
Chapter 2

Finite Difference Methods for Elliptic
Equations

Remark 2.1. Model problem. The model problem in this chapter is the Poisson
equation with Dirichlet boundary conditions

−Δu = f in Ω,
u = g on ∂Ω,

(2.1)

where Ω ⊂ R2. This chapter follows in wide parts Samarskij (1984). ✷

2.1 Basics on Finite Differences

Remark 2.2. Grid. This section considers the one-dimensional situation. Con-
sider the interval [0, 1] that is decomposed by an equidistant grid

xi = ih, i = 0, . . . , n, h = 1/n, – nodes,

ωh = {xi : i = 0, . . . , n} – grid.

✷

Definition 2.3. Grid function. A vector uh = (u0, . . . , un)
T ∈ Rn+1 that

assigns every grid point a function value is called grid function. ✷

Definition 2.4. Finite differences. Let v(x) be a sufficiently smooth func-
tion and denote by vi = v(xi), where xi are the nodes of the grid. The
following quotients are called

vx,i =
vi+1 − vi

h
– forward difference,

vx,i =
vi − vi−1

h
– backward difference,

vx̊,i =
vi+1 − vi−1

2h
– central difference,

17



18 2 Finite Difference Methods for Elliptic Equations
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Fig. 2.1 Illustration of the finite differences.

vxx,i =
vi+1 − 2vi + vi−1

h2
– second order difference,

see Figure 2.1. ✷

Remark 2.5. Some properties of the finite differences. It is (exercise)

vx̊,i =
1

2
(vx,i + vx,i), vxx,i = (vx,i)x,i.

Using the Taylor series expansion for v(x) at the node xi, one gets (exer-
cise)

vx,i = v�(xi) +
1

2
hv��(xi) +O

�
h2

�
,

vx,i = v�(xi)−
1

2
hv��(xi) +O

�
h2

�
,

vx̊,i = v�(xi) +O
�
h2

�
,

vxx,i = v��(xi) +O
�
h2

�
.

✷

Definition 2.6. Consistent difference operator. Let L be a differential
operator. The difference operator Lh : Rn+1 → Rn+1 is called consistent
with L of order k if

max
0≤i≤n

|(Lu)(xi)− (Lhuh)i| = �Lu− Lhuh�∞,ωh
= O

�
hk

�
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for all sufficiently smooth functions u(x). ✷

Example 2.7. Consistency orders. The order of consistency measures the qual-
ity of approximation of L by Lh.

The difference operators vx,i, vx,i, vx̊,i are consistent to L = d
dx with order

1, 1, and 2, respectively. The operator vxx,i is consistent of second order to

L = d2

dx2 , see Remark 2.5. ✷

Example 2.8. Approximation of a more complicated differential operator by
difference operators. Consider the differential operator

Lu =
d

dx

�
k(x)

du

dx

�
,

where k(x) is assumed to be continuously differentiable. Define the difference
operator Lh as follows

(Lhuh)i = (aux,i)x,i =
1

h

�
a(xi+1)ux,i(xi+1)− a(xi)ux,i(xi)

�

=
1

h

�
ai+1

ui+1 − ui

h
− ai

ui − ui−1

h

�
, (2.2)

where a is a grid function that has to be determined appropriately. One gets
with the product rule

(Lu)i = k�(xi)(u
�)i + k(xi)(u

��)i

and with a Taylor series expansion for ui−1, ui+1, which is inserted in (2.2),

(Lhuh)i =
ai+1 − ai

h
(u�)i +

ai+1 + ai
2

(u��)i +
h(ai+1 − ai)

6
(u���)i +O

�
h2

�
.

Thus, the difference of the differential operator and the difference operator is

(Lu)i − (Lhuh)i =

�
k�(xi)−

ai+1 − ai
h

�
(u�)i +

�
k(xi)−

ai+1 + ai
2

�
(u��)i

−h(ai+1 − ai)

6
(u���)i +O

�
h2

�
. (2.3)

In order to define Lh so that it is consistent of second order to L, one has to
satisfy the following two conditions

ai+1 − ai
h

= k�(xi) +O
�
h2

�
,

ai+1 + ai
2

= k(xi) +O
�
h2

�
.

From the first requirement, it follows that ai+1 − ai = O (h). Hence, the
third term in the consistency error equation (2.3) is of order O

�
h2

�
. Possible

choices for the grid function are (exercise)
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Fig. 2.2 Five point stencils.

ai =
ki + ki−1

2
, ai = k

�
xi −

h

2

�
, ai = (kiki−1)

1/2
.

Note that the ’natural’ choice, ai = ki, leads only to first order consistency.
(exercise) ✷

2.2 Finite Difference Approximation of the Laplacian in
Two Dimensions

Remark 2.9. The five point stencil. The Laplacian in two dimensions is de-
fined by

Δu(x) =
∂2u

∂x2
+

∂2u

∂y2
= ∂xxu+ ∂yyu = uxx + uyy, x = (x, y).

The simplest approximation uses for both second order derivatives the sec-
ond order differences. One obtains the so-called five point stencil and the
approximation

(Δu)ij ≈ (Λu)ij = uxx,i + uyy,j

=
ui+1,j − 2uij + ui−1,j

h2
x

+
ui,j+1 − 2uij + ui,j−1

h2
y

, (2.4)

see Figure 2.2. From the consistency order of the second order differ-
ence, it follows immediately that Λu approximates the Laplacian of order
O
�
h2
x + h2

y

�
. ✷

Remark 2.10. The five point stencil on curvilinear boundaries. There is a dif-
ficulty if the five point stencil is used in domains with curvilinear boundaries.
The approximation of the second derivative requires three function values in
each coordinate direction
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(x− h−
x , y)

(x, y − h−
y )

(x, y) (x + h+
x , y)

(x, y + h+
y )

Fig. 2.3 Sketch to Remark 2.10.

(x− h−
x , y), (x, y), (x+ h+

x , y),

(x, y − h−
y ), (x, y), (x, y + h+

y ),

see Figure 2.3. A guideline of defining the approximation is that the five
point stencil is recovered in the case h−

x = h+
x and h−

y = h+
y . Consider just

the x-direction. A possible approximation is

∂2u

∂x2
≈ 1

hx

�
u(x+ h+

x , y)− u(x, y)

h+
x

− u(x, y)− u(x− h−
x , y)

h−
x

�
(2.5)

with hx = (h+
x + h−

x )/2. Using a Taylor series expansion, one finds that the
error of this approximation is

∂2u

∂x2
− 1

hx

�
u(x+ h+

x , y)− u(x, y)

h+
x

− u(x, y)− u(x− h−
x , y)

h−
x

�

= −1

3
(h+

x − h−
x )

∂3u

∂x3
+O

�
h
2

x

�
.

For h+
x �= h−

x , this approximation is of first order.
A different way consists in using

∂2u

∂x2
≈ 1

h̃x

�
u(x+ h+

x , y)− u(x, y)

h+
x

− u(x, y)− u(x− h−
x , y)

h−
x

�

with h̃x = max{h+
x , h

−
x }. However, this approximation possesses only the

order zero, i.e., there is actually no approximation.
Altogether, there is a loss of order of consistency at curvilinear boundaries.

✷

Example 2.11. The Dirichlet problem. Consider the Poisson equation that is
equipped with Dirichlet boundary conditions (2.1). First, R2 is decomposed
by a grid with rectangular mesh cells xi = ihx, yj = jhy, hx, hy > 0, i, j ∈ Z.
Denote by
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Ω

Fig. 2.4 Different types of nodes in the grid.

w◦
h = {◦} inner nodes, five point stencil does not contain any

boundary node,
w∗

h = {∗} inner nodes that are close to the boundary, five point
stencil contains boundary nodes,

γh = {•} boundary nodes,
ωh = w◦

h ∪ w∗
h inner nodes,

ωh ∪ γh grid,

see Figure 2.4.
The finite difference approximation of problem (2.1) that will be studied

in the following consists in finding a mesh function u(x) such that

−Λu(x) = φ(x) for x ∈ w◦
h,

−Λ∗u(x) = φ(x) for x ∈ w∗
h,

u(x) = g(x) for x ∈ γh,
(2.6)

where φ(x) is a grid function that approximates f(x) and Λ∗ is an approxi-
mation of the Laplacian for nodes that are close to the boundary, e.g., defined
by (2.5). The discrete problem is a large sparse linear system of equations.
The most important questions are:

• Which properties possesses the solution of (2.6)?
• Converges the solution of (2.6) to the solution of the Poisson problem and
if yes, with which order in the norm �·�∞,ωh

?

✷

2.3 The Discrete Maximum Principle for a Finite
Difference Approximation

Remark 2.12. Contents of this section. Solutions of the Laplace equation,
i.e., of (2.1) with f(x) = 0, fulfill so-called maximum principles. This section
shows that the finite difference approximation of this operator, where the five
point stencil of the Laplacian is a special case, satisfies a discrete analog of one
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of the maximum principles, under an assumption on the grid. The analysis
proceeds along the classical lines, see Samarskij (1984) or (Samarskii, 2001,
Chapter 4) ✷

Theorem 2.13. Maximum principles for harmonic functions. Let Ω ⊂
Rd, d ≥ 1, be a bounded domain and u ∈ C2(Ω) ∩ C(Ω) be harmonic in Ω,
i.e., u(x) solves the Laplace equation −Δu = 0 in Ω.

• Weak maximum principle. It holds

max
x∈Ω

u(x) = max
x∈∂Ω

u(x).

That means, u(x) takes its maximal value at the boundary.
• Strong maximum principle. If Ω is connected and if the maximum is taken
in Ω (note that Ω is open), i.e., u(x0) = maxx∈Ω u(x) for a point x0 ∈ Ω,
then u(x) is constant

u(x) = max
x∈Ω

u(x) = u(x0) ∀ x ∈ Ω.

Proof. See the literature, e.g., (Evans, 2010, p. 27, Theorem 4) or the course on the theory

of partial differential equations. �

Remark 2.14. Interpretation of the maximum principle.

• The Laplace equation models the temperature distribution of a heated
body without heat sources in Ω. Then, the weak maximum principle just
states that the temperature in the interior of the body cannot be higher
than the highest temperature at the boundary.

• There are maximum principles also for more complicated operators than
the Laplacian, e.g., see Evans (2010).

• Since the solution of boundary value problems with partial differential
equations will be only approximated by a discretization like a finite differ-
ence method, one has to expect that basic physical properties are satisfied
by the numerical solution also only approximately. However, in applica-
tions, it is often very important that such properties are satisfied exactly.

✷

Remark 2.15. The difference equation. In this section, a difference equation
of the form

a(x)u(x) =
�

y∈S(x)

b(x,y)u(y) + F (x), x ∈ ωh ∪ γh, (2.7)

will be considered. In (2.7), for each node x, the set S(x) is the set of all
nodes on which the sum has to be performed, but x �∈ S(x). That means, a(x)
describes the contribution of the finite difference scheme of a node x to itself
and b(x,y) describes the contributions from the neighbors. The algebraic
formulation of (2.7) is a linear system of equations. Then, the diagonal entries
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Fig. 2.5 Grid that is not allowed in Section 2.3.

are determined by a(x) and the off-diagonal entries by −b(x,y), where the
minus sign occurs because the term with b(x,y) is on the right-hand side of
(2.7).

It will be assumed that the grid ωh of inner nodes is connected, i.e., for
all xa,xe ∈ ωh exist x1, . . . ,xm ∈ ωh with x1 ∈ S(xa),x2 ∈ S(x1), . . . ,xe ∈
S(xm). For instance, the situation depicted in Figure 2.5 is not allowed.
The algebraic interpretation of this assumption, together with (2.8) below, is
that the restriction of the system matrix to the inner nodes is an irreducible
matrix.

It will be assumed that the coefficients a(x) and b(x,y) satisfy the follow-
ing conditions:

a(x) > 0, b(x,y) > 0, ∀ x ∈ ωh, ∀ y ∈ S(x), (2.8)

a(x) = 1, b(x,y) = 0 ∀ x ∈ γh (Dirichlet boundary condition).

The values of the Dirichlet boundary condition are incorporated in (2.7) in
the function F (x). Thus, the linear system of equations will have the form

�
A1 A2

0 I

��
u
ug

�
=

�
φ
g

�
, (2.9)

where I is the identity matrix, u is the vector that corresponds to the inner
nodes, ug the vector for the boundary nodes, φ the vector for the right-hand
side in the inner nodes, and g the vector from the given boundary conditions.
The matrix block A1 contains the connections among the inner nodes and
the block A2 the connections of the inner nodes close to the boundary to the
boundary nodes. ✷

Example 2.16. Five point stencil for approximating the Laplacian. Inserting
the approximation of the Laplacian with the five point stencil (2.4) for x =
(x, y) ∈ ω◦

h in scheme (2.7) gives

2(h2
x + h2

y)

h2
xh

2
y

u(x, y) =

�
1

h2
x

u(x+ hx, y) +
1

h2
x

u(x− hx, y)
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+
1

h2
y

u(x, y + hy) +
1

h2
y

u(x, y − hy)

�
+ φ(x, y).

It follows that

a(x) =
2(h2

x + h2
y)

h2
xh

2
y

> 0,

b(x,y) ∈ {h−2
x , h−2

y } > 0,

S(x) = {(x− hx, y), (x+ hx, y), (x, y − hy), (x, y + hy)}.

For inner nodes that are close to the boundary, only the one-dimensional
case (2.5) will be considered for simplicity. Let x + h+

x ∈ γh, then it follows
by inserting (2.5) in (2.7)

1

hx

�
1

h+
x

+
1

h−
x

�
u(x, y) =

u(x− h−
x , y)

hxh
−
x

+
u(x+ h+

x , y)

hxh
+
x� �� �

on γh→A2

+φ(x), (2.10)

such that

a(x) =
1

hx

�
1

h+
x

+
1

h−
x

�
> 0,

b(x, y) ∈
�

1

hxh
−
x

,
1

hxh
+
x

�
> 0,

S(x) = {(x− h−
x , y), (x+ h+

x , y)}.

Hence, the assumptions (2.8) on the coefficients are satisfied. ✷

Remark 2.17. Reformulation of the difference scheme. Scheme (2.7) can be
reformulated in the form

d(x)u(x) =
�

y∈S(x)

b(x,y)
�
u(y)− u(x)

�
+ F (x) (2.11)

with d(x) = a(x) − �
y∈S(x) b(x,y). Algebraically, d(x) is the sum of the

matrix entries of the row that corresponds to the node x. ✷

Example 2.18. Five point stencil for approximating the Laplacian. Using the
five point stencil for approximating the Laplacian, form (2.11) of the scheme
is obtained with

d(x) =
2(h2

x + h2
y)

h2
xh

2
y

− 2

h2
x

− 2

h2
y

= 0 (2.12)

for x ∈ ω◦
h. Thus, the corresponding row sums of the matrix are zero.

For nodes close to the boundary x ∈ ω∗
h, again only the one-dimensional

situation as in Example 2.16 is considered. One obtains
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d(x) =
1

hx

�
1

h+
x

+
1

h−
x

�
− 1

hxh
−
x

− 1

hxh
+
x

= 0,

i.e., also for such nodes, the corresponding row sum vanishes.
The coefficients a(x) and b(x,y) are the weights of the finite difference

stencil for approximating the Laplacian. A minimal condition for consistency
is that this approximation vanishes for constant functions since the deriva-
tives of constant functions vanish. The algebraic formulation of this consis-
tency condition is just that all row sums vanish, since a constant function is
represented by a constant vector. If the row sums vanish, then the multipli-
cation of the matrix with a constant vector gives the zero vector. ✷

Lemma 2.19. Discrete maximum principle (DMP) for inner nodes.
Let u(x) �= const on ωh and d(x) ≥ 0 for all x ∈ ωh. Then, it follows from

Lhu(x) := d(x)u(x)−
�

y∈S(x)

b(x,y)
�
u(y)− u(x)

�
≤ 0 (2.13)

(or Lhu(x) ≥ 0, respectively) on ωh that u(x) does not possess a positive
maximum (or negative minimum, respectively) on ωh.

Proof. The proof is performed by contradiction. Let Lhu(x) ≤ 0 for all x ∈ ωh and

assume that u(x) has a positive maximum on ωh at x, i.e., u(x) = maxx∈ωh u(x) > 0.

For the node x, using (2.8), it holds that

Lhu(x) = d(x)����
≥0

u(x)����
>0

−
�

y∈S(x)

b(x,y)� �� �
>0

�
u(y)− u(x)

�
� �� �

≤0 by definition of x

≥ d(x)u(x) ≥ 0. (2.14)

Hence, it follows that Lhu(x) = 0 and, in particular, that all terms of Lhu(x) have to

vanish. For the first term, it follows that d(x) = 0. For the terms in the sum to vanish, it
must hold

u(y) = u(x) ∀ y ∈ S(x). (2.15)

From the assumption u(x) �= const, it follows that there exists a node x̂ ∈ ωh with
u(x) > u(x̂). Because the grid is connected, there is a path x,x1, . . . ,xm, x̂ in ωh such

that, using (2.15) for all nodes of this path,

x1 ∈ S(x), u(x1) = u(x),
x2 ∈ S(x1), u(x2) = u(x1) = u(x),

· · ·
x̂ ∈ S(xm), u(xm) = u(xm−1) = . . . = u(x) > u(x̂).

The last inequality is a contradiction to (2.15) for xm. �

Remark 2.20. On Lh. Note that Lh is defined for the inner nodes, i.e., this
operator corresponds to the rectangular matrix (A1, A2) from (2.9). ✷

Corollary 2.21. DMP for the finite difference boundary value prob-
lem. Let u(x) ≤ 0 for x ∈ γh and Lhu(x) ≤ 0 (or u(x) ≥ 0 for x ∈ γh
and Lhu(x) ≥ 0, respectively) on ωh. Assume that there is at least one in-
ner node close to the boundary x∗ and one node xγ on the boundary with
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b(x∗,xγ) > 0, i.e., the matrix block A2 in (2.9) is not the zero matrix. Then,
the grid function u(x) is non-positive (or non-negative, respectively) for all
x ∈ ωh ∪ γh.

Proof. Let Lhu(x) ≤ 0 on ωh. Assume that there is a node x ∈ ωh with u(x) > 0. Then,

the grid function has either a positive maximum on ωh and it is not constant, which is a

contradiction to the DMP for the inner nodes, Lemma 2.19, or u(x) has to be constant,
i.e., u(x) = u(x) > 0 for all x ∈ ωh. For the second case, consider the boundary-connected

inner node x∗ ∈ ω∗
h. Using the same calculations as in (2.14) and taking into account that

the values of u at the boundary are non-positive, one obtains

Lhu(x
∗) = d(x∗)� �� �

≥0

u(x∗)� �� �
>0

−
�

y∈S(x∗),y �∈γh

b(x∗,y)� �� �
>0

(u(y)− u(x∗))� �� �
=0

−
�

y∈S(x∗),y∈γh

b(x∗,y)� �� �
>0

(u(y)− u(x∗))� �� �
<0

> 0. (2.16)

In the last sum, there is at least one term since xγ ∈ S(x∗). Altogether, (2.16) is a

contradiction to the assumption on Lh. �

Corollary 2.22. Unique solution of the discrete Laplace equation
with homogeneous right-hand side and homogeneous Dirichlet
boundary conditions. Under the assumptions of Corollary 2.21, the dis-
crete Laplace equation Lhu(x) = 0 for x ∈ ωh and u(x) = 0 for x ∈ γh
possesses only the trivial solution u(x) = 0.

Proof. The statement of the corollary follows by applying Corollary 2.21 both for

Lhu(x) ≤ 0 and Lhu(x) ≥ 0. �

Theorem 2.23. Existence and uniqueness of a solution of the finite
difference equation (2.6). Under the assumptions of Corollary 2.22, the
finite difference equation (2.6) possesses a unique solution.

Proof. Corollary 2.22 shows that the homogeneous linear system of equations (2.9) has a
unique solution. Hence, the system matrix is invertible and it follows that (2.9) is uniquely

solvable for all right-hand sides, where (2.9) is just the matrix-vector representation of

(2.6). �

Corollary 2.24. Comparison lemma. Let the assumptions of Corollary 2.21
be satisfied and let

Lhu(x) = f(x) for x ∈ ωh; u(x) = g(x) for x ∈ γh,

Lhu(x) = f(x) for x ∈ ωh; u(x) = g(x) for x ∈ γh,

with |f(x)| ≤ f(x), x ∈ ωh, and |g(x)| ≤ g(x), x ∈ γh. Then, it is |u(x)| ≤
u(x) for all x ∈ ωh ∪ γh. The function u(x) is called majorizing function.

Proof. Exercise. �

Remark 2.25. Remainder of this section. The remaining corollaries presented
in this section will be applied in the stability proof in Section 2.4. In this


