## Suitability/Entropy/LES

#### Jean-Luc Guermond

Department of Mathematics Texas A&M University and LIMSI, Orsay

Workshop VMS 2008 Universität des Saarlandes June 23-24, 2008



\_\_\_ ► <







@ ▶ ∢ ≣

э

Jean-Luc Guermond Suitability/Entropy/LES



2 GALERKIN APPROX IN TORUS



→ ∢ ∃



- 2 GALERKIN APPROX IN TORUS
- **3** GALERKIN APPROX + DIRICHLET





- 2 GALERKIN APPROX IN TORUS
- **3** GALERKIN APPROX + DIRICHLET
- ARE SUITABLE SOLUTIONS USEFUL?





- 2 GALERKIN APPROX IN TORUS
- **3** GALERKIN APPROX + DIRICHLET
- ARE SUITABLE SOLUTIONS USEFUL?
- 5 NEW STABILIZATION/NUMERICAL TESTS



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

#### OUTLINE



Claude Louis Marie Henri Navier



George Gabriel Stokes

BASIC FACTS ABOUT THE NSE
 GALERKIN APPROX IN TORUS
 GALERKIN APPROX + DIRICHLET
 ARE SUITABLE SOLUTIONS USEFUL?
 NEW STABILIZATION/NUMERICAL TESTS

(日) (同) (三) (三)



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

#### THE NAVIER-STOKES EQUATIONS

• *u*: velocity, *p*: pressure



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

#### THE NAVIER-STOKES EQUATIONS

- *u*: velocity, *p*: pressure
- $\Omega$  is a bounded fluid domain in  $\mathbb{R}^3$

$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla p - \nu \nabla^2 u = f & \text{in } \Omega \\ \nabla \cdot u = 0 & \text{in } \Omega, \\ u|_{\Gamma} = 0 & \text{or } u \text{ is periodic,} \\ u|_{t=0} = u_0, \end{cases}$$



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

#### THE NAVIER-STOKES EQUATIONS

- u: velocity, p: pressure
- $\Omega$  is a bounded fluid domain in  $\mathbb{R}^3$

$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla p - \nu \nabla^2 u = f & \text{in } \Omega \\ \nabla \cdot u = 0 & \text{in } \Omega, \\ u|_{\Gamma} = 0 & \text{or } u \text{ is periodic,} \\ u|_{t=0} = u_0, \end{cases}$$

- *u*<sub>0</sub> is the initial data.
- f a source term.
- $\rho$  is chosen equal to unity.
- $\nu$  is viscosity (inverse of Reynolds number).



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

イロト イ伺ト イヨト イヨト

#### EXISTENCE

 J. Leray (1934): introduces the notion of turbulent solution. A turbulent solution is a weak solution in u ∈ L<sup>2</sup>(0, T; H<sup>1</sup>(Ω)) ∩ L<sup>∞</sup>(0, T; L<sup>2</sup>(Ω)) + global energy inequality.



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

< ロ > < 同 > < 三 > < 三

#### EXISTENCE

- J. Leray (1934): introduces the notion of turbulent solution.
  A turbulent solution is a weak solution in
  u ∈ L<sup>2</sup>(0, T; H<sup>1</sup>(Ω)) ∩ L<sup>∞</sup>(0, T; L<sup>2</sup>(Ω))
  + global energy inequality.
- J. Leray uses mollification to prove existence:  $\psi \in D(\mathbb{R}^3), \ \psi \ge 0, \ \int_{\mathbb{R}^3} \psi = 1, \ \psi_{\epsilon}(x) = \frac{1}{\epsilon} \psi\left(\frac{x}{\epsilon}\right).$

$$\partial_t u_{\epsilon} + (\psi_{\epsilon} * u_{\epsilon}) \cdot \nabla u_{\epsilon} + \nabla p_{\epsilon} - \nu \nabla^2 u_{\epsilon} = f$$



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

・ロト ・同ト ・ヨト ・ヨト

#### EXISTENCE

- J. Leray (1934): introduces the notion of turbulent solution. A turbulent solution is a weak solution in u ∈ L<sup>2</sup>(0, T; H<sup>1</sup>(Ω)) ∩ L<sup>∞</sup>(0, T; L<sup>2</sup>(Ω)) + global energy inequality.
- J. Leray uses mollification to prove existence:  $\psi \in D(\mathbb{R}^3), \ \psi \ge 0, \ \int_{\mathbb{R}^3} \psi = 1, \ \psi_{\epsilon}(x) = \frac{1}{\epsilon} \psi\left(\frac{x}{\epsilon}\right).$

$$\partial_t u_{\epsilon} + (\psi_{\epsilon} * u_{\epsilon}) \cdot \nabla u_{\epsilon} + \nabla p_{\epsilon} - \nu \nabla^2 u_{\epsilon} = f$$

• E. Hopf (1951) *et al.* uses the Galerkin technique to prove existence.





THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

• Are weak solutions unique in the large?





THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

- Are weak solutions unique in the large?
- $\Leftrightarrow$  Are weak solutions classical for T large?





THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

- Are weak solutions unique in the large?
- $\Leftrightarrow$  Are weak solutions classical for T large?

 $\Rightarrow$  Clay Institute 1M\$ prize.



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

#### SUITABLE WEAK SOLUTION

#### Definition (V. Scheffer (1976))

A NS weak solution is said to be suitable weak solutions iff (u, p) is a weak solution and

$$\partial_t(\frac{1}{2}u^2) + \nabla \cdot (u(\frac{1}{2}u^2 + p)) - \nu \nabla^2(\frac{1}{2}u^2) + \nu (\nabla u)^2 - f \cdot u \leq 0.$$

in  $\mathcal{D}'((0, T) \times \Omega)$ 



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

#### SUITABLE WEAK SOLUTION



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

#### SUITABLE WEAK SOLUTION



•  $\mathcal{P}^1(S) = \lim_{\delta \to 0^+} \inf\{\sum r_i^1, S \subset \bigcup Q(M_i, r_i), r_i < \delta\}$ 



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

#### SUITABLE WEAK SOLUTION

Theorem (Caffarelli-Kohn-Nirenberg (1982))

If (u, p) is a suitable weak solutions, then  $\mathcal{P}^1(S) = 0$ 



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

#### SUITABLE WEAK SOLUTION

Theorem (Caffarelli-Kohn-Nirenberg (1982))

If (u, p) is a suitable weak solutions, then  $\mathcal{P}^1(S) = 0$ 

⇒ Singularities (if any) of suitable weak solutions are pointwise in space/time.



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

< □ > < □ > < □ > < □ >

#### SUITABLE WEAK SOLUTION

Theorem (Caffarelli-Kohn-Nirenberg (1982))

If (u, p) is a suitable weak solutions, then  $\mathcal{P}^1(S) = 0$ 

⇒ Singularities (if any) of suitable weak solutions are pointwise in space/time.

Best partial regularity theorem to date.



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

#### **EX 1: CONSTRUCTION BY MOLLIFICATION**

• Leray's mollification

$$\partial_t u_{\epsilon} + (\psi_{\epsilon} * u_{\epsilon}) \cdot \nabla u_{\epsilon} + \nabla p_{\epsilon} - \nu \nabla^2 u_{\epsilon} = f$$



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

#### **EX 1: CONSTRUCTION BY MOLLIFICATION**

Leray's mollification

$$\partial_t u_\epsilon + (\psi_\epsilon * u_\epsilon) \cdot \nabla u_\epsilon + \nabla p_\epsilon - \nu \nabla^2 u_\epsilon = f$$

• CKN's retarded mollification (same idea as Leray's)



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

< ロ > < 同 > < 三 > < 三 >

#### **EX 1: CONSTRUCTION BY MOLLIFICATION**

Leray's mollification

$$\partial_t u_\epsilon + (\psi_\epsilon * u_\epsilon) \cdot \nabla u_\epsilon + \nabla p_\epsilon - \nu \nabla^2 u_\epsilon = f$$

• CKN's retarded mollification (same idea as Leray's)

Theorem (Leray (1934), Duchon-Robert (2000)) Unique weak solution for all t > 0 if  $\alpha > \frac{d+2}{4}$ , and  $u_{\epsilon} \xrightarrow{\rightarrow} u$  (up to subsequences) and u is suitable.

THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

#### **EX 2: CONSTRUCTION BY MOLLIFICATION/NLGM**

• Assume hereafter  $\Omega$  is the 3D torus



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

- Assume hereafter  $\Omega$  is the 3D torus
- $\varepsilon$  be a positive number (large eddy scales)



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

- Assume hereafter  $\Omega$  is the 3D torus
- $\varepsilon$  be a positive number (large eddy scales)

• Set 
$$N_{\varepsilon} = \frac{1}{\varepsilon}$$



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

- Assume hereafter  $\Omega$  is the 3D torus
- $\varepsilon$  be a positive number (large eddy scales)
- Set  $N_{\varepsilon} = \frac{1}{\varepsilon}$
- Set  $\mathbf{X}_{\varepsilon} = \dot{\mathbb{P}}_{N_{\varepsilon}}$  (velocity space).

THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

- Assume hereafter  $\Omega$  is the 3D torus
- $\varepsilon$  be a positive number (large eddy scales)
- Set  $N_{\varepsilon} = \frac{1}{\varepsilon}$
- Set  $\mathbf{X}_{\varepsilon} = \dot{\mathbb{P}}_{N_{\varepsilon}}$  (velocity space).
- Let  $P_{\varepsilon} : \dot{\mathbf{L}}^2(\Omega) \longrightarrow \mathbf{X}_{\varepsilon}$  be  $L^2$ -projection.

$$\dot{\mathsf{L}}^2(\Omega) = \mathsf{X}_arepsilon \oplus (\mathsf{X}_arepsilon)^\perp$$



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

### **EX 2: CONSTRUCTION BY MOLLIFICATION/NLGM**

• Solve for  $u_{\epsilon}$ ,  $p_{\epsilon}$  s.t.

$$\begin{cases} \partial_t (P_{\varepsilon} u_{\epsilon}) + P_{\varepsilon} u_{\epsilon} \cdot \nabla u_{\epsilon} + \nabla p_{\epsilon} - \nu \nabla^2 u_{\epsilon} = \mathbf{f} \quad \text{in } \Omega \\ \nabla \cdot u_{\epsilon} = 0 \quad \text{in } \Omega, \\ u_{\epsilon} \text{ is periodic}, \quad u_{\epsilon}|_{t=0} = u_0, \end{cases}$$



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

・ロト ・同ト ・ヨト ・ヨト

# **EX 2: CONSTRUCTION BY MOLLIFICATION/NLGM**

• Solve for  $u_{\epsilon}$ ,  $p_{\epsilon}$  s.t.

$$\begin{cases} \partial_t (P_{\varepsilon} u_{\epsilon}) + P_{\varepsilon} u_{\epsilon} \cdot \nabla u_{\epsilon} + \nabla p_{\epsilon} - \nu \nabla^2 u_{\epsilon} = \mathbf{f} \quad \text{in } \Omega \\ \nabla \cdot u_{\epsilon} = 0 \quad \text{in } \Omega, \\ u_{\epsilon} \text{ is periodic}, \quad u_{\epsilon}|_{t=0} = u_0, \end{cases}$$

#### Theorem

For all  $\epsilon > 0$ , problem is well-posed (existence + uniqueness).  $u_{\epsilon} \rightarrow u$ ,  $p_{\epsilon} \rightarrow p$  as  $\epsilon \rightarrow 0$  (in appropriate spaces, up to subsequences), u and p are suitable weak solution to N.S.

THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

### **EX 3: CONSTRUCTION BY HYPERVISCOSITY**

• Add a vanishing hyperviscosity (Lions (1959). Ω is the *d*-torus, *d* is the space dimension.

$$\begin{cases} \partial_t u_{\epsilon} + u_{\epsilon} \cdot \nabla u_{\epsilon} + \nabla p_{\epsilon} - \nu \nabla^2 u_{\epsilon} + \varepsilon^{2\alpha} (-\nabla^2)^{\alpha} u_{\epsilon} = f, \\ \nabla \cdot u_{\epsilon} = 0 \\ u_{\epsilon} \text{ is periodic}, \\ u_{\epsilon}|_{t=0} = u_0. \end{cases}$$



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

# **EX 3: CONSTRUCTION BY HYPERVISCOSITY**

• Add a vanishing hyperviscosity (Lions (1959). Ω is the *d*-torus, *d* is the space dimension.

$$\begin{cases} \partial_t u_{\epsilon} + u_{\epsilon} \cdot \nabla u_{\epsilon} + \nabla p_{\epsilon} - \nu \nabla^2 u_{\epsilon} + \varepsilon^{2\alpha} (-\nabla^2)^{\alpha} u_{\epsilon} = f, \\ \nabla \cdot u_{\epsilon} = 0 \\ u_{\epsilon} \text{ is periodic}, \\ u_{\epsilon}|_{t=0} = u_0. \end{cases}$$

#### Theorem (Lions (1959), Beirão da Veiga (1985))

Unique weak solution for all t > 0 if  $\alpha > \frac{d+2}{4}$ , and  $u_{\epsilon} \xrightarrow[\epsilon \to 0]{} u$  (up to subsequences) and u is suitable.

#### THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)

QUESTIONS Hyperviscosity Leray regularization Suitable weak solutions Hopf/Galerkin **?**??? Weak solutions



THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(日) (同) (三) (三)



Q1: Is the set of suitable solutions a proper subset of weak solutions?


THE NAVIER-STOKES EQUATIONS EXISTENCE/UNIQUENESS SUITABLE WEAK SOLUTION CONSTRUCTION OF SUITABLE SOLUTIONS

(ロ) (同) (ヨ) (ヨ



Q1: Is the set of suitable solutions a proper subset of weak solutions?

Q2: Do the Galerkin solutions end up to be suitable after all?



OUTLINE



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

BASIC FACTS ABOUT THE NSE
 GALERKIN APPROX IN TORUS
 GALERKIN APPROX + DIRICHLET
 ARE SUITABLE SOLUTIONS USEFUL?
 NEW STABILIZATION/NUMERICAL TESTS

(日) (同) (三) (三)

oris Grigorievich Galerkin



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

## **HYPOTHESES/DEFINITIONS**

•  $\Omega$  is the three-dimensional torus.



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

## **HYPOTHESES/DEFINITIONS**

- Ω is the three-dimensional torus.
- Finite element spaces,  $X_h \subset \mathbf{H}^1_{\#}(\Omega)$  for velocity and

 $M_h \subset H^1_{\#}(\Omega)$  for pressure.



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

# HYPOTHESES/DEFINITIONS

- Ω is the three-dimensional torus.
- Finite element spaces, X<sub>h</sub> ⊂ H<sup>1</sup><sub>#</sub>(Ω) for velocity and M<sub>h</sub> ⊂ H<sup>1</sup><sub>#</sub>(Ω) for pressure.
- Assume there is c > 0 independent of h such that

$$orall q_h \in M_h, \qquad \sup_{0 
eq v_h \in X_h} rac{(
abla q_h, v_h)}{\|v_h\|_{\mathbf{L}^2}} \geq c \|
abla q_h\|_{\mathbf{L}^2}.$$



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

# HYPOTHESES/DEFINITIONS

- Ω is the three-dimensional torus.
- Finite element spaces, X<sub>h</sub> ⊂ H<sup>1</sup><sub>#</sub>(Ω) for velocity and M<sub>h</sub> ⊂ H<sup>1</sup><sub>#</sub>(Ω) for pressure.
- Assume there is c > 0 independent of h such that

$$\forall q_h \in M_h, \qquad \sup_{0 \neq v_h \in X_h} rac{(
abla q_h, v_h)}{\|v_h\|_{\mathbf{L}^2}} \geq c \|
abla q_h\|_{\mathbf{L}^2}.$$

• Modify the nonlinear term as follows:

$$b_h(u, v, v) = \begin{cases} (u \cdot \nabla u + \frac{1}{2}u \nabla \cdot u, v) & (\text{Temam, 1967}) \\ ((\nabla \times u) \times u + \frac{1}{2} \nabla (\mathcal{K}_h(u^2)), v) \end{cases}$$

where  $\mathcal{K}_h : L^2(\Omega) \longrightarrow M_h$ , linear  $L^2$ -stable approximation operator.

THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

# HYPOTHESES/DEFINITIONS (ctd.)

#### Definition (Discrete commutator property)

There is an operator  $P_h \in \mathcal{L}(H^1_{\#}(\Omega); X_h)$  (resp.  $Q_h \in \mathcal{L}(L^2(\Omega); M_h)$ ) such that for all  $\phi$  in  $W^{2,\infty}_{\#}(\Omega)$  (resp. all  $\phi$  in  $W^{1,\infty}_{\#}(\Omega)$ ) and all  $v_h \in X_h$  (resp. all  $q_h \in M_h$ )

$$\begin{split} \|\phi v_h - P_h(\phi v_h)\|_{H^l} &\leq c \ h^{1+m-l} \|v_h\|_{H^m} \|\phi\|_{W^{m+1,\infty}}, \quad 0 \leq l \leq m \leq 1 \\ \|\phi q_h - Q_h(\phi q_h)\|_{L^2} &\leq c \ h \|q_h\|_{L^2} \|\phi\|_{W^{1,\infty}}. \end{split}$$



< ロ > < 同 > < 三 > < 三

THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

# HYPOTHESES/DEFINITIONS (ctd.)

• For instance we want:

 $\|\phi v_h - P_h(\phi v_h)\|_{L^2} \le c h \|v_h\|_{L^2} \|\phi\|_{W^{1,\infty}},$ 



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

# HYPOTHESES/DEFINITIONS (ctd.)

- For instance we want:
  - $\|\phi v_h P_h(\phi v_h)\|_{L^2} \le c h \|v_h\|_{L^2} \|\phi\|_{W^{1,\infty}}$ ,
- FE and wavelet-based approximation spaces have the discrete commutator property (local interpolation properties).



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

< D > < A > < B >

# HYPOTHESES/DEFINITIONS (ctd.)

• For instance we want:

 $\|\phi v_h - P_h(\phi v_h)\|_{L^2} \le c h \|v_h\|_{L^2} \|\phi\|_{W^{1,\infty}},$ 

- FE and wavelet-based approximation spaces have the discrete commutator property (local interpolation properties).
- Fourier-based approximation spaces do not have the discrete commutator property (No local interpolation properties).



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

## GALERKIN FORMULATION

• Seek 
$$u_h \in C^1([0, T]; X_h)$$
 and  $p_h \in C^0([0, T]; M_h)$  such that for all  $v_h \in X_h$ , all  $q_h \in M_h$ , and all  $t \in [0, T]$ 

$$\begin{cases} (\partial_t u_h, \mathbf{v}) + \mathbf{b}_h(u_h, u_h, \mathbf{v}) - (\mathbf{p}_h, \nabla \cdot \mathbf{v}) + \nu(\nabla u_h, \nabla \mathbf{v}) = \langle f, \mathbf{v} \rangle, \\ (\nabla \cdot u_h, q) = 0, \\ u_h|_{t=0} = \mathcal{I}_h u_0, \end{cases}$$

where  $\mathcal{I}_h : L^2(\Omega) \longrightarrow V_h$ ,  $L^2$ -stable interpolation operator.



### THE MAIN RESULT

THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

#### Theorem (Guermond (2006))

Under the above hypotheses, if  $X_h$  and  $M_h$  have the discrete commutator property, the couple  $(u_h, p_h)$  convergences to a suitable solution to NS.



### THE MAIN RESULT

Theorem (Guermond (2006))

Under the above hypotheses, if  $X_h$  and  $M_h$  have the discrete commutator property, the couple  $(u_h, p_h)$  convergences to a suitable solution to NS.

THE HYPOTHESES

THE MAIN RESULT

• Question was open since Scheffer (1977).



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

## THE MAIN RESULT (ctd.)

 The main trick: no boundary condition ⇒ easy estimate on the pressure

 $\|p_h\|_{L^{4/3}((0,T);L^2(\Omega))} \leq c.$ 



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

< < >> < <</p>

## THE MAIN RESULT (ctd.)

• The main trick: no boundary condition  $\Rightarrow$  easy estimate on the pressure

 $\|p_h\|_{L^{4/3}((0,T);L^2(\Omega))} \leq c.$ 

• Use the discrete commutator property to pass to the limit on nonlinear terms:  $u_h p_h$  and  $u_h u_h^2$ .



THE HYPOTHESES THE GALERKIN FORMULATION THE MAIN RESULT

< < >>

## THE MAIN RESULT (ctd.)

• The main trick: no boundary condition  $\Rightarrow$  easy estimate on the pressure

 $\|p_h\|_{L^{4/3}((0,T);L^2(\Omega))} \leq c.$ 

• Use the discrete commutator property to pass to the limit on nonlinear terms:  $u_h p_h$  and  $u_h u_h^2$ .

Question: Does the result hold for Dirichlet BCs ?



THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT



BASIC FACTS ABOUT THE NSE
 GALERKIN APPROX IN TORUS
 GALERKIN APPROX + DIRICHLET
 ARE SUITABLE SOLUTIONS USEFUL?
 NEW STABILIZATION/NUMERICAL TESTS

(日) (同) (日) (日)

#### Johann Peter Gustav Lejeune Dirichlet



THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

## **HYPOTHESES/DEFINITIONS**

 Finite element spaces, X<sub>h</sub> ⊂ H<sup>1</sup><sub>#</sub>(Ω) for velocity and M<sub>h</sub> ⊂ H<sup>1</sup><sub>#</sub>(Ω) for pressure.



THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

## **HYPOTHESES/DEFINITIONS**

- Finite element spaces, X<sub>h</sub> ⊂ H<sup>1</sup><sub>#</sub>(Ω) for velocity and M<sub>h</sub> ⊂ H<sup>1</sup><sub>#</sub>(Ω) for pressure.
- Assume there is c > 0 independent of h such that

$$\forall q_h \in M_h, \qquad \sup_{0 \neq v_h \in X_h} rac{(
abla q_h, v_h)}{\|v_h\|_{\mathbf{L}^2}} \geq c \|
abla q_h\|_{\mathbf{L}^2}.$$



(日) (同) (日) (日)

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

# HYPOTHESES/DEFINITIONS

- Finite element spaces,  $X_h \subset \mathbf{H}^1_{\#}(\Omega)$  for velocity and  $M_h \subset H^1_{\#}(\Omega)$  for pressure.
- Assume there is c > 0 independent of h such that

$$\forall q_h \in M_h, \qquad \sup_{0 \neq v_h \in X_h} rac{(
abla q_h, v_h)}{\|v_h\|_{\mathbf{L}^2}} \geq c \|
abla q_h\|_{\mathbf{L}^2}.$$

• Modify the nonlinear term as follows:

$$b_h(u, v, v) = \begin{cases} (u \cdot \nabla u + \frac{1}{2}u \nabla \cdot u, v) & (\text{Temam, 1967}) \\ ((\nabla \times u) \times u + \frac{1}{2} \nabla (\mathcal{K}_h(u^2)), v) \end{cases}$$

where  $\mathcal{K}_h : L^2(\Omega) \longrightarrow M_h$ , linear  $L^2$ -stable approximation operator.



THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

## HYPOTHESES/DEFINITIONS (ctd.)

• 
$$\mathbf{V}_h := \{ v_h \in \mathbf{X}_h; (\nabla \cdot v_h, q_h) = 0, \forall q_h \in M_h \}$$



THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

HYPOTHESES/DEFINITIONS (ctd.)

• 
$$\mathbf{V}_h := \{ v_h \in \mathbf{X}_h; (\nabla \cdot v_h, q_h) = 0, \forall q_h \in M_h \}$$

• Discrete Stokes operator  $A_h : \mathbf{V}_h \longrightarrow \mathbf{V}_h$ 

$$(A_h u_h, v_h) = (\nabla u_h, \nabla v_h), \quad \forall v_h \in \mathbf{V}_h.$$



THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

## HYPOTHESES/DEFINITIONS (ctd.)

• 
$$\mathbf{V}_h := \{ v_h \in \mathbf{X}_h; (\nabla \cdot v_h, q_h) = 0, \forall q_h \in M_h \}$$

• Discrete Stokes operator  $A_h : \mathbf{V}_h \longrightarrow \mathbf{V}_h$ 

$$(A_h u_h, v_h) = (\nabla u_h, \nabla v_h), \quad \forall v_h \in \mathbf{V}_h.$$

• Discrete norm 
$$\|v_h\|_{\mathbf{V}_h^s} := (A_h^s v_h, v_h)^{\frac{1}{2}}, \quad \forall s \in \mathbb{R}.$$



THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

#### PRELIMINARY RESULTS

#### Lemma

 $\exists c_l > 0$  (non-increasing function)  $\exists c_u > 0$  (non-decreasing function), independent of h:

$$c_{l}(|s|) \|v_{h}\|_{\widetilde{\mathbf{H}}_{0}^{s}} \leq \|v_{h}\|_{\mathbf{V}_{h}^{s}} \leq c_{u}(|s|) \|v_{h}\|_{\widetilde{\mathbf{H}}_{0}^{s}}, \quad \begin{cases} -\frac{1}{2} < s < \frac{3}{2}, & \text{lower}, \\ -\frac{3}{2} < s < \frac{3}{2}, & \text{upper} \end{cases}$$



(日) (同) (日) (日)

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

### PRELIMINARY RESULTS

#### Lemma

 $\exists c_l > 0$  (non-increasing function)  $\exists c_u > 0$  (non-decreasing function), independent of h:

$$c_{l}(|s|) \|v_{h}\|_{\widetilde{H}_{0}^{s}} \leq \|v_{h}\|_{\mathbf{V}_{h}^{s}} \leq c_{u}(|s|) \|v_{h}\|_{\widetilde{H}_{0}^{s}}, \quad \begin{cases} -\frac{1}{2} < s < \frac{3}{2}, & \text{lower}, \\ -\frac{3}{2} < s < \frac{3}{2}, & \text{upper} \end{cases}$$

and for all  $s \in (-\frac{3}{2}, 0]$ 

 $c_l(|s|) \|\nabla_h^2 v_h\|_{\widetilde{\mathbf{H}}_0^s} \leq \|A_h v_h\|_{\mathbf{V}_h^s} \leq c_u(|s|) \|\nabla_h^2 v_h\|_{\widetilde{\mathbf{H}}_0^s}, \quad \forall v_h \in \mathbf{V}_h.$ 

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

## GALERKIN FORMULATION

• Seek 
$$u_h \in C^1([0, T]; X_h)$$
 and  $p_h \in C^0([0, T]; M_h)$  such that for all  $v_h \in X_h$ , all  $q_h \in M_h$ , and all  $t \in [0, T]$ 

$$\begin{cases} (\partial_t u_h, \mathbf{v}) + \mathbf{b}_h(u_h, u_h, \mathbf{v}) - (\mathbf{p}_h, \nabla \cdot \mathbf{v}) + \nu(\nabla u_h, \nabla \mathbf{v}) = \langle f, \mathbf{v} \rangle, \\ (\nabla \cdot u_h, q) = 0, \\ u_h|_{t=0} = \mathcal{I}_h u_0, \end{cases}$$

where  $\mathcal{I}_h : L^2(\Omega) \longrightarrow V_h$ ,  $L^2$ -stable interpolation operator.



## THE MAIN RESULT

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

#### Theorem (Guermond (2007))

Under the above hypotheses, if  $X_h$  and  $M_h$  have the discrete commutator property, the couple  $(u_h, p_h)$  convergences to a suitable solution to NS.



(日) (同) (日) (日)

## THE MAIN RESULT

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

#### Theorem (Guermond (2007))

Under the above hypotheses, if  $X_h$  and  $M_h$  have the discrete commutator property, the couple  $(u_h, p_h)$  convergences to a suitable solution to NS.

Galerkin solutions are suitable (provided discrete commutator property)



## THE MAIN RESULT

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

Image: A mathematical states and a mathem

#### Theorem (Guermond (2007))

Under the above hypotheses, if  $X_h$  and  $M_h$  have the discrete commutator property, the couple  $(u_h, p_h)$  convergences to a suitable solution to NS.

Galerkin solutions are suitable (provided discrete commutator property)

 $\Rightarrow$  Hopf and Leray solutions are suitable

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

## THE MAIN RESULT (ctd.)

#### Lemma

There is c independent of h so that,

$$\|\partial_t u_h\|_{H^{\tau-1}((0,T);\mathbf{H}^{-\alpha}(\Omega))}+\|u_h\|_{H^{\tau}((0,T);\mathbf{H}^{-\alpha}(\Omega))}\leq c,$$

for all  $\alpha \in [\frac{1}{4}, \frac{1}{2})$  and for all  $\tau < \overline{\tau} := \frac{2}{5}(1 + \alpha)$ .



(日) (同) (日) (日)

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

## THE MAIN RESULT (ctd.)

#### Lemma

There is c independent of h so that,

$$\|\partial_t u_h\|_{H^{\tau-1}((0,T);\mathbf{H}^{-\alpha}(\Omega))}+\|u_h\|_{H^{\tau}((0,T);\mathbf{H}^{-\alpha}(\Omega))}\leq c,$$

for all  $\alpha \in [\frac{1}{4}, \frac{1}{2})$  and for all  $\tau < \overline{\tau} := \frac{2}{5}(1 + \alpha)$ .

• Slight improvement over Sohr and von Wahl (1986)



< ロ > < 同 > < 三 > < 三

THE HYPOTHESES PRELIMINARY RESULTS THE GALERKIN FORMULATION THE MAIN RESULT

## THE MAIN RESULT (ctd.)

#### Lemma

There is c independent of h so that,

$$\|\partial_t u_h\|_{H^{\tau-1}((0,T);\mathbf{H}^{-\alpha}(\Omega))}+\|u_h\|_{H^{\tau}((0,T);\mathbf{H}^{-\alpha}(\Omega))}\leq c,$$

for all  $\alpha \in [\frac{1}{4}, \frac{1}{2})$  and for all  $\tau < \overline{\tau} := \frac{2}{5}(1 + \alpha)$ .

• Slight improvement over Sohr and von Wahl (1986)

#### Lemma

There is c independent of h such that for 
$$s \in [\frac{3}{10}, \frac{1}{2}]$$

 $\|p_h\|_{H^{-r}((0,T);H^s(\Omega))} \leq c,$ 

for all  $r > \overline{r} = \frac{1}{4} + \frac{s}{2}$ .



#### UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

### OUTLINE



Jean Leray



Heinz Hopf



(日) (同) (日) (日)



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

### **UNDER-RESOLVED SIMULATIONS**

• At high *Re* numbers, CFD is always under-resolved. For practical purposes  $Re \approx \infty$ .



(日) (同) (日) (日)

UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

(日) (同) (三) (三)

## **UNDER-RESOLVED SIMULATIONS**

- At high *Re* numbers, CFD is always under-resolved. For practical purposes  $Re \approx \infty$ .
- *h* is never small enough to guaranty suitability of the approximation.



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

(日) (同) (三) (三)

## **UNDER-RESOLVED SIMULATIONS**

- At high *Re* numbers, CFD is always under-resolved. For practical purposes  $Re \approx \infty$ .
- *h* is never small enough to guaranty suitability of the approximation.
- Q: Should we bother about suitability?


UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

(日) (同) (三) (三)

### **UNDER-RESOLVED SIMULATIONS**

- At high *Re* numbers, CFD is always under-resolved. For practical purposes  $Re \approx \infty$ .
- *h* is never small enough to guaranty suitability of the approximation.
- Q: Should we bother about suitability?
- A: Yes. (What does suitability means after all)?



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

### **UNDER-RESOLVED SIMULATIONS**

• Let *u*, *p* solve the Navier-Stokes equations.



(日) (同) (三) (三)

UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

# **UNDER-RESOLVED SIMULATIONS**

- Let *u*, *p* solve the Navier-Stokes equations.
- Define the residual

$$R(x,t) = \partial_t u - \nu \nabla^2 u + u \cdot \nabla u + \nabla p - f$$



(日) (同) (三) (三)

(日) (同) (三) (三)

# **UNDER-RESOLVED SIMULATIONS**

- Let *u*, *p* solve the Navier-Stokes equations.
- Define the residual

$$R(x,t) = \partial_t u - \nu \nabla^2 u + u \cdot \nabla u + \nabla p - f$$

• *u*, *p* is suitable if the residual is pointwise dissipative

$$R \cdot u \leq 0,$$
 a.e.  $x, t.$ 



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

< ロ > < 同 > < 三 > < 三

# **UNDER-RESOLVED SIMULATIONS**

- Let *u*, *p* solve the Navier-Stokes equations.
- Define the residual

$$R(x,t) = \partial_t u - \nu \nabla^2 u + u \cdot \nabla u + \nabla p - f$$

• *u*, *p* is suitable if the residual is pointwise dissipative

$$R \cdot u \leq 0,$$
 a.e.  $x, t.$ 

⇒ The singular sub-scales (if any) are dissipative (at very small scales energy is dissipated)



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

## A NEW SUBGRID VISCOSITY MODEL?

• In under-resolved computations

$$R_h(x,t) := \partial_t u_h - \nu \nabla^2 u_h + u_h \cdot \nabla u_h + \nabla p_h - f \neq 0!$$



(日) (同) (三) (三)

UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

(日) (同) (三) (三)

# A NEW SUBGRID VISCOSITY MODEL?

• In under-resolved computations

$$R_h(x,t) := \partial_t u_h - \nu \nabla^2 u_h + u_h \cdot \nabla u_h + \nabla p_h - f \neq 0!$$

● Under-resolved computations ⇔ There are singular subscales



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

< < >> < <</p>

# A NEW SUBGRID VISCOSITY MODEL?

• In under-resolved computations

$$R_h(x,t) := \partial_t u_h - \nu \nabla^2 u_h + u_h \cdot \nabla u_h + \nabla p_h - f \neq 0!$$

- Under-resolved computations ⇔ There are singular subscales
- To guaranty that at the grid scale h, energy is well dissipated (suitability) we should have

$$R_h(x,t) \cdot u_h \leq 0, \qquad \forall x,t$$

UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

(日) (同) (三) (三)

# A NEW SUBGRID VISCOSITY MODEL?

• Proposal: Use  $R_h(x, t) \cdot u_h$  to construct a subgrid viscosity.



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

(日) (同) (三) (三)

# A NEW SUBGRID VISCOSITY MODEL?

- Proposal: Use  $R_h(x, t) \cdot u_h$  to construct a subgrid viscosity.
- Define entropy residual:

$$D_h(x,t) := \partial_t (\frac{1}{2}u_h^2) + \nabla \cdot ((\frac{1}{2}u_h^2 + p_h)u_h) - R_e^{-1} \nabla^2 (\frac{1}{2}u_h^2) + R_e^{-1} (\nabla u_h)^2 - f \cdot u_h.$$



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

# A NEW SUBGRID VISCOSITY MODEL?

- Proposal: Use  $R_h(x, t) \cdot u_h$  to construct a subgrid viscosity.
- Define entropy residual:

$$D_h(x,t) := \partial_t (\frac{1}{2}u_h^2) + \nabla \cdot ((\frac{1}{2}u_h^2 + p_h)u_h) - R_e^{-1} \nabla^2 (\frac{1}{2}u_h^2) + R_e^{-1} (\nabla u_h)^2 - f \cdot u_h.$$

• Define viscosity:

$$\min\left(c_{1}\frac{h^{2}}{\|u_{h}\|_{L^{2}}^{2}}|D_{h}(x,t)|,c_{2}|u_{h}|h\right)$$



UNDER-RESOLVED SIMULATIONS A NEW SUBGRID VISCOSITY MODEL?

# A NEW SUBGRID VISCOSITY MODEL?

- Proposal: Use  $R_h(x, t) \cdot u_h$  to construct a subgrid viscosity.
- Define entropy residual:

$$D_h(x,t) := \partial_t (\frac{1}{2}u_h^2) + \nabla \cdot ((\frac{1}{2}u_h^2 + p_h)u_h) - R_e^{-1} \nabla^2 (\frac{1}{2}u_h^2) + R_e^{-1} (\nabla u_h)^2 - f \cdot u_h.$$

• Define viscosity:

$$\min\left(c_{1}\frac{h^{2}}{\|u_{h}\|_{L^{2}}^{2}}|D_{h}(x,t)|,c_{2}|u_{h}|h\right)$$

Note that |D<sub>h</sub>(x, t)| → 0 if there is no subgrid scale! (no consistency problem).





Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows



BASIC FACTS ABOUT THE NSE
 GALERKIN APPROX IN TORUS
 GALERKIN APPROX + DIRICHLET
 ARE SUITABLE SOLUTIONS USEFUL?
 NEW STABILIZATION/NUMERICAL TESTS

(日) (同) (三) (三)



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

< D > < A >

Stabilization? Entropy? Linear transport?

• Solve the transport equation  $\partial_t u + \beta \cdot \nabla u = 0$ 





Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

< D > < A >

Stabilization? Entropy? Linear transport?

• Solve the transport equation  $\partial_t u + \beta \cdot \nabla u = 0$ 





Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

Stabilization? Entropy? Linear transport?

• Solve the transport equation  $\partial_t u + \beta \cdot \nabla u = 0$ 



• Define entropy residual  $D_h := \partial_t u_h^2 + \beta \cdot \nabla u_h^2$ ,



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

Stabilization? Entropy? Linear transport?

• Solve the transport equation  $\partial_t u + \beta \cdot \nabla u = 0$ 



- Define entropy residual  $D_h := \partial_t u_h^2 + \beta \cdot \nabla u_h^2$ ,
- Define entropy viscosity:  $\nu_h := \min(c_1 \frac{|D_h|}{\|u_h\|^2} h^2, c_2|\beta|h)$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

Stabilization? Entropy? Linear transport?

• Solve the transport equation  $\partial_t u + \beta \cdot \nabla u = 0$ 



- Define entropy residual  $D_h := \partial_t u_h^2 + \beta \cdot \nabla u_h^2$ ,
- Define entropy viscosity:  $\nu_h := \min(c_1 \frac{|D_h|}{||u_h||^2} h^2, c_2|\beta|h)$
- Solution method: Galerkin + entropy viscosity.



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

Stabilization? Entropy? Linear transport?

• Numerical test. Data is in  $BV \approx W^{1,1}$ ,  $H^{1/2-\epsilon}$ 



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

(日) (同) (三) (三)

- Numerical test. Data is in  $BV \approx W^{1,1}$ ,  $H^{1/2-\epsilon}$
- Viscous regularization:  $L^1$ -norm  $\mathcal{O}(h^{1/2})$ ,  $L^2$ -norm  $\mathcal{O}(h^{1/4})$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

(日) (同) (三) (三)

- Numerical test. Data is in  $BV \approx W^{1,1}$ ,  $H^{1/2-\epsilon}$
- Viscous regularization:  $L^1$ -norm  $\mathcal{O}(h^{1/2})$ ,  $L^2$ -norm  $\mathcal{O}(h^{1/4})$
- Convergence  $\mathbb{P}_1$ :  $L^1$ -norm  $\mathcal{O}(h^{2/3})$ ,  $L^2$ -norm  $\mathcal{O}(h^{1/3})$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

- Numerical test. Data is in  $BV \approx W^{1,1}$ ,  $H^{1/2-\epsilon}$
- Viscous regularization:  $L^1$ -norm  $\mathcal{O}(h^{1/2})$ ,  $L^2$ -norm  $\mathcal{O}(h^{1/4})$
- Convergence  $\mathbb{P}_1$ :  $L^1$ -norm  $\mathcal{O}(h^{2/3})$ ,  $L^2$ -norm  $\mathcal{O}(h^{1/3})$
- Convergence  $\mathbb{P}_2$ :  $L^1$ -norm  $\mathcal{O}(h^{3/4})$ ,  $L^2$ -norm  $\mathcal{O}(h^{3/8})$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

<ロト <同ト <三ト <

- Numerical test. Data is in  $BV \approx W^{1,1}$ ,  $H^{1/2-\epsilon}$
- Viscous regularization:  $L^1$ -norm  $\mathcal{O}(h^{1/2})$ ,  $L^2$ -norm  $\mathcal{O}(h^{1/4})$
- Convergence  $\mathbb{P}_1$ :  $L^1$ -norm  $\mathcal{O}(h^{2/3})$ ,  $L^2$ -norm  $\mathcal{O}(h^{1/3})$
- Convergence  $\mathbb{P}_2$ :  $L^1$ -norm  $\mathcal{O}(h^{3/4})$ ,  $L^2$ -norm  $\mathcal{O}(h^{3/8})$
- Convergence  $\mathbb{P}_k$ :  $L^1$ -norm  $\mathcal{O}(h^{\frac{k+1}{k+2}})$ ,  $L^2$ -norm  $\mathcal{O}(h^{\frac{k+1}{2(k+2)}})$ ?



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

• • • • • • • • • • •

### Stabilization? Entropy? Linear transport?

#### • Numerical test $\mathbb{P}_1$ , h = 0.05, T = 1





Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

(日) (同) (三) (三)

• Solve 
$$\partial_t u + \partial_x f(u) + \partial_y g(u) = 0$$
.



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

(日) (同) (三) (三)

- Solve  $\partial_t u + \partial_x f(u) + \partial_y g(u) = 0$ .
- Define entropy pair  $E(u) = \frac{1}{2}u^2$ ,  $F(u) = \int uf'(u)$ ,  $G(u) = \int ug'(u)$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

(日) (同) (三) (三)

- Solve  $\partial_t u + \partial_x f(u) + \partial_y g(u) = 0.$
- Define entropy pair  $E(u) = \frac{1}{2}u^2$ ,  $F(u) = \int uf'(u)$ ,  $G(u) = \int ug'(u)$
- Define entropy residual,  $D_h(u) := \partial_t E(u) + \partial_x F(u) + \partial_y G(u)$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

- Solve  $\partial_t u + \partial_x f(u) + \partial_y g(u) = 0.$
- Define entropy pair  $E(u) = \frac{1}{2}u^2$ ,  $F(u) = \int uf'(u)$ ,  $G(u) = \int ug'(u)$
- Define entropy residual,  $D_h(u) := \partial_t E(u) + \partial_x F(u) + \partial_y G(u)$
- Define local wave speed:  $\beta(u) = |f'(u)| + |g'(u)|$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

イロト イポト イヨト イヨ

- Solve  $\partial_t u + \partial_x f(u) + \partial_y g(u) = 0.$
- Define entropy pair  $E(u) = \frac{1}{2}u^2$ ,  $F(u) = \int uf'(u)$ ,  $G(u) = \int ug'(u)$
- Define entropy residual,  $D_h(u) := \partial_t E(u) + \partial_x F(u) + \partial_y G(u)$
- Define local wave speed:  $\beta(u) = |f'(u)| + |g'(u)|$
- Define entropy viscosity,  $\nu_h(u) = \min(c_1 \frac{|D_h(u)|}{||u||_2^2} h^2, c_2\beta(u)h)$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

### Buckley Leverett, $\mathbb{P}_2$ FE

• Solve 
$$\partial_t u + \partial_x f(u) + \partial_y g(u) = 0.$$

$$f(u) = \frac{u^2}{u^2 + (1-u)^2}, \qquad g(u) = f(u)(1 - 5(1-u)^2)$$

Non-convex fluxes (composite waves)

$$u(x, y, 0) = egin{cases} 1, & \sqrt{x^2 + y^2} \leq 0.5 \ 0, & ext{else} \end{cases}$$



(日) (同) (三) (三)

Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

#### Buckley Leverett, $\mathbb{P}_2$ FE

• Solve 
$$\partial_t u + \partial_x f(u) + \partial_y g(u) = 0$$
.  
 $f(u) = \frac{u^2}{u^2 + (1-u)^2}, \qquad g(u) = f(u)(1 - 5(1-u)^2)$ 

Non-convex fluxes (composite waves)

$$u(x, y, 0) = \begin{cases} 1, & \sqrt{x^2 + y^2} \le 0.5 \\ 0, & \mathsf{else} \end{cases}$$



4

Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

(日) (同) (三) (三)

# KPP (WENO + superbee limiter fails), $\mathbb{P}_2$ FE

• Solve 
$$\partial_t u + \partial_x f(u) + \partial_y g(u) = 0$$
.  
 $f(u) = \sin(u), \qquad g(u) = \cos(u)$ 

Non-convex fluxes (composite waves)

$$u(x,y,0) = egin{cases} rac{7}{2}\pi, & \sqrt{x^2+y^2} \leq 1 \ rac{1}{4}\pi, & ext{else} \end{cases}$$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

# KPP (WENO + superbee limiter fails), $\mathbb{P}_2$ FE

Solve 
$$\partial_t u + \partial_x f(u) + \partial_y g(u) = 0$$
.  
 $f(u) = \sin(u), \qquad g(u) = \cos(u)$ 

Non-convex fluxes (composite waves)

$$u(x,y,0) = egin{cases} rac{7}{2}\pi, & \sqrt{x^2+y^2} \leq 1 \ rac{1}{4}\pi, & ext{else} \end{cases}$$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

(日) (同) (三) (三)

### Euler flows

• Solve 1D Euler equations for perfect gas,  $(\gamma - 1)e = T = p/\rho$ ,  $\gamma = 1.4$ 

• Entropy 
$$S = rac{
ho}{\gamma-1} \log(p/
ho^{\gamma})$$

- Entropy residual,  $D_h(u) := \partial_t S + \partial_x(uS)$
- Define wave speed  $\beta := |u| + (\gamma T)^{\frac{1}{2}}$



Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

#### Euler flows + Fourier

• Solution method: Fourier + BDF4 + entropy viscosity



(日) (同) (三) (三)

Stabilization? Entropy? Linear transport? Nonlinear scalar conservation laws Euler flows

#### Euler flows + Fourier

• Solution method: Fourier + BDF4 + entropy viscosity



Figure: Lax shock tube, t = 1.3, 50, 100, 200 points. Shu-Osher shock tube, t = 1.8, 400, 800 points. Right: Woodward-Collela blast wave, t = 0.038, 200, 400, 800, 1600 points.


#### **CONCLUSIONS/OPEN QUESTIONS**

● FE, wavelets, ... (local) ≉ Spectral (global).



<ロ> (日) (日) (日) (日) (日)

### CONCLUSIONS/OPEN QUESTIONS

- FE, wavelets, ... (local) ≉ Spectral (global).
- FE, wavelets, ... have enough built-in "numerical" viscosity.



(日) (同) (三) (三)

# CONCLUSIONS/OPEN QUESTIONS

- FE, wavelets, ... (local) ≉ Spectral (global).
- FE, wavelets, ... have enough built-in "numerical" viscosity.
- Spectral approx do not have enough "numerical" viscosity.



(日) (同) (三) (三)

# CONCLUSIONS/OPEN QUESTIONS

- FE, wavelets, ... (local) ≉ Spectral (global).
- FE, wavelets, ... have enough built-in "numerical" viscosity.
- Spectral approx do not have enough "numerical" viscosity.

QUESTION: What happens for spectral expansions ?



(日) (同) (三) (三)

# CONCLUSIONS/OPEN QUESTIONS

- FE, wavelets, ... (local) ≉ Spectral (global).
- FE, wavelets, ... have enough built-in "numerical" viscosity.
- Spectral approx do not have enough "numerical" viscosity.

QUESTION: What happens for spectral expansions ?

QUESTION: Does Weak=Suitable?



▲□ ► ▲ □ ► ▲ □

#### **CONCLUSIONS/OPEN QUESTIONS**

 The notion of suitability can be useful to construct reasonable subgrid models.



(日) (同) (日) (日)

#### CONCLUSIONS/OPEN QUESTIONS

- The notion of suitability can be useful to construct reasonable subgrid models.
- A new (very simple) stabilization technique has been proposed and tested.



< □ > < □ > < □ > < □ >