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7. (10 pts.) Check whether the following ODEs are exact. If so, find the
solution curves through the indicated points (x0, y0). If possible, give
the expressions of these curves in explicit form, y = y(x) or x = x(y).

(a) (2 − 9xy2)xdx + (4y2 − 6y3)y dy = 0, at (1, 1).

(b) e−y dx − (2y + xe−y) dy = 0, at (5, 0).

(c) (1 + y2 sin 2x) dx − 2y cos2 xdy = 0, at (0, 2).

8. (6 pts.) (Exercise on partial differentiation.) Fix d ∈ \{1} and consider
the function r : R

d → R given by
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for all x = (x1, . . . , xd) ∈ R
d. We introduce the Laplace operator:
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i.e., ∆f(x) =
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f(x1, . . . , xd) for any x ∈ R
d and any function

f that is twice differentiable with respect to any xj .

(a) For d = 2, compute ∆(log r)(x) for any x ∈ R
d \ {0} and simplify

the expression as far as possible.

(b) For d ≥ 3, compute ∆(r2−d)(x) for any x ∈ R
d \ {0} and simplify

the expression as far as possible.
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