Explicit Discontinuous GalerkinSchemes for Direct and LESSimulations

Gregor Gassner, Frieder Lörcher, Claus-Dieter Munz

gassner@iag.uni-stuttgart.de

Institut for **^A**erodynamics and **^G**asdynamics University of Stuttgart

University of Stuttgart **Internal Automobile Control** AG

Page 1

\bullet **Diffusion**

- Nodal Integration
- Space-time expansion
- \bullet Results

University of Stuttgart **Intervention Community** IAG

Diffusion I

• Scalar linear heat equation

$$
u_t - \Delta u = 0 \tag{1}
$$

- \bullet Standard approach
	- –Resorting to ^a first order system (Bassi&Rebay 1997)

$$
u_t - \nabla \cdot \mathbf{q} = 0
$$

$$
\mathbf{q} - \nabla u = 0
$$
 (2)

- 'Classic' weak formulation for extended system
- We need numerical approximation of the solution *^u* –and **^q** at grid cell boundaries
- For 3D comp. NSE: ¹⁵ auxiliary variables are needed

Diffusion II

- Our approach
	- –Use the original second order equation
	- Classic weak formulation

$$
\langle u_t, \phi \rangle_Q = \langle \Delta u, \phi \rangle_Q, \langle u_t, \phi \rangle_Q = (\nabla u \cdot \mathbf{n}, \phi)_{\partial Q} - \langle \nabla u, \nabla \phi \rangle_Q
$$
\n(3)

second integration by parts ('ultra' weak formulation)

$$
\langle u_t, \phi \rangle_Q = (\nabla u \cdot \mathbf{n}, \phi)_{\partial Q} - (u, \mathbf{n} \cdot \nabla \phi)_{\partial Q} + \langle u, \Delta \phi \rangle_Q \tag{4}
$$

- –New term strong related to symmetric term in SIP scheme (Nitsche 1971)
- –no auxiliary variables
- •Can be generalized to non-linear systems if viscous terms have the structure

$$
U_t = \nabla \cdot \mathbf{F}(U, \nabla U) = \nabla \cdot (\underline{D}(U)\nabla U)
$$
\n(5)

University of Stuttgart **Internal Automobile Control Control Control Control Control Control Control Control Co**

Diffusion III

- We need approximation of *^u* and [∇]*^u* · **ⁿ** at grid cell boundary
	- –Diffusive generalized Riemann problem (dGRP)

$$
u_t - u_{xx} = 0,
$$

\n
$$
u(x, t = 0) = \begin{cases} u^- + xu_x^- & \text{for } x < 0, \\ u^+ + xu_x^- & \text{for } x > 0 \end{cases}
$$
 (6)

–dGRP solution yields numerical approximation

$$
u_x|_{\partial Q} \approx \eta \frac{\llbracket u \rrbracket}{\Delta x} + \{u_x\}
$$
 and $u|_{\partial Q} \approx \{u\}$ (7)

- Strong relation to the SIP scheme
- η is a known quantity (depends on the order of the DG polynomial)

Diffusion IV

• Extension to non-linear diffusion systems

$$
U_t - (\underline{D}(U)U_x)_x = 0 \tag{8}
$$

Linearization of the diffusion matrix

$$
\underline{D}(U) \approx \underline{\widetilde{D}} := \underline{D}(\{U\})
$$
\n(9)

- Diagonalization of \widetilde{D} ('characteristic' variables)
- Eigenvalues of \widetilde{D} are the diffusion coefficients of the decoupled system
- Use dGRP solution for each of the scalar heat equations
- –Back transformation to conservative variables yields dGRP approximation

$$
\underline{D}(U)U_x\big|_{\partial Q} \approx \underline{\widetilde{D}}\left(\eta \frac{\llbracket U \rrbracket}{\Delta x} + \{U_x\}\right) \quad \text{and} \quad U\big|_{\partial Q} \approx \{U\} \tag{10}
$$

University of Stuttgart **Internal Automobile Contract Contra**

Diffusion V

• SIP approach (Hartmann et al. 2006)

$$
\underline{D}(U)U_x|_{\partial Q} \approx \eta_{SIP} \lambda_{max} \frac{\llbracket U \rrbracket}{\Delta x} + \{D(U)U_x\} \quad \text{and} \quad U|_{\partial Q} \approx \{U\} \tag{11}
$$

For advection diffusion problems with semi definite diffusion matrix

$$
EOC_{SIP} = \begin{cases} p+1 & \text{for } p \text{ odd} \\ p & \text{for } p \text{ even} \end{cases} \tag{12}
$$

- • Compressible NSE (no diffusion in density equation)
	- SIP problem: density jump penalty in density equation
	- dGRP solution: if we multiply jump term with diffusion matrix, no direct penalty term in density equation \Rightarrow dGRP approach yields optimal EOC for comp. NSE equations
	- we tested several semi definite advection diffusion systems with same result

•

Diffusion VI

- EOC for compressible Navier-Stokes equations
	- – grid sequence with triangles, quadrilaterals, hanging nodes and curved elements for *^h*-convergence

Diffusion VII

- Exact analytical solution
	- Choose smooth analytical function –
	- –Insert function into comp. NSE
	- Use right hand side as source term–
	- $-$ Solve inhomogeneous comp. NSE –
- \bullet **Results**

Page 9

Nodal Integration I

- We choose ^a modal polynomial representation to simplify *^p*-adaption, modal filtering and explicit time stepping. Furthermore, orthogonal hierarchical polynomial trial function are well suited for VMS scale separation.
- Problem: evaluation of the integrals
	- L_2 stability, if integrals computed exactly: not possible for comp. NSE
	- No loss of EOC, if integral evaluation is exact for linear problems
	- Standard approach: numerical integration (Gauss)

$$
\left\langle f_1(u), \frac{\partial \phi}{\partial x_1} \right\rangle_{Q} \approx \sum_{j=1}^{(p+1)^d} f_1(u(\chi_j)) \frac{\partial \phi}{\partial x_1}(\chi_j) \omega_j \tag{13}
$$

- Gauss points do not lie on the grid cell surface, therefore can not be reused for surface integral
- $-$ Example: $p = 5$ hexahedron needs 216 cubature points for volume integral and 216 cubature points for surface integral ($= 432$ flux evaluations)

Nodal Integration II

- Our approach: Nodal integration
	- –Interpolate *^p*th order polynomial of the non-linear flux *^f*
	- –Insert into integral and (pre-)integrate exactly

$$
\left\langle f_1(u), \frac{\partial \phi}{\partial x_1} \right\rangle_{Q} \approx \sum_{i=1}^{N} f_1(u(\xi_i)) \left\langle \psi_i, \frac{\partial \phi}{\partial x_1} \right\rangle_{Q}
$$
 (14)

number of interpolation points

$$
N_{min} = \frac{(p+d)!}{d!p!} \le N \le N_{max} = (p+1)^d \tag{15}
$$

- we can choose int. points that simultaneous support ^a *^p*th order accurate interpolation on the surface
- $-$ Example: Interpolation for $p = 5$ hexahedron with $N = 105$ points (432 flux evaluations for Gauss approach)

Page 11

Nodal integration III

 \bullet • Interpolation points for $p = 5$.

hexahedron with $N=\,$

pyramid with $N = 74$

University of Stuttgart **International Community** of Stuttgart

Page 12

Nodal integration IV

 \bullet • Interpolation points for $p = 5$.

pentahedron with $N=\,$

tetrahedron with $N = 56$

University of Stuttgart **Intervention Community** IAG

Space Time Expansion I

- • As we aim to perform large scale computations on massive parallel clusters, wedecided to use an explicit time discretization to fully utilize the locality of theDGM
	- Semi discrete DG formulation

$$
\langle u_t, \phi \rangle_Q = \underbrace{S(u^{\pm}, \nabla u^{\pm})}_{\text{surface terms}} + \underbrace{V(u, \nabla u)}_{\text{volume terms}}
$$
 (16)

We simple integrate ([16\)](#page-13-0) from time level t_n to t_{n+1}

$$
\left\langle u^{n+1},\phi\right\rangle_{Q}=\left\langle u^{n},\phi\right\rangle_{Q}+\int\limits_{t_{n}}^{t_{n+1}}S(u^{\pm},\nabla u^{\pm})+V(u,\nabla u)dt\qquad \qquad (17)
$$

- We approximate the time integrals with Gauss quadrature
- We need a high order accurate approximation of the solution $\widetilde{u} = \widetilde{u}(x,t)$ in the space time grid cell $Q \times [t_n;t_{n+1}]$

Space Time Expansion II

• We start with ^a Taylor space time expansion of the approximative solution at $t = t_n$ and $x = x_B$.

$$
\widetilde{u}(x,t) = \sum_{j=1}^{p} \left[(t - t_n) \partial_t + (x - x_B) \cdot \nabla \right]^j u \big|_{(x_B, t_n)}
$$
(18)

- We want that $\widetilde{u}(x,t=t_n) = u^n(x)$, thus the pure space derivatives are already available from the DG polynomial
- • The mixed space-time and pure time derivatives are approximated using theso-called Cauchy-Kowalewskaya procedure:

– $-$ Example: Burgers equation $u_t = -u u_x$

$$
u_{tx} = -u_x^2 - uu_{xx}
$$

\n
$$
u_{tt} = -u_t u_x - uu_{xt}
$$

\n
$$
u_{tt} = -(-uu_x)u_x - u(-u_x^2 - uu_{xx})
$$
\n(19)

University of Stuttgart **Internal Automobile Control** AG

···

Space Time Expansion III

- • The local time stepping feature
	- $-$ We drop global time levels t_n and introduce the local time level t_{n_i} for every grid cell *Qⁱ*
	- We can use the STE approach, just change integration limits to the grid cells local times

$$
\left\langle u^{n+1},\phi\right\rangle_{Q_I}=\left\langle u^n,\phi\right\rangle_{Q_i}+\int\limits_{t_{n_i}}^{t_{n_i+1}}S(u^{\pm},\nabla u^{\pm})+V(u,\nabla u)dt\qquad \qquad (20)
$$

- The RHS of the STE-DG formulation consists of ² parts:
	- · The space-time volume integral needs only local data from the owngrid cell. Using the Taylor expansion, this part could be easilyevaluated using the approximation \widetilde{u} at the space-time Gauss points.
	- · The space-time surface integral needs **more care**, as not only local data, but also data from the adjacent grid cells is needed for thenumerical fluxes.

Local Time Stepping I

 \bullet To get ^a stable, high order accurate time consistent and conservative scheme, every grid cell has to satisfy the following **evolve condition**

$$
t_{n_i+1}^i \le \min\{t_{n_{i-1}+1}^{i-1}, t_{n_{i+1}+1}^{i+1}\}
$$

University of Stuttgart

Local Time Stepping II

 \bullet To get ^a stable, high order accurate time consistent and conservative scheme, every grid cell has to satisfy the following **evolve condition**

$$
t_{n_i+1}^i \le \min\{t_{n_{i-1}+1}^{i-1}, t_{n_{i+1}+1}^{i+1}\}
$$

Local Time Stepping III

 \bullet To get ^a stable, high order accurate time consistent and conservative scheme, every grid cell has to satisfy the following **evolve condition**

$$
t_{n_i+1}^i \le \min\{t_{n_{i-1}+1}^{i-1}, t_{n_{i+1}+1}^{i+1}\}
$$

University of Stuttgart

Local Time Stepping IV

 \bullet To get ^a stable, high order accurate time consistent and conservative scheme, every grid cell has to satisfy the following **evolve condition**

$$
t_{n_i+1}^i \le \min\{t_{n_{i-1}+1}^{i-1}, t_{n_{i+1}+1}^{i+1}\}
$$

Local Time Stepping V

- Visualization of the local time stepping algorithm
	- 1D Euler equations
	- Irregular grid
	- As the problem is nonlinear, the local time steps depend on the solution!
	- Local time stepping space-time grid
- *^p*-adaptation fully integrated in local time stepping algorithm
- **•** *p*-adaptation STE-DG scheme fully parallelized and combined with dynamic •load balancing
- •first tests indicate excellent speed up and scale up efficiency for $\mathcal{O}(1000)$ processors
- more evaluations and applications are needed...

Result I

 \bullet Linear Stability Theory

- – $-$ Shear layer ($M_1 = 0.5$, $M_2 = 0.25$ and $Re_1 = 500$)
- 2D compressible Navier-Stokes equations
- – $-$ ≈ 180.000 DOF $p = 6$ STE-DG

Result I

 \bullet Linear Stability Theory

University of Stuttgart **Intervention Community** IAG Page 23 Gregor Gassner Γ Page 23

Result II

 \bullet • Flow past a sphere $(M = 0.1, Re_D = 300)$

boundary layer $p = 5$, vortex street $p = 4$, far field $p = 1~(\approx 1.2$ Mio. DOF)

University of Stuttgart **Intervention Community** IAG

Result II

- \bullet • Flow past a sphere $(M = 0.1, Re_D = 300)$
	- –Drag, lifting coefficients and Strouhal number

Page 25

Result II

- \bullet • Flow past a sphere $(M = 0.1, Re_D = 300)$
	- $\overline{}$ Vortex detection using λ_2 criterion

(a) λ_2 iso surface

University of Stuttgart **Intervention Community** IAG

Gregor Gassner

Page 26 **r** Page 26

Outlook

- Hybrid unstructured 3D Code
- • Explicit, arbitrary high order accurate in space and time, well suited for highperformance computing
- •Time accurate local time stepping
- *^p*-adaptation in space and time
- •Current Task: combine VMS-LES with STE-DG scheme

Parallelization I

• Scale up test, constant load per processor (150.⁰⁰⁰ DOF)

• Speed up test: Shear layer (180.000 DOF)

 \bullet ● Blast Wave Problem with *p*-adaptation

University of Stuttgart **Intervention Community** IAG