Übungsblatt 9

Aufgabe 9.1. Sei X eine nichtnegative gedächtnislose Zufallsvariable, deren Verteilungsfunktion stetig ist. Zeigen Sie, dass X exponentialverteilt zu einem Parameter $\lambda > 0$ ist.

Aufgabe 9.2. Sei $N=(N_t:t\geq 0)$ ein Poisson-Prozess mit Rate $\lambda>0$. Zeigen Sie, dass

$$M_t := N_t - \lambda t$$

ein Martingal bezüglich der durch $\mathcal{F}_s = \sigma(N_u : 0 \le u \le s)$ gegebenen kanonisches Filtration ist.

Aufgabe 9.3. Die Personen A und B melden ihrer Versicherung Schäden gemäß unabhängiger Poisson-Prozesse $N^{(A)}$ bzw. $N^{(B)}$ mit Intensitäten $\lambda^{(A)} > 0$ bzw. $\lambda^{(B)} > 0$.

- (a) Betrachten wir nun die Summe der gemeldeten Schäden beider Versicherungsnehmer. Zeigen Sie, dass $N:=N^{(A)}+N^{(B)}$ ein Poisson-Prozess mit Intensität $\lambda^{(A)}+\lambda^{(B)}$ ist.
- (b) Berechnen Sie die Wahrscheinlichkeit, dass Person A zuerst einen Schaden meldet.

Aufgabe 9.4. Die Anzahl der Studierenden, die eine Sprechstunde für den Kurs Versicherungsmathematik besuchen, sei poissonverteilt mit Parameter $\lambda > 0$. Diese Studierende seien mit Wahrscheinlichkeit $p \in (0,1)$ unabhängig voneinander im Bachelor und mit Wahrscheinlichkeit 1-p im Master.

- (a) Seien Y und Z die Anzahl an Bachelor- bzw. Masterstudierenden bei der Sprechstunde. Zeigen Sie, dass $Y \sim \text{Poisson}(\lambda p)$.
- (b) Zeigen Sie, dass Y und Z unabhängig sind.

Bemerkung: Y heißt die Ausdünnung von X mit Überlebenswahrscheinlichkeit p. Aus (i) und (ii) folgt automatisch die Faltungsstabilität der Poissonverteilung.