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Abstract. We consider the non-interacting Bose gas of N bosons in dimension d ≥ 3 in a trap

in a mean-field setting with a vanishing factor aN in front of the kinetic energy. The choice aN =

N−2/d is the semi-classical setting and was analysed in great detail in a special, interacting case

in [DS21]. Using a version of the well-known Feynman–Kac representation and a further representation

in terms of a Poisson point process, we derive precise asymptotics for the reduced one-particle density

matrix, implying off-diagonal long-range order (ODLRO, a well-known criterion for Bose–Einstein

condensation) for aN above a certain threshold and non-occurrence of ODLRO for aN below that

threshold. In particular, we relate the condensate and its total mass to the amount of particles in

long loops in the Feynman–Kac formula, the order parameter that Feynman suggested in [Fe53]. For

aN ≪ N−2/d, we prove that all loops have the minimal length one, and for aN ≫ N−2/d we prove 100

percent condensation and identify the distribution of the long-loop lengths as the Poisson–Dirichlet

distribution.
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1. Introduction and main results

This work is a contribution to the condensation theory of the Bose gas. Our main objectives are the

following.

• Derive new and physically relevant results on Bose condensation for a particular mean-field

version,

• rigorously give evidence for the strong relation between the condensate and the long loops in

the famous Feynman–Kac representation of the gas,

• provide new, probabilistic proofs and use the language and toolbox of probability, in order to

attract also this community to this fascinating subject.

Since the vague suggestion of Feynman [Fe53] that the number of particles in long loops might

be a relevant order parameter for describing the famous phenomenon of Bose–Einstein condensation,

the Bose gas became popular also in the probability world as a mathematically interesting object

to study. However, there are not many probabilistic investigations yet with real physical relevance,
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but the tendencies often went to creations of new probabilistic models and new questions. Here

we concentrate on physically relevant questions, yet establishing and further pushing a probabilistic

toolbox.

For the study of the condensation phase transition in the Bose gas, the most acknowledged, crucial

object to study is the reduced one-particle density matrix, and the most important goal here is to prove

that it shows off-diagonal long-range order (ODLRO), which is generally acknowledged as a signal of

Bose–Einstein condensation (BEC). This is what we are going to do in this work for a particular

version of the Bose gas.

In our recent work [KVZ23], we did this for the standard free (i.e., non-interacting) Bose gas in the

thermodynamic regime. The precise model that we consider here is a mean-field model in a fixed trap

with a vanishing factor aN in front of the kinetic energy. For the particular value aN = N−2/d, we are

in the semi-classical setting, and this model is particularly interesting since it shows a condensation

phase transition at a fixed positive temperature. This has been shown in [DS21] in a special case and

is under work in [BK24+] in more generality (but, however, without proof of ODLRO). The present

paper shows the existence and absence of ODLRO for many other choices of aN . Furthermore, we also

give a description of the condensate as the total mass of particles in long loops in the Feynman–Kac

formula, and an explicit identification of the limiting distribution of the lengths of the long loops.

1.1. A mean-field Bose gas. We consider a canonical bosonic non-interacting system of N particles

in a confining potential in Rd. The corresponding Hamilton operator is given as

H(N)
a,w = −a

N∑
i=1

∆i +

N∑
i=1

w(xi), x1, . . . , xN ∈ Rd, (1.1)

the N -particle operator with kinetic energy given by a ∈ (0,∞) times the standard Laplace operator

in a confining (or trapping) potential w : Rd → [0,∞). The quantity 1/a is interpreted as the mass of

the particles. We are under the usual assumptions that w is bounded from below and, for simplicity,

is continuous and explodes quickly enough to ∞ far out. Our precise assumptions are formulated at

the beginning of Section 1.3.

We are interested in bosons and introduce a symmetrisation, i.e., we project on the set of symmetric,

i.e., permutation invariant, wave functions. Furthermore, we consider the particle system at positive

temperature 1/β ∈ (0,∞). That is, we consider the following trace:

ZN (β, a, w) = Tr+
(
e−βH(N)

a,w
)
= ZN (βa, 1, 1aw), (1.2)

where the index + denotes the symmetrisation, i.e., the application of the projection operator on the

set of all permutation invariant functions. The quantity ZN (β, a, w) is called the partition function of

the system. In this paper, we study a mean-field regime, where we do not introduce any N -dependence

in w. Instead, we pick the parameter a = aN depending on N . Indeed, we will assume that (aN )N∈N
is bounded, and

χ = lim
N→∞

Na
d/2
N ∈ [0,∞] exists. (1.3)

We will investigate the limiting free energy,

fMF(β, χ) = − 1

β
lim

N→∞

1

N
logZN (β, aN , w), (1.4)

and the one-particle reduced density matrix γ(a)

N : Rd × Rd → [0,∞) of the state

Γ(a)

N =
1

ZN (β, aN , w)
e−βH(N)

a,w ,
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that is,

γ(a)

N (x, y) = N

∫
(Rd)N−1

Γ(a)

N

(
x, x2, . . . , xN , y, x2, . . . , xN

)
dx2 · · · dxN , x, y ∈ Rd , (1.5)

where we used the symbol Γ(a)

N for both the operator and its kernel.

The principal L2(Rd)-eigenvalue of Γ(a)

N is defined as

σ(a)

N = sup
f∈L2(Rd) : ∥f∥2=1

⟨f, γ(a)

N f⟩. (1.6)

We say that the Bose gas exhibits off-diagonal long-range order (ODLRO) if σ(a)

N is of order N as

N → ∞. The occurrence of ODLRO is generally acknowledged (see [LSSY05]) as a criterion for the

occurrence of Bose–Einstein condensation (BEC).

The case a = N−2/d is particularly interesting and is called the semi-classical limit setting, see [DS21]

and [BK24+]. On this scale, the famous condensation phase transition is observed at a critical value

βc ∈ (0,∞) of β. This has been first explored in [DS21] and has been explicitly worked out in the

special case d = 3, w(x) = ω|x|2 and under the assumption that the Hessian matrix of v satisfies

a particular upper bound that depends on ω. In this case, the condensation effect was proved to

hold both on the level of a non-analyticity of the limiting free energy and in terms of ODLRO at a

particular value of β. [DS21] followed an approach that is very common in mathematical physics, via

an energy-entropy description and a transition to the Fourier world, while [BK24+], like the present

paper, applies the Feynman–Kac formula, a Poisson-point process description and large-deviations

techniques, to express and analyse a variational expression for the limiting free energy.

The goal of the present paper is two-fold: (1) we handle also the two cases of sub- and super-

semiclassical regime (that is, aN ≪ N−2/d and aN ≫ N−2/d, respectively) and prove that ODLRO

does not hold, respectively does hold, and (2) we follow a probabilistic route that relies on the well-

known Feynman–Kac formula and a representation in terms of a Poisson point process, like in our

recent paper [KVZ23]. However, in this paper we handle only the non-interacting case and leave the

general case to future work.

Let us remark that the special case aN = 1 has been considered already in [AK08], where the

Feynman–Kac formula and a combinatorial large-deviations principle was applied to find a variational

formula for the limiting free energy; they also provide evidence on 100 percent condensation, but this

was not anymore deepened.

1.2. Representation via a Poisson point process. It is the starting point of this paper that

the partition function and density matrix can be written in terms of a crucial Poisson point process

(PPP). This process was introduced to the study of the Bose gas in [ACK11], but was already used for

the study of other phenomena in statistical mechanics (e.g., conformal invariance in dimension two)

in [LW04] under the name Brownian loop soup. Here we rely on the recent adaptation in [KVZ23] and

refer proofs to Appendix A there.

The canonical Brownian bridge measure from x ∈ Rd to y ∈ Rd with time horizon β ∈ (0,∞) is

defined by

ξ(β)
x,y(A) =

Px(B ∈ A;Bβ ∈ dy)

dy
, A ⊂ Cβ measurable, (1.7)

where Cβ denotes the set of all continuous functions [0, β] → Rd. Here, B = (Bt)t∈[0,β] is a Brownian

motion in Rd with generator ∆, starting from x under Px. We introduce an integrated and weighted
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version on loops of Cβ,

ξ(β,w)(df) = e−
∫ β
0 w(f(s)) ds

∫
Rd

dx ξ(β)
x,x(df) =

∫
Rd

dxEx

[
e−

∫ β
0 w(Bs) ds1{B ∈ df}1{Bβ ∈ dx}

]
/dx.

(1.8)

Now we introduce the Poisson process called the Brownian loop soup, the natural reference measure

for the Feynman–Kac representation of the Bose gas. We write P
(N)

β,w for the probability measure of a

Poisson point process (PPP) η =
∑

f δf with intensity measure

ν(N)

β,w(df) =
N∑
k=1

1

k
ξ(kβ,w)(df), f ∈

⋃
k∈N

Ckβ = Ĉβ. (1.9)

If f ∈ Ckβ is an element of η, we say it is a loop of length ℓ(f) = k. Then Xk = #{f ∈ η : ℓ(f) = k} is

the number of loops with length k. Then (Xk)k∈[N ] is a collection of independent Poisson-distributed

random variables Xk with parameter 1
kξ

(βk,w)(Cβk). (We write [N ] for {1, . . . , N}.) We write N(η) =∑
f∈η ℓ(f) =

∑
k∈[N ] kXk for the number of all particles in the process η.

The following is a variant of [KVZ23, Lem. 1.2 and Cor. 1.4].

Lemma 1.1 (PPP-representation of the reduced density matrix). For any a, β ∈ (0,∞) and N ∈ N
and for all x, y ∈ Rd,

γ(a)

N (x, y) =

N∑
r=1

ξ(βar,w/a)
x,y (Cβar)

P
(N)

βa,w/a(N = N − r)

P
(N)

βa,w/a(N = N)
. (1.10)

We refer to [KVZ23, Appendix A] for the proof of Lemma 1.1. Indeed, the proof consists of a series

of reformulations of the symmetrized trace: first in terms of N Brownian bridges with time-interval

[0, β] and a symmetrization, then (using the Markov property, respectively the Chapman–Kolmogorov

equations) in terms of a collection of Brownian bridges with various lengths with total sum equal to

N and equal initial and terminal sites, and finally a translation into the language of Poisson point

processes. The first two reformulations are due to [G70], the last one to [ACK11].

The representation is the starting point of our analysis. It also gives a frame for the description

of the mean-field Bose gas that is explicitly built on an ensemble of loops, which we will be using as

order parameters.

1.3. Our main results: Long loops and ODLRO in the mean-field Bose gas. Let us formulate

our precise assumption on the trap potential w. For our purposes, it will be important to control the

behaviour of w at its minimum. We write {w = 0} for {x ∈ Rd : w(x) = 0}; similarly for {w < ∞}
and other sets like that.

Assumption (W). We assume that w : Rd → [0,∞] is continuous in {w < ∞}, and there is a

parameter α ∈ (0,∞] together with a family of functions W,Wε : Rd → [0,∞], such that

• We define

Wε(x) =

{
ε−αw(xε) in the case α < ∞,

ε−1w(x) in the case α = ∞,
x ∈ Rd, ε ∈ (0, 1];

•
∫
Rd e

−β infε∈(0,1] Wε(x) dx < ∞ for any β ∈ (0,∞);

• for any f ∈ L1(Rd),

⟨Wε, f⟩ → ⟨W, f⟩ as ε ↓ 0;

• W is continuous in {W < ∞} and satisfies infW = 0;

• W has a unique minimum at x = 0 if α < ∞;
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• W = 0 in a neighborhood of x = 0 if α = ∞.

In particular, under Assumption (W), w ≥ 0 and w(x) = W1(x) ≥ infε∈(0,1]Wε(x) and

lim|x|→∞w(x) = ∞ so fast that all negative moments
∫
Rd e

−tw(x) dx are finite for t > 0. Hence

the L2 operator −∆+w has a discrete spectrum with spectral gap, i.e. it has an L2-orthonormal basis

(ϕ(w)

i )i∈N of eigenfunctions with associated eigenvalues

0 < λ1(w) < λ2(w) ≤ λ3(w) ≤ . . . , (1.11)

and we take the sign of ϕ(w)

1 such that it is positive everywhere in {w < ∞}. See [BHL11, Theorem

4.72, Theorem 4.125] for details. Same property holds for −∆+W and −∆+Wε.

We remark that α = ∞ implies W ∈ {0,∞}. One possible choice is w = W = ∞1Qc for a centered

box Q in the case α = ∞ or the harmonic trap potential w(x) = W (x) = |x|2 in the case α = 2.

Furthermore, in the case α < ∞, we haveW (x) = |x|αW ( x
|x|) for x ∈ Rd; this includes the caseW (x) =

c |x|α, in particular the case of a harmonic trap. Certainly, lots of generalisations of Assumption (W)

will admit our results, but would require more technical efforts and do not substantially increase the

list of interesting potentials. In particular,
∫
e−βjwdx is decreasing in j ∈ N and finite.

We fix β ∈ (0,∞) for the rest of the paper and do not everywhere reflect its dependence in the

following. For a realization η of the PPP with distribution P
(N)

βa,w/a, we consider the sequence L(η) =

(Li)i∈N, defined as the sequence of all the lengths ℓ(f) with f ∈ η, ordered according to their size,

and counted with multiplicity. That is, Li is the number of particles in the i-th longest loop in the

configuration.

Let us recall that the Poisson–Dirichlet distribution with parameters 0 and 1 (denoted PD1) is

given as the joint distribution of the random variables (Yn
∏n−1

k=1(1 − Yk))n∈N, where (Yn)n∈N is an

i.i.d. sequence uniformly distributed over [0, 1]. Note that the sum of the elements of a PD1-distributed

sequence is equal to one, i.e., this distribution is in fact a random partition. It is well-known in

asymptotics for random permutations, as the joint distribution of the lengths of all the cycles of a

uniformly picked random permutation of 1, . . . , N , ordered according to their sizes and normalized by

a factor 1/N , converges weakly to PD1.

An important quantity is

ρw =
∑
j∈N

Wj

(4πβj)d/2
∈ (0,∞], where Wj =

∫
Rd

dx e−βjw(x). (1.12)

Furthermore, we need to introduce the pressure

p(u) =

∞∑
j=1

eβuj

j

Wj

(4πβj)d/2
, u ∈ (−∞, 0]. (1.13)

Then p is analytic in (−∞, 0) and diverges in (0,∞) with p′(0) = βρw, where p
′(0) is the left-derivative

at 0. For χ ∈ (0,∞), define uχ ∈ (−∞, 0) by p′(uχ) = χβ if χ < ρw and uχ = 0 for χ ≥ ρw. Then we

define the sequence

α(χ) = (α(χ)

j )j∈N, α(χ)

j =
eβuχj

χ

Wj

(4πβj)d/2
, j ∈ N. (1.14)

Then, in the limit χ ↓ 0; we have uχ → −∞; more precisely, uχ = 1+o(1)
β log( (4πβ)

d/2

W1
χ) and hence

α(χ)

j → δj,1. We extend the definition by taking α(0) = (1, 0, 0, . . . ), α(∞) = 0.

Theorem 1.2 (Asymptotics of reduced density matrix and loop length distribution). Suppose that

the trap potential w satisfies Assumption (W) and that ρw < ∞. Pick a bounded sequence (aN )N∈N

in (0,∞] and recall χ = limN→∞Na
d/2
N ∈ [0,∞] as in (1.3).
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(1) Supercritical case: χ > ρw. The following holds in the limit as N → ∞:

(a) In weak L2-sense,

γ
(aN )

N (x, y) = N
(
1− ρw

χ

)
ϕ

(w/aN )

1 (x)ϕ
(w/aN )

1 (y)(1 + o(1)), x, y ∈ Rd. (1.15)

(b) The distribution of the loop lengths 1
N(1−ρw/χ)(Li)i∈N under P

(N)

βaN ,w/aN
(· | N = N) con-

verges to PD1.

(c) The distribution of the sequence 1
N (iXi)i∈N under P

(N)

βaN ,w/aN
(· | N = N) converges in

product topology on ℓ∞ towards α(χ).

(d) The free energy defined in (1.4) is identified as

fMF(β, χ) = −p(0)

βχ
+ λ1(W )(1− ρw

χ ) limN→∞ aN .

(2) Subcritical case: χ < ρw. The following holds in the limit as N → ∞:

(a) There is a c ∈ (0,∞) such that

γ
(aN )

N (x, y) = O
(
a
−d/2
N e−c|x−y|a−1/2

N

)
, x, y ∈ Rd. (1.16)

(b) Under P(N)

βa,w/a(· | N = N), the sequence 1
N (iXi)i∈N converges weakly in ℓ1-norm to α(χ).

(c) The free energy defined in (1.4) is identified as

fMF(β, χ) =

{
−p(uχ)

βχ + uχ, if χ > 0,

−∞ if χ = 0.

The proofs of Theorem 1.2 (1)(a)–(c) and (2)(a)–(b) are in Section 3 and 4 respectively, and the

identification of the free energy is in Section 5. Our main proof methods are spectral-theoretic (as it

concerns the term ξx,y(βar) in (1.10)), combinatorial (for handling the two probability terms in (1.10));

their base is probabilistic, since we will be relying on the useful independence properties of the PPP.

Let us draw consequences about the Bose–Einstein phase transition from Theorem 1.2. From (1.14)

it quickly follows that 1
N σ

(aN )

N → 1− ρw/χ > 0 (i.e., ODLRO holds), and from (1.15) it easily follows

that σ
(aN )

N ≤ O(1) (i.e., ODLRO does not hold):

Corollary 1.3 (Consequences for (non-)occurrence of ODLRO). Equation (1.14) implies ODLRO

while Equation (1.15) implies its absence.

Proof. (1) In (1.6) we use ϕ(w/a)

1 for f and obtain

σ(a)

N ≥ ⟨ϕ(w/a)

1 , γ
(aN )

N ϕ(w/a)

1 ⟩ ≥ N

(
1− ρw

χ

) ∣∣∣∣ϕ(w/a)

1

∣∣∣∣2
2
= N

(
1− ρw

χ

)
. (1.17)

(2) To prove absence of ODLRO, we use Young’s convolution inequality to estimate

σ(a)

N = sup
f∈L2(Rd) : ∥f∥2=1

⟨f, γ(a)

N f⟩ ≤ O(a
−d/2
N )

∣∣∣∣∣∣e−c|·|a−1/2
N

∣∣∣∣∣∣
1
= O

(
a
−d/2
N a

d/2
N

)
= O(1) . (1.18)

□

Remark 1.4 (Total mass in micro- and macroscopic loops) Theorem 1.2 implies that the total mass

of particles in microscopically long loops is ∼ N [min{1, ρw/χ}], while the total mass in macroscopically

long loops is ∼ N(1 − ρw/χ)+. This shows a phase transition in χ at χ = ρw between occurrence

and non-occurrence of particles in macroscopic loops. This is the famous Bose–Einstein condensation

phase transition. When putting χ = 1 (i.e., in the semi-classical regime), it can be found at β = βc,

defined by ρw(βc) = 1. Note that Theorem 1.2 implies that there is only o(N) particles in other loops,

i.e., in mesoscopically long loops.
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Furthermore, for χ = 0 (i.e., aN = o(N−2/d)), we observe that only loops of length one contribute,

and the free energy is equal to −∞. For χ = ∞ (i.e., aN ≫ N−2/d), we observe hundred percent

condensation, more precisely, hundred percent of particles are in macroscopic loops. This includes the

special case aN = 1, where [AK08] identified the free energy with other methods, but had no assertion

about loop lengths. ♢

Remark 1.5 (Spatial distribution of the condensate) The spatial density of the location of the

condensate is equal to x 7→ 1
N γ(aN )(x, x). Note from Lemma 1.1 that this is the density of the location

of the initial site of the sample loop in the loop soup, weighted with the number of particles in that

loop (since the weight of a length-r loop starting from x is equal to 1
r ξ

(βar,w/a)
x,x ). This clarifies the

suggestion by Feynman [Fe53] about the loop weights as an order parameter for the condensate in

the loop soup. According to Theorem 1.2(1)(a), the spatial condensate density is asymptotically

distributed with density equal to the total condensate mass times (ϕ(w/a)

1 )2. According to Lemma 2.1

below, this density has a spatial rescaling with scaling parameter a−α/(α+2) and rescaled shape equal

to (ϕ(W )

1 )2. Hence, the condensate shrinks together to the origin in the case α > 0 and is distributed

like the square of the principal eigenfunction of −∆+∞1{W=∞} in the case α = 0. ♢

Remark 1.6 (Finiteness of ρw) Under Assumption (W), (
∫
e−βjwdx)j∈N is bounded, and hence ρw

is finite at least in d ≥ 3.

In the special case that w = ∞×1Qc , where Q is the centred box of volume 1/ρ, then
∫
e−βjwdx =

1/ρ and hence ρw = 1
ρ(4πβ)

−d/2ζ(d/2), where ζ denotes the Riemann zeta function. Here, ρw is finite

only in dimension d ≥ 3, and λ1(w) is equal to the Dirichlet zero eigenvalue of the Laplace operator

in Q with corresponding principal eigenfunction ϕ1. This is – up to scaling – equal to the situation in

the free Bose gas in the thermodynamic regime with Dirichlet boundary condition, see [KVZ23].

However, in the case of a harmonic trap, or, more generally in the case that w(x) ∼ D|x|2 for x → 0

for some D > 0, then
∫
e−βjwdx ∼ (π/βjD)d/2, as one sees by a standard Gaussian approximation.

In this case, ρw is finite also in d = 2. It is no problem to construct examples of potentials w such

that ρw < ∞ also in d = 1. ♢

1.4. Literature remarks. The study of quantum gases, in particular the Bose gas and its statistical

mechanics and condensation, is a huge fascinating subject that provides many challenging questions

and involves a lot of mathematical ansatzes and toolboxes, see [PS01,PS03] for extensive summaries.

Interacting quantum gases in various mean-field approximations were recently studied in a series of

papers; see the extensive summary [FKSS20a]. It contains a wealth of ansatzes and formulas, references

and summaries of recent results, mostly by the authors. The small-a regime (in our notation) is coupled

in [FKSS20a] with other rescalings (e.g., of the interaction strength), but is also considered for fixed

number of particles in a fixed box. Throughout this series of papers, the gas is assumed to be confined

to a box with periodic boundary condition, and it is considered in the grand-canonical setting. The

main ansatz, like in many investigations in the mathematical physics community, is via the formalism

of the second quantisation, i.e., in terms of a formulation using annihilation and creation operators

on the Fock space. In that series of works, also the description in terms of Brownian bridges (called

a path-integral approach there, as usual in the mathematical physics community) is derived in a way

that is alternative to the way that is chosen here (we rely on Ginibre’s Feynman–Kac formula via

the density of the operator eβ∆, the Brownian bridge measure), via a number of presentations. This

formula is used in [FKSS20a] for deriving the a ↓ 0 limit for fixed particle number and fixed box;

indeed, the partition sum converges towards the one of an interacting classical gas of N particles. The

regime that we consider in the present paper was not considered in [FKSS20a].

The semiclassical limit (i.e., the choice aN ∼ N−2/d) at positive temperature with an interaction

scaled by 1
N , recently attracted some interest, both for fermions [LMT19, FLS18] and for bosons
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[DS21,BK24+]. [DS21] studied a special case of the regime that we investigate in this paper (however,

with interaction!), where aN ∼ N−2/d and d = 3 and the harmonic trap w(x) = ω|x|2 for some ω > 0

and a pair-interaction potential v satisfying an upper bound of its Hessian matrix in terms of ω.

They managed to prove, among other things, the existence of a phase transition in β at some critical

value ∈ (0,∞): above that value, ODLRO holds and that the condensate concentrates asymptotically

in one singe point, the origin, and below that value, BEC does not occur. Their methods are very

functional-analytic, start with the Fock-space formulation and rely on reformulations in the Fourier

world.

It is the goal of the present paper to re-prove and re-interpret such results on one hand in greater

generality with respect to the regimes of (aN )N∈N and the shape of the trap potential w, and on the

other hand to give probabilistic proofs that show the benefits of the Feynman–Kac representation by

Ginibre and the Poisson point process representation introduced in [ACK11] and turn the attention

to the Brownian loop soup as an object of its own interest. (The goal of [BK24+] is to do this also

with interactions in greater generality than [DS21].) Rigorous considerations of Brownian bridges

as an order parameter for Bose gases appeared in a few works yet, starting with phenomenological

discussions in [U06] and discussions of the relation between long loops and condensate in [Sü93,Sü02].

More recently in [FKSS20a] conceived the rescaled interaction of the Brownian loops in d = 4 as a

regularization as the intersection local time as a possible ansatz for deriving ϕ4-theories. Furthermore,

in [BKM24] interactions only within the same loop were admitted in the gas and a related kind of

condensation phase transition was proved in connection with the famous self-avoiding walk problem.

Finally, in our recent paper [KVZ23], where ODLRO was explicitly proved via this route for the free

Bose gas, a contribution that was apparently missing yet. In the case aN = 1, for w = ∞ outside a

box Λ ⊂ Rd and continuous inside Λ, in [AK08, Theorem 1.6] it was shown that

lim
N→∞

1

N
logZN (β, 1, w) = βλ1(w).

The proof also starts from the well-known trace formula involving Brownian cycles, but uses a some-

what sophisticated combinatorial approach, which appear unfeasible in the case aN ↓ 0. It is not

difficult to include interactions (of course, with a prefactor of 1
N ). Using a comparison to the anal-

ogous model with one long Brownian path instead of an ensemble of many cycles, this result was

interpreted in [AK08] as the fact that the Bose gas behaves as if it would consist only of one long

cycle. But there was no deeper understanding provided in [AK08].

2. Preparations for the proofs

In this section, we prepare for all the forthcoming proofs by the following: In Section 2.1 we provide

upper bounds and asymptotics for the intensity measure and its total mass of the Poisson point process

(PPP), and clarify some spectral scaling properties. In Section 2.2 we show that the particle number

in the PPP is with high probability close to its expectation; and we show the same for the number of

particles in small loops. In Section 2.3 we give precise asymptotics for the distribution of the number

of particles in long loops, which leads in Section 2.4 to a precise lower bound for the distribution of

the total number of particles (the denominator in (1.10)).

2.1. Functional analytic properties. In this section we provide bounds and precise asymptotics

for the intensity measure and its total mass of the crucial Poisson point process that we introduced

in Section 1.2. We keep β ∈ (0,∞) fixed and are under Assumption (W) for the potential w. Recall

from (??) that the operator −∆ + w has eigenvalues 0 < λ1(w) < λ2(w) ≤ λ3(w) ≤ . . . with a

corresponding L2-orthonormal system (ϕ(w)

i )i∈N of eigenfunctions such that ϕ(w)

1 is positive whenever

w is finite.
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Recall the Brownian bridge measure ξ(β)
x,y defined in (1.7), which is a regular Borel measure on Cβ

with total mass equal to the Gaussian density,

ξ(β)
x,y(Cβ) = gβ(x, y) =

Px(Bβ ∈ dy)

dy
= (4πβ)−d/2e

− 1
4β

|x−y|2
. (2.1)

We refer the reader to Appendix A of [Sz98] for more details on Brownian bridge measures. Recall

from (1.8) its integrated and weighted version on loops and introduce its total mass

Wβ,w = ξ(β,w)(Cβ) =
∫
Rd

dx

∫
Cβ

ξ(β)
x,x(df) e

−
∫ β
0 w(f(s)) ds. (2.2)

This is finite under Assumption (W), see for example [BHL11]. We write µ(f) for the integral of a

function f with respect to a measure µ. Recall that we write P
(N)

β,w for the probability measure of a

Poisson point process (PPP) η =
∑

f δf with intensity measure ν(N)

β,w defined in (1.9). This intensity

measure has total mass

ν(N)

β,w(Ĉβ) =
N∑
k=1

1

k
Wβk,w. (2.3)

A standard eigenvalue expansion (see for example [BHL11, Theorem 4.72]) gives that

ξ(β,w)
x,y (Cβ) = Ex

[
e−

∫ β
0 w(Bs) ds1{Bβ ∈ dy}

]/
dy =

∑
i∈N

e−βλi(w)ϕ(w)

i (x)ϕ(w)

i (y), x, y ∈ Rd, (2.4)

and

Wβ,w =

∫
Rd

ξ(β,w)
x,x (Cβ) dx =

∑
i∈N

e−βλi(w). (2.5)

Driven by (1.2), now we replace β by βa and w by w/a. We need to know, as a ↓ 0, the asymptotics

of ξ(βa,w/a)
x,y (Cβ) and of

tj,a = Wβaj,w/a = Eβa,w/a[#{f ∈ η : ℓ(f) = j}] =
∫
Rd

ξ(βaj,w/a)
x,x (Cβaj) dx

=

∫
Rd

Ex

[
e−

1
a

∫ βaj
0 w(Bs) ds1{Bβaj ∈ dx}

]
dx

dx =
∑
i∈N

e−βajλi(w/a).

(2.6)

We first state rescaling properties of the spectrum of −∆+ w/a:

Lemma 2.1 (Spectrum of −∆ + w
a ). Assume that w satisfies Assumption (W) with α < ∞. Then,

as a ↓ 0, with ε = a1/(α+2),

aλi(
w
a ) ∼ aα/(2+α)λi(W ) for i ∈ {1, 2}, and ϕ(w/a)

1 (x) ∼ ϕ(W )

1 (xε−1)ε−d/2 in L2-sense. (2.7)

In particular, the spectral gap satisfies

a
[
λ2(

w
a )− λ1(

w
a )
]
∼ aα/(2+α)

[
λ2(W )− λ1(W )

]
, (2.8)

and the last bracket is positive.

Proof. Recall Wε(x) = ε−αw(xε) from Assumption (W) for ε ∈ (0, 1]. Then the spectra of −∆ + w
a

and −∆ + Wε with ε = a1/(α+2) stand in a one-to-one correspondence with each other. Indeed, we

easily see that, for any i ∈ N, the i-th eigenvalue/eigenfunction pairs (λi(w/a), hi) and (λi(Wε), gε,i)

satisfy

ε2λi(
w
a ) = λi(Wε) and gε,i(x) = εd/2hi(xε), x ∈ Rd. (2.9)

Now we show that limε↓0 λ1(Wε) = λ1(W ), which implies the first statement in (2.7). We use

the Rayleigh–Ritz principle, λ1(W ) = infg∈L2(Rd) : ∥g∥2=1⟨(−∆+W )g, g⟩. Taking g as the normalized
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principal eigenfunction of −∆+W , we get, in the limit ε ↓ 0,

λ1(Wε) ≤ ⟨(−∆+Wε)g, g⟩ = −⟨∆g, g⟩+ ⟨Wεg, g⟩ → −⟨∆g, g⟩+ ⟨Wg, g⟩ = λ1(W ). (2.10)

For the other direction, let gε ∈ L2(Rd) be the normalized eigenfunction corresponding to λ1(Wε).

Then for every ε,

λ1(Wε) = ⟨(−∆+Wε)gε, gε⟩ = ∥∇gε∥22 + ⟨Wεgε, gε⟩. (2.11)

Since gε,Wε ≥ 0, by (2.10), (∥∇gε∥2)ε∈(0,1] is bounded. Pick a sequence (εn)n∈N with limn→∞ εn = 0.

We deduce from [LL01, Theorem 2.18, Theorem 8.6] that there is some g0 ∈ L2(Rd) such that, along

some subsequence that we still denote (εn)n,

∇gεn → ∇g0, gεn → g0, weakly in L2; gεn1[−R,R]d → g01[−R,R]d strongly in L2 for any R > 0.

(2.12)

Since gεn is continuous for any n, we furthermore have that gεn converges almost everywhere to

g0, [LL01, Corollary 8.7]. By Fatou’s lemma and [LL01, Theorem 2.11] (lower semi-continuity of

g 7→ ∥∇g∥22),

lim inf
n→∞

λ1(Wεn) = lim inf
n→∞

(∥∇gεn∥22 + ⟨Wεngεn , gεn⟩) ≥ ∥∇g0∥22 + ⟨Wg0, g0⟩. (2.13)

Moreover,

∥g0∥2 = lim
R→∞

∥g01[−R,R]d∥2 = lim
R→∞

lim
n→∞

∥gεn1[−R,R]d∥2 ≥ 1− lim
R→∞

lim
n→∞

∥gεn1Rd\[−R,R]d∥2. (2.14)

As R → ∞, by (2.10) and (2.11),

∥gεn1Rd\[−R,R]d∥22 ≤
1

infRd\[−R,R]d Wεn

∫
Wεng

2
εndx ≤ λ1(W )

infRd\[−R,R]d Wεn

→ λ1(W )

infRd\[−R,R]d W
.

By Assumption (W), we know W (Rx) = RαW (x) and infRd\[−1,1]d W > 0, so

lim
R→∞

lim
n→∞

∥gεn1Rd\[−R,R]d∥22 ≤ lim
R→∞

λ1(W )

infRd\[−R,R]d W
= 0.

Put this into (2.14), we deduce that

∥g0∥2 ≥ 1.

Hence, the right-hand side of (2.13) is not smaller than λ1(W ). Together with (2.10), this implies

that limε↓0 λ1(Wε) = λ1(W ), as announced.

A slight extension of the above proof also shows that εd/2ϕ(w/a)

1 (xε) converges uniformly on compacts

towards ϕ(W )

1 as ε → 0. In the same way, we can also show that the same is true for the second

eigenvalue, based on the Rayleigh–Ritz formula λ2(W ) = infg∈L2(Rd) : ∥g∥2=1,g⊥ϕ1
⟨(−∆+W )g, g⟩, where

we denote the principal eigenfunction of −∆+W by ϕ1.

Finally, by [BHL11, Theorem 4.72, Theorem 4.125], we have λ2(W ) > λ1(W ) > 0. □

Lemma 2.2 (Asymptotics of tj,a). Assume that w satisfies Assumption (W). For α = ∞, read

α/(α+ 2) as 1.

(1) There is a C ∈ (0,∞) such that, for any j ∈ N and a ∈ (0,∞),

tj,a ≤ (4πβaj)−d/2

∫
Rd

e−βjw(x)dx ≤ Ca−d/2j−d/2−d/α . (2.15)

(2) If a ∈ (0, 1] and j ∈ N, in the limit as jaα/(2+α) → 0 (and j → ∞ for the second expression),

tj,a ∼ (4πβaj)−d/2

∫
Rd

e−βjw(x)dx ∼ (4πβaj1+2/α)−d/2

∫
Rd

e−βW (x) dx . (2.16)
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(3) There is a c ∈ (0,∞) such that, as jaα/(2+α) → ∞, for any two test functions f, g ∈ L2(Rd),

(possibly depending on a, but with bounded norms),∫
Rd

dx

∫
Rd

dy f(x)g(y)ξ(βja,w/a)
x,y (Cβja) = e−βjaλ1(w/a)⟨f, ϕ(w/a)

1 ⟩ ⟨g, ϕ(w/a)

1 ⟩
(
1 + ε(jaα/(2+α))

)
, (2.17)

provided that ⟨f, ϕ(w/a)

1 ⟩ ⟨g, ϕ(w/a)

1 ⟩ ̸= 0, where the error term satisfies ε(k) = O(k−
d
2

α+2
α )e−ck

as k → ∞. In particular,

tj,a = e−βjaλ1(w/a)
(
1 + ε(jaα/(2+α))

)
. (2.18)

Proof. The case α = ∞ and a ↓ 0 is basically identical with the situation in [KVZ23, Lemma 2.2], we

the case of W = ∞1(LU)c is handled with various kinds of boundary conditions (including Dirichlet

zero conditions), with U a centred box and L ∈ (0,∞) tending to ∞. An extension from a box U to

the set {W = 0} under Assumption (W) is clearly no problem. Use the Brownian scaling property to

see that the limit as a ↓ 0 with fixed W (instead of w/a; recall that W takes only values in {0,∞}) is
equivalent to this limit as L → ∞. The replacement of W by Wε with Wε → W as ε ↓ 0 for a ↓ 0 is

only a minor technical point. The case where α = ∞ and a ∈ (0,∞) is fixed is even easier to prove;

we leave the details to the reader.

Hence, we assume that α ∈ (0,∞).

(1) Conditional on the Brownian motion B, apply Jensen’s inequality for the probability measure
1

βaj

∫ βaj
0 ds and the negative-exponential map, we get

tj,a = (4πβaj)−d/2

∫
Rd

dxEx

(
e
−βj 1

βaj

∫ βaj
0 w(Bs) ds

∣∣∣Bβaj = x
)

≤ (4πβaj)−d/2

∫
Rd

dx
1

βaj

∫ βaj

0
dsEx

(
e−βjw(Bs)

∣∣∣Bβaj = x
)

=

∫
Rd

dy e−βjw(y) 1

βaj

∫ βaj

0
ds

∫
Rd

dx ps(x− y)pβaj−s(y − x)

=

∫
Rd

dy e−βjw(y) 1

βaj

∫ βaj

0
ds pβaj(0) = (4πβaj)−d/2

∫
e−βjw(x)dx,

(2.19)

where we used the Gaussian density pt with variance 2t and used their convolution property. Further-

more, recalling Wε(x) = ε−αw(xε), we see, making a change of variables y = xj−1/α, that∫
e−βjwdx = j−d/α

∫
Rd

e−βjw(xj−1/α) dx = j−d/α

∫
e
−βW

j−1/αdx ≤ j−d/α

∫
e−β infε∈(0,1] Wεdx, (2.20)

which is finite, according to Assumption (W).

(2) The upper bound follows from (1), in particular (2.20), which makes it possibly to carry out the

limit as j → ∞ under the integral, by the virtue of the bounded convergence theorem.

We turn to the proof of the lower bound. We write ξ
(β)

x,y = ξ(β)
x,y/ξ

(β)
x,y(Cβ) for the normalized version

of the Brownian bridge measure. Pick a large M , then, by Jensen’s inequality, Brownian scaling, and

a change of variables y = xj1/α and r = sβaj,

(4πβaj)d/2tj,a ≥
∫
|x|<Mj−1/α

e−βjw(x) exp

(
−1

a

∫ βaj

0
ξ
(βaj)

0,0 [w(x+Bs)− w(x)] ds

)
dx

=

∫
|x|<Mj−1/α

e−βjw(x) exp
(
− β

∫ 1

0
dr ξ

(1)

(0,0)

(
Wj−1/α(y + j1/αBr

√
βaj)−Wj−1/α(y)

))
.

Observe that the Br-depending term in the argument of Wj−1/α vanishes, since j1/α
√
aj =

(aα/(α+2)j)(α+2)/2α, which vanishes, according to our assumption. Together with the fact that (Wε)ε
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converges on compact sets, the integrand in the r-integral vanishes in this limit, uniformly in y on the

integration area, and we have the first result by taking M → ∞. Finally, note that∫
e−βjw(x)dx = j−d/α

∫
e
−βW

j−1/α (y)
dy,

we have the second conclusion by taking j → ∞.

(3) We rely on the eigenvalue expansion in (2.4) and use the small-a asymptotics of spectral gap

from Lemma 2.1, which allows us to replace the entire sum by the first summand only.

By Jensen’s inequality, we find that for every t > 0,∑
i∈N

e−tλi(w) ≤ 1

t

∫ t

0
ds

∫
Rd

dxEx

[
e−βw(Bs)1{Bt ∈ dx}

]
/dx

=
1

t

∫ t

0
ds

∫
Rd

dx

∫
Rd

dy gs(x, y)e
−βw(y)gt−s(y, x)(4πβt)

−d/2 ≤ Ct−d/2

∫
Rd

e−tw(x)dx ,

(2.21)

where we used the convolution property of the Gaussian kernel gs(x, y) with variance 2s. This implies

that for any a ∈ (0, 1], j ∈ N and δ ∈ (0, 1),∑
i≥2

e−βajλi(w/a) ≤ e−βajλ2(w/a)(1−δ)
∑
i≥2

e−βajδλi(w/a)

≤ e−βajλ2(w/a)(1−δ)C(ajδ)−d/2

∫
e−βjδw

≤ e−βajλ2(w/a)(1−δ)Cδ

(
j aα/(α+2)

)− d
2

α+2
α ,

(2.22)

where Cδ depends only on β and δ, and the last step used also the second assertion in (1). Hence,

tj,a =
∑
i∈N

e−βajλi(w/a) ≤ e−βajλ1(w/a)
(
1 + eβajλ1(w/a)e−βajλ2(w/a)(1−δ)Cδ

(
j aα/(α+2)

)− d
2

α+2
α

)
.

Now, by (2.8), we can pick δ so small that, for some c > 0, the product of the two exponentials is not

larger than e−caα/(α+2)
in the limit that we consider. This implies (2.18).

The proof of (2.17) is based on the preceding and on the Cauchy–Schwarz inequality and Parseval’s

identity as follows:∑
i≥2

e−βajδλi(w/a)
∣∣⟨f, ϕ(w/a)

i ⟩ ⟨g, ϕ(w/a)

i ⟩
∣∣ ≤ (∑

i∈N
⟨f, ϕ(w/a)

i ⟩2
)1/2(∑

i∈N
⟨g, ϕ(w/a)

i ⟩2
)1/2

= ∥f∥2 ∥g∥2.

This bound is also sufficient if f or g depend on a, but have norms that are bounded in a. □

We can immediately draw a conclusion for the expected numbers of number of particles in

the PPP. Recall that N(η) is the number of particles in a PPP η, and the number ρw =∑
j∈N(4πβj)

−d/2
∫
e−βjwdx. Now, in the case that limN→∞ aN = 0, we introduce the threshold

TN =
⌊
a
−α/(α+2)
N

(
log 1

aN

)1/2⌋
, N ∈ N, (2.23)

while we put TN = ⌊(logN)1/2⌋ in the case that (aN )N∈N is bounded, but does not vanish. Note that

1 ≪ TN ≤ N
2
d

α
α+2

+o(1). Then N(short)(η) =
∑

k≤TN

∑
f∈η : ℓ(f)=k ℓ(f) denotes the number of particles

in loops of lengths ≤ TN in the PPP η, which we call the short loops. The other loops are called long,

and N(long)(η) =
∑N

k=1+TN

∑
f∈η : ℓ(f)=k ℓ(f) is the number of particles in long loops.

Corollary 2.3. As N → ∞, E(N)

βaN ,w/aN
(N) ∼ ρwa

−d/2
N and E

(N)

βaN ,w/aN
(N(short)) ∼ ρwa

−d/2
N .
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Proof. Note that E
(N)

βa,w/a(N) =
∑N

j=1 tj,a. Now the lower bound is shown by restricting the sum to

j ≤ M for some M ∈ N, using the asymptotics of Lemma 2.2(2) and making M → ∞ afterwards.

The upper bound directly follows from Lemma 2.2(1). The same applies when cutting the k-sum at

TN , since TN → ∞. □

2.2. Concentration inequalities. Next, we prove a concentration inequality for the number of par-

ticles and for the number of particles in short loops in the configuration of the PPP. We write [x]+
for the positive part of x ∈ R.

Proposition 2.4. Assume that (aN )N is a bounded sequence in (0,∞) and that w satisfies Assumption

(W). Then for any k ∈ (0,∞) (possibly depending on N), in the limit as N → ∞, the following holds.

(1) If κ < βλ1(W ), then

log P(N)

βaN ,w/aN

(∣∣N− E
(N)

βaN ,w/aN
[N]

∣∣ > k
)
≤ −κka

α
α+2

N + a
−[ d

2
− 2α

α+2
]++o(1)

N . (2.24)

(2) For any κ > 0,

log P(N)

βaN ,w/aN

(∣∣N(short) − E
(N)

βaN ,w/aN

[
N(short)

] ∣∣ > k
)
≤ −κka

α
α+2

N + a
−[ d

2
− 2α

α+2
]++o(1)

N (2.25)

In particular, pick k = kN ≫ a
−[ d

2
− 2α

α+2
]+− α

α+2
+o(1)

N , then the first terms on the right-hand sides

dominate, and we obtain a stretched-exponentially decay.

Proof. Recall that N =
∑N

j=1 jXj and N(short) =
∑TN

j=1 jXj , where X1, . . . , XN are independent

Poisson random variables with parameters 1
j tj,a, j ∈ [N ], where we recall the definition of tj,a from

(2.6). In both proofs, we are going to use the exponential Chebychev inequality. We are going to

explicitly handle only the upwards deviations (i.e., for N− E[N] instead of |N− E[N]|), since the case

of the downwards deviations is similar. The first term on the right stems from the application of

Markov’s inequality, and the second term from estimating the exponential expectation as follows.

(1) For any s ∈ (0,∞),

E
[
es(N−E[N])

]
= exp

 N∑
j=1

1

j

(
esj − 1− sj

)
tj,a

 . (2.26)

We now pick s = κa
α/(α+2)
N and estimate the right-hand side. For the sum on j ≥ TN , we have

ja
α/(α+2)
N → ∞ and therefore get from Lemma 2.2(3), with some C ∈ (0,∞) that does not depend on

N , ∑
TN≤j≤N

1

j

(
esj − 1− sj

)
tj,a ≤ C

∑
j≥TN

1

j
esje−βjaNλ1(w/aN ) ≤ C

TN

∑
j≥TN

e−a
α/(α+2)
N j[βλ1(W )(1+o(1))−κ]

≤
Ca

α/(α+2)
N√
log 1

aN

e−cTNa
α/(α+2)
N

ca
α/(α+2)
N

≤ Ce−c log(1/aN )1/2 ,

(2.27)

since βλ1(W ) > κ. (If limN→∞ aN = 0 then it vanishes as N → ∞.) The sum on small j is bounded

as follows. We use Lemma 2.2(1) and that ex − 1− x ≤ x2ex for any x ∈ (0,∞). Then we see that∑
j≤TN

1

j

(
esj − 1− sj

)
tj,a ≤ Ca

−d/2
N

∑
j≤TN

j−1−d/2s2j2esj ≤ Ca
2α/(α+2)−d/2
N eκTNa

α/(α+2)
N

∑
j≤TN

j1−d/2−d/α

≤ a
2α/(α+2)−d/2−o(1)
N ×

(
1 + T

2−d/2−d/α
N + log(TN )

)
,

(2.28)
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where a
o(1)
N is an estimate for eκTNa

α/(α+2)
N , and the bracket is a generous upper bound for the j-sum

in the three cases that 1 − d/2 − d/α is < −1, or = −1 or > −1. Now use that TN = a
−α/(α+2)+o(1)
N

to see that the right-hand side of (2.29) is equal to a
o(1)
N if d

2 < 2α
α+2 and is equal to a

2α/(α+2)−d/2+o(1)
N

otherwise.

(2) The conclusion follows directly from the estimate of (2.29) in (1). Since we no longer need

(2.28), there is no restriction on κ.

□

2.3. Particles in long loops. Recall that N(long) =
∑

TN<j≤N jXj is the number of particles in long

loops in the PPP (recall (2.24)). As in [KVZ23], we use now intricate combinatorial asymptotics to

find sharp asymptotics for the asymptotic distribution of N(long). Write q : [0,∞) → [0,∞) for the

density of the random variable with Laplace transform

s 7→ exp

(∫ 1

0

(
e−sx

x
− 1

)
dx

)
. (2.29)

Note that q(x) = e−γ for x ∈ [0, 1], where γ ≈ 0.5772 is the Euler–Mascheroni constant. See [ABT03]

and Section 3.2 for more properties of p, in particular in connection with the Poisson–Dirichlet distri-

bution.

Lemma 2.5. Suppose that w satisfies Assumption (W). For all sequences (sN )N∈N, (kN )N∈N in N
such that TN ≪ sN ≤ kN ≤ N for any N , and that limN

kN
sN

exists,

P
(N)

βaN ,w/aN

 sN∑
j=1+TN

jXj = kN

 ∼ q(kN/sN )

TN
e−βaNλ1(w/aN )kN , N → ∞. (2.30)

In particular,

P
(N)

βaN ,w/aN

(
N(long) = kN

)
∼ e−γ

TN
e−βaNλ1(w/aN )kN , N → ∞. (2.31)

Proof. The proof follows the same argument as [KVZ23, Proposition 2.7]. Let us first consider the

case aN → 0. We write P(N)

k for the set of sequences m = (mr)TN<r≤sN of positive integers such that∑
TN<r≤sN

rmr = kN . Then

P
(N)

βaN ,w/aN

 sN∑
j=TN+1

jXj = kN

 = e
−

∑sN
j=TN+1

tj,aN
j

∑
m∈P(N)

k

∏
TN<r≤sN

tmr
r,aN

rmrmr!
. (2.32)

We claim that e
−

∑sN
j=TN+1

tj,aN
j → 1 as N → ∞. Indeed, since aN → 0, we have ja

α/(α+2)
N >

TNa
α/(α+2)
N ∼

√
log 1

aN
→ ∞. Therefore by Lemma 2.2(3) and Lemma 2.1,∑

j>TN

tj,aN
j

∼
∑
j>TN

1

j
e−βλ1(w/aN )aN j ≤ 1

TN

1

1− e−βλ1(W )a
α/(α+2)
N (1 + o(1))

= O( 1

a
α/(α+2)
N TN

) → 0.

(2.33)
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For the remaining factor in (2.33), by Lemma 2.2(3), tr,aN = e−βλ1(w/aN )raN (1 + O(e−βcra
α/(2+α)
N ))

for r > TN → ∞, hence, as in the proof of [KVZ23, Proposition 2.7], we obtain∑
m∈P(N)

k

∏
TN<r≤sN

tmr
r,aN

rmrmr!
∼ e−βλ1(w/aN )aNk

∑
m∈P(N)

k

∏
TN<r≤sN

1

rmrmr!
(2.34)

= e
−βλ1(w/aN )aNk+

∑
TN<r≤sN

1
rP

 ∑
TN<r≤sN

rYr = kN

 , (2.35)

where the Yr’s are independent Poisson random variables with parameter 1
r . By [ABT03, Theorem

4.13] (take θ = 1, b = TN ≪ n = sN ≤ m = kN , y = 1),

P

 ∑
TN<r≤sN

rYr = kN

 ∼ q(kN/sN )

sN
.

Therefore, we may conclude that

P
(N)

βaN ,w/aN

(
N(long) = kN

)
∼

∑
m∈P(N)

k

∏
TN<r≤sN

tmr
r,aN

rmrmr!
∼ q(kN/sN )

TN
e−βλ1(w/aN )aNk. (2.36)

When (aN )N∈N is bounded, we are interested in

P
(N)

βaN ,w/aN

 ∑
√
logN<j≤sN

jXj = kN

 = e
−

∑√
logN<j≤sN

tj,aN
j

∑
m∈P(

√
logN)

k

∏
√
logN<r≤sN

tmr
r,aN

rmrmr!
, (2.37)

where we still have ∑
j>

√
logN

tj,a
j

∼
∑

j>
√
logN

1

j
e−βλ1(w/aN )aN j → 0,

and ∑
m∈P(

√
logN)

k

∏
√
logN<r≤sN

tmr
r,aN

rmrmr!
∼ e−βλ1aNk+

∑√
logN<r≤k

1
r
q(kN/sN )

k
∼ q(kN/sN )√

logN
eβλ1(w/aN )aNkN .

□

2.4. Lower bound for the denominator. We suppose that Assumption (W) holds. On base of

Lemma 2.5, we give now a sharp lower bound for the denominator in (1.10).

Lemma 2.6. Assume that lim infN→∞Na
d/2
N > ρw, then there is a sequence (δN )N that vanishes as

N → ∞ such that, for all large N ,

P
(N)

βaN ,w/aN
(N = N) ≥ e

−βaNλ1(w/aN )N
(
1−ρw/(Na

d/2
N )+δN

)
(1 + o(1)). (2.38)

Proof. Abbreviate P
(N)

βaN ,w/aN
by P, analogously for the expectations, and aN by a. Recall that N =∑N

j=1 jXj and that N(short) =
∑

j≤TN
jXj , where the Xj are independent Poisson random variables

under P with parameters 1
j tj,a. We lower bound against the event that there is one large loop and

otherwise only small ones with about ρwa
−d/2 particles:

P (N = N) ≥
∑

k∈N : |k−ρwa−d/2|≤δNN

P (XN−k = 1) P (Xj = 0 for all j ∈ {TN , . . . , N − 1} \ {N − k})

× P
(
N(short) = k

)
,

(2.39)
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where δN ∈ (0, 1) with 1 ≫ δN ≫ 1/N is suitable (see below). For all k in that sum, we have

P
(
Xj = 0 for all j ∈ {TN , . . . , N − 1} \ {N − k}

)
≥ exp

−
∑
j≥TN

tj,a
j

 = 1 + o(1) (2.40)

as we saw in the proof of Lemma 2.5. Furthermore, by Lemma 2.2(3),

P (XN−k = 1) = tN−k,ae
−tN−k,a ∼ e−βaλ1(w/a)(N−k) ≥ e−βaλ1(w/a)N(1−ρw/(Nad/2)+δN ) . (2.41)

Recall from Corollary 2.3 that E [N(short)] ∼ ρwa
−2/d. Using Proposition 2.4 for k = δNN with δN

picked such that the first term on the right-hand side of (2.26) is the leading term, we get that∑
k∈N : |k−ρwa−d/2|≤δNN

P
(
N(short) = k

)
≥ P

(
|N(short) − E[N(short)]| ≤ 1

2δNN
)
→ 1, as N → ∞.

This implies (2.39). □

3. Proof of Theorem 1.2(1): super-critical regime

This section is under the assumption that χ = lim infN→∞Na
d/2
N > ρw and contains the proof of

Theorem 1.2(1), i.e., for the asymptotics (1.14) of the reduced one-particle density matrix in Sec-

tion 3.1, for the limiting distribution of the macroscopic loop lengths in terms of the Poisson–Dirichlet

distribution in Section 3.2 and for the convergence of the normalized PPP (i.e., the microscopic loop

lengths) in Section 3.3. (The proof of Theorem 1.2(1)(d) is deferred to Section 5.) As always, we are

under Assumption (W) for the trap potential w. Recall that ρw =
∑

k∈N(4πβk)
−d/2

∫
e−βkwdx.

3.1. Proof of (1.14) in Theorem 1.2(1). This proof is analogous to the proof of [KVZ23, Proposi-

tion 2.1]. We abbreviate aN by a and P
(N)

βa,w/a by P, analogously for the expected value. Our starting

point is the representation of γ(a)

N from Lemma 1.1, that is,

γ(a)

N (x, y) =
N∑
r=1

ξ(βar,w/a)
x,y (Cβar)

P(N = N − r)

P(N = N)
. (3.1)

We carry out the proof only for the case aN → 0 as N → and leave the second case to the reader.

Fix some small ε > 0. It is not hard to show that in (3.1), the two partial sums on r ≤ TN and on

r > N(1− ρw
χ − ε) are negligible by using the estimate ξ(β,w)

x,y (Cβ) ≤ 1
(4πβ)d/2

e−|x−y|2/(4β) and the lower

bound for P(N = N) from Lemma 2.6.

For the remaining, we decompose the number N of all particles into N = N(short) + N(long), which

denote the number of particles in loops of lengths ≤ TN = ⌊a−α/(α+2)
N log( 1

aN
)1/2⌋ respectively of

lengths > TN ; see (2.24). Then

P(N = N − r) =
∑
k

P(N(short) = k)P(N(long) = N − r − k). (3.2)

We observe from Corollary 2.3 that

lim sup
N→∞

E [N(short)]

N
= ρw lim sup

N→∞

1

Nad/2
=

ρw
χ

< 1,

in the case of Theorem 1.2(1). According to Proposition 2.4, the sum on k strongly concentrates

around the expectation

E(N(short)) ∼ ρwa
−d/2,

more precisely, to estimate (3.2), we can focus on k ∈ [ρwa
−d/2 − εN, ρwa

−d/2 + εN ] ∩ N for all

sufficiently large N .
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Furthermore, according to Lemma 2.5,

P(N(long) = N − r − k) ∼ e−γ

TN
e−βaλ1(w/a)(N−r−k), (3.3)

as long as r ≪ N − k ≤ N − ρwa
−d/2 − εN ∼ N(1 − ρw/χ − ε). Using (3.3) once more for N − k

instead of N − r − k, we see that

P(N(long) = N − r − k) ∼ P(N(long) = N − k)eβaλ1(w/a)r. (3.4)

Finally, from Lemma 2.2(3) we deduce that

ξ(βar,w/a)
x,y (Cβar) ∼ e−βarλ1(w/a)ϕ(w/a)

1 (x)ϕ(w/a)

1 (y) if raα/(α+2) → ∞. (3.5)

Putting (3.2), (3.4) and (3.5) into (3.1), we have

γ(a)

N (x, y) ∼
N(1−ρw/χ−ε)∑

r=TN

e−βarλ1(w/a)ϕ(a)

1 (x)ϕ(a)

1 (y)eβaλ1(w/a)r

×
∑

k : |k−ρwa−d/2|≤εN P(N(short) = k)P(N(long) = N − k)

P(N = N)

∼
N(1−ρw/χ−ε)∑

r=TN

ϕ(a)

1 (x)ϕ(a)

1 (y)

= N
(
1− ρw

χ
− ε− TN

)
ϕ(a)

1 (x)ϕ(a)

1 (y)(1 + o(1)).

Now the conclusion follows by noticing TN = o(N) and taking ε ↓ 0.

3.2. Convergence to the Poisson–Dirichlet distribution. In this section, we prove Theorem

1.2(1)(b). Recall that L1 ≥ L2 ≥ L3 ≥ ... are the lengths appearing in the loop soup. Recall the

density q introduced before Lemma 2.5. Our main goal is then reduced to the following:

Proposition 3.1. Suppose that χ ∈ (ρw,∞]. Then, for any m ∈ N and t1 > . . . > tm > 0 with∑m
i=1 ti < 1,

P
(N)

βaN ,w/aN

(
1

N(1−ρw/χ)

(
L1, . . . , Lm

)
∈ d(t1, . . . , tm)

∣∣∣N = N
)

=⇒ eγ

t1 · · · tm
q

(
1− (t1 + . . .+ tm)

tm

)
d(t1, . . . , tm). (3.6)

From this, the weak convergence of (N(1 − ρw/χ))
−1(Li)i=1,...,m towards the first m-dimensional

distribution of the Poisson–Dirichlet distribution follows, according to the Portemanteau theorem.

From Scheffé’s theorem, see [ABT03, Corollary 5.11], the convergence of the entire sequence follows.

Proof. Abbreviate P = P
(N)

βaN ,w/aN
and a = aN . Fix j1 ≥ j2 ≥ . . . ≥ jm ∈ N that such that ji ∼

tiN(1 − ρw/χ), for all 1 ≤ i ≤ m. Then, for all large N , we even have that j1 > j2 > . . . > jm.

Abbreviate A = {L1 = j1, . . . , Lm = jm}. Recall that N(long) denotes the number of particles in long

loops, i.e., in loops of length > TN defined in (2.24). Using the concentration result of Proposition 2.4

and the lower bound in Lemma 2.6, we can decompose

P(A | N = N) =
∑

k∈N : | k
N
−(1−ρw/χ)|≤δN

P(A | N(long) = k)P(N(long) = k | N = N) + o(N−m),
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where (δN )N is as in Lemma 2.6, i.e., it satisfies δN → 0. As in the proof of [KVZ23, Proposition 4.1],

it suffices to show that, for any k = kN in the sum above,

lim
N→∞

(N(1− ρw
χ ))mP(A | N(long) = kN ) =

eγ

t1 · · · tm
q

(
1− (t1 + . . .+ tm)

tm

)
. (3.7)

Recall that Xl is equal to the number of loops of length l and that all the Xl are independent under

P. We then have that

P (A) =
N∏

l=jm

P (Xl = il) where il = #{k : jk = l} ∈ {0, 1} for all l. (3.8)

Similarly, for k ≥ J , where J =
∑m

i=1 ji,

P
(
A | N(long) = k

)
=

P
(∑jm−1

i=1+TN
iXi = k − J

)
P
(∑N

i=1+TN
iXi = k

) N∏
l=jm

P (Xl = il) . (3.9)

Note that il = 0 if l /∈ {j1, . . . , jm} and = 1 otherwise. Using the approximation tj,a ∼ e−βajλ1(w/a) → 0

(see Lemma 2.2(3)) for j ∈ {j1, . . . , jm}, we get that

N∏
l=jm

P (Xl = il) =

N∏
l=jm

e−tl,a
(tl,a)

il

il!lil
∼ exp

−β

N∑
l=jm

illaλ1(w/a)

 N∏
l=jm

1

il!lil
= e−βaλ1(w/a)J

m∏
i=1

1

ji

∼ e−βaλ1(w/a)J
(
N(1− ρw

χ )
)−m

m∏
i=1

1

ti
.

(3.10)

Now pick k = kN ∼ N(1− ρw/χ), we obtain by Lemma 2.5

P

 N∑
i=1+TN

jXj = kN

 ∼ e−γ

TN
e−βaλ1(w/a)kN , (3.11)

as well as (observe that (kN − J)/jm → (1− (t1 + · · ·+ tm))/tm as N → ∞)

P

jm−1∑
i=TN

jXj = kN − J

 =
q ((1− (t1 + · · ·+ tm))/tm)

TN
e−βaλ1(w/a)(kN−J) . (3.12)

Substituting the last three displays in (3.9) implies (3.7), and we finish the proof. □

3.3. Proof of convergence of 1
N (iXi)i∈N. In this section, we prove Theorem 1.2(1)(c), i.e., the

convergence of the distribution of the microscopic loop lengths. Since we are considering the product

topology, it suffices to consider just 1
N iXi for one fixed i ∈ N. Recall that uχ = 0. By Lemma 2.2(2),

Xi is Poisson-distributed with parameter 1
i ti,aN ∼ a

−d/2
N

1
iχα

(χ)

i ∼ N 1
iα

(χ)

i as N → ∞. For any ε > 0,

P
(N)

βaN ,w/aN

(∣∣∣ 1
N

iXi − α(χ)

i

∣∣∣ > ε
∣∣∣N = N

)
) ≤ P

(N)

βaN ,w/aN

(∣∣∣ 1
N

iXi − α(χ)

i

∣∣∣ > ε
) 1

P
(N)

βaN ,w/aN
(N = N)

.

Observe that Xi is distributed as a sum of N independent Poisson-distributed random variables with

parameter 1
iα

(χ)

i (1 + o(1)). Use a standard exponential concentration inequality based on Cramér’s

theorem from the theory of large deviations, we conclude that the first term on the right-hand side

vanishes exponentially small on the scale N . On the other side, we use the lower bound of Lemma 2.6

and the asymptotics from Lemma 2.1 to see that the denominator vanishes exponentially fast on the

scale NaNλ1(w/aN ) ≍ Na
α/(α+2)
N ≪ N . Hence, the right-hand side decays exponentially fast on the

scale N .
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4. Proof of Theorem 1.2(2): sub-critical regime

Abbreviate χN = Na
d/2
N . In this section we are under the assumption that χ = limN→∞ χN exists in

[0, ρw), and we prove Theorem 1.2(2)(a) and (b). (The proof of (c) is deferred to Section 5.)

Abbreviate a = aN and P = P
(N)

βa,w/a. Since

1

N
E [N] ∼ 1

N
ρwa

−2/d → ρw
χN

> 1 , (4.1)

the event {N = N} is a downwards deviation under P. We tilt the intensity measure of P with a small

factor by means of a chemical potential, which suppresses long loops, such that the expected number

of particles in the process is equal to N . For µ ∈ (−∞, 0), denote by P
(N)

β,w,µ the probability measure

for the PPP with intensity measure

ν(N)

β,w,µ(df) =
N∑
k=1

eβµk

k
ξ(kβ,w)(df), on

⋃
k∈N

Cβk. (4.2)

Abbreviate Pµ = P
(N)

βa,w/a,µ. Under Pµ, the vector (Xj)j∈[N ] consists of independent Poisson-distributed

variables Xj with parameters 1
j t

(µ)

j,a = 1
j e

βµajtj,a. Observe that

P(· | N = N) = Pµ(· | N = N), N ∈ N, µ ∈ (−∞, 0), (4.3)

since a simple change of measure shows that

P (N = m) = epa,N (µ)−pa,N (0)−βµamPµ (N = m) , m ∈ N, (4.4)

where we abbreviated

pa,N (µ) = ν(N)

βa,w/a,µ

( N⋃
j=1

Cβj
)
=

N∑
j=1

eβµaj

j
tj,a. (4.5)

Now we define µN ∈ (−∞, 0) by EµN [N] = N . Recall the pressure p from (1.11) and (1.12) and that

uχ ∈ (−∞, 0) is defined by p′(uχ) = βχ.

Lemma 4.1.

lim
N→∞

µNaN =

{
uχ, if χ > 0,

−∞, if χ = 0,
.

In the case χ = 0, we have the more precise asymptotics µNaN ∼ 1
β log

(
χN (4πβ)d/2W−1

1

)
+ o(1).

Proof. Note that

Eµ[N] =
N∑
j=1

eβµajtj,a.

Since this is equal to N for µ = µN , we see that (µNaN )N∈N is bounded away from zero. Indeed, if

µNaN would go to zero, then we would have, for any R ∈ N, using Lemma 2.2(2)

N ≥
R∑

j=1

eβµNaN jtj,a ≥ (1− o(1))
R∑

j=1

a−d/2(4πβj)−d/2

∫
e−βjwdx ∼ N

χ

R∑
j=1

(4πβj)−d/2

∫
e−βjwdx,

and the right-hand side is asymptotic to Nρw/χ in the limit N → ∞, followed by R → ∞, which

produces a contradiction with χ < ρw. Using Lemma 2.2(1) and (2) and the fact that d ≥ 3, we see

that

1 =
1

N
EµN [N] ∼ 1

N
a
−d/2
N p(µNaN ) ∼ 1

χ
p(µNaN ), N → ∞.

This concludes the proof for χ > 0, since the range of p contains (0, ρw].
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In the case χ = 0, note that

p(u) = eβu(4πβ)−d/2W1 +O
(
e2βu

)
, u → −∞. (4.6)

Hence,

µNaN ∼ 1

β
log

(
χN (4πβ)d/2W−1

1

)
∼ 1

β
logχN , N → ∞. (4.7)

□

Write N(j) = jXj for the total number of particles in loops of length j and N(≥j) =
∑∞

k=j kXk for

the number of all particles in loops of lengths ≥ j.

Lemma 4.2. (1) If χ > 0, we have that

VarµN [N] ∼ N

χ

p′′(uχ)

β2
, N → ∞.

(2) If χN → 0, there is a C ∈ (0,∞) such that for any R,N ∈ N with R ≤ N ,

EµN [N
(1)] ∼ N,

EµN [N
(≥R)] ≤ CNχR−1

N , (4.8)

VarµN [N
(≥2)] ≤ CNχ

1
2
N . (4.9)

Proof. (1) Note that p′′(u)/β2 =
∑

j∈N eβuj(4πβj)−d/2Wj , since p′′ is continuous in (−∞, 0). Since

(µNaN )N∈N is bounded away from zero, we can use for any j ∈ [N ] the asymptotics tj,a ∼
(4πβ)−d/2WjN/χN in the following sum:

VarµN [N] =
N∑
j=1

eβµNaN jjtj,aN ∼ N

χN

p′′(µNaN )

β2
∼ N

χ

p′′(uχ)

β2
. (4.10)

(2) By Lemma 2.2(2) and Lemma 4.1,

EµN [N
(1)] = eβµNaN t1,aN ∼ eβµNaNa

−d/2
N ∼ N.

We use C ∈ (0,∞) to denote a generic constant that does not depend on a nor on N and may

change its value at each appearance. By Lemma 2.2(1) and Lemma 4.1 again,

EµN [N
(≥R)] =

N∑
j=R

eβµNaN jtj,aN ≤ Ca
−d/2
N eβµNaNR

N∑
j=R

eβµNaN (j−R)j−d/2Wj

≤ C
N

χN
χ
R(1+o(1))
N

N∑
j=R

j−d/2Wj ≤ CNχ
(R−1)(1+o(1)
N .

Finally, Lemma 4.1 implies that

VarµN [N
(≥2)] =

N∑
j=2

jeβµNaN jtj,aN ≤ Ca
−d/2
N

N∑
j=2

j1−d/2eβµNajWj

≤ Ca
−d/2
N e

3
2
βµNaN

N∑
j=1

j1−d/2e
1
2
βµNaN jWj ≤ CNe

1
2
βµNaN = CNχ

1
2
N .

(4.11)

□
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Lemma 4.3. There is C ∈ (0,∞) such that, for any N ∈ N and any r = rN ∈ N0 such that

r ≤ O(
√
N),

C−1N− 1
2 ≤ PµN (N = N − r) ≤ CN− 1

2 . (4.12)

Proof. For the case χ > 0, this follows from the variance bound proven in Lemma 4.2. Indeed, N is

the sum of N -independent random variables with mean N and variance O(N), so the result follows

from the local central limit theorem. Below we consider χ = 0, which requires more approximations.

We first prove the lower bound. Let s(N) := 2
√
VarµN (N

(≥2)). Recall that by Lemma 4.1, N(1) and

N(≥2) are independent and that N(1) has the Poisson distribution

PµN (N = k) = Poiα(k) :=
e−ααk

k!
, k ∈ N0,

where α := Eµ[N
(1)] ∼ N , and Eµ[N

(≥2)] = N − α. For r = O(
√
N), expand

PµN (N = N − r) =
∑

k∈Z−α

PµN (N
(1) = α+ k − r)PµN (N

(≥2) = N − α− k)

=
∑

k∈Z−α

Poiα(α+ k − r)PµN (N
(≥2) = N − α− k)

≥ PµN

(
|N(≥2) − EµN [N

(≥2)]| ≤ s(N)
)

min
|k|≤s(N),k∈Z−α

Poiα(α+ k − r).

(4.13)

Using Stirling’s formula in the form n! ≤ C(ne )
n√n, we estimate for l = k − r

Poiα(α+ l) = e−α αα+l

(α+ l)!
≥ Ce−αeα+l

( α

α+ l

)α+l
(α+ l)−1/2 ≥ Cele−

l
α
(α+l)N−1/2

≥ Ce−l2/αN−1/2 ≥ CN−1/2,

since s(N) ≤ O(
√
N) by Lemma 4.2.

Finally, by Chebyshev’s inequality,

PµN

(
|N(≥2) − EµN [N

(≥2)]| ≤ s(N)
)
≥ 1− VarµN (N

(≥2))

s(N)2
=

3

4
, (4.14)

and the claimed lower bound for PµN (N = N − r) follows.

For the upper bound, simply notice that by (4.13),

PµN (N = N − r) =
∑

k∈Z−α

Poiα(α+ k − r)PµN (N
(≥2) = N − α− k)

≤ sup
k∈N

Poiα(k) = Poiα([α]) ≤ CN−1/2.

□

Proof of Theorem 1.2(2). Recall that we are in the case where χ = limN→∞Na
d/2
N ∈ [0, ρw). Recall

that µN ∈ (−∞, 0) is picked such that EµN [N] = N . By Lemma 1.1,

γ
(aN )

N (x, y) =

N∑
r=1

eβµNaNrξ
(βaNr,w/aN )
x,y (CβaNr)

PµN (N = N − r)

PµN (N = N)
. (4.15)

We split the sum into the sums on r ≤
√
N , where we will use that the ξ-term is small for all distinct

x, y, and r >
√
N , where we will use that the exponential term is small. Using Lemma 4.3 for both
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the numerator and the denominator and using the simple bound ξ(t,w)
x,y ≤ Ct−d/2e−|x−y|/4t, we obtain∑

1≤r≤
√
N

eβµNaNrξ
(βaNr,w/aN )
x,y (CβaNr)

PµN (N = N − r)

PµN (N = N)
≤ Ca

−d/2
N

∑
1≤r≤

√
N

r−d/2eβµNaNre−|x−y|2/(4βaNr).

(4.16)

We use the comparison between geometric and arithmetic mean (a+b
2 ≥

√
ab) to see that

e
1
2
βµare−|x−y|2/(4βar) ≤ e−|x−y| (|µ|/2)1/2 .

Since µNaN → uχ < 0, respectively → −∞ for χ = 0, we find a c ∈ (0,∞) such that |µN |/2 ≥ c2/aN
for all N . This implies that the sum on r ≤

√
N is not larger than the right-hand side of (1.15).

In the remaining sum, we can use Lemma 4.3 only for the denominator, but analogously we obtain

in the same way∑
√
N<r≤N

eβµNaNrξ
(βaNr,w/aN )
x,y (CβaNr)

PµN (N = N − r)

PµN (N = N)
≤ Ca

−d/2
N

√
N

∑
√
N<r≤N

r−d/2e
1
2
βµaNre−|x−y| (|µN |/2)1/2

≤ Ca
−d/2
N

√
Ne

1
4
βµNaN

√
Ne−|x−y| (|µN |/2)1/2 ≤ o(a−d/2)e−|x−y| (|µN |/2)1/2 .

Hence, this part is even smaller than the sum on r ≤
√
N , which finishes the proof of (1.15).

Now we prove the weak convergence of 1
N (iXi)i∈N under P towards α = α(χ) defined in (1.13). First

we assume that χ > 0. Observe that α(χ)

j = limN→∞ EµN (jXj) for any j ∈ N. Hence, also using (4.3),

we see that, for any ε > 0 and all sufficiently large N ,

P
(∥∥ 1

N (jXj)j∈N − α(χ)
∥∥
1
> ε

∣∣∣N = N
)

≤ PµN

( N∑
j=1

∣∣jXj − EµN [jXj ]
∣∣ > ε

2
N

∣∣∣N = N
)

≤ C
√
N

1

(εN)2
VarµN

( N∑
j=1

jXj

)
≤ CN−3/2VarµN (N)

≤ CN−1/2,

where we used Lemma 4.3 and the Chebychev inequality in the second step and Lemma 4.2(1) in the

final step.

Now we show the same assertion for the case χ = 0 with α(0) = (1, 0, 0, . . . ). For this, we show that

N(1) = X1 dominates the remaining particle number N(≥2), in the sense of

PµN (N
(≥2) > εN) ≪ PµN (N = N), N → ∞, ε > 0. (4.17)

This will imply that

PµN

(
N(1) ≥ N(1− ε)

∣∣N = N
)
= 1 + o(1) , (4.18)

i.e., almost all mass is in loops of length one, which implies the convergence of 1
N (iXi)i∈N towards

(1, 0, 0, . . . ) under PµN (·|N = N), and hence also under P(·|N = N), due to (4.3).

We prove now (4.17). Recall that we are in the case χN → 0. For every fixed ε > 0, by Chebyshev’s

inequality and (4.8) for R = 2, for large enough N ,

PµN (N
(≥2) ≥ εN) ≤ VarµN (N

(≥2))

(εN − EµN [N
(≥2)])2

≤ 4

ε2N2
VarµN (N

(≥2)) ≤ o( 1
N ), (4.19)

where the last step follows from (4.9). This together with Lemma 4.3 proves (4.17). □
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5. Identification of the free energy

In this section, we prove the identification of the free energy in Theorem 1.2(1)(d), respectively

(2)(c).

Recall pa,N (µ) from (4.5). We abbreviate P = P
(N)

βaN ,w/aN
and Pµ = P

(N)

βaN ,w/aN ,µ. For any N ∈ N and

µ ∈ (−∞, 0], we have from (4.4)

ZN (β, aN , w) = epaN ,N (0)P (N = N) = e−µβaNN+paN ,N (µ)Pµ (N = N) .

Assume first that χ > ρw. In this case, set µ = 0. We then have that by Lemma 2.6 that

P (N = N) = exp
(
−λ1(W )βa

α/(2+α)
N N

(
1− ρw

χ

)
(1 + o(1))

)
. (5.1)

Hence, we get that

fMF(β, χ) = lim
N→∞

(
−

paN ,N (0)

βN
+ λ1(W )a

α/(2+α)
N

(
1− ρw

χ

))
. (5.2)

Note that by the scaling, we have that

paN ,N (0) = a
−d/2
N p(0) ∼ N

χ
p(0) , (5.3)

and Theorem 1.2(1)(d) follows.

If χ < ρw, we choose µ = µN < 0 as in Lemma 4.1. Lemma 4.3 gives Pµ (N = N) ≍ N−1/2. Hence,

we can neglect this term and obtain

fMF(β, χ) = lim
N→∞

(
−

paN ,N (aNµN )

βN
+ µNaN

)
. (5.4)

In the case χ > 0, we again make the approximation pa,N (aNµN ) ∼ N
χ p(aNµN ), which implies

Theorem 1.2(2)(c).

If χ = 0, we approximate to first order

pa,N (aNµN ) ∼ N

χN

eβµNaN

(4πβ)d/2
W1 ∼ N , (5.5)

which implies, via Lemma 4.1 that fMF(β, 0) = limN→∞( 1β + log(χN )
β2 ) = −∞.

References
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