Percolation of the SINR Secrecy Graph (SSG)

Andreas Preiß

July 14th, 2015

In this talk, we follow the paper [VI14].

1 Definitions and Main Theorem

Definition 1.1. Let the points in $\Phi, \Phi_E \subset \mathbb{R}^2$ be distributed according to independent poisson point processes of intensity λ, λ_E . We call Φ the set of legitimate nodes and Φ_E the set of eavesdropper nodes and define

$$SINR_{xy} := \frac{l(d_{xy})}{\gamma \sum_{z \in \Phi, z \neq x} l(d_{zy}) + 1}$$

for all $x, y \in \Phi$ and

$$SINR_{xe} := \frac{l(d_{xe})}{\gamma_E \sum_{z \in \Phi, z \neq x} l(d_{ze}) + 1}$$

for all $x \in \Phi$, $e \in \Phi_E$, with $d_{xy} := ||x - y||_2$, the signal attenuation function $l : [0, \infty) \to [0, \infty)$ and the interference suppression parameter $\gamma \in [0, 1]$. Then, the maximum rate of secure communication [Wyn75] between $x, y \in \Phi$ is given by

$$R_{xy}^{\text{SINR}} := 0 \lor \min_{e \in \Phi_E} \log_2\left(\frac{1 + \text{SINR}_{xy}}{1 + \text{SINR}_{xe}}\right)$$

Definition 1.2. We say that the signal attenuation function $l : [0, \infty) \to [0, \infty)$ fulfills standard assumptions if l is strictly decreasing on its support and $\int_0^\infty x l(x) dx < \infty$. Furthermore, we say that l fulfills the additional decay condition if for all c > 0 there is M > 0 such that $\forall x \ge 0$: $l(x + M) \le cl(x)$.

Definition 1.3. For $\theta \ge 0$ we define the SINR secrecy graph $SSG(\theta) := \{\Phi, \mathcal{E}\}$, where $\mathcal{E} := \{(x, y) : R_{xy}^{SINR} > \theta\}$. We call $x \in \Phi$ connected to $y \in \Phi$ if $(x, y) \in \mathcal{E}$. If there is a sequence of edges from $x \in \Phi$ to $z \in \Phi$ we speak of a path from x to z and write $x \to z$. The connected component, also called cluster, of $x \in \Phi$ is given by $C_x := \{z \in \Phi : x \to z\}$.

Remark 1.4. In the following, we will only consider SSG := SSG(0) with edge set $\mathcal{E} := \{(x, y) : \text{SINR}_{xy} > \text{SINR}_{xe} \ \forall e \in \Phi_E\}.$

Theorem 1.5. Let P^0 be the palm distribution of Φ and Φ_E with respect to $0 \in \Phi$. Let l be a signal attenuation function fulfilling standard assumptions. For all $\lambda_E \in (0, \infty)$ and $\gamma_E \in [0, 1]$,

- 1. there is $\lambda_1 \in (0,\infty), \gamma_1 \in (0,1)$ such that $\forall \lambda > \lambda_1, \gamma < \gamma_1 : P^0(|C_0| = \infty) > 0$,
- 2. if l satisfies the additional decay condition, there is $\lambda_2 \in (0,\infty)$ such that $\forall \lambda < \lambda_2, \gamma \in [0,1]$: $P^0(|C_0| = \infty) = 0$.

2 Proof of Part 1 of Theorem 1.5

For the proof of the first part, it is sufficient to consider the case of $\gamma_E = 0$.

Definition 2.1. Let **S** be the square lattice with side s > 0 with a vertex at the origin and $\mathbf{S}' := \mathbf{S} + (s/2, s/2)$ be the dual lattice. For an edge **a** of **S** let **a**' be the edge of **S**' which crosses **a**. Choose $\alpha(s) > 0$ such that $l(3s) < \frac{l(\sqrt{5}s)}{1+\alpha(s)}$. For an edge **a** of **S** let $S_1(\mathbf{a})$ and $S_2(\mathbf{a})$ be its two adjent squares and $Y(\mathbf{a})$ the $7s \times 8s$ rectangle of **S** which contains a 3s surrounding of $S_1(\mathbf{a}) \cup S_2(\mathbf{a})$.¹

Definition 2.2. For any edge **a** of **S** consider indicator variables $A(\mathbf{a}), B(\mathbf{a}), C(\mathbf{a})$ given by

1. $A(\mathbf{a}) = 1$ iff $S_1(\mathbf{a}) \cap \Phi \neq \emptyset$ and $S_2(\mathbf{a}) \cap \Phi \neq \emptyset$,

2.
$$B(\mathbf{a}) = 1$$
 iff $Y(\mathbf{a}) \cap \Phi_E = \emptyset$,

3. $C(\mathbf{a}) = 1$ iff for all $x, y \in (S_1(\mathbf{a}) \cup S_2(\mathbf{a})) \cap \Phi$ we have $I_{xy} := \sum_{z \in \Phi, z \neq x} l(d_{zy}) \leq \frac{\alpha(s)}{\gamma}$.

Then **a** and **a'** are defined to be open edges if $D(\mathbf{a}) := A(\mathbf{a})B(\mathbf{a})C(\mathbf{a}) = 1$ and closed edges otherwise.

Lemma 2.3. If an edge **a** of **S** is open, then $(x, y) \in \mathcal{E}$ for all $x, y \in (S_1(\mathbf{a}) \cup S_2(\mathbf{a})) \cap \Phi$.

Theorem 2.4. [Gri99, page 284][Kes82, page 386] Any finite open cluster of S is surrounded by a closed circuit of S'.

Lemma 2.5. Let $\{\mathbf{a}_i\}_{1 \le i \le n}$ be a collection of distinct edges in **S**. Then,

1. $P^0(A(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le p_1^n \text{ where } p_1 := \sqrt[7]{1 - (1 - \exp(-\lambda s^2))^2},$

2.
$$P^0(B(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le p_2^n \ where \ p_2 := \sqrt[449]{1 - \exp(-56s^2\lambda_E)},$$

- 3. $P^0(C(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le p_3^n \text{ where } p_3 := \exp\left(\frac{2\lambda}{K} \int_0^\infty x l(x) \, \mathrm{d}x + \frac{l(0)}{K} \frac{\alpha(s)}{\gamma K}\right)$ and K > 0 only depends on l and s,
- 4. [DFM⁺06] $P^0(D(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le q^n \ where \ q := \sqrt{p_1} + \sqrt[4]{p_2} + \sqrt[4]{p_3}.$

Lemma 2.6. For small enough q > 0, the probability of having a closed circuit in S' surrounding the origin is lower than 1.

 $^{{}^{1}}S_{1}(\mathbf{a}), S_{2}(\mathbf{a})$ and $Y(\mathbf{a})$ are defined to be topologically closed.

3 Proof of Part 2 of Theorem 1.5

For the proof of the second part, it is sufficient to consider the case of $\gamma = 0$ and $\gamma_E = 1$.

Definition 3.1. For initially arbitrary m > 0 and c > 0 fix M(m,c) > 9m such that $l(d + \frac{1}{9}M(m,c)) \leq \frac{l(d)}{1+c}$ for all $d \geq M(m,c)$. Let **M** be the square lattice with side M(m,c) with a vertex at the origin and **M**' be the dual lattice. For an edge **a** of **M** let $S_1(\mathbf{a})$ and $S_2(\mathbf{a})$ be its two adjent squares and $T_i(\mathbf{a})$ be the square with side m with the same center as $S_i(\mathbf{a})$.²

Definition 3.2. For any edge **a** of **M** consider indicator variables $A(\mathbf{a}), B(\mathbf{a}), C(\mathbf{a})$ given by

- 1. $\tilde{A}(\mathbf{a}) = 1$ iff $T_1(\mathbf{a}) \cap \Phi_E \neq \emptyset$ and $T_2(\mathbf{a}) \cap \Phi_E \neq \emptyset$,
- 2. $\tilde{B}(\mathbf{a}) = 1$ iff $(S_1(\mathbf{a}) \cup S_2(\mathbf{a})) \cap \Phi = \emptyset$,
- 3. $\tilde{C}(\mathbf{a}) = 1$ iff for all $e \in (T_1(\mathbf{a}) \cup T_2(\mathbf{a})) \cap \Phi_E$ we have $I_e := \sum_{z \in \Phi} l(d_{ze}) \leq c$.

Then **a** and **a'** are defined to be open edges iff $\tilde{D}(\mathbf{a}) := \tilde{A}(\mathbf{a})\tilde{B}(\mathbf{a})\tilde{C}(\mathbf{a}) = 1$.

Lemma 3.3. Edges of SSG cannot cross open edges of M.

Lemma 3.4. Let $\{\mathbf{a}_i\}_{1 \leq i \leq n}$ be a collection of distinct edges in \mathbf{M} which do not contain the origin. Then,

- 1. $P^0(\tilde{A}(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le r_1^n \text{ where } r_1 := \sqrt[7]{1 (1 \exp(-\lambda_E m^2))^2},$
- 2. $P^0(\tilde{B}(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le r_2^n \ where \ r_2 := \sqrt[7]{1 \exp(-2\lambda M^2)},$
- 3. $P^0(\tilde{C}(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le r_3^n \text{ where } r_3 := \exp\left(\frac{4\lambda\pi}{K}\int_0^\infty x l(x) \,\mathrm{d}x + \frac{l(0)}{K} \frac{c}{K}\right)$ and K > 0 only depends on l and M,
- 4. $P^0(\tilde{D}(\mathbf{a}_i) = 0 \ \forall 1 \le i \le n) \le r_s^n \ where \ r_s := \sqrt{r_1} + \sqrt[4]{r_2} + \sqrt[4]{r_3}.$

Lemma 3.5. For small enough q > 0, the probability of having an open circuit in **M** surrounding the origin is equal to 1.

 $^{{}^{2}}S_{1}(\mathbf{a}), S_{2}(\mathbf{a}), T_{1}(\mathbf{a}) \text{ and } T_{2}(\mathbf{a}) \text{ are defined to be topologically closed.}$

References

- [DFM⁺06] Olivier Dousse, Massimo Franceschetti, Nicolas Macris, Ronald Mester, and Patrick Thiran. Percolation in the Signal to Interference Ratio Graph. J. Appl. Probab., 43:552–562, 2006.
- [Gri99] Geoffrey Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin Heidelberg, 2nd edition, 1999.
- [Kes82] Harry Kesten. Percolation Theory for Mathematicians. Birkhäuser, Boston, 1982.
- [VI14] Rahul Vaze and Srikanth Iyer. Percolation on the Information-Theoretically Secure Signal to Interference Ratio Graph. J. Appl. Probab., 51:910–920, 2014.
- [Wyn75] A. D. Wyner. The Wire-Tap Channel. *Bell Syst. Tech. J.*, 54:1355–1387, 1975.