Übungsblatt 6

Aufgabe 6.1. Finden Sie eine Verteilungsfunktion, für die für alle $\lambda > 0$ einerseits

$$\liminf_{x \to \infty} \frac{\bar{F}(x)}{e^{-\lambda x}} = 0$$

und andererseits

$$\limsup_{x \to \infty} \frac{\bar{F}(x)}{e^{-\lambda x}} = \infty$$

gilt.

Aufgabe 6.2. Zeigen Sie, dass die Pareto-Verteilung heavy-tailed ist. Zeigen Sie weiter, dass die Weibull-Verteilung genau dann heavy-tailed ist, wenn $\alpha < 1$. <u>Hinweis:</u> Die Verteilungen finden Sie z.B. in Tabelle II.1 im Skript.

Aufgabe 6.3.

(a) Sei N negativ binomial verteilt mit Parametern $\alpha > 0$ und $p = \beta/(\beta+1)$ für eine $\beta > 0$. D.h.

$$\mathbb{P}(N=n) = \binom{\alpha+n-1}{n} p^{\alpha} (1-p)^{n},$$

wobei $\binom{\alpha+k-1}{k} := \Gamma(\alpha+k)/(k!\Gamma(\alpha))$. Zeigen Sie, dass N gemischt Poisson verteilt ist, mit $\Gamma(\alpha,\beta)$ verteiltem Mischungsparameter.

(b) Sei nun N gemischt Poisson verteilt mit Pareto $P(\kappa, \alpha)$ verteiltem Mischungsparameter. Sei $f_{\kappa,\alpha}(x) = \frac{\alpha\kappa^{\alpha}}{x^{\alpha+1}} \mathbb{1}_{[\kappa,\infty)}(x)$, die Dichte der Pareto-Verteilung. Zeigen Sie,

$$\lim_{n \to \infty} \frac{\mathbb{P}(N=n)}{f_{\kappa,\alpha}(n)} = 1$$

<u>Hinweis:</u> Für die Gamma-Funktion gilt sowohl $\Gamma(n) = (n-1)!$ für jedes $n \in \mathbb{N}$, als auch

$$\lim_{x \to \infty} \frac{\Gamma(x+a)}{\Gamma(x)} x^{-a} = 1$$

für jedes $a \in \mathbb{R}$.

Aufgabe 6.4.

- (a) Bestimmen Sie die wahrscheinlichkeitserzeugenden Funktionen der Binomial-, Bin(n, p), der Poisson-, $Pois(\lambda)$, und der negativen Binomialverteilung, $Bin^-(\alpha, p)$
- (b) Zeigen Sie, dass diese Verteilungen faltungsstabil sind, d.h.
 - (i) $Bin(n_1, p) \star Bin(n_2, p) = Bin(n_1 + n_2, p),$
 - (ii) $\operatorname{Pois}(\lambda_1) \star \operatorname{Pois}(\lambda_2) = \operatorname{Pois}(\lambda_1 + \lambda_2),$
 - (iii) $Bin^{-}(\alpha_{1}, p) \star Bin^{-}(\alpha_{2}, p) = Bin^{-}(\alpha_{1} + \alpha_{2}, p)$.