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Everyday flows: Wake-Vortex Hazard

Airport throughput limitations: separation up to 10 km
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Flow over delta wing
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Grid dependence

Reliability - Error-bounds - Computational costs?
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Role of numerics in LES Pragmatic LES Concluding remarks

Filtering Navier-Stokes equations

∂juj = 0 ; ∂tui + ∂j(uiuj) + ∂ip −
1

Re
∂jjui = 0

Convolution-Filtering: filter-kernel G

ui = L(ui) =

∫
G(x − ξ)u(ξ) dξ ; L(1) = 1

Large-eddy equations:

∂ju j = 0

∂tu i + ∂j(u iuj) + ∂ip −
1

Re
∂jju i = −∂j(uiuj − uiu j)

Sub-filter stress tensor

τij = uiuj − u iuj
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Role of numerics in LES Pragmatic LES Concluding remarks

Spatial filtering, closure problem

Shorthand notation:

NS(u) = 0 ⇒ NS(u) = −∇ · τ(u, u) ⇐ −∇ · M(u)

Basic LES formulation

Find v : NS(v) = −∇ · M(v)

After closure system of PDE’s results:

dynamic range restricted primarily to scales > ∆

does solution v of closed system resemble u ?

Goal in LES: determine the unique solution to system of PDE’s
that results after adopting explicit closure model
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Role of numerics in LES Pragmatic LES Concluding remarks

Numerics in academic LES setting

Goal: approximate the unique solution to system of PDE’s
resulting after adopting explicit closure model

General (textbook) requirements:

Filter separates scales > ∆ from scales < ∆

Computational grid provides additional length-scale h

Require ∆/h to be sufficiently large (∆/h → ∞)

Good numerics: v(x , t : ∆, h) → v(x , t : ∆, 0) rapidly

However:

computational costs ∼ N4: implies modest ∆/h

potentially large role of numerical method in computational
dynamics because of marginal resolution
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Role of numerics in LES Pragmatic LES Concluding remarks

Discretization induces spatial filter

Consider central discretization:

δx (u)j =
1

2h

(
uj+1 − uj−1

)

=
1

2h

∫ xj+h

xj−h
∂xu(ξ) dξ

=
∂

∂x

( ∫ xj+h

xj−h

u(ξ)

2h

)

= ∂x

(
L2h(u)

)
= ∂x (û)

Coarse grids with h ≈ ∆ imply both implicit and explicit filter
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Role of numerics in LES Pragmatic LES Concluding remarks

Modified closure problem

Discretization induces spatial filter: δxu = ∂x (û)
Convective contribution:

∂x(u2) = δx (u2) +
[
∂x (u2) − δx (u2)

]

= δx (u2) + ∂x (u2 − û2) = ∂x (û2) + ∂x(ξ)

Modified mean flux

Computational Turbulent Stress Tensor

ξ = u2 − û2 = (u2 − u2) + (u2 − û2) = τ + H(u2)

Numerically induced high-pass filter:

H(f ) = f − f̂ → 0 as r = ∆/h ≫ 1
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ξ = u2 − û2 = (u2 − u2) + (u2 − û2) = τ + H(u2)
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Role of numerics in LES Pragmatic LES Concluding remarks

Dynamic importance - subgrid resolution

Contributions associated with u = eıkx :

τ = Aτ (k∆)e2ıkx ; H(u2) = AH(k∆, r)e2ıkx
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Dynamic importance - subgrid resolution

Contributions associated with u = eıkx :

τ = Aτ (k∆)e2ıkx ; H(u2) = AH(k∆, r)e2ıkx
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Strong effect r = 1 − 2;
reduction as r ≥ 4
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Role of numerics in LES Pragmatic LES Concluding remarks

LES treatment of convective term
Discretization and modeling introduce errors:

∂j(uiuj) =
[
δj(u iuj) + Di

]
+ ∂jτij

=
[
δj(u iuj) + Di

]
+

{
∂jmij + Ri

}

= δj(u iuj) + δjmij +
(
Di + Ri + D

(m)
i

)

Distinguish:

Di : discretization error from using method δj

Ri = ∂j(τij − mij): total ‘model-residue’

D
(m)
i : error when treating model mij , e.g., filtering

Q1: Justified to ignore Di ? Grid-(in)-dependent LES ?

Q2: Interacting errors? Error-decomposition? Dominance?
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Role of numerics in LES Pragmatic LES Concluding remarks

A priori test: snapshot turbulent mixing
Comparison discretization error and sub-filter flux
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Sub-filter flux (solid): fixed grid, increasing ∆
Discretization error: 2nd order (- -), 4th order (dotted)

At r = 1 discretization dominant – relevance modeling?
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Role of numerics in LES Pragmatic LES Concluding remarks

Total error decomposition

Total (εt )=Discretization (εd ) + Modeling (εm)

Decomposition requires: DNS and LES at various r = ∆/h

Reference via (filtered) DNS data

LES without discretization errors: fixed ∆, r → ∞

LES with both types of errors

Provides a posteriori decomposition:

εd (E) = ELES(∆, r ) − ELES(∆,∞)

εm(E) = ELES(∆,∞) − EDNS(∆, r)

εt(E) = εd (E) + εm(E) = ELES(∆, r) − EDNS(∆, r)

Requires number of LES: various ∆, h, models, schemes ...
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Counter-acting errors: LES-paradoxes
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Decaying turbulence: discretization, modeling and total-error
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Counter-acting errors: LES-paradoxes

0 0.2 0.4 0.6 0.8 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time

er
ro

r i
n 

ki
ne

tic
 e

ne
rg

y

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Decaying turbulence: discretization, modeling and total-error

better model may result in worse predictions

better numerics may result in worse predictions
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Counter-acting errors: LES-paradoxes
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Numerics or modeling or both ?

Observe:

At marginal resolution the numerics strongly modifies the
equations that should be solved

Likewise, the introduction of a subgrid model modifies
these equations

Dilemma: which is to be preferred?

Pragmatic guideline: minimal total error at given
computational costs

NOT: simply combine best numerics and best model
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Experimental error-assessment

Pragmatic: minimal total error at given computational costs

Discuss:

error-landscape/optimal refinement strategy

optimality of MILES in DG-FEM
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Smagorinsky fluid
Homogeneous decaying turbulence at Reλ = 50, 100

Smagorinsky fluid — subgrid model:

mS
ij = −2(CS∆)2|S|S ij = −2ℓ2

S|S|Sij

introduces Smagorinsky-length ℓS
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Accuracy measures
Monitor resolved kinetic energy

E =
1
|Ω|

∫

Ω

1
2

u · u dx =
1
2
〈u · u〉

Measure relative error: top-hat filter ∆, grid h = ∆/r

δE (∆, r) =

∥∥∥∥
ELES(∆, r) − EDNS(∆, r)

EDNS(∆, r)

∥∥∥∥

with error integrated over time

‖f‖2 =
1

t1 − t0

∫ t1

t0
f 2(t)dt

each simulation represented by single number
concise representation facilitates comparison
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Error-landscape: Definition
Framework for collecting error information:

E
h

δ

N

lS

Each Smagorinsky LES corresponds to single point:
(

N,
ℓS

h

)
; error : δE

Contours of δE — fingerprint of LES
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Total error-landscape

combination of central discretization and Smagorinsky
optimum at CS > 0: SGS modeling is viable here
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Error-landscape: optimal refinement
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Dynamic procedure over-estimates viscosity
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Near optimal parameter regions

(a) (b)

(a) energy, (b) energy and enstrophy. In overlap both accurate.

connected, overlapping region N ≥ 48

weighing of errors leads to ‘multi-objective near optimum’
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MILES philosophy
Observation:

practical LES implies marginal resolution

which implies large role of specific numerical discretization

next to dynamics due to subgrid model

and leads to strong interactions and complex
error-accumulation

Proposal:

obtain smoothing via appropriate numerical method alone

accept that there is no grid-independent solution, other
than DNS

accept that predictions become discretization dependent

Is ‘no-model/just numerics’ option optimal/viable ?

Consider example: DG-FEM and homogeneous turbulence
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DG-FEM of homogeneous turbulence
Discretization: Approximate Riemann solver

F = Fcentral + γFdissipative ; HLLC − flux

g
c

c
s

N

ILES plane

ELES plane

Three-dimensional accuracy charts
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LES with DG-FEM: dissipative numerics
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Optimal refinement strategies: 2nd order
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Optimal refinement strategies: 3rd order
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Optimality of MILES ?
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(a): 2nd order ; (b): 3rd order
γc = 1.00 (dot), γc = 0.10 (dash) and γc = 0.01 (–)
2nd: MILES-error larger than with explicit SGS model
3rd: optimum requires explicit SGS model
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Concluding remarks

error-decomposition: modeling, discretization effects
LES-paradoxes and interacting errors: better
models/numerics may not lead to better predictions
error-landscape – optimal refinement strategy
MILES – sub-optimal: examples in which explicit modeling
more efficient/accurate

Error-interaction and a priori error-bounds hard to include:
direct minimization to account for modeling and numerics
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