = 0, rotu = ω.

Using the explicit form of Green’s function of the Laplace operator ∆O we are able to estimate u,

except for the cross-sectional mean flow

m(t, x1) = Pu(t, x1, ·) =

∫

S1

u(t, x1, x2)dx2 :=
1

2π

∫ 2π

0

u(t, x1, x2)dx2. (1.7)
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Using ‖u−m‖∞ ≤ C‖ω‖∞ and the Navier-Stokes equation we finally obtain

‖u(t)‖∞ ≤ C
(
‖u0‖C1 , ‖F‖C([0,t],L∞(O)), ‖ rotF‖C([0,t],L∞(O))

)
(1 + t)3.

If
∫ ∞

0
‖F (s)‖∞ + ‖ rotF (s)‖∞ ds ≤ ∞, then we obtain ‖u(t)‖∞ ≤ C(1+t). We do not know

whether these estimates are sharp. However, in Section 3.2 we show that it is easy to find solutions

with F (t) ≡ F 6= 0 such that ‖u(t)‖∞ = t.

2 Basic estimates in O

We study the Cauchy problem for the 2D Navier-Stokes system. Since we suppose that the volume

force and the solutions are 2π periodic in x2, the problem is posed on the manifold O = R1 × S1.

Let us consider the problem with the Cauchy data u0 ∈ BUC(O). Recall that for a measurable

function u : O 7→ R the L∞(O) norm is defined as

‖u‖∞ = ess sup
x∈O

|u(x)|.

With this norm L∞(O) is a Banach algebra with respect to multiplication. The closed subal-

gebra of bounded, uniformly continuous functions is denoted by BUC(O). We choose

Z =
{
φ ∈ C∞(O,R)

∣∣∣ ∀ k,m, n ∈ N0 ∃C > 0 : (1+|x1|)k|∂n
x1
∂m

x2
φ(x)| ≤ C

}

=
{ ∑

n∈Z

Tns
∣∣∣ s ∈ S(R2)

}
, where Tns(x1, x2) = s(x1, x2−2πn),

as the set of test functions that is dense in Lp(O), p ∈ [1,∞). These functions are periodic in x2,

decay faster then any rational function in x1 and play the same role as Schwartz functions S(Rn)

in the theory of distributions on Rn.

The manifold O is the locally compact Abelian group. Therefore for suitably decaying functions

φ and ψ the convolution with respect to the invariant measure, which is the Lebesgue measure, is

defined via

(φ ∗ ψ)(x) =

∫

O

φ(y)ψ(x−y)dy.

In particular, for all q ∈ [1,∞] we have Young’s inequality

‖φ ∗ ψ‖q ≤ ‖φ‖1‖ψ‖q. (2.1)

We will use 〈f, g〉 =
∫

O
f(y)g(y)dy to denote the duality pairing between Lp(O) and Lq(O), where

1
p + 1

q = 1.

Definition 2.1

We call (u, p) a weak solution of the Navier-Stokes problem on [0, T ) × O with initial data u0 ∈
L∞(O) if (u, p) satisfies

∇·u = 0 for a.e. t ∈ [0, T ) and∫ T

0

{〈u(s), ∂sφ〉 + 〈u(s),∆φ〉 + 〈u⊗ u,∇φ〉 + 〈p,∇·φ〉 − 〈f, φ〉}ds = −〈u0, φ(0)〉
(2.2)

for all φ ∈ C1([0, T ]× O) with φ(t, ·) ∈ Z2 = Z ×Z for all t ∈ [0, T ] and φ(T, ·) = 0.
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Usually the Navier-Stokes system is transformed to an integral equation. This step in the analysis

is classical and goes back to C.W. Oseen and J. Leray. Recall that by the summation convention

∇·(u ⊗ u) :=
∑

j ∂j(uiuj). Applying the operator ∇· to the first equation in (1.1) and using

∇·u = 0 and (u · ∇)u = ∇·(u⊗ u) we arrive at

∆p = ∇·
(
F −∇·(u⊗ u)

)
. (2.3)

Therefore ∇p = ∇∆−1∇·(F −∇·(u⊗ u)) and we get

ut − ∆u = P(F −∇·(u⊗ u)), (2.4)

where P = I −∇∆−1∇· is the Helmholtz projection. The proper definition of ∆−1 will be given

later. Using the variation-of-constants formula (also called Duhamel’s principle) we obtain the

integral equation

u(t) = et∆u0 + F̂ (t) +B(u, u)(t) (2.5)

with F̂ (t) =
∫ t

0
e(t−s)∆PF (s)ds and

B(u, v)(t) = −
∫ t

0

e(t−s)∆
P(∇·[u(s) ⊗ v(s)])ds.

The operator et∆ denotes the convolution with the heat kernel. The next step is to use Picard

iterations which converge for small t to the solution of (2.5) in the suitable functional space. The

pressure can be recovered via (2.3) a posteriori.

The last step is to relate (u, p) found in this way to the original problem (1.1). Notice, however,

that the equivalence of (2.5) and the original Navier-Stokes system is rather subtle since choosing

function spaces and defining the Helmholtz projection P exactly involves certain choices about the

behavior at infinity. Already under periodic boundary conditions there are different Helmholtz

projections, one corresponding to a periodic pressure and the other to a periodic pressure gradient

that may have a non-zero mean value, see [10].

Another way to see this problem is to look at the symmetry group associated with the Navier-

Stokes system. It is well-known that if (u, p) : (0, t)×Rn 7→ Rn×R is a solution of the Navier-Stokes

system without forcing, then

(
ũ(t, x), p̃(t, x)

)
=

(
u(t, x+φ(t)) − φ′(t), p(t, x+φ(t)) + (φ′′(t), x)Rn + ψ(t)

)
, (2.6)

where (·, ·)Rn is the scalar product in R
n, is a solution as well for arbitrary φ ∈ C2(R,Rn) and

ψ ∈ C(R,R). In particular, this formula includes Galilean invariance by choosing φ(t) = x0 + ct.

However, choosing φ and φ′ to be zero for t ≤ 0 and nonzero for t > 0 we immediately see

that uniqueness of solutions of the Cauchy problem breaks down if a spatially growing pressure is

allowed. This problem still occurs in O since a pressure gradient in x1 direction may change the

mean flux m1 =
∫

S1 u1 dx2 at any time.

To achieve the uniqueness of solutions of the Cauchy problem we have to introduce pressure

conditions. Our choice for p is explicit and is given in terms of Riesz operators on O. The definition

of P as bounded projection on BMO(O) is obtained as in [17], [24] via duality, since Z is dense in

the Hardy space H1(O). For the definition and the properties of BMO(R2), the space of functions

of bounded mean oscillations, we refer to [24]. It is equipped with the norm

‖ϕ‖BMO = sup
{ 1

|C|

∫

C

∣∣ϕ(x) − 1

|C|

∫

C

ϕ(y)dy
∣∣dx

∣∣∣ C ⊂ R
2 finite square

}
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and thus functions in BMO(R2) are defined only up to a constant. Our space BMO(O) is the

subset of functions in BMO(R2) that are 2π-periodic in the x2-direction. In particular, BMO(O)

is the dual space of H1(O) and satisfies L∞(O) ⊂ BMO(O) ⊂ Lp
loc(O) for all p ∈ (1,∞).

The matrix elements of the projector P are (P)i,j = δi,j + RiRj , where the Riesz operators

Rj are formally given via (−∆O)−1/2∂j . They have a proper definition on the group O = R ⊗ S1

in the same way as on Rn, see [24]. We only need the products RiRj which are well-defined via

Fourier transform on Z . For φ ∈ Z we write φ(x) =
∑

Z
φk(x1)e

ikx2 such that φk : R → C lies in

the space S of the Schwartz functions. We then have

(P11φ)(x) =
∑

k 6=0

(Gk ∗ φ′′k)(x1)e
ikx2 ,

(P12φ)(x) =
∑

k 6=0

ik(Gk ∗ φ′k)(x1)e
ikx2 , P21 = P12

(P22φ)(x) = φ(x) −
∑

k 6=0

k2(Gk ∗ φk)(x1)e
ikx2 ,

where Gk(ξ) = 1
2π|k|e

−|kξ|. Note that for functions φ : O 7→ R2 which are independent of x2 we

have

P
(
φ1(t, x1), φ2(t, x1)

)T

= (0, φ2(t, x1))
T. (2.7)

This remark suggests that it is convenient to restrict the attention to divergence free forces F that

satisfy the additional condition

(PF1)(t, x1) :=

∫

S1

F1(t, x1, x2)dx2 = 0 for all t ≥ 0 and x1 ∈ R. (2.8)

For general F we may define F̃ = F − (PF1)(1, 0)T and

p̃(t, x) = p(t, x) −
∫ x1

0

(PF1)(t, ξ)dξ.

Then, (u, p) solves (2.2) with forcing F if and only if (u, p̃) solves (2.2) with forcing F̃ . Thus

without loss of generality we impose (2.8) and fix p by the restriction p(t) ∈ BMO(O).

Since the delta distribution δO(x) on the manifold O is

δO(x) = δR(x1) ⊗ δS1(x2) = δR(x1)
∞∑

k=−∞

δ(x2+2πk) =
1

2π
δR(x1)

∞∑

k=−∞

eikx2 ,

the fundamental solution K ∈ Z ′ of the Laplacian (−∆)O on the manifold O has the Fourier series

representation

K(x) =
1

4π
|x1| +

∑

k 6=0

1

2π|k|e
−|kx1|eikx2

that can be simplified to

K(x) =
1

4π
ln

(
coshx1 − cosx2

)
.

Note that the explicit choice of RiRj and of the fundamental solution K reflects in the following

relations for the Riesz operators, the Laplacian and the fundamental solution K associated with

∆O.
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Lemma 2.2

For all φ ∈ Z we have

(i) R1R2φ = R2R1φ, (ii) RiRj∆Oφ = −∂i∂jφ, (iii)
∑

j RiRj∂jφ = −∂iφ,

(iv) RiRjφ = ∂jK ∗ ∂iφ = ∂iK ∗ ∂jφ, (v) (R2
1 +R2

2)φ = −φ.

Proof: Since µα,β : x 7→ α+βx1 is in the kernel of ∆O, any K̃ = K + µα,β ∈ Z ′ is a fundamental

solution as well. It is the explicit choice of the fundamental solution K and projection P that

make (iv) valid. The constant α is irrelevant, but the constant β is set to 0 to satisfy (iv). �

Notice that the local behavior of K near x = 0 is the same as that of the fundamental solution

of (−∆) on all of R2, namely x 7→ −1
2π ln |x|. The behavior of K at infinity strongly depends on

the domain. For the manifold O we obtain a linear growth like |x1|. Nevertheless

∂2K(x) =
sinx2

4π(coshx1 − cosx2)

is uniquely defined and ∂2K ∈ L1(O). This is in contrast to ∂1K which is not in L1(O). However,

extracting the mean over S1 defined by (1.7) eliminates the difficulty. A straightforward calculation

gives

ρ(x) := (I−P )∂1K(x) = − signx1

4π
+

sinhx1

4π(coshx1 − cosx2)
.

The second component of the velocity can be split into u2(t, x) = m2(t, x1)+v2(t, x), where

m = (m1,m2)
T = Pu.

To find the pointwise estimates of u1 and v2 we will use the following L1(O) estimates of (I−P )∂1K(x)

and ∂2K(x).

Lemma 2.3

For all φ ∈ L∞(O) we have the estimates

‖(I−P )∂1K ∗ φ‖∞ ≤ C1‖φ‖∞ and ‖∂2K ∗ φ‖∞ ≤ C2‖φ‖∞, (2.9)

where C1 = ‖ρ‖1 = 2 ln 2 ≈ 1.39 and C2 = ‖∂2K‖1 = 2
π (π2

3 −
∫ 2

1
ln s
1+s ds) ≈ 1.57.

Proof: These estimates follow from Young’s inequality (2.1). It remains to calculate the L1-

norms of ρ and ∂2K(x). By studying the signs of these functions and using the fact that they

are derivatives with respect to x1 and x2, respectively, we can integrate once in the corresponding

regions. Then, the remaining one-dimensional integrals give the desired results. Let us calculate,

for instance, ‖ρ‖1. Using the identities

∫ π

π/2

ln(2−2 cosx2)dx2 = 2Cat,

∫ π/2

0

ln(2−2 cosx2)dx2 = −2Cat,

where Cat is the Catalan number, we finally get

‖(I−P )∂1K‖1 =
−4

2π

∫ π/2

0

ln
[
2 cosx2

(
cosh[ln(cosx2)]− cosx2

)]
dx2 = 2 ln 2.

�

As a consequence the semi-group of the heat equation on O is easily controlled on Lp(O) for

all p ∈ [1,∞]. The following proposition shows that the composition of the heat kernel and the

Helmholtz projector et∆P = Pet∆ can be estimated as well.
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Proposition 2.4

There exist constants C3, C4 and C5 such that for all F ∈ L∞(O) we have

‖et∆PF‖∞ ≤
(
C3 +

C4√
t

)
‖F‖∞ for t > 0; (2.10)

‖∇et∆
PF‖∞ ≤

(C5√
t

)
‖F‖∞ for all t > 0. (2.11)

In fact, we have C3 = 1+2π
2π ≈ 1.16, C4 = (C1+C2)/

√
π ≈ 1.67.

Proof: By the (L∞,L1) duality and the density of Z in L1(O) we have

‖et∆PF‖∞ = sup{ |〈et∆PF, φ〉|
∣∣ ‖φ‖1 = 1, φ ∈ Z2 }

= sup{ |〈F,P et∆φ〉|
∣∣ ‖φ‖1 = 1, φ ∈ Z2 }

≤ ‖F‖∞ sup{ ‖P et∆φ‖1

∣∣ ‖φ‖1 = 1, φ ∈ Z2 }

where 〈·, ·〉 denotes the action of the distribution on a test function. The last identity uses that P

and et∆ are symmetric in the sense of operators acting on distributions. For φ ∈ Z we let

ψ(t) = et∆φ ∈ Z

and have to estimate ‖Pψ(t)‖1 in terms of φ and t > 0. For this purpose we use that the heat

kernel HO(t, ·) = et∆ on O is given in the form HO(t, x1, x2) = HR(t, x1)HS1(t, x2) with the usual

properties of heat kernels on R and S1: HR, HS1 ≥ 0,
∫

R
HR(t, x1) dx1 =

∫
S1 HS1(t, x2) dx2 = 1,

H ′
R
(t, x1) = −H ′

R
(t,−x1) ≤ 0 for x1 ≥ 0 and H ′

S1(t, x2) = −H ′
S1(t,−x2) ≤ 0 for x2 ∈ [0, π]. In

particular, we easily find ‖HO(t)‖1 = 1 and

‖∂1HO(t)‖1 = 2HR(t, 0) =
1√
πt
.

From the representation of the heat kernel on S1 via periodization

HS1(t, x2) =
1

2
√
πt

∑

n∈Z

e
−(x2−2πn)2

4t

follows that

‖∂2HO(t)‖1 = 2(HS1(t, 0)−HS1(t, π)) ≤ 1√
πt
,

for all t > 0. By Young’s inequality we conclude

‖ψj(t)‖1 ≤ ‖φj‖1 and ‖∂iψj‖1 ≤ 1√
π t

‖φj‖1. (2.12)

With the Lemmas 2.3 and 2.2 (iv) we arrive at

‖Pψ‖1 ≤ ‖ψ‖1 + ‖∂1K ∗ ∇ψ1‖1 + ‖∂2K ∗ ∇ψ2‖1

≤ 2π+1

2π
‖ψ‖1 +

2∑

i,j=1

Cj‖∂iψj‖1

≤ (C3 + C4/
√
t)‖φ‖1

with C3 and C4 as given above. Combining these results with ‖φ‖1 = ‖φ1‖1 + ‖φ2‖1 = 1 gives

(2.10).

Using inequalities (2.12) we arrive at the estimates (2.11) in a similar way. Notice that esti-

mate (2.11) follows directly from estimate (2.8) in [17] since for F ∈ L∞(O) ⊂ L∞(R2) we have

PGIM∇·F = P∇·F where PGIM is the Helmholtz projection defined in [17] on L∞(R2). �
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3 Estimates for solutions of the Navier-Stokes system in O

Now we show how the above estimates can be used to establish local and then global estimates in

BUC(O) for solutions to (3.3).

Lemma 3.1

For u ∈ W1,∞(O,R2) with ∇·u ≡ 0 and t > 0 the estimates

‖et∆
P((u·∇)u)‖∞ ≤

(
C3 +

C4√
t

)
‖ rotu‖∞‖u‖∞ and (3.1)

‖∇et∆
P((u·∇)u)‖∞ ≤

(C5√
t

)
‖rotu‖∞ ‖u‖∞ for all t > 0 (3.2)

hold, where rotu = ∂2u1−∂1u2.

Proof: The well-known identities (u·∇)u = ∇·(u⊗ u) = (rotu)û+ 1
2∇|u|2, where û = (u2,−u1)

T,

together with P∇ψ = 0 (see Lemma (2.2)) yield

et∆
P((u·∇)u) = et∆

PG with G = (rotu)û.

With ‖G‖∞ ≤ ‖rotu‖∞ ‖u‖∞ the result follows from Proposition 2.4. With similar arguments

(3.2) follows from (2.11). �

Lemma 3.2

If (u,p) is a weak solution to the Navier-Stokes system such that u ∈ L∞([0, T ]×O) then u satisfies

the integral equation

u(t) = et∆u0 + F̂ (t) +B(u, u) (3.3)

with F̂ (t) =
∫ t

0 e(t−s)∆PF ds and B(u, v) = −
∫ t

0 e(t−s)∆P(∇·(u(s)⊗v(s))) ds, where P is the

Helmholtz projector and et∆ denotes the convolution with the heat kernel on O.

If u is a solution to (3.3) with u(0) = u0 ∈ BUC(O), then (u, p) with p =
∑

i,j RiRj(u⊗u) +

K ∗ ∇·F is a weak solution of the Navier-Stokes system.

The proof is similar to the one given in Theorem 2 of [17].

Remark 3.3 Our assumption on the external force and the choice of the pressure assure that

p ∈ L∞
loc([0, T ],BMO(O)) which means that p(t) ∈ BMO(R2) and is 2π-periodic in x2. For the

discussion of uniqueness questions we refer to [18].

The following result establishes local existence of solutions for initial data u0 ∈ BUC(O).

Theorem 3.4

Let F ∈ C([0, T ],BUC(O)) and F0 = sups∈[0,T ] ‖F (s)‖∞ then for any u0 ∈ BUC(O) with ∇·u0 = 0

there exists a unique solution u ∈ C([0, T0],BUC(O)) to (3.3) with T0 = min{T, K0

2F0
, C5K0

4F 2
0
, 1

64(C5K0)2 }.
Moreover,

(i) t1/2∇u ∈ C([0, T0],BUC(O)).

(ii) ∇u ∈ Cα
(
[δ, T0],BUC(O)

)
for any δ > 0 and α ∈ (0, 1/2).
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Proof: We use Picard’s iterations for t ∈ [0, T0]:

u1(t) = et∆u0 + F̂ (t), uj+1(t) = et∆u0 + F̂ (t) +B(uj , uj), j = 1, 2, . . . .

The Young inequality gives ‖et∆u0‖∞ = ‖u0‖∞ and

‖F̂ (t)‖∞ := ‖
∫ t

0

e(t−s)∆
PF ds‖∞ ≤ (C3t+ 2C4

√
t)F0.

The convergence of the sequence {uj(t)}, j = 1, 2, · · · can be established with the use of es-

timates (2.10),(3.1) along the same lines as in [17]. Introduce the notations K0 = ‖u0‖∞, K̃0 =

C5‖u0‖∞ and

Kj(T ) = sup
t∈[0,T ]

‖uj‖∞, K̃j(T ) = sup
t∈[0,T ]

t1/2‖∇uj‖∞,

where ∇u is the Jacobi matrix. From (2.10),(3.1) follows

‖B(uj , uj)‖∞ ≤ C5

√
TKj(T )2 and hence

Kj+1(T ) ≤ K0 + (C3T + C4

√
T )F0 + C5T

1/2Kj(T )2.

Therefore, if we take

T̂0 ≤ min
{ K0

2C3F0
,

1

64(C5K0)2

}
,

then for 0 < t < T̂0 we have

Kj(T ) ≤ 2K0 j = 1, 2, · · · .

In the same way

K̃j+1(T ) ≤ C5K0 +
√
TC5F0 +

√
TC5Kj(T )K̃j(T ),

and with

T̃0 ≤ min
{C5K0

4F 2
0

,
1

64(C5K0)2

}
,

we have

K̃j ≤ 2C5K0

for 0 < t < T0 = min{T̂0, T̃0}.
Now it is easy to prove that the sequences {uj(t)}, j = 1, 2, · · · and {t1/2∇uj(t)}, j = 1, 2, · · ·

uniformly converge on [0, T0] in the L∞ norm.

Finally, we set ∇p = (I − P)(∇·(u ⊗ u) − F ). The details of the proof can be reconstructed

from Theorem 1 in [17]. �

Note that the time T0 of local existence in Theorem 3.4 only depends on the force F and the

size K0 = ‖u0‖∞ of the initial datum. Hence if we control the maximal growth of ‖u(t)‖∞ we are

able to establish global-in-time existence.

For this purpose we use the fact that for two dimensional flows the vorticity ω = ∂2u1 − ∂1u2

satisfies a maximum principle and that u can be reconstructed from ω as follows. We use BUC1(O)

to denote those functions in BUC(O) whose derivative ∇u exists and lies in BUC(O).

Proposition 3.5

For u ∈ BUC1(O) let ω = rotu. Then there exists m ∈ R2 with

u = m+ (−∂2K ∗ ω, [(I−P )∂1K] ∗ ω)T.
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The proof is obvious from the discussion in Section 2, which shows that ∂2K, [I−P ]∂1K ∈ L1(O).

Clearly, the constant part m = (m1,m2)
T ∈ R2 is not seen in ω.

Since ∇u ∈ C([δ, T0],BUC(O)) for any δ > 0 we may set ũ(t) = u(t+δ). Then ũ(t) is a solution

with ũ∣∣t=0
∈ BUC1(O) and ∇·ũ∣∣t=0

= 0 . That is why we consider from now on only solutions

with u(0) ∈ BUC1(O). Our next aim is to use the vorticity equation to get a pointwise estimate

for the velocity.

Theorem 3.6

Let F ∈ C
(
[0,∞),L∞(O)

)
with rotF ∈ C

(
[0,∞),L∞(O)

)
. Then for each u0 ∈ BUC(O) with

∇·u0 = 0 equation (3.3) has a global solution

u ∈ C([0,∞); BUC(O)) ∩ C((0,∞); BUC1(O)).

In particular, if u0 ∈ BUC1(O) we have an estimate

‖u(t)‖∞ ≤ δ(t) for all t ≥ 0, (3.4)

where δ : [0,∞) 7→ R is explicitly given through the data as follows

δ(t) = ‖u0‖∞+

∫ t

0

‖F2(s)‖∞ ds+(C1 + C2)
(
‖ω(0)‖∞+

∫ t

0

‖ rotF (s)‖∞ds
)

+C2

∫ t

0

(
‖ω(0)‖∞ +

∫ s

0

‖ rotF (τ)‖∞ dτ
)2

ds.

If additionally F and rotF are in L∞
(
[0,∞) × O

)
then there exists C̃ > 0 such that

δ(t) ≤ C̃(1 + t)3.

Proof: Since ∇u ∈ C([0, T ]; BUC(O)) we may define the vorticity ω(t, x) = rotu(t, x). For

convenience we summarize all the corresponding relations in the system.




∂tω − ∆ω + (u·∇)ω = rotF, with ω∣∣t=0
= rotu0,

u1(t) = m1(t) − ∂2K ∗ ω(t),

u2(t) = m2(t) + [(I−P )∂1K] ∗ ω(t),

∂tu+ ∇·(u⊗ u) + ∇p = ∆u+ F, ∇·u = 0.

(3.5)

Recall that the function m2(t, x1) = Pu2(t, x) is the transversal and m1(t) is the axial mean flow.

To find the governing equation for m2 we have to go back to the Navier-Stokes system and apply

the averaging operator P to its second component. We obtain

∂tm2 = P
[
− u1(ω + ∂2u1) −

1

2
∂2u

2
2 − ∂2p+ ∆(v2+m2) + F2

]

= ∂2
1m2 + P [F2 − u1ω].

(3.6)

The function m1 is a constant which is defined by the initial data u|t=0 = u0. To demonstrate

this, notice that the averaging over S1 applied to the first component of (2.4) implies

∂tm1 − ∂2
x1
m1 = P [P

(
F −∇·(u⊗ u)

)
]1. (3.7)

From (2.7) follows P [P
(
F −∇·(u⊗ u)

)
]1 = 0 where [v]j denotes the j-component of the vector v.

It is left to observe that the divergence-free condition yields

∂x1m1 := ∂x1

∫

S1

u1 dx2 = −
∫

S1

∂x2u2dx2 = 0,
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and hence (3.7) implies additionally ∂tm1(t) = 0. Thus, m1(t, x1) = m1(0).

Let us use system (3.5) to get an a priori estimate of the solution u(t, x). To use the maximum

principle for the vorticity equation

∂tω − ∆ω + (u·∇)ω = rotF,

note that ω̃ with ω̃(t, x) = ω(t, x)−
∫ t

0 ‖ rotF (s)‖∞ ds satisfies ∂tω̃−∆ω̃+(u·∇)ω̃ = rotF−F0 ≤ 0

which gives supx∈O ω̃(t, x) ≤ supx∈O ω̃(0, x) ≤ ‖ω(0)‖∞. Similarly, one obtains the lower bound

infx∈O ω(t, x) ≥ −‖ω(0)‖∞ −
∫ t

0
‖ rotF (s)‖∞ds. Thus we have proved

‖ω(t)‖∞ ≤ ‖ω(0)‖∞ +

∫ t

0

‖ rotF (s)‖∞ds. (3.8)

Now Lemma (2.3) and Proposition (3.5) provide estimates for u, namely

‖u1(t)‖∞ ≤ ‖m1(t)‖∞ + ‖∂2K ∗ ω(t)‖∞ ≤ |m1(0)| + C2‖ω(t)‖∞. (3.9)

Similarly, we have

‖u2(t)‖∞ ≤ ‖m2(t)‖∞ + ‖(I − P )∂1K ∗ ω(t)‖∞ ≤ ‖m2(t)‖∞ + C1‖ω(t)‖∞. (3.10)

However, m2 has to be estimated via (3.6). From the Duhamel formula follows

‖m2(t)‖∞ ≤ ‖m2(0)‖∞+

∫ t

0

(‖u1ω‖∞+‖F2(s)‖∞)ds ≤

≤ C2

∫ t

0
(‖ω(0)‖∞+

∫ t

0

‖ rotF (s)‖∞ ds)2 dt

+‖m2(0)‖∞+

∫ t

0

‖F2(s)‖∞ds.

(3.11)

Collecting estimates (3.9),(3.10),(3.11) we arrive at the desired result. �

As a conclusion we get from the local existence and the estimate (3.4) the statement on the

global existence in time for the solutions of the Cauchy problem with the initial data in BUC(O).

Remark 3.7 Notice that if
∫ ∞

0 ‖F (s)‖∞ + ‖ rotF (s)‖∞ ds ≤ ∞, then we obtain

‖u(t)‖∞ ≤ C(1 + t). (3.12)

We do not know whether estimates (3.11),(3.12) are sharp.

4 Special solution types

4.1 Shear flows in axial direction

As already mentioned A.N. Kolmogorov suggested to take the forcing term

F (t, x) = (F1(t, x2), 0)T,

which gives ∇·F ≡ 0, i.e. PF = F . Then, there are exact solutions of (1.1) in the form

u(t, x) = (u1(t, x2), 0)T.
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The component u1 has to satisfy the linear heat equation

∂tu1(t, x1) − ∂2
1u1(t, x2) = F1(t, x2) for x2 ∈ S

1 and t > 0. (4.1)

If F1 is time independent and F1(x2) =
∑

k 6=0 fkeikx2 we get the steady state solution (û1, 0)T,

p = const with û1 =
∑

k
−fk

k2 eikx2 . The explicit time dependent solution of (4.1) is given via the

one-dimensional heat kernel

u1(t) = HS1(t) ∗ u1(0) +

∫ t

0

HS1(t−τ) ∗ F1(τ)dτ.

From this expression we have the exponential convergence to a steady state

‖û1 − u1(t)‖∞ ≤ e−t‖u0‖∞.

Nevertheless the Kolmogorov flow becomes unstable in BUC(O) for sufficiently large Grashof

numbers for perturbations that depend on both x1 and x2, see [22, 20, 2].

4.2 Shear flows in transverse direction

Inequality (3.11) gives a hint how to construct nontrivial examples of solutions with a linear growth

in time. We first mention that exact shear flows are included in our function space. Assume that

the forcing has the form

F (t, x) = (0, F2(t, x1))
T (which gives divF ≡ 0, i.e., PF = F ).

Then, there are exact solutions of (1.1) in the form

u(t, x) = (0, u2(t, x1))
T.

The component u2 has to satisfy the linear heat equation

∂tu2(t, x1) − ∂2
1u2(t, x1) = F2(t, x1) for x1 ∈ R and t > 0. (4.2)

Again, the explicit solution is given via the one-dimensional heat kernel

u2(t) = HR(t) ∗ u2(0) +

∫ t

0

HR(t−s) ∗ F2(s)ds.

It is now easy to see that a constant forcing of the type F2(x1) = λ tanhx1 and the initial condition

u2(0) ≡ 0 lead to solutions which satisfy limx→±∞ u2(t, x1) = ±λt, since for very large |x1| the

flow is accelerated uniformly in space and time. For this example we obtain the lower bound

‖u2(t)‖∞ ≥ λt = t‖F2‖∞.

Moreover, there is the upper bound for all initial data with u1 = 0 and bounded forces

‖u2(t)‖∞ ≤ ‖u2(0)‖∞ +

∫ t

0

‖F2(s)‖∞ds.

The cubic bound given in Theorem 3.6 may correspond to solutions with u1 6= 0 and therefore is

still realistic. If the vorticity is bounded (for instance this happens when rotF = 0), then estimate

(3.4) is reduced to the sharp linear form. Note, however, that from the physical viewpoint it

is expected that vorticity behaves worse (is less regular) than velocity and therefore it will be

interesting to get the growth faster than linear in time.
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4.3 Flows on T2

Flows on T2 are widely known to have an absorbing ball. This is true if we suppose that∫
T2 F dx1 dx2 := (f1, f2) = 0 or if we allow for a compensation of the mean force f = (f1, f2) by

the pressure gradient ∇p = (f1, f2). With these conditions the problem on T2 is imbedded into

the frame of the problem on O and the estimate (3.4) is still valid. The temporal growth of the

L∞ norm of solutions on T
2 can be abandoned by the additional periodicity which leads to the

obvious changes in the definitions of the fundamental solution and the Helmholtz projection.

4.4 Solutions with arbitrary temporal growth

As we have seen in (2.6), it is very easy to construct solutions with arbitrary growth in time, even

with finite-time blow up. For our problem on O with forcing F ≡ 0 we immediately see that for

each φ1 ∈ C2(R,R) the pair (u, p) with

u(t, x) = (−φ′1(t), 0)T and p(t, x) = φ′′1 (t)x1

is a solution for the Navier-Stokes system. Hence, ‖u(t)‖∞ can have arbitrary growth or finite

time blow up, if we allow for large pressure gradients. Similarly, one can construct solutions (u, p)

on all of Rn which are not related to the extended Galilean symmetry group and for which u is

linear in x and p is quadratic, see [25, 9]. They have the form

u(t, x) = (S(t)+Ω(t))x and p(t, x) =
1

2
(B(t)x) · x, (4.3)

where S = ST, B = BT and Ω = −ΩT. Then, the Navier-Stokes equations are satisfied if and only

if

Ṡ + S2 + Ω2 +B = 0, Ω̇ + SΩ + ΩS = 0, trS = 0.

Thus, we may choose arbitrary S : t 7→ S(t) satisfying S(t) = S(t)T and the divergence free

condition trS(t) = 0. Then, we solve the linear equation for Ω(t) and finally we adjust the

pressure matrix B(t) to fulfill the first equation. Again there is no uniqueness.
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