Explicit Discontinuous Galerkin Schemes for Direct and LES Simulations

Gregor Gassner, Frieder Lörcher, Claus-Dieter Munz

gassner@iag.uni-stuttgart.de

Institut for Aerodynamics and Gasdynamics University of Stuttgart

• Diffusion

- Nodal Integration
- Space-time expansion
- Results

Diffusion I

• Scalar linear heat equation

$$u_t - \Delta u = 0 \tag{1}$$

- Standard approach
 - Resorting to a first order system (Bassi&Rebay 1997)

$$u_t - \nabla \cdot \mathbf{q} = 0 \tag{2}$$
$$\mathbf{q} - \nabla u = 0$$

- 'Classic' weak formulation for extended system
- We need numerical approximation of the solution u and q at grid cell boundaries
- For 3D comp. NSE: 15 auxiliary variables are needed

Page 3

Diffusion II

- Our approach
 - Use the original second order equation
 - Classic weak formulation

$$\langle u_t, \phi \rangle_Q = \langle \Delta u, \phi \rangle_Q,$$

$$\langle u_t, \phi \rangle_Q = (\nabla u \cdot \mathbf{n}, \phi)_{\partial Q} - \langle \nabla u, \nabla \phi \rangle_Q$$
(3)

second integration by parts ('ultra' weak formulation)

$$\langle u_t, \phi \rangle_Q = (\nabla u \cdot \mathbf{n}, \phi)_{\partial Q} - (u, \mathbf{n} \cdot \nabla \phi)_{\partial Q} + \langle u, \Delta \phi \rangle_Q$$
 (4)

- New term strong related to symmetric term in SIP scheme (Nitsche 1971)
- no auxiliary variables
- Can be generalized to non-linear systems if viscous terms have the structure

$$U_t = \nabla \cdot \mathbf{F}(U, \nabla U) = \nabla \cdot (\underline{D}(U) \nabla U)$$
(5)

Diffusion III

- We need approximation of u and $\nabla u \cdot \mathbf{n}$ at grid cell boundary
 - Diffusive generalized Riemann problem (dGRP)

$$u_t - u_{xx} = 0,$$

$$u(x, t = 0) = \begin{cases} u^- + x u_x^- & \text{for } x < 0, \\ u^+ + x u_x^- & \text{for } x > 0 \end{cases}$$
(6)

dGRP solution yields numerical approximation

$$u_x \Big|_{\partial Q} \approx \eta \, \frac{\llbracket u \rrbracket}{\Delta x} + \{u_x\} \quad \text{and} \quad u \Big|_{\partial Q} \approx \{u\}$$
 (7)

- Strong relation to the SIP scheme
- η is a known quantity (depends on the order of the DG polynomial)

IAG

Diffusion IV

• Extension to non-linear diffusion systems

$$U_t - (\underline{D}(U)U_x)_x = 0 \tag{8}$$

Linearization of the diffusion matrix

$$\underline{D}(U) \approx \underline{\widetilde{D}} := \underline{D}(\{U\})$$
(9)

- Diagonalization of $\underline{\widetilde{D}}$ ('characteristic' variables)
- Eigenvalues of $\underline{\widetilde{D}}$ are the diffusion coefficients of the decoupled system
- Use dGRP solution for each of the scalar heat equations
- Back transformation to conservative variables yields dGRP approximation

$$\underline{D}(U)U_x\big|_{\partial Q} \approx \underline{\widetilde{D}}\left(\eta \frac{\llbracket U \rrbracket}{\Delta x} + \{U_x\}\right) \quad \text{and} \quad U\big|_{\partial Q} \approx \{U\}$$
(10)

Diffusion V

• SIP approach (Hartmann et al. 2006)

$$\underline{D}(U)U_x\big|_{\partial Q} \approx \eta_{SIP}\lambda_{max}\frac{\llbracket U \rrbracket}{\Delta x} + \{D(U)U_x\} \quad \text{and} \quad U\big|_{\partial Q} \approx \{U\}$$
(11)

- For advection diffusion problems with semi definite diffusion matrix

$$EOC_{SIP} = \begin{cases} p+1 & \text{for } p \text{ odd} \\ p & \text{for } p \text{ even} \end{cases}$$
(12)

- Compressible NSE (no diffusion in density equation)
 - SIP problem: density jump penalty in density equation
 - dGRP solution: if we multiply jump term with diffusion matrix, no direct penalty term in density equation
 ⇒dGRP approach yields optimal *EOC* for comp. NSE equations
- we tested several semi definite advection diffusion systems with same result

Diffusion VI

- EOC for compressible Navier-Stokes equations
 - grid sequence with triangles, quadrilaterals, hanging nodes and curved elements for *h*-convergence

Diffusion VII

- Exact analytical solution
 - Choose smooth analytical function
 - Insert function into comp. NSE
 - Use right hand side as source term
 - Solve inhomogeneous comp. NSE
- Results

	$L_2(ho e)$	EOC	$L_2(ho e)$	EOC
refinement	p=4		p=5	
0	1,02E-02	-	2,91E-03	-
1	3,48E - 04	4,9	7,31E-05	5,3
2	1,29E-05	4,8	1,07E - 06	6,1
3	4,13E-07	5,0	1,65E-08	6,0

Nodal Integration I

- We choose a modal polynomial representation to simplify *p*-adaption, modal filtering and explicit time stepping. Furthermore, orthogonal hierarchical polynomial trial function are well suited for VMS scale separation.
- Problem: evaluation of the integrals
 - L_2 stability, if integrals computed exactly: not possible for comp. NSE
 - No loss of EOC, if integral evaluation is exact for linear problems
 - Standard approach: numerical integration (Gauss)

$$\left\langle f_1(u), \frac{\partial \phi}{\partial x_1} \right\rangle_Q \approx \sum_{j=1}^{(p+1)^d} f_1(u(\chi_j)) \frac{\partial \phi}{\partial x_1}(\chi_j)\omega_j$$
 (13)

- Gauss points do not lie on the grid cell surface, therefore can not be reused for surface integral
- Example: p = 5 hexahedron needs 216 cubature points for volume integral and 216 cubature points for surface integral (= 432 flux evaluations)

Nodal Integration II

- Our approach: Nodal integration
 - Interpolate pth order polynomial of the non-linear flux f
 - Insert into integral and (pre-)integrate exactly

$$\left\langle f_1(u), \frac{\partial \phi}{\partial x_1} \right\rangle_Q \approx \sum_{i=1}^N f_1(u(\xi_i)) \left\langle \psi_i, \frac{\partial \phi}{\partial x_1} \right\rangle_Q$$
 (14)

number of interpolation points

$$N_{min} = \frac{(p+d)!}{d!p!} \le N \le N_{max} = (p+1)^d$$
(15)

- we can choose int. points that simultaneous support a *p*th order accurate interpolation on the surface
- Example: Interpolation for p = 5 hexahedron with N = 105 points (432 flux evaluations for Gauss approach)

Nodal integration III

• Interpolation points for p = 5.

hexahedron with N = 105

pyramid with N = 74

Nodal integration IV

• Interpolation points for p = 5.

pentahedron with N = 84

tetrahedron with N = 56

Space Time Expansion I

- As we aim to perform large scale computations on massive parallel clusters, we decided to use an explicit time discretization to fully utilize the locality of the DGM
 - Semi discrete DG formulation

$$\langle u_t, \phi \rangle_Q = \underbrace{S(u^{\pm}, \nabla u^{\pm})}_{\text{surface terms volume terms}} + \underbrace{V(u, \nabla u)}_{\text{volume terms}}$$
 (16)

- We simple integrate (16) from time level t_n to t_{n+1}

$$\left\langle u^{n+1}, \phi \right\rangle_Q = \left\langle u^n, \phi \right\rangle_Q + \int_{t_n}^{t_{n+1}} S(u^{\pm}, \nabla u^{\pm}) + V(u, \nabla u) dt$$
 (17)

- We approximate the time integrals with Gauss quadrature
- We need a high order accurate approximation of the solution $\tilde{u} = \tilde{u}(x,t)$ in the space time grid cell $Q \times [t_n; t_{n+1}]$

Space Time Expansion II

• We start with a Taylor space time expansion of the approximative solution at $t = t_n$ and $x = x_B$.

$$\widetilde{u}(x,t) = \sum_{j=1}^{p} \left[(t-t_n)\partial_t + (x-x_B) \cdot \nabla \right]^j u \Big|_{(x_B,t_n)}$$
(18)

- We want that $\tilde{u}(x,t=t_n) = u^n(x)$, thus the pure space derivatives are already available from the DG polynomial
- The mixed space-time and pure time derivatives are approximated using the so-called Cauchy-Kowalewskaya procedure:

- Example: Burgers equation $u_t = -u u_x$

$$u_{tx} = -u_{x}^{2} - uu_{xx}$$

$$u_{tt} = -u_{t}u_{x} - uu_{xt}$$

$$u_{tt} = -(-uu_{x})u_{x} - u(-u_{x}^{2} - uu_{xx})$$
(19)

University of Stuttgart

. . .

Space Time Expansion III

- The local time stepping feature
 - We drop global time levels t_n and introduce the local time level t_{n_i} for every grid cell Q_i
 - We can use the STE approach, just change integration limits to the grid cells local times

$$\left\langle u^{n+1}, \phi \right\rangle_{Q_I} = \left\langle u^n, \phi \right\rangle_{Q_i} + \int_{t_{n_i}}^{t_{n_i+1}} S(u^{\pm}, \nabla u^{\pm}) + V(u, \nabla u) dt$$
(20)

- The RHS of the STE-DG formulation consists of 2 parts:
 - The space-time volume integral needs only local data from the own grid cell. Using the Taylor expansion, this part could be easily evaluated using the approximation \tilde{u} at the space-time Gauss points.
 - The space-time surface integral needs more care, as not only local data, but also data from the adjacent grid cells is needed for the numerical fluxes.

Local Time Stepping I

• To get a stable, high order accurate time consistent and conservative scheme, every grid cell has to satisfy the following **evolve condition**

$$t_{n_i+1}^i \le \min\{t_{n_{i-1}+1}^{i-1}, t_{n_{i+1}+1}^{i+1}\}$$

Local Time Stepping II

• To get a stable, high order accurate time consistent and conservative scheme, every grid cell has to satisfy the following **evolve condition**

$$t_{n_i+1}^i \le \min\{t_{n_{i-1}+1}^{i-1}, t_{n_{i+1}+1}^{i+1}\}$$

Local Time Stepping III

• To get a stable, high order accurate time consistent and conservative scheme, every grid cell has to satisfy the following **evolve condition**

$$t_{n_i+1}^i \le \min\{t_{n_{i-1}+1}^{i-1}, t_{n_{i+1}+1}^{i+1}\}$$

Local Time Stepping IV

• To get a stable, high order accurate time consistent and conservative scheme, every grid cell has to satisfy the following **evolve condition**

$$t_{n_i+1}^i \le \min\{t_{n_{i-1}+1}^{i-1}, t_{n_{i+1}+1}^{i+1}\}$$

Local Time Stepping V

- Visualization of the local time stepping algorithm
 - 1D Euler equations
 - Irregular grid
 - As the problem is nonlinear, the local time steps depend on the solution!
 - Local time stepping space-time grid
- *p*-adaptation fully integrated in local time stepping algorithm
- *p*-adaptation STE-DG scheme fully parallelized and combined with dynamic load balancing
- first tests indicate excellent speed up and scale up efficiency for $\mathscr{O}(1000)$ processors
- more evaluations and applications are needed...

Result I

• Linear Stability Theory

- Shear layer ($M_1 = 0.5$, $M_2 = 0.25$ and $Re_1 = 500$)
- 2D compressible Navier-Stokes equations
- $\approx 180.000 \text{ DOF } p = 6 \text{ STE-DG}$

Result I

• Linear Stability Theory


```
University of Stuttgart IAG
Gregor Gassner Page 23
```

Result II

• Flow past a sphere (M = 0.1, $Re_D = 300$)

boundary layer p = 5, vortex street p = 4, far field p = 1 (≈ 1.2 Mio. DOF)

Result II

- Flow past a sphere (M = 0.1, $Re_D = 300$)
 - Drag, lifting coefficients and Strouhal number

	C_d	ΔC_d	C_l	ΔC_l	Str
	0.673	0.0031	-0.065	0.015	0.135
Tomboulides 1993	0.671	0.0028	_	_	0.136
Johnson&Patel 1999	0.656	0.0035	-0.069	0.016	0.137

University of Stuttgart

Page 25

Result II

- Flow past a sphere (M = 0.1, $Re_D = 300$)
 - Vortex detection using λ_2 criterion

(a) λ_2 iso surface

Outlook

- Hybrid unstructured 3D Code
- Explicit, arbitrary high order accurate in space and time, well suited for high performance computing
- Time accurate local time stepping
- *p*-adaptation in space and time
- Current Task: combine VMS-LES with STE-DG scheme

Parallelization I

• Scale up test, constant load per processor (150.000 DOF)

n _P	1	8	64	512	2197
wallclock time(s)	803	816	818	834	851
efficiency (%)	100.0	98.5	98.2	96.4	94.5

• Speed up test: Shear layer (180.000 DOF)

n _P	50	100	400
Nb DOF/proc	~ 3600	~ 1800	~ 900
efficiency (%)	100.0	101.0	98.1

• Blast Wave Problem with *p*-adaptation

