Matthias Liero

Weierstrass Institute Berlin. Research Group Partial Differential Equations

Welcome to my homepage. I am the acting head of the research group Partial Differential Equations at the Weierstrass Institute Berlin. I am also a member of the Berlin Mathematical School (BMS) in the Postdoctoral Faculty.

Research interests

  • Variational methods for evolution equations (gradient flows, evolutionary \(\Gamma\)-convergence, etc.)
  • Continuum mechanics
  • Modeling and analysis for semiconductor devices
  • Optimal transport

Contact

  • Matthias Liero
  • Weierstrass-Institut für Angewandte Analysis und Stochastik
  • Mohrenstrasse 39
  • 10117 Berlin
  • Germany
  • +49 (0)30 20372 542
  • matthias.liero@wias-berlin.de

Running projects

Teaching at HU

Publications

  1. Willem J. M. van Oosterhout and Matthias Liero. Finite-strain poro-visco-elasticity with degenerate mobility. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 104(5):e202300486, 2024. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.202300486, doi:10.1002/zamm.202300486. [ Bibtex ]
  2. Yiannis Hadjimichael, Christian Merdon, Matthias Liero, and Patricio Farrell. An energy-based finite-strain model for 3d heterostructured materials and its validation by curvature analysis. International Journal for Numerical Methods in Engineering, n/a(n/a):e7508, 2024. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.7508, doi:10.1002/nme.7508. [ Bibtex ]
  3. Annegret Glitzky and Matthias Liero. A drift-diffusion based electrothermal model for organic thin-film devices including electrical and thermal environment. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 104(3):e202300376, 2024. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.202300376, doi:10.1002/zamm.202300376. [ Bibtex ]
  4. Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Fine properties of geodesics and geodesic λ-convexity for the Hellinger–Kantorovich distance. Archive for Rational Mechanics and Analysis, 247(6):112, 2023. URL: 10.1007/s00205-023-01941-1, doi:10.1007/s00205-023-01941-1. [ Bibtex ]
  5. Dilara Abdel, Annegret Glitzky, and Matthias Liero. Analysis of a drift-diffusion model for perovskite solar cells. Preprint 3073, WIAS Berlin, 2023. doi:10.20347/WIAS.PREPRINT.3073. [ Bibtex ]
  6. Annegret Glitzky, Matthias Liero, and Grigor Nika. Analysis of a hybrid model for the electro-thermal behavior of semiconductor heterostructures. J. Math. Anal. Appl., 507:125815, 2022. URL: https://www.sciencedirect.com/science/article/abs/pii/S0022247X21008945?via%3Dihub, doi:10.1016/j.jmaa.2021.125815. [ Bibtex ]
  7. Annegret Glitzky, Matthias Liero, and Grigor Nika. A coarse-grained electrothermal model for organic semiconductor devices. Math. Methods Appl. Sci., 45:4809–4833, 2022. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/mma.8072, doi:10.1002/mma.8072. [ Bibtex ]
  8. Anton Kirch, Axel Fischer, Matthias Liero, Jürgen Fuhrmann, Annegret Glitzky, and Sebastian Reineke. Electrothermal tristability causes sudden burn-in phenomena in organic leds. Advanced Functional Materials, 31(47):2106716, 2021. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202106716, doi:10.1002/adfm.202106716. [ Bibtex ]
  9. Martin Heida, Manuel Landstorfer, and Matthias Liero. Homogenization of a porous intercalation electrode with phase separation. Preprint 2905, Weierstrass Institute Berlin, 2021. doi:10.20347/WIAS.PREPRINT.2905. [ Bibtex ]
  10. Annegret Glitzky, Matthias Liero, and Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discr. Cont. Dynam. Systems Ser. S, 14:3953–3971, 2021. URL: https://www.aimsciences.org/article/doi/10.3934/dcdss.2020460, doi:10.3934/dcdss.2020460. [ Bibtex ]
  11. Annegret Glitzky, Matthias Liero, and Grigor Nika. Analysis of a bulk-surface thermistor model for large-area organic leds. Port. Math., 78:187–210, 2021. URL: https://ems.press/journals/pm/articles/2340456, doi:10.4171/PM/2066. [ Bibtex ]
  12. Annegret Glitzky, Matthias Liero, and Grigor Nika. An existence result for a class of electrothermal drift-diffusion models with gauss–fermi statistics for organic semiconductors. Analysis and Applications, 19(2):275–304, 2021. URL: https://worldscientific.com/doi/abs/10.1142/S0219530519500246, doi:10.1142/S0219530519500246. [ Bibtex ]
  13. Anton Kirch, Axel Fischer, Matthias Liero, Jürgen Fuhrmann, Annegret Glitzky, and Sebastian Reineke. Experimental proof of joule heating-induced switched-back regions in oleds. Light: Science & Applications, 9(1):5, 2020. doi:10.1038/s41377-019-0236-9. [ Bibtex ]
  14. Jürgen Fuhrmann, Duy Hai Doan, Annegret Glitzky, Matthias Liero, and Grigor Nika. Unipolar drift-diffusion simulation of s-shaped current-voltage relations for organic semiconductor devices. In Robert Klöfkorn, Eirik Keilegavlen, Florin A. Radu, and Jürgen Fuhrmann, editors, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 625–633. Cham, 2020. Springer International Publishing. doi:10.1007/978-3-030-43651-3. [ Bibtex ]
  15. Thomas Frenzel and Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and edp-convergence. Discrete & Continuous Dynamical Systems - S, to appear:, 2020. URL: http://aimsciences.org//article/id/a3310bd0-565a-49ca-883c-f596652c96b5, doi:10.3934/dcdss.2020345. [ Bibtex ]
  16. Duy Hai Doan, Axel Fischer, Jürgen Fuhrmann, Annegret Glitzky, and Matthias Liero. Drift–diffusion simulation of s-shaped current–voltage relations for organic semiconductor devices. Journal of Computational Electronics, 19(3):1164–1174, Sep 2020. URL: 10.1007/s10825-020-01505-6, doi:10.1007/s10825-020-01505-6. [ Bibtex ]
  17. Yichu Zheng, Axel Fischer, Michael Sawatzki, Duy Hai Doan, Matthias Liero, Annegret Glitzky, Sebastian Reineke, and Stefan C. B. Mannsfeld. Introducing pinMOS memory: a novel, nonvolatile organic memory device. Advanced Functional Materials, n/a(n/a):1907119, 2019. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201907119, doi:10.1002/adfm.201907119. [ Bibtex ]
  18. Matthias Liero and Stefano Melchionna. The weighted energy-dissipation principle and evolutionary Γ-convergence for doubly nonlinear problems. ESAIM Control Optim. Calc. Var., 25:36, 2019. URL: 10.1051/cocv/2018023, doi:10.1051/cocv/2018023. [ Bibtex ]
  19. Annegret Glitzky and Matthias Liero. Instationary drift-diffusion problems with Gauss–Fermi statistics and field-dependent mobility for organic semiconductor devices. Comm. Math. Sci., 17:33–59, 2019. doi:10.4310/CMS.2019.v17.n1.a2. [ Bibtex ]
  20. Duy Hai Doan, Annegret Glitzky, and Matthias Liero. Analysis of a drift-diffusion model for organic semiconductor devices. Z. Angew. Math. Phys., 70:55, 2019. doi:10.1007/s00033-019-1089-z. [ Bibtex ]
  21. Franz Michael Sawatzki, Duy Hai Doan, Hans Kleemann, Matthias Liero, Annegret Glitzky, Thomas Koprucki, and Karl Leo. Balance of horizontal and vertical charge transport in organic field-effect transistors. Phys. Rev. Applied, 10:034069, Sep 2018. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.10.034069, doi:10.1103/PhysRevApplied.10.034069. [ Bibtex ]
  22. Matthias Liero and Sina Reichelt. Homogenization of Cahn–Hilliard-type equations via evolutionary Γ-convergence. Nonlinear Differential Equations and Applications NoDEA, 25(1):6, Jan 2018. URL: 10.1007/s00030-018-0495-9, doi:10.1007/s00030-018-0495-9. [ Bibtex ]
  23. Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures. Inventiones mathematicae, 211(3):969–1117, Mar 2018. URL: 10.1007/s00222-017-0759-8, doi:10.1007/s00222-017-0759-8. [ Bibtex ]
  24. Axel Fischer, Manuel Pfalz, Koen Vandewal, Simone Lenk, Matthias Liero, Annegret Glitzky, and Sebastian Reineke. Full electrothermal oled model including nonlinear self-heating effects. Phys. Rev. Applied, 10:014023, Jul 2018. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.10.014023, doi:10.1103/PhysRevApplied.10.014023. [ Bibtex ]
  25. Karoline Disser, Matthias Liero, and Jonathan Zinsl. Evolutionary Γ-convergence of gradient systems modeling slow and fast chemical reactions. Nonlinearity, 31(8):3689–3706, jul 2018. URL: 10.1088%2F1361-6544%2Faac353, doi:10.1088/1361-6544/aac353. [ Bibtex ]
  26. Matthias Liero, Alexander Mielke, Mark A. Peletier, and D. R. Michiel Renger. On microscopic origins of generalized gradient structures. Discr. Cont. Dynam. Systems Ser. S, 10:1, 2017. URL: http://aimsciences.org//article/id/c40c3ab2-9b67-4a0b-a0ad-de66aeaf07c3, doi:10.3934/dcdss.2017001. [ Bibtex ]
  27. Matthias Liero, Jürgen Fuhrmann, Annegret Glitzky, Thomas Koprucki, Axel Fischer, and Sebastian Reineke. Modeling and simulation of electrothermal feedback in large-area organic leds. In Joachim Piprek and Morten Willatzen, editors, Proceedings of the 17th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2017, 105–106. Piscataway, NJ, USA, 2017, 2017. IEEE Conference Publications Management Group. [ Bibtex ]
  28. Matthias Liero, Jürgen Fuhrmann, Annegret Glitzky, Thomas Koprucki, Axel Fischer, and Sebastian Reineke. 3D electrothermal simulations of organic LEDs showing negative differential resistance. Opt. Quantum Electron., 49:330/1–330/8, 2017. doi:10.1007/s11082-017-1167-4. [ Bibtex ]
  29. Matthias Liero, Axel Fischer, Jürgen Fuhrmann, Thomas Koprucki, and Annegret Glitzky. A pde model for electrothermal feedback in organic semiconductor devices. In Peregrina Quintela, Patricia Barral, Dolores Gómez, Francisco J. Pena, Jerónimo Rodríguez, Pilar Salgado, and Miguel E. Vázquez-Méndez, editors, Progress in Industrial Mathematics at ECMI 2016, 99–106. Cham, 2017. Springer International Publishing. [ Bibtex ]
  30. Matthias Liero. The Hellinger-Kantorovich distance as a generalization of optimal-transport distances to scalar reaction-diffusion problems. In Alexander Mielke, Mark A. Peletier, and Dejan Slepčev, editors, Oberwolfach Rep. 14, 47–50. 2017. [ Bibtex ]
  31. Annegret Glitzky and Matthias Liero. Analysis of $p(x)$-Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices. Nonlinear Analysis: Real World Applications, 34:536–562, 2017. URL: http://www.sciencedirect.com/science/article/pii/S1468121816301183, doi:10.1016/j.nonrwa.2016.09.015. [ Bibtex ]
  32. Jürgen Fuhrmann, Annegret Glitzky, and Matthias Liero. Hybrid finite-volume/finite-element schemes for $p(x)$-Laplace thermistor models. In Clément Cancès and Pascal Omnes, editors, Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017, pages 397–405. Springer International Publishing, Cham, 2017. [ Bibtex ]
  33. Miroslav Bulíček, Annegret Glitzky, and Matthias Liero. Thermistor systems of $p(x)$-Laplace-type with discontinuous exponents via entropy solutions. Discr. Cont. Dynam. Systems Ser. S, 10:697–713, 2017. doi:10.3934/dcdss.2017035. [ Bibtex ]
  34. Matthias Liero, Alexander Mielke, and Giuseppe Savaré. Optimal transport in competition with reaction: the Hellinger–Kantorovich distance and geodesic curves. SIAM Journal on Mathematical Analysis, 48(4):2869–2911, 2016. URL: 10.1137/15M1041420, doi:10.1137/15M1041420. [ Bibtex ]
  35. Miroslav Bulíček, Annegret Glitzky, and Matthias Liero. Systems describing electrothermal effects with $p(x)$-Laplace like structure for discontinuous variable exponents. SIAM J. Math. Analysis, 48:3496–3514, 2016. doi:10.1137/16M1062211. [ Bibtex ]
  36. Adrien Bercegol, Binoy Chacko, Reiner Klenk, Iver Lauermann, Martha Ch. Lux-Steiner, and Matthias Liero. Point contacts at the copper-indium-gallium-selenide interface–a theoretical outlook. Journal of Applied Physics, 119(15):155304, 2016. URL: 10.1063/1.4947267, doi:10.1063/1.4947267. [ Bibtex ]
  37. Matthias Liero, Thomas Koprucki, Axel Fischer, Reinhard Scholz, and Annegret Glitzky. $p$-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices. Z. Angew. Math. Phys., 66:2957–2977, 2015. doi:10.1007/s00033-015-0560-8. [ Bibtex ]
  38. Karoline Disser and Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 10(2):233–253, 2015. URL: http://aimsciences.org//article/id/2c5d4c6f-b5e6-4ab3-b6e8-0d268d025407, doi:10.3934/nhm.2015.10.233. [ Bibtex ]
  39. Matthias Liero and Ulisse Stefanelli. Weighted inertia-dissipation-energy functionals for semilinear equations. Boll. Unione Mat. Ital. (9), 6(1):1–27, 2013. [ Bibtex ]
  40. Matthias Liero and Ulisse Stefanelli. A new minimum principle for Lagrangian mechanics. J. Nonlinear Sci., 23(2):179–204, 2013. doi:10.1007/s00332-012-9148-z. [ Bibtex ]
  41. Matthias Liero and Alexander Mielke. Gradient structures and geodesic convexity for reaction-diffusion systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2005):20120346, 2013. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2012.0346, doi:10.1098/rsta.2012.0346. [ Bibtex ]
  42. Matthias Liero. Passing from bulk to bulk-surface evolution in the AllenCahn equation. Nonlinear Differential Equations and Applications NoDEA, 20(3):919–942, Jun 2013. URL: 10.1007/s00030-012-0189-7, doi:10.1007/s00030-012-0189-7. [ Bibtex ]
  43. Matthias Liero and Thomas Roche. Rigorous derivation of a plate theory in linear elastoplasticity via Γ-convergence. Nonlinear Differential Equations and Applications NoDEA, 19(4):437–457, Aug 2012. URL: 10.1007/s00030-011-0137-y, doi:10.1007/s00030-011-0137-y. [ Bibtex ]
  44. Matthias Liero and Alexander Mielke. An evolutionary elastoplastic plate model derived via Γ-convergence. Math. Models Meth. Appl. Sci. (M³AS), 21(9):1961–1986, 2011. doi:10.1142/S0218202511005611. [ Bibtex ]
  45. Pavel Krejčí and Matthias Liero. Rate independent Kurzweil processes. Applications of Mathematics, 54(2):117–145, 2009. URL: https://dml.cz/handle/10338.dmlcz/140355, doi:10.1007/s10492-009-0009-5. [ Bibtex ]
  46. Hannelore Liero and Matthias Liero. Testing the acceleration function in lifetime models. In Filia Vonta, Mikhail Nikulin, Nikolaos Limnios, and Catherine Huber-Carol, editors, Statistical Models and Methods for Biomedical and Technical Systems, pages 225–239. Birkhäuser Boston, Boston, MA, 2008. URL: 10.1007/978-0-8176-4619-6_17, doi:10.1007/978-0-8176-4619-6_17. [ Bibtex ]