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In this talk, we follow the paper [VI14].

1 Definitions and Main Theorem

Definition 1.1. Let the points in Φ,ΦE ⊂ R2 be distributed according to independent
poisson point processes of intensity λ, λE . We call Φ the set of legitimate nodes and ΦE

the set of eavesdropper nodes and define

SINRxy :=
l(dxy)

γ
∑

z∈Φ,z 6=x l(dzy) + 1

for all x, y ∈ Φ and

SINRxe :=
l(dxe)

γE
∑

z∈Φ,z 6=x l(dze) + 1

for all x ∈ Φ, e ∈ ΦE , with dxy := ‖x− y‖2, the signal attenuation function l : [0,∞)→
[0,∞) and the interference suppression parameter γ ∈ [0, 1]. Then, the maximum rate
of secure communication [Wyn75] between x, y ∈ Φ is given by

RSINR
xy := 0 ∨ min

e∈ΦE

log2

(
1 + SINRxy

1 + SINRxe

)
.

Definition 1.2. We say that the signal attenuation function l : [0,∞) → [0,∞) fulfills
standard assumptions if l is strictly decreasing on its support and

∫∞
0 xl(x) dx < ∞.

Furthermore, we say that l fulfills the additional decay condition if for all c > 0 there is
M > 0 such that ∀x ≥ 0 : l(x+M) ≤ cl(x).

Definition 1.3. For θ ≥ 0 we define the SINR secrecy graph SSG(θ) := {Φ, E}, where
E := {(x, y) : RSINR

xy > θ}. We call x ∈ Φ connected to y ∈ Φ if (x, y) ∈ E . If
there is a sequence of edges from x ∈ Φ to z ∈ Φ we speak of a path from x to z
and write x → z. The connected component, also called cluster, of x ∈ Φ is given by
Cx := {z ∈ Φ : x→ z}.

Remark 1.4. In the following, we will only consider SSG := SSG(0) with edge set E :=
{(x, y) : SINRxy > SINRxe ∀e ∈ ΦE}.
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Theorem 1.5. Let P 0 be the palm distribution of Φ and ΦE with respect to 0 ∈ Φ. Let
l be a signal attenuation function fulfilling standard assumptions. For all λE ∈ (0,∞)
and γE ∈ [0, 1],

1. there is λ1 ∈ (0,∞), γ1 ∈ (0, 1) such that ∀λ > λ1, γ < γ1 : P 0(|C0| =∞) > 0,

2. if l satisfies the additional decay condition, there is λ2 ∈ (0,∞) such that ∀λ <
λ2, γ ∈ [0, 1] : P 0(|C0| =∞) = 0.

2 Proof of Part 1 of Theorem 1.5

For the proof of the first part, it is sufficient to consider the case of γE = 0.

Definition 2.1. Let S be the square lattice with side s > 0 with a vertex at the origin
and S′ := S + (s/2, s/2) be the dual lattice. For an edge a of S let a′ be the edge of S′

which crosses a. Choose α(s) > 0 such that l(3s) < l(
√

5s)
1+α(s) . For an edge a of S let S1(a)

and S2(a) be its two adjent squares and Y (a) the 7s× 8s rectangle of S which contains
a 3s surrounding of S1(a) ∪ S2(a).1

Definition 2.2. For any edge a of S consider indicator variables A(a), B(a), C(a) given
by

1. A(a) = 1 iff S1(a) ∩ Φ 6= ∅ and S2(a) ∩ Φ 6= ∅,

2. B(a) = 1 iff Y (a) ∩ ΦE = ∅,

3. C(a) = 1 iff for all x, y ∈ (S1(a)∪S2(a))∩Φ we have Ixy :=
∑

z∈Φ,z 6=x l(dzy) ≤
α(s)
γ .

Then a and a′ are defined to be open edges if D(a) := A(a)B(a)C(a) = 1 and closed
edges otherwise.

Lemma 2.3. If an edge a of S is open, then (x, y) ∈ E for all x, y ∈ (S1(a)∪S2(a))∩Φ.

Theorem 2.4. [Gri99, page 284][Kes82, page 386] Any finite open cluster of S is sur-
rounded by a closed circuit of S′.

Lemma 2.5. Let {ai}1≤i≤n be a collection of distinct edges in S. Then,

1. P 0(A(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ p1
n where p1 := 7

√
1− (1− exp(−λs2))2,

2. P 0(B(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ p2
n where p2 := 449

√
1− exp(−56s2λE),

3. P 0(C(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ p3
n where p3 := exp

(
2λ
K

∫∞
0 xl(x) dx+ l(0)

K −
α(s)
γK

)
and K > 0 only depends on l and s,

4. [DFM+06] P 0(D(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ qn where q :=
√
p1 + 4

√
p2 + 4

√
p3.

Lemma 2.6. For small enough q > 0, the probability of having a closed circuit in S′

surrounding the origin is lower than 1.

1S1(a), S2(a) and Y (a) are defined to be topologically closed.
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3 Proof of Part 2 of Theorem 1.5

For the proof of the second part, it is sufficient to consider the case of γ = 0 and γE = 1.

Definition 3.1. For initially arbitrary m > 0 and c > 0 fix M(m, c) > 9m such that

l
(
d + 1

9M(m, c)
)
≤ l(d)

1+c for all d ≥ M(m, c). Let M be the square lattice with side
M(m, c) with a vertex at the origin and M′ be the dual lattice. For an edge a of M let
S1(a) and S2(a) be its two adjent squares and Ti(a) be the square with side m with the
same center as Si(a).2

Definition 3.2. For any edge a of M consider indicator variables Ã(a), B̃(a), C̃(a) given
by

1. Ã(a) = 1 iff T1(a) ∩ ΦE 6= ∅ and T2(a) ∩ ΦE 6= ∅,

2. B̃(a) = 1 iff (S1(a) ∪ S2(a)) ∩ Φ = ∅,

3. C̃(a) = 1 iff for all e ∈ (T1(a) ∪ T2(a)) ∩ ΦE we have Ie :=
∑

z∈Φ l(dze) ≤ c.

Then a and a′ are defined to be open edges iff D̃(a) := Ã(a)B̃(a)C̃(a) = 1.

Lemma 3.3. Edges of SSG cannot cross open edges of M.

Lemma 3.4. Let {ai}1≤i≤n be a collection of distinct edges in M which do not contain
the origin. Then,

1. P 0(Ã(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ r1
n where r1 := 7

√
1− (1− exp(−λEm2))2,

2. P 0(B̃(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ r2
n where r2 := 7

√
1− exp(−2λM2),

3. P 0(C̃(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ r3
n where r3 := exp

(
4λπ
K

∫∞
0 xl(x) dx+ l(0)

K −
c
K

)
and K > 0 only depends on l and M ,

4. P 0(D̃(ai) = 0 ∀ 1 ≤ i ≤ n) ≤ rsn where rs :=
√
r1 + 4

√
r2 + 4

√
r3.

Lemma 3.5. For small enough q > 0, the probability of having an open circuit in M
surrounding the origin is equal to 1.

2S1(a), S2(a), T1(a) and T2(a) are defined to be topologically closed.
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