ODE for Physicists - Homework 3

Due: April 26, 2005
7. (10 pts.) Check whether the following ODEs are exact. If so, find the solution curves through the indicated points $\left(x_{0}, y_{0}\right)$. If possible, give the expressions of these curves in explicit form, $y=y(x)$ or $x=x(y)$.
(a) $\left(2-9 x y^{2}\right) x \mathrm{~d} x+\left(4 y^{2}-6 y^{3}\right) y \mathrm{~d} y=0, \quad$ at $(1,1)$.
(b) $\mathrm{e}^{-y} \mathrm{~d} x-\left(2 y+x \mathrm{e}^{-y}\right) \mathrm{d} y=0, \quad$ at $(5,0)$.
(c) $\left(1+y^{2} \sin 2 x\right) \mathrm{d} x-2 y \cos ^{2} x \mathrm{~d} y=0$, at $(0,2)$.
8. (6 pts.) (Exercise on partial differentiation.) Fix $d \in \backslash\{1\}$ and consider the function $r: \mathbb{R}^{d} \rightarrow \mathbb{R}$ given by

$$
r(x)=\|x\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}}
$$

for all $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$. We introduce the Laplace operator:

$$
\Delta:=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}},
$$

i.e., $\Delta f(x)=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}} f\left(x_{1}, \ldots, x_{d}\right)$ for any $x \in \mathbb{R}^{d}$ and any function f that is twice differentiable with respect to any x_{j}.
(a) For $d=2$, compute $\Delta(\log r)(x)$ for any $x \in \mathbb{R}^{d} \backslash\{0\}$ and simplify the expression as far as possible.
(b) For $d \geq 3$, compute $\Delta\left(r^{2-d}\right)(x)$ for any $x \in \mathbb{R}^{d} \backslash\{0\}$ and simplify the expression as far as possible.

