

R. Codina J. Principe

VMS 2008

Saarbrücken, June 2008

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Outlin	е					

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 General idea
- 3 Just scaling: three field Stokes problem
 - Waves in shallow waters
- 5 Stokes-Darcy problem
- 6 MHD problem
- Summary and conclusions

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Outlin	е					

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- General idea
- 3 Just scaling: three field Stokes problem
- 4 Waves in shallow waters
- 5 Stokes-Darcy problem
- 6 MHD problem
- Summary and conclusions

Introduction •oo	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Startin	na poin	t				

Consider a BVP problem

$$\mathcal{L}u = f + BC's$$

with variational form

$$u \in V \mid B(u, v) = L(v) \quad \forall v \in V$$

The basic idea of the VMS method is to split the unknown *u* as

$$u = u_h + u', \quad V = V_h \oplus V'$$

where u_h belongs to the finite element space V_h and $u' \in V'$ is the subscale. The way to model it defines the particular VMS approximation.

Introduction ○●○	General idea 000000	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00

Problem for the subscales

The subscale u' satisfies

$$B(u_h, v') + B(u', v') = L(v') \quad \forall v' \in V'$$

which can be written in abstract form as

 $\langle \mathcal{L}u', v' \rangle = \langle f - \mathcal{L}u_h, v' \rangle + \text{Boundary terms} \quad \forall v' \in V'$

Very often, u' is approximated as

$$u'=\tau \mathbf{P}'(f-\mathcal{L}u_h)$$

where P' is a projection onto the space of subscales (bubbles, $V_h^{\perp}, \ldots)$

(日) (日) (日) (日) (日) (日) (日)

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Applic	cation to	o syste	ms			

In the case of systems:

$$u' = \tau r_h, \quad r_h = P'(f - \mathcal{L}u_h)$$
$$u', r_h \in \mathbb{R}^n, \quad \tau \in \operatorname{mat}_{\mathbb{R}}(n, n)$$

The way to obtain τ in this case is completely open. We aim to

- Give a (more or less) systematic way to design τ.
- Consider the possibility of taking τ always a diagonal matrix.
- Apply these concepts to several problems of interest.

Outline	

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Introduction
- 2 General idea
- 3 Just scaling: three field Stokes problem
- 4 Waves in shallow waters
- 5 Stokes-Darcy problem
- 6 MHD problem
- Summary and conclusions

Introduction	General idea ●00000	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Proble	em stat	ement				

Suppose u' restricted to ∂K , $K \in \mathcal{P}_h$, is known for all K (u' = 0 is a possibility). We have to approximate

 $\mathcal{L}u' = r_h$ in K + BC's on ∂K

by

 $u' \approx \tau r_h$ in each *K*

so that

$$au \approx \mathcal{L}^{-1}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction General idea Just scaling Waves in shallow waters Stokes-Darcy problem MHD problem Summary

Approximate/heuristic Fourier analysis

Let us denote the Fourier transform by $\widehat{}$. Let k/h be the wave number, with k dimensionless. Basic heuristic assumption: u' is highly fluctuating, and therefore dominated by high wave numbers k. As a consequence:

- Values of u' on ∂K can be neglected to approximate u' in the interior of K.
- The Fourier transform can be evaluated as for functions vanishing on ∂K (and extended to ℝ^d by zero).

The Fourier-transformed equation for the subscales will be

 $\hat{\mathcal{L}}(k)\hat{u}'(k)=\hat{r}_h(k)$

Introduction	General idea oo●ooo	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Scalir	ng					

Suppose that $\mathcal{L}u = f$ is written in such a way that $f^{t}u = \sum_{i=1}^{n} f_{i}u_{i}$ is dimensionally well defined. In general, if $f, g \in \operatorname{range} \mathcal{L}$, and $u, v \in \operatorname{dom} \mathcal{L}$,

$$f^{\mathrm{t}}g = \sum_{i=1}^{n} f_{i}g_{i}, \quad u^{\mathrm{t}}v = \sum_{i=1}^{n} u_{i}v_{i}$$

may not be dimensionally meaningful.

Let *M* be a scaling matrix, symmetric, positive-definite and possibly diagonal, that makes the products f^tMg and $u^tM^{-1}v$ dimensionally consistent. Let also

$$|f|_{M}^{2} = f^{t}Mf \quad M\text{-norm of } f$$

$$|u|_{M^{-1}}^{2} = u^{t}M^{-1}u \quad M^{-1}\text{-norm of } u$$

$$||f||_{L^{2}_{M}(K)} = \int_{K} |f|_{M}^{2}$$

Introduction	General idea ooo●oo	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary

Main approximation

We propose to obtain τ by imposing $\|\mathcal{L}\|_{L^2_M(K)} \leq \|\tau^{-1}\|_{L^2_M(K)}$. We have:

$$\begin{split} \|\mathcal{L}u\|_{L^2_M(K)}^2 &= \int_K |\mathcal{L}u|_M^2 \mathrm{d}x \\ &\approx \int_{\mathbb{R}^d} |\widehat{\mathcal{L}}(k)\widehat{u}(k)|_M^2 \mathrm{d}k \\ &\leq \int_{\mathbb{R}^d} |\widehat{\mathcal{L}}(k)|_M^2 |\widehat{u}(k)|_M^2 \mathrm{d}k \\ &= |\widehat{\mathcal{L}}(k^0)|_M^2 \int_{\mathbb{R}^d} |\widehat{u}(k)|_M^2 \mathrm{d}k \\ &\approx |\widehat{\mathcal{L}}(k^0)|_M^2 \|u\|_{L^2_M(K)}^2 \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	General idea ○○○○●○	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00

Our proposal

From the previous approximation, $\|\mathcal{L}\|_{L^2_M(K)} \leq |\widehat{\mathcal{L}}(k^0)|_M$. Our proposal is to choose τ such that $|\widehat{\mathcal{L}}(k^0)|_M = |\tau^{-1}|_M$. In particular, if

$$\lambda_{\max}(k^0) = \max \operatorname{spec}_{M^{-1}}(\widehat{\mathcal{L}}(k^0)^* M \widehat{\mathcal{L}}(k^0))$$

with $\lambda \in \operatorname{spec}_{M^{-1}} A \iff \exists x \mid Ax = \lambda M^{-1}x$, we will require that $\tau^{-1}M\tau^{-1} = \lambda_{\max}M^{-1}$, that is to say

Design condition

$$M\tau^{-1} = \lambda_{\max}^{1/2}(k^0)I \iff \tau = \lambda_{\max}^{-1/2}(k^0)M$$

(日) (日) (日) (日) (日) (日) (日)

The components of k^0 have to be understood as algorithmic constants.

Introduction	General idea ooooo●	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
CDR	system	S				

Suppose that

$$\mathcal{L}u = -\partial_{\rho}K_{
hoq}\partial_{q}u + A_{
ho}\partial_{\rho}u + Su$$

 $K_{
hoq}, A_{
ho}, S \in \operatorname{mat}_{\mathbb{R}}(n, n)$

Then

$$\widehat{\mathcal{L}}(k) = k_{\rho}k_{q}K_{\rho q} + ik_{\rho}A_{\rho} + S$$

 $\widehat{\mathcal{L}}(k)^{*} = k_{\rho}k_{q}K_{\rho q}^{t} - ik_{\rho}A_{\rho}^{t} + S^{t}$

In any case

$$\mathsf{spec}_{M^{-1}}(\widehat{\mathcal{L}}(k^0)^*M\widehat{\mathcal{L}}(k^0)) \subset \mathbb{R}^+$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Outlin	e					

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Introduction
- General idea
- 3 Just scaling: three field Stokes problem
- Waves in shallow waters
- 5 Stokes-Darcy problem
- 6 MHD problem
- Summary and conclusions

Introduction	General idea	Just scaling ●0000	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00

Problem statement

Differential form:

$$-\nabla \cdot \boldsymbol{\sigma} + \nabla \boldsymbol{p} = \boldsymbol{f}$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$
$$\frac{1}{2\mu}\boldsymbol{\sigma} - \nabla^{S}\boldsymbol{u} = \boldsymbol{0}$$

Variational form:

Find $u = (u, p, \sigma) \in V = (H_0^1(\Omega))^d \times L^2(\Omega)/\mathbb{R} \times (L^2(\Omega))_{sym}^{d \times d}$ such that

$$B(u, v) = L(v) \quad \forall v \in V$$

$$B(u, v) := (\nabla^{S} v, \sigma) - (p, \nabla \cdot v) + (q, \nabla \cdot u) + \frac{1}{2\mu}(\sigma, \tau) - (\nabla^{S} u, \tau)$$

$$L(v) = \langle f, v \rangle$$

Introduction	General idea	Just scaling o●ooo	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Otabil	in a d file	te ele:		-1		

Stabilized finite element method

Neglecting interelement boundary terms, the stabilized finite element problem is

$$B(u_h, v_h) + (\nabla^S \boldsymbol{v}_h, \boldsymbol{\sigma}') - (\boldsymbol{\rho}', \nabla \cdot \boldsymbol{v}_h) + \frac{1}{2\mu} (\boldsymbol{\sigma}', \boldsymbol{\tau}_h) = L(v_h)$$

where the subscales are solution of

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma}' + \nabla \boldsymbol{p}' &= \boldsymbol{r}_{u} := \boldsymbol{P}'(\boldsymbol{f} + \nabla \cdot \boldsymbol{\sigma}_{h} - \nabla \boldsymbol{p}_{h}) \\ \nabla \cdot \boldsymbol{u}' &= \boldsymbol{r}_{p} := \boldsymbol{P}'(-\nabla \cdot \boldsymbol{u}_{h}) \\ \frac{1}{2\mu} \boldsymbol{\sigma}' - \nabla^{S} \boldsymbol{u}' &= \boldsymbol{r}_{\sigma} := \boldsymbol{P}'(-\frac{1}{2\mu} \boldsymbol{\sigma}_{h} + \nabla^{S} \boldsymbol{u}_{h}) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

000 000000 00000 0000 0000 000 00	Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary
			00000				

Approximation to the subscales I

Let us consider $u = (u_1, u_2, p, \sigma_{11}, \sigma_{12}, \sigma_{22})$ (d = 2). The first point is to choose matrix *M*. If [·] denotes a dimensional group:

$$[\boldsymbol{r}_{u}]^{2} \begin{bmatrix} \frac{h^{2}}{\mu^{2}} \end{bmatrix} = [r_{\rho}]^{2} = [\boldsymbol{r}_{\sigma}]^{2}, \quad [\boldsymbol{u}']^{2} \begin{bmatrix} \frac{\mu^{2}}{h^{2}} \end{bmatrix} = [\rho']^{2} = [\sigma']^{2}$$

We may take

$$M = \text{diag}(m, m, 1, 1, 1, 1), \quad m := \frac{h^2}{\mu^2}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	General idea	Just scaling ooo●o	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00

Approximation to the subscales II

Let us consider matrix τ of the form

$$\tau = \mathsf{diag}(\tau_{u}, \tau_{u}, \tau_{p}, \tau_{\sigma}, \tau_{\sigma}, \tau_{\sigma})$$

We will show that τ_u , τ_p and τ_σ are uniquely determined by dimensionality.

It can be checked that the eigenvalue of the problem

$$M\widehat{\mathcal{L}}(k^0)^{\mathrm{t}}M\widehat{\mathcal{L}}(k^0)x=\lambda x,$$

has dimensions $[\lambda] = [\mu]^{-2}$, and therefore

$$M\tau^{-1}M\tau^{-1} = \text{diag}\left(\tau_{u}^{-2}m^{2}, \tau_{u}^{-2}m^{2}, \tau_{\rho}^{-2}, \tau_{\sigma}^{-2}, \tau_{\sigma}^{-2}, \tau_{\sigma}^{-2}\right)$$

has to have all the diagonal entries of dimension $[\mu]^{-2}$.

Introduction 000 Waves in shallow waters

Stokes-Darcy problem

MHD problem Summary

Approximation to the subscales III

Being μ the only parameter of the equation, this immediately implies that

Taus for the three field Stokes problem

$$au_{u} = \alpha_{u} \frac{\hbar^{2}}{\mu}, \quad au_{p} = \alpha_{p} 2\mu, \quad au_{\sigma} = \alpha_{\sigma} 2\mu$$

where α_u , α_p and α_σ are dimensionless constants that play the role of the algorithmic parameters of the formulation. The subscales are given by

$$u' = \alpha_u \frac{h^2}{\mu} r_u$$
$$p' = \alpha_p 2\mu r_p$$
$$\sigma' = \alpha_\sigma 2\mu r_\sigma$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Introd	uction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Οι	utlin	е					

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Introduction
- 2 General idea
- 3 Just scaling: three field Stokes problem
- 4 Waves in shallow waters
- 5 Stokes-Darcy problem
- 6 MHD problem
- Summary and conclusions

Introduction	General idea	Just scaling	Waves in shallow waters ●000	Stokes-Darcy problem	MHD problem	Summary 00

Problem statement

Differential equations:

$$\partial_t \eta + H \nabla \cdot \boldsymbol{u} + \varepsilon \boldsymbol{u}_0 \cdot \nabla \eta = f_\eta$$
$$\partial_t \boldsymbol{u} + \boldsymbol{g} \nabla \eta + \varepsilon \boldsymbol{u}_0 \cdot \nabla \boldsymbol{u} = \boldsymbol{f}_u$$

Convection matrices:

$$A_{1} = \begin{bmatrix} \varepsilon u_{0,1} & H & 0 \\ g & \varepsilon u_{0,1} & 0 \\ 0 & 0 & \varepsilon u_{0,1} \end{bmatrix}, \quad A_{2} = \begin{bmatrix} \varepsilon u_{0,2} & 0 & H \\ 0 & \varepsilon u_{0,2} & 0 \\ g & 0 & \varepsilon u_{0,2} \end{bmatrix}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The differential equations need to be scaled **prior** to writing the variational from of the problem. The scaling matrix may be taken as

$$S = egin{bmatrix} rac{g}{H} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

In this case:

$$v^{t}Sf = \frac{g}{H}\xi f_{\eta} + vf_{u}, \quad [\frac{g}{H}\xi f_{\eta}] = [vf_{u}] = L^{2}T^{-3}$$
$$f^{t}Sf = \frac{g}{H}f_{\eta}^{2} + f_{u}^{2}, \quad [\frac{g}{H}f_{\eta}^{2}] = [f_{u}^{2}] = L^{2}T^{-4}$$

Therefore M = I once the equations have been scaled.

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary
			0000			

Stabilization parameters

The spectrum of the scaled differential operator is

$$spec_{\mathcal{S}}\left(\widehat{\mathcal{L}}(k^{0})^{*}S\widehat{\mathcal{L}}(k^{0})\right) = \left\{\left(\varepsilon(k^{0}\cdot u_{0}) + \sqrt{gH}|k^{0}|\right)^{2}, \varepsilon^{2}(k^{0}\cdot u_{0})^{2}, \left(\varepsilon(k^{0}\cdot u_{0}) - \sqrt{gH}|k^{0}|\right)^{2}\right\}$$

If we take $au = diag(au_\eta, au_u, au_u)$ then

$$\operatorname{spec}_{\mathcal{S}}(\tau^{-1}\mathcal{S}\tau^{-1}) = \{\tau_{\eta}^{-2}, \tau_{u}^{-2}, \tau_{u}^{-2}\}$$

from where

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00

Stabilized formulation

The final formulation is

$$0 = \frac{g}{H}(\partial_t \eta_h, \xi_h) - g(\boldsymbol{u}_h, \nabla \xi_h) - \frac{g}{H}(\varepsilon \boldsymbol{u}_0 \eta_h, \nabla \xi_h) - \frac{g}{H}(f_\eta, \xi_h) \\ + (\partial_t \boldsymbol{u}_h, \boldsymbol{v}_h) + g(\nabla \eta_h, \boldsymbol{v}_h) + (\varepsilon \boldsymbol{u}_0 \cdot \nabla \boldsymbol{u}_h, \boldsymbol{v}_h) - (\boldsymbol{f}_u, \boldsymbol{v}_h) \\ + \tau \frac{g}{H}(P'(\partial_t \eta_h + H\nabla \cdot \boldsymbol{u}_h + \varepsilon \boldsymbol{u}_0 \cdot \nabla \eta_h - f_\eta), H\nabla \cdot \boldsymbol{v}_h + \varepsilon \boldsymbol{u}_0 \cdot \nabla \xi_h) \\ + \tau (P'(\partial_t \boldsymbol{u}_h + g \nabla \eta_h + \varepsilon \boldsymbol{u}_0 \cdot \nabla \boldsymbol{u}_h - \boldsymbol{f}_u), g \nabla \xi_h + \varepsilon \boldsymbol{u}_0 \cdot \nabla \boldsymbol{v}_h)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In blue: Galerkin terms In red: stabilization terms In green: scaling coefficients

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Outlin	e					

- Introduction
- 2 General idea
- 3 Just scaling: three field Stokes problem
- Waves in shallow waters
- 5 Stokes-Darcy problem
- 6 MHD problem
- Summary and conclusions

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Proble	em stat	ement				

Differential equations:

$$-
u\Delta \boldsymbol{u} + \sigma \, \boldsymbol{u} +
abla \boldsymbol{p} = \boldsymbol{f}$$

 $abla \cdot \boldsymbol{u} = \boldsymbol{g}$

Variational form:

$$B([\boldsymbol{u},\boldsymbol{p}],[\boldsymbol{v},\boldsymbol{q}]) = L([\boldsymbol{v},\boldsymbol{q}]) \qquad \forall [\boldsymbol{v},\boldsymbol{q}]$$

where

$$\begin{split} \mathcal{B}([\boldsymbol{u},\boldsymbol{\rho}],[\boldsymbol{v},\boldsymbol{q}]) &= \nu(\nabla \boldsymbol{u},\nabla \boldsymbol{v}) + \sigma(\boldsymbol{u},\boldsymbol{v}) - (\boldsymbol{\rho},\nabla\cdot\boldsymbol{v}) + (\boldsymbol{q},\nabla\cdot\boldsymbol{u}) \\ \mathcal{L}([\boldsymbol{v},\boldsymbol{q}]) &= \langle \boldsymbol{f},\boldsymbol{v} \rangle + \langle \boldsymbol{g},\boldsymbol{q} \rangle \end{split}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00

Stabilized finite element problem

The final discrete stabilized problem is:

$$\mathcal{B}_{\mathcal{S}}([\boldsymbol{u}_h, \boldsymbol{\rho}_h], [\boldsymbol{v}_h, q_h]) = L_{\mathcal{S}}([\boldsymbol{v}_h, q_h])$$

where:

$$B_{s}([\boldsymbol{u}_{h},\boldsymbol{p}_{h}],[\boldsymbol{v}_{h},\boldsymbol{q}_{h}]) = B([\boldsymbol{u}_{h},\boldsymbol{p}_{h}],[\boldsymbol{v}_{h},\boldsymbol{q}_{h}]) \\ + \tau_{p} \sum_{K} \langle \nabla \cdot \boldsymbol{u}_{h}, \nabla \cdot \boldsymbol{v}_{h} \rangle_{K} \\ + \tau_{u} \sum_{K} \langle -\nu \Delta \boldsymbol{u}_{h} + \sigma \boldsymbol{u}_{h} + \nabla \boldsymbol{p}_{h}, \nu \Delta \boldsymbol{v}_{h} - \sigma \boldsymbol{v}_{h} + \nabla \boldsymbol{q}_{h} \rangle_{K} \\ + \tau_{f} \sum_{E} \langle [\![\boldsymbol{n}\boldsymbol{p}_{h} - \nu \partial_{n}\boldsymbol{u}_{h}]\!], [\![\boldsymbol{n}\boldsymbol{q}_{h} + \nu \partial_{n}\boldsymbol{v}_{h}]\!] \rangle_{E} \\ L_{s}([\boldsymbol{v}_{h},\boldsymbol{q}_{h}]) = L([\boldsymbol{v}_{h},\boldsymbol{q}_{h}]) \\ + \tau_{p} \sum_{K} \langle \boldsymbol{g}, \nabla \cdot \boldsymbol{v}_{h} \rangle_{K} + \tau_{u} \sum_{K} \langle \boldsymbol{f}, \nu \Delta \boldsymbol{v}_{h} - \sigma \boldsymbol{v}_{h} + \nabla \boldsymbol{q}_{h} \rangle_{K}$$

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Scalir	ng					

Noting the dimensional relationships:

$$[\mathbf{f}] = \left[\frac{\nu}{\ell^2} + \sigma\right][\mathbf{u}] + \frac{1}{[\ell]}[\mathbf{p}]$$
$$[\mathbf{g}] = \frac{1}{[\ell]}[\mathbf{u}]$$

we may take as scaling matrix

$$M = \operatorname{diag}(m_{u}I_{3}, m_{p})$$
$$m_{u} = \left(\frac{\nu}{\ell^{2}} + \sigma\right)^{-1}, \quad m_{p} = \left(\frac{\nu}{\ell^{2}} + \sigma\right)\ell^{2}$$

which satisfies

$$[\mathbf{f}]^2 m_u = [g]^2 m_p = [\mathbf{u}]^2 m_u^{-1} = [p]^2 m_p^{-1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00

Stabilization parameters

Let $\tau = \text{diag}(\tau_u, \tau_u, \tau_p)$ (in 2D). Imposing the design condition

$$\tau = \lambda_{\max}^{-1/2}(k^0)M$$

it is found that

Taus for the Stokes-Darcy problem $\tau_{p} = c_{1}\nu \frac{h^{2}}{\ell^{2}} + c_{2}\sigma\ell h$ $\tau_{u} = (c_{1}\nu + c_{2}\sigma\ell h)^{-1}h^{2}$

It can be argued that $\tau_f = \tau_u / h$, that is to say:

$$\tau_f = (c_1 \nu + c_2^u \sigma \ell h)^{-1} h$$

(日) (日) (日) (日) (日) (日) (日)

Introduction

General idea Just scaling

Waves in shallow waters

Stokes-Darcy problem

MHD problem Summary

Convergence in the Darcy limit (Badia and Codina)

Method	A	В	С
$\ell =$	h	L _o	L_{0}^{2}/h
$\ \boldsymbol{e}_{\boldsymbol{u}}\ $	$h^{k+1} + h'$	$h^{k+1/2} + h^{l+1/2}$	$h^{k} + h^{l+1}$
Original	Suboptimal	Quasi-optimal	Suboptimal
$\ e_u\ $	$h^{k+1} + h'$	$h^{k+1} + h^{l+1}$	$h^{k} + h^{l+1}$
Via duality	Suboptimal	Optimal	Suboptimal
$\ e_{\rho}\ $	$h^{k+1} + h'$	$h^{k+1/2} + h^{l+1/2}$	$h^{k} + h^{l+1}$
Original	Suboptimal	Quasi-optimal	Suboptimal
$\ e_{\rho}\ $	$h^{k+2} + h^{l+1}$	$h^{k+1} + h^{l+1}$	$h^{k} + h^{l+1}$
Via duality	Optimal	Optimal	Suboptimal
$\ \nabla \cdot \boldsymbol{e}_{\boldsymbol{u}}\ $	$h^{k} + h^{l-1}$	$h^k + h'$	$h^{k} + h^{l+1}$
	Suboptimal	Optimal	Optimal
$\ \nabla e_{p}\ $	$h^{k+1} + h'$	$h^k + h'$	$h^{k-1} + h^{l}$
	Optimal	Optimal	Suboptimal
k, I Optimal	k + 1 = l	k = 1	k = l + 1

E 990

Outline	Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
	Outlin	е					

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Introduction
- 2 General idea
- 3 Just scaling: three field Stokes problem
- 4 Waves in shallow waters
- 5 Stokes-Darcy problem
- 6 MHD problem
 - 7 Summary and conclusions

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00

Problem statement

Differential equations:

$$\boldsymbol{a} \cdot \nabla \boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla \boldsymbol{p} + \frac{1}{\mu_m \rho} \boldsymbol{b} \times (\nabla \times \boldsymbol{B}) = \boldsymbol{f}_u$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$
$$-\nabla \times (\boldsymbol{u} \times \boldsymbol{b}) + \frac{1}{\mu_m \sigma} \nabla \times \nabla \times \boldsymbol{B} + \nabla \boldsymbol{r} = \boldsymbol{f}_B$$
$$\nabla \cdot \boldsymbol{B} = \boldsymbol{0}$$

Variational form:

$$B(u, v) = (v, a \cdot \nabla u) + \nu(\nabla v, \nabla u) - (p, \nabla \cdot v) + (q, \nabla \cdot u) + \frac{1}{\mu_{m\rho}} (B, \nabla \times (v \times b)) - \frac{1}{\mu_{m\rho}} (C, \nabla \times (u \times b)) + \frac{1}{\mu_{m\rho}} \frac{1}{\mu_{m\rho}} (\nabla \times C, \nabla \times B) + \frac{1}{\mu_{m\rho}} (\nabla r, C) - \frac{1}{\mu_{m\rho}} (\nabla s, B)$$

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem ○●○	Summary 00

Stabilization terms

The following terms have to be added to the Galerkin ones (ASGS formulation):

$$\begin{aligned} \tau_{1}(\boldsymbol{a} \cdot \nabla \boldsymbol{v} + \nu \Delta \boldsymbol{v} + \nabla \boldsymbol{q} + \frac{1}{\mu_{m\rho}} \boldsymbol{b} \times (\nabla \times \boldsymbol{C}), \\ \boldsymbol{a} \cdot \nabla \boldsymbol{u} - \nu \Delta \boldsymbol{v} + \nabla \boldsymbol{p} + \frac{1}{\mu_{m\rho}} \boldsymbol{b} \times (\nabla \times \boldsymbol{B})) \\ + \tau_{2}(\nabla \cdot \boldsymbol{v}, \nabla \cdot \boldsymbol{u}) \\ + \tau_{3}(-\frac{1}{\mu_{m\rho}} \nabla \times (\boldsymbol{v} \times \boldsymbol{b}) - \frac{1}{\mu_{m\rho}} \frac{1}{\mu_{m\sigma}} \nabla \times \nabla \times \boldsymbol{C} + \frac{1}{\mu_{m\rho}} \nabla \boldsymbol{s}, \\ &- \frac{1}{\mu_{m\rho}} \nabla \times (\boldsymbol{u} \times \boldsymbol{b}) + \frac{1}{\mu_{m\rho}} \frac{1}{\mu_{m\sigma}} \nabla \times \nabla \times \boldsymbol{B} + \frac{1}{\mu_{m\rho}} \nabla \boldsymbol{r}) \\ + \tau_{4}(\frac{1}{\mu_{m\rho}} \nabla \cdot \boldsymbol{C}, \frac{1}{\mu_{m\rho}} \nabla \cdot \boldsymbol{B}) \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● ● ● ●

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary
					000	

Stabilization parameters

Multiplying the equations for **B** by $\frac{1}{\mu_{m\rho}}$, introducing a scaling matrix *M* and applying the design condition $\tau = \lambda_{\max}^{-1/2} (k^0) M$ it is found that

Taus for the MHD problem

$$\tau_{1} = \left(\alpha + \sqrt{\frac{\alpha}{\gamma}}\beta\right)^{-1}, \quad \tau_{2} = h^{2}\tau_{1}^{-1}$$
$$\tau_{3} = \left(\gamma + \sqrt{\frac{\gamma}{\alpha}}\beta\right)^{-1}(\mu_{m}\rho)^{2}, \quad \tau_{4} = h^{2}\tau_{3}^{-1}$$

where

$$\alpha := \frac{a}{h} + \frac{\nu}{h^2}, \quad \beta := \frac{1}{\mu_m \rho} \frac{b}{h}, \quad \gamma := \frac{1}{\mu_m \rho} \frac{1}{\mu_m \sigma} \frac{1}{h^2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary 00
Outlin	е					

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 1 Introduction
- 2 General idea
- 3 Just scaling: three field Stokes problem
- 4 Waves in shallow waters
- 5 Stokes-Darcy problem
- 6 MHD problem
- Summary and conclusions

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary ●0
Sumn	narv an	d conc	lusions			

The process we have proposed consists of:

- Scaling the differential equations with a (diagonal) matrix *M* so that *f^tMg* and *u^tM⁻¹v* are dimensionally consistent.
- Fourier transforming the differential operator to obtain $\widehat{\mathcal{L}}$.
- Choosing τ diagonal.
- Applying the design condition:

$$\tau = \lambda_{\max}^{-1/2}(k^0)M$$

This process has been applied to several problems of interest (three field formulation of the Stokes problem, waves in shallow waters, Stokes-Darcy problem, MHD problem). In all cases, the resulting finite element formulation turns out to be stable and optimally convergent in appropriate norms.

Introduction	General idea	Just scaling	Waves in shallow waters	Stokes-Darcy problem	MHD problem	Summary
						00

THANK YOU!