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Steady convection–diffusion–reaction equation

−ε ∆u+b ·∇u+ cu = f in Ω,

u = ub on ΓD, ε
∂u
∂n

= g on ΓN

Ω⊂ Rd , d = 2,3 . . . bounded domain with a polyhedral
Lipschitz–continuous boundary ∂Ω

ΓD,ΓN ⊂ ∂Ω . . . relatively open, disjoint
ΓD∪ΓN = ∂Ω, measd−1(ΓD) > 0

n . . . outer unit normal vector to ∂Ω

ε > 0 constant, b ∈W 1,∞(Ω)d , c ∈ L∞(Ω), f ∈ L2(Ω),
ub ∈ H1/2(ΓD), g ∈ H−1/2(ΓN), σ := c− 1

2 divb≥ σ0 > 0

{x ∈Ω ; (b ·n)(x) < 0} ⊂ ΓD



Steady convection–diffusion–reaction equation

−ε ∆u+b ·∇u+ cu = f in Ω,

u = ub on ΓD, ε
∂u
∂n

= g on ΓN

Weak formulation

Find u ∈ H1(Ω) such that u = ub on ΓD and

a(u,v) = ( f ,v)+ 〈g,v〉ΓN ∀ v ∈V ,

where V := {v ∈ H1(Ω) ; v = 0 on ΓD} ,

a(u,v) = ε (∇u,∇v)+(b ·∇u,v)+(cu,v)

∃ unique weak solution



Discrete problem

Th . . . triangulation of Ω consisting of closed shape–regular
cells T (simplices, quadrilaterals or hexahedra)
with usual compatibility properties

Mh . . . coarse triangulation constructed by coarsening the
triangulation Th such that each macro–element M ∈Mh
is the union of one or more neighboring cells T ∈Th.
Elements of Mh are non–overlapping and
shape–regular, hM ≤C hT ∀ T ∈Th, M ∈Mh with T ⊂M

Wh ⊂ H1(Ω) . . . FE space on Th

Vh := Wh∩V

Dh . . . discontinuous FE space on Mh

πh . . . orthogonal L2 projection of L2(Ω) onto Dh

κh := id−πh . . . fluctuation operator



Discrete problem

Find uh ∈Wh such that uh− ũbh ∈Vh and (ũbh|ΓD ∼ ub)

ah(uh,vh) = ( f ,vh)+ 〈g,vh〉ΓN ∀ vh ∈Vh ,

where ah(u,v) = a(u,v)+ sh(u,v),

sh(u,v) = ∑
M∈Mh

τM sM(u,v) , τM ≥ 0

and

sM(u,v) = (κh(b ·∇u),κh(b ·∇v))M . . . SD–based LPS

or

sM(u,v) = (κh∇u,κh∇v)M . . . gradient–based LPS



Two variants of LPS

One–level approach: Mh = Th

spaces Wh/Dh : Pbub
k,Th
∩H1(Ω)/Pk−1,Th

Qbub
k,Th
∩H1(Ω)/Pk−1,Th

Qbub
k,Th
∩H1(Ω)/Qk−1,Th

Two–level approach: Th is obtained by a refinement of Mh

spaces Wh/Dh : Pk,Th ∩H1(Ω)/Pk−1,Mh

Qk,Th ∩H1(Ω)/Pk−1,Mh

Qk,Th ∩H1(Ω)/Qk−1,Mh

can be viewed as one–level approach for simplicial meshes



Inf–sup condition

∃ β > 0 : inf
qh∈Dh(M)

sup
vh∈Yh(M)

(vh,qh)M

‖vh‖0,M ‖qh‖0,M
≥ β ∀M ∈Mh

where Yh(M) = H1
0 (M)∩{vh|M ; vh ∈Wh}

Necessary condition: dimYh(M)≥ dimDh(M)

Sufficient condition: bM ·Dh(M)⊂ Yh(M) ∀M ∈Mh

and all macro–elements in Mh are affine equivalent
to a reference element T̂
Dh ⊂ Pm,Mh for some m ∈ N0

bM are generated by a reference bubble function
b̂ ∈C(T̂ )∩H1

0 (T̂ ), b̂≥ 0, b̂ 6= 0

simplest choice: Yh(M) = bM ·Dh(M) (smallest possible dim.)



Meshes for the two–level approach



Residual–based stabilizations (RBS)

The most popular residual–based stabilization is the
SUPG method by Brooks, Hughes (1982):
Find uh ∈Wh such that uh− ũbh ∈Vh and

a(uh,vh)+(Rh(uh),δ b ·∇vh) = ( f ,vh)+ 〈g,vh〉ΓN ∀ vh ∈Vh ,

where Rh(u) =−ε ∆h u+b ·∇u+ cu− f

Advantages: robust, easy to implement,
accurate away from layers

Drawbacks: non–symmetric, second–order derivatives

LPS: symmetric,
operations discretization and optimization commute



Assumptions and notation

Wh ⊃ Pk,Th ∩H1(Ω) or Wh ⊃ Qk,Th ∩H1(Ω)

approximation property of κh: ∀ l ∈ {0, . . . ,k} :

‖κh q‖0,M ≤Cκ

hl
M

kl |q|l,M ∀ q ∈ L2(Ω), q|M ∈ H l(M) ∀M ∈Mh

inverse inequality: |vh|1,M ≤ µk h−1
M ‖vh‖0,M ∀M ∈Mh, ∀vh ∈Wh

(µk ≥ k)

local projection norm:

|||v|||LP =

(
ε |v|21,Ω +‖σ1/2 v‖2

0,Ω +
1
2
‖(b ·n)1/2 v‖2

0,ΓN +sh(v,v)

)1/2

Then ah(v,v) = |||v|||2LP ∀ v ∈V =⇒ ∃ unique uh



General error estimate

|||u−uh|||LP . inf
wh∈W b

h

(
‖u−wh‖2

0,ΓN + ∑
M∈Mh

CM ‖u−wh‖2
1,M,∗

)1/2

+ sup
vh∈Vh

sh(u,vh)
|||vh|||LP

W b
h = {wh ∈Wh ; wh− ũbh ∈Vh},

‖w‖1,M,∗ = |w|1,M + µk h−1
M ‖w‖0,M

if sM are SD–based
CM = (1+β

−1)2 (λM +h2
M µ

−2
k +‖b‖2

0,∞,M h2
M µ

−2
k λ

−1
M ) ,

λM = max{ε,τM ‖b‖2
0,∞,M} .

if sM are gradient–based
CM = (1+β

−1)2 (λM +h2
M +‖b‖2

0,∞,M h2
M µ

−2
k λ

−1
M ) ,

λM = max{ε,τM} .



Main result for the gradient–based LPS

Assume: u ∈ H l+1(Ω) for some l ∈ {1, . . . ,k},

ũbh sufficiently accurate,

τM ∼min

{
hM ‖b‖0,∞,M

µk
,
h2

M ‖b‖2
0,∞,M

ε µ2
k

}
Then

|||u−uh|||LP .
hl+1/2

kl ‖u‖l+1,Ω

+
hl

kl
µk

k

(
1+

1
β

)(
ε

1/2 +h+
h1/2

µ
1/2
k

)
‖u‖l+1,Ω



Main result for the SD–based LPS

Assume: u ∈ H l+1(Ω) for l ∈ {1, . . . ,k}, ũbh suff. accurate,

b|M ∈W l,∞(M)d for all M ∈Mh,

τM ∼min

{
hM

µk ‖b‖0,∞,M
,

h2
M

ε µ2
k

}
Then

|||u−uh|||LP .
hl+1/2

kl ‖u‖l+1,Ω

+
hl

kl
µk

k

(
1+

1
β

)(
ε

1/2 +
h1/2

µ
1/2
k

)
‖u‖l+1,Ω

+

(
∑

M∈Mh

min

{
hM ‖b‖2

l,∞,M

µk ‖b‖0,∞,M
,
‖b‖2

l,∞,M

σ0

}
h2l

M
k2l ‖u‖

2
l+1,M

) 1
2



Stability in the SUPG norm K., Tobiska (2008)

|||vh|||SUPG =

(
ε|vh|21,Ω +σ0 ‖vh‖2

0,Ω + ∑
M∈Mh

δM ‖b ·∇vh‖2
0,M

)1/2

δM ∼min

{
hM

µk ‖b‖0,∞,M
,

h2
M

ε µ2
k

}



Inf–sup condition

We assume that there exists a space Bh ⊂Vh such that

Bh =
⊕

M∈Mh

B(M) with B(M)⊂ H1
0 (M) .

ΠM . . . orthogonal L2 projection of L2(M) onto B(M), M ∈Mh

stronger norm

|||v|||=

(
|||v|||2G + ∑

M∈Mh

{
δM ‖ΠM(b ·∇v)‖2

0,M + τM sM(v,v)
})1/2

Then

∃ β > 0 : sup
vh∈Vh

ah(uh,vh)
|||vh|||

≥ β |||uh||| ∀ uh ∈Vh

(β independent of h and ε)



Proof of the inf–sup condition

zh|M = δM ΠM(b ·∇uh) ∀M ∈Mh ⇒ zh ∈ Bh and

(b ·∇uh,zh)M = δM ‖ΠM(b ·∇uh)‖2
0,M ∀M ∈Mh

⇒ ah(uh,zh) = ∑
M∈Mh

δM ‖ΠM(b ·∇uh)‖2
0,M

+ε (∇uh,∇zh)+(cuh,zh)+ ∑
M∈Mh

τM sM(uh,zh)

≥ 1
2 ∑

M∈Mh

δM ‖ΠM(b ·∇uh)‖2
0,M−ζ ah(uh,uh)

⇒ vh := 2zh +(1+2ζ )uh satisfies ah(uh,vh)≥ |||uh|||2

furthermore, |||zh||| ≤C |||uh||| ⇒ |||uh||| ≥ β |||vh|||

⇒ inf–sup condition holds



Relation between the norms ||| · ||| and ||| · |||SUPG

Assumptions: b 6= 0 in Ω,

all cells of Mh are affine equivalent to T̂

If sM are gradient–based and b is constant or
if sM are SD–based and b is piecewise polynomial, then

|||vh||| ≥C |||vh|||SUPG ∀ vh ∈Wh .

Otherwise, there exists h0 > 0 independent of ε such that this
inequality holds for 0 < h≤ h0. The constant C is positive and
independent of h and the data of the problem.



Theorem 1 There exists h0 > 0 independent of ε such that for
0 < h≤ h0

β̃ |||uh|||SUPG ≤ sup
vh∈Vh

ah(uh,vh)
|||vh|||SUPG

∀ uh ∈Vh

with a positive constant β̃ independent of h and ε . If b is
constant or, in case of SD–based sM, if b is piecewise
polynomial, then the inf–sup condition holds for any h.

⇒ The local projection stabilization controls not only the
fluctuations but also the streamline derivatives.

⇒ The above convergence results hold also in the SUPG
norm.



Relation to residual–based stabilizations
K., Lube (2008)

Assumptions:

– divb = 0, c = const., ΓN = /0, ub = 0
– simplicial triangulations

Then Vh = V h⊕Bh with V h := Pk,Mh ∩V

Bh :=
⊕

M∈Mh

Bk(M), Bk(M)⊂ H1
0 (M)



Gradient–based LPS scheme:

a(uh,vh)+ ∑
M∈Mh

τM(κh∇uh,κh∇vh)M = ( f ,vh) ∀ vh ∈Vh,

Note: vh ∈V h ⇒ ∇vh ∈ [Dh]d ⇒ κh∇vh = 0

uh = uh +ub
h, uM := ub

h|M ∀M ∈Mh

aM(uM,vM)+ τM(κM∇uM,κM∇vM)M︸ ︷︷ ︸=( f−Luh,vM)M ∀vM ∈Bk(M)

(AMuM,vM)M

AM : Bk(M)→ Bk(M)

Lu =−ε ∆u−b ·∇u+ cu

⇒ uM = A−1
M ρM( f −Luh)

where ρM is the orthogonal L2 projection from L2(M) onto Bk(M)



Residual–based formulation of LPS

a(uh,vh)+ ∑
M∈Mh

( f −Luh,(A?
M)−1

ρML? vh)M = ( f ,vh) ∀vh ∈V h

∼ “unusual” GLS method (Franca, Valentin (2000))

Theorem 2 There exist positive constants C1 and C2 such that,
for any M ∈Mh and g ∈ Bk(M), we have

C1h2
M

ε + τM +‖b‖[L∞(M)]d hM + ch2
M
≤
‖(A?

M)−1g‖0,M

‖g‖0,M
≤ C2h2

M

ε + τM + ch2
M

.

Proof The most difficult part is to show that there exists γ > 0
such that ‖κM∇v‖0,M ≥ γ ‖∇v‖0,M ∀v ∈ Bk(M),M ∈Mh.



Recovering of the SUPG method for k = 1

dimB1(M) = 1 ⇒ A?
M represents a multiplicative factor:

(A?
M)−1 =

‖bM‖2
0,M

(ε + τM)|bM|21,M + c‖bM‖2
0,M

Define bM =
(b,bM)M

(1,bM)M
, fM =

( f ,bM)M

(1,bM)M

Then

( f −Luh,(A?
M)−1

ρML?vh)M

= δM(bM ·∇uh + cuh− fM,bM ·∇vh− cvh(xM))M

with δM =
(1,bM)2

M

|M|{(ε + τM)|bM|21,M + c‖bM‖2
0,M}



Example

u = 0
ε = 10−8

|b|= 1
f = 1

triangulation:
33×33 vertices



SUPG method, Q2



Gradient–based LPS, Qbub
2 /Pdisc

1



SUPG method, Q2



SUPG method, Q2



SD–based LPS, Qbub
2 /Pdisc

1



SD–based LPS, Qbub
2 /Pdisc

1



Conclusions

– optimal convergence results with respect to h for the LPS
applied to convection–diffusion–reaction problems can be
obtained for the gradient–based variant and, under additional
assumptions, for the SD–based variant

– the LPS methods are more stable than their coercivity
suggests

– simplicial LPS methods are closely related to residual–based
stabilizations

– LPS methods often do not attain the quality of the SUPG
method


