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Abstract We provide a global existence result for the time-continuous elastoplastic-
ity problem using the energetic formulation. The strain tensor is decomposed multi-
plicatively into an elastic part and the plastic tensorP, which is driven by the plastic
slip strain rates ˙p j . We allow for self-hardening as well as cross-hardening. The
strain gradients∇p j and∇P are used to regularize the problem, thus introducing a
length scale and preventing the formation of microstructure.

1 Introduction

Elastoplasticity at finite strain is usually based on the multiplicative decomposi-
tion ∇ϕ = F = FelFpl, introduced in [Lee69]. This decomposition reflects the Lie

group structure of GL+(d)
def
= {F ∈ Rd×d | detF > 0}, where the elastic partFel

will contribute to the energy storage whereas the plastic tensorP = Fpl evolves ac-
cording to a plastic flow rule. The plastic tensor maps the material frame (crystallo-
graphic lattice) onto itself and is usually assumed to lie inthe special linear group
SL(d)

def
= {P∈ Rd×d | detP = 1}.

In this paper we combine the formal ideas for single-crystalplasticity from
[OrR99, Mie03] with the recent analytical developments in [MaM08] proving a
global-in-time existence result for solution in finite-strain elastoplasticity. The dif-
ficulty is to find a formulation that allows us to use functional analytical tools that
are compatible with the strong nonlinearities generated bythe Lie group structures
resulting from GL+(d) and SL(d). We use here the theory of energetic solutions for
rate independent systems as developed in [MTL02, Mie05]. The recently developed
geometric formulation on abstract topological spaces (cf.[FrM06, MRS08, Mie08])
was strongly motivated by the present application and, thus, provides the first math-
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ematical foundation to treat the existence theory for time-dependent finite-strain
elastoplasticity.

To be more specific we introduce some notations. Letϕ : Ω → R
d denote the

deformation,P : Ω → SL(d) the plastic tensor, andp : Ω → [0,∞[m is the vector of
slip strains. Then, we assume that the stored-energy functional takes the form

E(t,ϕ ,P, p) =

∫

Ω
W(x,∇ϕP−1, p,∇P,∇p)dx−〈ℓ(t),ϕ〉.

Here Felast = ∇ϕP−1 represents the multiplicative decomposition. The gradients
(∇P,∇p) introduce a length scale and will be essential to provide compactness, thus
preventing the formation of microstructure, cf. [CHM02, BC∗04]. Such regularizing
terms are also common in engineering models, cf. [DiK70, MüA91, FlH97, Gur00,
Gur02, BaJ02].

In our quasistatic setting we will assume that

ϕ(t) minimizes the energyE(t, ·,P(t), p(t))
subject toϕ(t,x) = gDir(t,x) for x∈ ΓDir ,

(1)

which provides the usual elastic equilibrium equation divσ = fvol in Ω andσ ·ν =
ftract on the Neumann part of the boundary∂Ω , whereσ = ∂FW is the first Piola-
Kirchhoff stress tensor.

The evolution of the plastic variablesP andp is governed by the plastic flow rule
which will be assumed to be formulated by a dissipation potential R(x,P, p, Ṗ, ṗ)
such that

0∈ ∂ sub
(Ṗ,ṗ)

R(x,P, p, Ṗ, ṗ)+

(
∂PW(· · · )−div

(
∂∇PW(· · · )

)

∂pW(· · · )−div
(
∂∇pW(· · · )

)
)

. (2)

It would be possible to supplementE by a surface integral involving the plastic
variables, namely ∫

∂Ω
ρ(x,P(x), p(x))dx,

whereρ : ∂Ω×SL(d) → Sd−1 → R is a nonnegative Caratheodory function. This
term could be used to account for surface effects due to plasticity (i.e., accumulation
of dislocation). The boundary conditions associated with (2) are

∂∇PW(· · · )ν + ∂Pρ = 0, ∂∇pW(· · · )ν + ∂pρ = 0.

whereν is the outer normal vector. To simplify the presentation we omit this term.
In (2) R(x,P, p, ·, ·) is convex on the tangent space and∂ sub

(Ṗ,ṗ)
R denotes the corre-

sponding subdifferential. This flow rule is rate independent if R(x,P, p, ·, ·) is posi-
tively homogeneous of degree 1, i.e.,R(x,P, p,λ (Ṗ, ṗ)) = λR(x,P, p, Ṗ, ṗ). By the
proper choice ofR we will guarantee that this flow rule contains the essential kine-
matic relation between the plastic tensor and the slip strains, namely
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Ṗ =
(
∑m

α=1 ṗαSα

)
P, whereSα = mα ⊗nα , α = 1, . . . ,m, (3)

are the the slip systems. Herenα ∈ Rd is the (unit) normal vector of the slip system
Sα andmα ∈ Rm is the slip direction satisfyingmα ·nα = 0.

A major step for deriving an existence theory is the replacement of the dissipa-
tion potentialR by the associated dissipation distanceD, see (5). The dissipation
functional

D(P0, p0,P1, p1) =

∫

Ω
D(x,P0(x), p0(x),P1(x), p1(x))dx

measures the minimal amount of energy dissipated when goingfrom the state
(P0, p0) to (P1, p1). An important fact is thatD satisfies the (unsymmetric) trian-
gle inequality. A major difficulty arises from the fact thatD has only logarithmic
growth because of plastic invariance, see (6). As a consequenceD cannot be coer-
cive on linear function spaces. The energetic approach for rate-independent systems
(Q,E,D) is exactly suited for this situation. However, we still willhave extra work
to establish coercivity of the energy, see Section 3.1.

The energetic formulation of rate-independent systems provides a weak form
of the system (1) and (2). For this we choose a state spaceQ for qqq = (ϕ ,P, p) by
identifying suitable weakly closed subsets of Sobolev spaces overΩ . A mapping
qqq= (ϕ ,P, p) : [0,T]→Q is calledenergetic solution, if for all t ∈ [0,T] thestability
condition(S) and theenergy balance(E) hold:

(S) E(t,qqq(t)) ≤ E(t, q̂qq)+D(qqq(t), q̂qq) for all q̂qq∈ Q,

(E) E(t,qqq(t))+DissD(qqq; [0,t]) = E(0,qqq(0))+
∫ t
0 ∂sE(s,q(s))ds.

(4)

Here DissD(qqq; [r,s]) = sup∑N
1 D(P(τ j−1), p(τ j−1),P(τ j ), p(τ j)), where the supre-

mum is taken over all partitions of[r,s]. IN the case of external loadings and time-
independent boundary conditions we have∂tE(t,q) = −〈ℓ̇(t),ϕ〉.

However, if gDir depends on time the power of the displacement loadings is
more difficult to express in a mathematically correct way, since the stresses on
the boundary are not well defined. Following [FrM06, MaM08] we write the un-
known displacement as a compositionϕ(t,x) = gDir(t,y(t,x)), wherey : Ω → Rd

is the new unknown satisfyingy(t,x) = x for x ∈ ΓDir . With q = (y,z) we write
Ê(t,q) = E(t,gDir(t)◦y,z) and find that∂tE(t,q) can be expressed in terms of the
Kirchhoff stress tensor and a convected derivative.

In Section 2 we follow [Mie03] for discussing the mechanicalmodeling of elasto-
plasticity and for explaining why the concept of energetic solutions can be seen as
a weak version of the classical plasticity formulation. Themajor advantage of (S)
and (E) is that it avoids derivatives and is based solely on the functionalsE andD,
which need not be smooth or even continuous. In Section 2.2 weformulate pre-
cise assumptions onW,D, andgDir that allow us to construct solutions in suitable
Sobolev spaces. The main result is Theorem 1 which states theglobal existence of
energetic solutions for single-crystal plasticity. For the cases of kinematical harden-
ing and isotropic hardening we refer to [MaM08].
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2 Modeling assumptions and results

We first provide an exact description of the mechanical modelin terms of the consti-
tutive functions, namely the stored-energy densityW and the dissipation potential
R. Here we discuss the main symmetries and the basic kinematicrelations. Next
we discuss the assumptions that are necessary to develop a mathematical existence
theory. Finally, this section closes by stating the main existence result and the un-
derlying abstract theory developed in [MaM08].

2.1 Mechanical modeling

We recall the multiplicative decomposition∇ϕ = F = FelFpl, where the plastic ten-
sorP= Fpl ∈ SL(d) maps the material space crystallographic lattice onto itself. The
slip strainsp j are combined into a vectorp∈ [0,∞[m. To simplify notations we let
z= (P, p) ∈ Z = SL(d)× [0,∞[m and useA as a place holder for∇z= (∇P,∇p).

The stored-energy densityW = W̃(x,F,P, p,A) and the dissipation potentialR=
R̃(x,P, p, Ṗ, ṗ) have to satisfy the following symmetry properties:

(Sy1)Objectivity (frame indifference)
W̃(x,QF,P, p,A) = W̃(x,F,P, p,A) for all Q∈ SO(d);

(Sy2)Plastic indifference
W̃(x,FP̃,PP̃, p,A) = W̃(x,F,P, p,A)

R̃(x,PP̃, p, ṖP̃, ṗ) = R̃(x,P, p, Ṗ, ṗ)

}
for all P̃∈ SL(d);

(Sy3)Material symmetry
W̃(x,F,PS,πSp,ΠSA) = W̃(x,F,P, p,A)

R̃(x,PS,πSp, ṖS,πSṗ) = R̃(x,P, p, Ṗ, ṗ)

}
for all S∈ S ⊂ O(d).

In (Sy3) the groupS is the material-symmetry group which acts on the plastic
strain by a permutationπQ : p 7→ (pπQ(1), . . . , pπQ(m)), see [Mie03, Sect. 3.4.4], and
ΠS(∇P, p) = ∇(PS,πSp). In the sequel we will drop the explicit dependence onx
for notational simplicity. However, the whole theory is still valid if W̃ andR̃depend
onx∈ Ω , which would be the case for polycrystals.

A consequence of (Sy2) is that̃W andR̃ can be written in a reduced form via

W̃(F,P, p,A) = W(FP−1, p,A) and R̃(P, p, Ṗ, ṗ) = R(p, ṖP−1, ṗ),

whereξ = ṖP−1 ∈ sl(d) = T111SL(d) = {ξ ∈ Rd×d | trξ = 0}. We now define the
dissipation distanceD(·, ·) onZ×Z via

D(z0,z1) = inf{
∫ 1

0
R̃(z(s), ż(s))ds|z∈ C1([0,1],Z),z(0) = z0,z(1) = z1}. (5)

Thus,D has the dimension of an energy density and measures the amount of energy
per volume that has to be spent to transform a material point from the internal state
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z0 into z1. The plastic indifference (Sy2) implies that the dissipation distanceD is
right-invariant, namely

D(P1, p1,P2, p2) = D(111,0,P2P−1
1 , p2−p1) for all P1,P2, p1, p2. (6)

We specifyR further in such a way that the slip kinematics (3) is enforcedauto-
matically byR(p,ξ ,ν) < ∞, namely

R(p,ξ ,ν) =

{
∑m

α=1 κανα for ξ = ∑m
α=1 ναSα andv∈ [0,∞[m,

∞ otherwise,
(7)

where the threshold parametersκα (cf. [OrR99, Gur00] are assumed to be bounded
positive constants. Note that the slip strain behave monotonically and are not al-
lowed to decrease. However, oftenSα+m/2 = −Sα for α ≤ m/2, thenṖ may take
any value.

Sincev= ṗ andṖ= ξ P, the flow rule (2) implies the slip kinematics (3), because
the subdifferential∂(Ṗ,ṗ)R̃ is nonempty if and only ifR is finite.

We assume that the set of slip systemsS
def
= {Sα |α = 1, ...,m} is large enough to

generate the whole group SL(d). More precisely, a slip systemSα has to be consid-
ered as an element of sl(d) = T111SL(d), such thatPα(τ) = eτSα = 111+τSα is a simple
shear. We say that SL(d) is generated byS, if eachP∈ SL(d) can be written in the
form Pα1(τ1) · · ·PαN(τN), whereN ∈ N, αk ∈ {1, ...,m}, andτk ∈ R. By the standard
theory of Lie groups and their Lie algebras this is equivalent to saying that sl(d)
is the smallest Lie algebra containingS (with respect to the standard Lie bracket
[ξ1,ξ2] = ξ1ξ2−ξ2ξ1). Obviously,S generates SL(d), if the linear hull ofS equals
sl(d), and this is the case in many cases of crystal plasticity, see[CoO05]. However,
this is by far not necessary, for an example considerS = {e1⊗e2,e2⊗e1}, which
generates SL(2), see [HMM03].

Subsequently we will not write down this condition onS, since it is not essential.
If it is not satisfied, we just have to replace SL(d) by the smaller Lie groupG ⊂
SL(d) that is generated byS. The whole theory will still hold for any such subgroup.

2.2 Precise mathematical assumptions

For notational simplicity we restrict to the case of displacement boundary conditions
that are independent of time and use volume and surface forces to drive the system.
We refer to [FrM06, MaM08] to the case of time-dependent boundary conditions.

The domainΩ ⊂ Rd is bounded and has a Lipschitz boundary. The Dirichlet
partΓDir of the boundary is assumed to have positive surface measure.For gDir we
assume that it can be extended to all ofRd as follows:

gDir ∈ C1([0,T]×Rd;Rd), ∇gDir ∈ BC1([0,T]×Rd,Lin(Rd;Rd))
and|∇gDir(t,x)−1| ≤C for all (t,x) ∈ [0,T]×Rd,

(8)
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where “BC1” stands for bounded and once continuously differentiable.Thus, for
eacht ∈ [0,T] the mappinggDir(t, ·) : Rd → Rd is a global diffeomorphism.

We seek forϕ(t, ·) in the form

ϕ(t,x) = gDir(t,y(x)) with y∈ Y
def
= {y∈YYY |y|ΓDir = id} andYYY = W1,qYYY(Ω ;Rd).

We setqqq = (y,z) and Ê(t,y,P, p) = E(t,gDir(t, ·)◦y,P, p). Since no confusion can
arise, we denotêE again byE.

The internal variable isz= (P, p) ∈ Z
def
= SL(d)× [0,∞[m, where the spaceZ of

internal states is chosen as

Z
def
= {(P, p) ∈ ZZZ | (P(x), p(x)) ∈ Z andD(111,0,P(x), p(x)) < ∞ a.e. inΩ },

whereZZZ = W1,r(Ω ;Rd×d×Rm) with r > d.

The stored-energy functionalE and the dissipation distanceD take the forms

E(t,y,z)
def
=

∫
Ω W(∇gDir(t,y(x))∇y(x)P(x)−1,z(x),∇z(x))dx,

D(z0,z1)
def
=

∫
Ω D(z0(x),z1(x))dx,

whereD is defined in (5) viaR in (7).
The conditions onW are much more involved. In particular, they include co-

ercivity assumptions and convexity assumptions to obtain lower semicontinuity. To
shorten notation we letL(d,m) def

= Rd×d×d×Rm×d and useA as a placeholder for∇z=

(∇P,∇p) ∈ L(d,m). The functionM : Rd×d → Rµd with µd = ∑d
s=1

(d
s

)2
=

(2d
d

)
−1

maps a matrix to all its minors (subdeterminants). The Kirchhoff stress tensor is
defined viaK(F, p,A) = ∂FW(F, p,A)FT. We impose the following:

there existsW : Rµd×Rm×L(d,m) → R∞ :
(i) W is lower semicontinuous,
(ii) W(F, p,A) = W(M(F), p,A),
(iii) W(x, ·, p, ·):Rµd×L(d,m) → R∞ is convex;

(9a)

there existc > 0, qYYY, r > d, qppp > 1 such that
W(F, p,A) ≥ c

(
|F |qYYY + |p|qppp + |A|r

)
−1/c.

(9b)

there existcW
0 , cW

1 , andα ∈ (0,1] such that for|E| ≤ 1/(2d)
|K(F, p,A)| ≤ cW

1 (W(F, p,A)+cw
0 )

|K((111+E)F, p,A)−K(F, p,A)| ≤ cW
1 (W(F, p,A)+cw

0 )|E|α .
(9c)

Thus, (9a) implies that the mappingF 7→ W(x,F,z,A) is polyconvex, cf. [Bal76].
Condition (9b) implies the necessary coercivity, which includes (self or cross) hard-
ening via the lower boundc|p|qppp. Note that we do not assume a coercivity inP.
Condition (9c) will be used to control the power of the time-dependent Dirichlet
boundary data.
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2.3 Statement of the result

We now formulate our existence result, which will be proved in Section 3.

Theorem 1.Let the spacesQ = Y×Z ⊂YYY×ZZZ = QQQ and the functionalsE andD be
defined as above such that the conditions(8), (11), (9) hold.

Let qqq0 = (y0,z0) ∈ Q∩ (Y×Z) be a stable initial condition, i.e.,

E(0,qqq0) < ∞ and E(0,qqq0) ≤ E(0, q̂qq)+D(qqq0, q̂qq) for all q̂qq∈ Q.

Then, there exists an energetic solution qqq : [0,T] → Q for (Q,E,D) with qqq(0) = qqq0
and qqq∈ L∞([0,T];YYY×ZZZ).

For similar results involving kinematic or isotropic hardening models in finite-
strain plasticity, we refer to [MaM08]. All these existenceresult are based on the
abstract theory of energetic solutions for rate-independent processes on topological
spaces developed in [MaM05, FrM06, MiR08]

We consider two reflexive and separable Banach spacesYYY and ZZZ and weakly
closed subsetsY andZ, respectively. The state space for the full system is then given
by Q = Y×Z ⊂ QQQ

def
= YYY×ZZZ, and the states are denoted byqqq = (y,z). The evolution

is described in terms of the stored-energy functionalE : [0,T]×Q → R∞ and the
dissipation distanceD : Z×Z → [0,∞]. The set in whichE takes finite values is
denoted by

domE
def
= {(t,qqq) ∈ [0,T]×Q |E(t,qqq) < ∞}.

The triple(Q,E,D) is called arate-independent energetic system.
For the stored-energy functionalE impose two general conditions:

Compactness of energy sublevels:
for all t ∈ [0,T] andE > 0 the sublevels{qqq∈ Q |E(t,qqq) ≤ E}
are bounded and weakly closed inQQQ.

(E1)

Uniform control of the power∂tE:
there existcE

0 ,cE
1 > 0 such that for all(t∗,qqq) ∈ domE :

E(·,qqq) ∈ C1([0,T]) and|∂tE(t,qqq)| ≤ cE
1 (cE

0 +E(t,qqq)) for all t.
(E2)

For the dissipation distanceD : Z×Z → [0,∞] we impose two general conditions:

Extended quasi-distance:
(i) ∀z1,z2 ∈ Z : D(z1,z2) = 0⇐⇒ z1 = z2,
(ii) ∀z1,z2,z3 ∈ Z : D(z1,z3) ≤ D(z1,z2)+D(z2,z3).

(D1)

Weak lower semi-continuity:
zk ⇀ z, ẑk ⇀ ẑ =⇒ D(z, ẑ) ≤ lim inf k→∞ D(zk, ẑk).

(D2)

To formulate the existence result we need to impose additional conditions which
provide a suitable compatibility between the two functionals E andD. For this we
define theset of stable states at time tvia
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S(t)
def
= {qqq∈ Q |E(t,qqq) < ∞, E(t,qqq) ≤ E(t, q̂qq)+D(qqq, q̂qq) for all q̂qq}.

Moreover, we define the notion of astable sequence(tk,qqqk)k∈N via supk∈N E(tk,qqqk) <
∞ andqqqk ∈ S(tk) for all k ∈ N. A functionqqq : [0,T] → Q is called anenergetic so-
lution of (Q,E,D), if t 7→ ∂tE(t,qqq(t)) is integrable and if for allt ∈ [0,T] we have
global stability (S) and energy balance (E) in (4).

Theorem 2.LetE andD satisfy conditions (E) and (D). Moreover, let the following
compatibility condition hold:

For all stable seq.(t j ,qqqj) j∈N with (t j ,qqq j) ⇀ (t∗,qqq∗) :

∂tE(t∗,qqqj) → ∂tE(t∗,qqq∗), (C1)

qqq∗ ∈ S(t∗). (C2)

Then, for each qqq0 ∈ S(0) there exists a solution qqq : [0,T]→Q of the rate-independent
energetic system(Q,E,D) satisfying qqq(0) = qqq0. Moreover, the solution can be cho-
sen such that qqq : [0,T] → QQQ is measurable.

3 Coercivity and lower semicontinuity

In this section we show that the assumptions in Section 2.2 for the elastoplastic
problem are sufficient to establish the abstract assumption(E) for the stored-energy
functionalE, (D) for the dissipation distanceD, and the compatibility conditions
(C). Having done this, the Existence Theorem 1 for the elastoplastic problem is a
direct consequence of the abstract existence result in Theorem 2.

3.1 Stored energy potential

To establish the coercivity ofE we note that we always use the matrix norm|F|
def
=

(F :F)1/2. In particular, we have|AB| ≤ |A| |B|, which implies

|∇gDir∇yP−1| ≥ |∇y|/(|∇gDir | |P|) ≥ c|∇y|/|P|,

where here and in the sequelc andC denote small and large positive constants that
may vary from occurrence to occurrence. These constants only depend on the data
and are independent of the statesqqq.

Integrating the last estimate we obtain, for allqqq∈ Q, the estimate

‖∇gDir∇yP−1‖
qYYY
LqYYY ≥ c‖∇y‖qYYY

LqYYY /‖P‖qYYY
L∞ ≥ c‖∇y‖qYYY

LqYYY e−C‖p‖L∞

≥ clog
(
‖∇y‖LqYYY

)
−C‖p‖L∞ −C,
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where we used (8) and (11e), which can be applied since(111,0,P(x), p(x))∈D by the
definition ofZ. The last estimate follows from the rough lower estimate eβ ≥ β . It
is the missing coercivity inP that forces us to use such weak logarithmic estimates.
Using the coercivity (9b) ofW and the embedding W1,r(Ω) ⊂ C(Ω ) we obtain

E(t,qqq) ≥ clog
(
‖∇y‖LqYYY

)
−C‖p‖L∞ +c‖p‖

qppp

Lqppp +c‖(∇P,∇p)‖r
Lr −C

≥ clog
(
‖∇y‖LqYYY

)
+clog

(
‖P‖L∞

)
+c‖p‖

qppp
L∞ +c‖(∇P,∇p)‖r

Lr −C,

where we used (11e) once again. This proves coercivity, since ‖qqqk‖QQQ → ∞ implies
E(t,qqqk) → ∞.

The weak sequential lower semi-continuity ofE(t, ·) follows similarly as in
[MaM08, Thm. 5.2]. In fact, the proof is even simpler, since the weak convergence
qqqk ⇀ qqq implies the uniform convergence of(Pk, pk) → (P, p) in C0(Ω ;Rd×d×R

m).
Thus, the convexity semi-conditions (9a) forW (via W) allow us to use the standard
techniques developed in [Bal76]. Thus, we have establishedthe following result,
which means that the abstract assumption (E1) holds.

Lemma 1. Assume(9) and(11e)hold. Then the functionalE(t, ·) restricted toY×Z

is weakly lower semicontinuous and coercive.

Finally, we investigate the differentiability ofE(t,qqq) with respect to time. For this
we recall the definition of the Kirchhoff stress tensor from (9), namelyK(F, p,A) =
∂FW(F, p,A)FT ∈ sl(d) = T111SL(d). Forqqq = (y,P, p) ∈ Q with E(0,qqq) < ∞ we in-
troduce the abbreviation

Kqqq(x,F)
def
= ∂FW(x,FP(x)−1,P(x), p(x),∇P(x),∇p(x))(FP(x)−1)T.

The following result was established in [MaM08] (by combining Propositions 4.3
and 4.4 with Theorem 5.3 there) and using the property (12) established below.

Lemma 2 (Power of the boundary conditions).If assumption(8) and (9) hold,
thenE satisfies(E2)and(C1). In particular, there exist constants cE

0 ∈R and cE1 > 0
and a modulus of continuityω such that the following holds:

For (t,qqq) ∈ domE we haveE(·,qqq) ∈ C1([0,T]) with

∂tE(t,qqq) =
∫

Ω
Kqqq(x,∇gDir(t,y(x))∇y(x)):V(t,y(x))dx, (10a)

where V(t,y) =
(
∇gDir(t,y)

)−1 ∂
∂ t

∇gDir(t,y),

|∂tE(t,qqq)| ≤ cE
1

(
E(t,qqq)+cE

0

)
, and (10b)

|∂tE(t1,qqq)−∂tE(t2,qqq)| ≤ ω(|t2−t1|)
(
E(t1,qqq)+cE

0

)
. (10c)

The importance of formula (10a) is thatKqqq is in L1(Ω) for all qqq ∈ domE(t, ·),
whereasV lies in C(Ω) because of the smoothness of the given boundary datagDir .
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3.2 Dissipation potential D

The first result provides some elementary properties for thedissipation distanceD
defined via (7) and (5). We letD

def
= {(P0, p0,P1, p1) |D(P0, p0,P1, p1) < ∞}, which

is a closed subset of(SL(d)×Rm)2, andη = (1,1, ...,1) ∈ Rm.

Lemma 3. Assume that R has the form(7). Then D defined(5) satisfies

D : Z×Z → [0,∞] is lower semicontinuous; (11a)

D : D → [0,∞[ is continuous; (11b)

D(z1,z2) = 0 ⇐⇒ z1 = z2; (11c)

D(z1,z3) ≤ D(z1,z2)+D(z2,z3); (11d)

there exist constants c1,c2 > 0 such that
(P0, p0,P1, p1) ∈ D =⇒ |P1−P0| ≤ c1

(
ec2|p1−p0|−1

)
;

(11e)

for eachε > 0 there exists Pε ∈ SL(d) andρε > 0 such that
(111,0,P,εη) ∈ D for all P ∈ SL(d) with |P−Pε | ≤ ρε .

(11f)

While the proof of the properties (11a)–(11e) is standard, see [Mie02, MaM08], the
property (11f) is not so obvious. To show this, we recall the implicit assumption that
{S1, ...,Sm} generates SL(d). Moreover, we let

Aε = {ν ∈ C1([0,1];Rm | ν̇α ≥ 0, ν(1)−ν(0) = εη },
Pε = {P(1) |P∈ C1([0,1];SL(d)), P(0) = 111, Ṗ(·)P(·)−1 ∈ Aε },
Ξ = ∑m

α=1Sα , κ∗ = ∑m
α=1 κα , andNε = exp(εΞ),

and obtainNε ∈ Pε andD(111,0,P,εη) ≤ εκ∗ < ∞ for all P∈ Pε .
Now the control theory on non-commutative Lie groups shows thatNε is in fact

an interior point of the reachable setPε . Thus we may setPε = Nε and have found
ρε > 0, such that (11f) holds.

Condition (11a) implies thatD is well defined and the positivity (D1)(i) follows
from (11c). Integrating the pointwise triangle inequality(11d) we see that (D1)(ii)
holds.

Using again thatzk ⇀ z in ZZZ implieszk → z in C0(Ω ) and thatD is nonnegative
and lower semicontinuous in bothz-variables, the classical lower semicontinuity
theory implies the lower semicontinuity ofD, namely (D2).

3.3 Compatibility conditions (C2)

To apply Theorem 2 it remains to establish the compatibilitycondition (C2), which
states that weak limits of stable sequences are stable again. We establish this by
constructing so-called joint recovery sequences, cf. [MRS08].
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Assume that a stable sequence(t j ,qqq j) j∈N with t j → t∗ and qqqj ⇀ qqq∗ is given.
We have to showqqq∗ ∈ S(t∗). For any given test statêqqq we have to showE(t∗,qqq∗) ≤
E(t∗, q̂qq)+D(z∗, ẑ). If D(z∗, ẑ)= ∞ the estimate holds and nothing needs to be shown.

For the caseD(z∗, ẑ) < ∞ we establish this condition by construction a joint
recovery sequence(q̂qqj) j∈N that satisfies

(a) E(t j , q̂qq j) → E(t∗, q̂qq), (b) D(zj , ẑj ) → D(z∗, ẑ). (12)

From these conditions the desired stability ofqqq∗ follows by using the stability ofqqqj ,
i.e., E(t j ,qqq j) ≤ E(t j , q̂qqj)+ D(zj , ẑj). Passing to the limitj → ∞ the left-hand side
can be estimated by weak lower semi-continuity and the right-hand side converges
to the desired limit.

The problem in deriving (12b) is the lack of continuity of theintegrandD of
D. Hence, we have to chooseẑj = (P̂j , p̂ j) carefully. For this we use property (11f)
where we additionally observe that(Pε ,ρε) must satisfyPε → 111 andρε → 0 because
of (11e). We letδ j = ‖zj−z‖L∞ , which satisfiesδ j and choose a sequence(ε j ) j such
thatδ j < ρε j → 0. We set

P̃j = Nε j P, p̃ j = p+ε jη , P̂j = Nε j P̂, p̂ j = p̂+ε j η , (13)

and find by the triangle inequality

D(Pj , p j , P̂j , p̂ j) ≤ D(Pj , p j , P̃j , p̃ j)+D(P̃j , p̃ j , P̂j , p̂ j)

=
∫

Ω D(111,0,Nε j PP−1
j , p−p j+ε j η)dx+D(P, p, P̂, p̂),

where we have used plastic invariance for the second term. Byconstruction the inte-
grand of the first term can be estimated byκ∗ε j and we obtain limsupj→∞ D(zj , ẑj )≤
D(z, ẑ). Since the opposite estimate follows by lower semi-continuity we have es-
tablished (12b). The convergence (12a) follows easily by setting ŷ j = ŷ and applying
Lebesgue’s dominated convergence theorem.
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