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In this talk, we follow the paper [VI14].

1 Definitions and Main Theorem

Definition 1.1. Let the points in ®, &z C R? be distributed according to independent
poisson point processes of intensity A, Ag. We call @ the set of legitimate nodes and &g
the set of eavesdropper nodes and define

[(day)
SINR,, := Y
Y v Zzé@,z#ax l(dZy) +1

for all x,y € ® and
[(dge)
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for all z € ®,e € D, with dyy := ||z — y||2, the signal attenuation function [ : [0, 00) —

[0,00) and the interference suppression parameter v € [0, 1]. Then, the maximum rate
of secure communication [Wyn75] between z,y € ® is given by
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Definition 1.2. We say that the signal attenuation function [ : [0, 00) — [0, 00) fulfills
standard assumptions if [ is strictly decreasing on its support and fooo zl(z)dz < oo.

Furthermore, we say that [ fulfills the additional decay condition if for all ¢ > 0 there is
M > 0 such that Vo > 0: l(z + M) < cl(x).

Definition 1.3. For § > 0 we define the SINR secrecy graph SSG(6) := {®,E}, where
E = {(z,y) : RE?IJNR > 0}. We call z € ® connected to y € @ if (z,y) € €. If
there is a sequence of edges from z € ® to z € ® we speak of a path from = to z
and write z — z. The connected component, also called cluster, of x € ® is given by
Cp={z€d:2— z}.

Remark 1.4. In the following, we will only consider SSG := SSG(0) with edge set £ :=
{(z,y) : SINRy, > SINR,, Ve € ®g}.



Theorem 1.5. Let P? be the palm distribution of ® and ®p with respect to 0 € ®. Let
l be a signal attenuation function fulfilling standard assumptions. For all Ap € (0, 00)
and e € 0,1],

1. there is Ay € (0,00),71 € (0,1) such that VX > A\1,v < v1: P°(|Co| = o0) > 0,

2. if | satisfies the additional decay condition, there is Ao € (0,00) such that ¥V <
Ao,y € [0, 1] : PO(|C()| = OO) =0.

2 Proof of Part 1 of Theorem 1.5

For the proof of the first part, it is sufficient to consider the case of yg = 0.

Definition 2.1. Let S be the square lattice with side s > 0 with a vertex at the origin
and S’ := S + (s/2,5/2) be the dual lattice. For an edge a of S let a’ be the edge of S’

which crosses a. Choose a(s) > 0 such that [(3s) < ﬁ‘ﬁ?) For an edge a of S let S;(a)

and Sa(a) be its two adjent squares and Y'(a) the 7s x 8s rectangle of S which contains
a 3s surrounding of S1(a) U S(a).!

Definition 2.2. For any edge a of S consider indicator variables A(a), B(a),C(a) given
by

1. A(a) =1iff S1(a)N® # P and Se(a) N ® # (),
2. B(a)=1iff Y(a)Nn®g =0,
3. C(a) =1liffforall z,y € (S1(a)US2(a))N® we have Iy 1= ¢ .2, Udzy) < @

Then a and a’ are defined to be open edges if D(a) := A(a)B(a)C(a) = 1 and closed
edges otherwise.

Lemma 2.3. If an edge a of S is open, then (z,y) € € for all z,y € (S1(a)USa(a))Nd.

Theorem 2.4. [Gri99, page 284|[Kes82, page 386] Any finite open cluster of S is sur-
rounded by a closed circuit of S'.

Lemma 2.5. Let {a;}1<i<n be a collection of distinct edges in S. Then,

1. PO%(A(a;) =0 V1 <i<n)<p" where py := {/1 — (1 —exp(—As?))?,

2. PY(B(a;) =0 V1 <i<n)<p™ where py := *}/1 — exp(—56s2\g),

; n o 00 1(0 als
3. PY(C(a;) =0 V1 <i<n)< ps™ where p3 := exp (% Jo_ xl(z)de + % - %)

and K > 0 only depends on | and s,
4. [DEMT06] P°(D(a;) =0 V1 <i<n)<q" where q := \/p1 + /D2 + /P3.

Lemma 2.6. For small enough q > 0, the probability of having a closed circuit in S’
surrounding the origin is lower than 1.

1S1(a), Sz2(a) and Y (a) are defined to be topologically closed.



3 Proof of Part 2 of Theorem 1.5

For the proof of the second part, it is sufficient to consider the case of v = 0 and vg = 1.

Definition 3.1. For initially arbitrary m > 0 and ¢ > 0 fix M(m,c) > 9m such that

[(d+ $M(m,c)) < % for all d > M(m,c). Let M be the square lattice with side
M (m, c) with a vertex at the origin and M’ be the dual lattice. For an edge a of M let
Si(a) and Sz2(a) be its two adjent squares and T;j(a) be the square with side m with the

same center as S;(a).?

Definition 3.2. For any edge a of M consider indicator variables A(a), B(a), C(a) given
by

1. A(a) =1iff Ty(a) N ®p # 0 and Th(a) N dg £ 0,

2. B(a) = 1iff (S(a) U Sa(a)) N® = 0,

3. C(a) =1iff for all e € (T1(a) UTs(a)) N @ we have I, := ) _41(d.c) < c.
Then a and a’ are defined to be open edges iff D(a) := A(a)B(a)C(a) = 1.
Lemma 3.3. FEdges of SSG cannot cross open edges of M.

Lemma 3.4. Let {a;}1<i<pn be a collection of distinct edges in M which do not contain
the origin. Then,

1. PY(A(a;)

IN
IN

n) < r"™ where r = /1 — (1 — exp(—Ag m?))2,

O0Vv1<i
V1<iq

2. P°(B(a;) =0

IN
IN

n) < ro™ where ro := {/1 — exp(—2AM?),

3. PYC(a;) = 0 V1 < i <n)<r3" where r3 := exp (4)‘7’7 Jo© wl(x) da + % - %)
and K > 0 only depends on | and M,

4. Po(f)(ai) =0V1<i<n)<r wherers:=\/r1+ {/r2+ {r3.

Lemma 3.5. For small enough q > 0, the probability of having an open circuit in M
surrounding the origin is equal to 1.

281(a), S2(a), Ti(a) and T(a) are defined to be topologically closed.
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