
Chapter 7

Finite Element Methods for Second
Order Elliptic Problems

7.1 General Convergence Theorems

Remark 7.1. Motivation. There are many situations that are not covered by
the Ritz or Galerkin theory from Section 4.3 and for which an extension of
these theories are needed.

In Section 5.1, non-conforming finite element spaces were introduced, i.e.,
methods where the finite element space V h is not a subspace of V , which
is the space in the definition of the continuous variational problem. The
property V h �⊂ V is given for the Crouzeix–Raviart and the Rannacher–
Turek element. Another case of non-conformity is given if the domain does
not possess a polyhedral boundary and one has to apply some approximation
of the boundary.

For non-conforming methods, the finite element approach is not longer
a Ritz method. Hence, the convergence proof from Theorem 4.14 cannot be
applied in this case. In addition, in practice, one is interested also in the order
of convergence in other norms than �·�V or one has to take into account that
the values of the bilinear or linear form need to be approximated numerically.
The abstract convergence theorem, which will be proved in this section, allows
the numerical analysis of complex finite element methods. ✷

Remark 7.2. Notations, Assumptions. Let {h > 0} be a set of mesh widths
and let Sh, V h normed spaces of functions which are defined on domains
{Ωh ⊂ Rd}. It will be assumed that the space Sh has a finite dimension
and that Sh and V h possess a common norm �·�h. In the application of the
abstract theory, Sh will be a finite element space and V h is defined so that
the restriction and/or extension of the solution of the continuous problem to
Ωh is contained in V h. The index h indicates that V h might depend on h but
not that V h is finite-dimensional. Strictly speaking, the modified solution of
the continuous problem does not solve the given problem any longer. Hence,
it is natural that the continuous problem does not appear explicitly in the
abstract theory.
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114 7 Finite Element Methods for Second Order Elliptic Problems

Given the bilinear forms

ah : Sh × Sh → R,
ãh : (Sh + V h)× (Sh + V h) → R.

Let the bilinear form ah be regular in the sense that there is a constantm > 0,
which is independent of h, such that for each vh ∈ Sh there is a wh ∈ Sh

with
��wh

��
h
= 1 so that1

m
��vh

��
h
≤ ah(vh, wh). (7.1)

This condition is equivalent to the requirement that the stiffness matrix A
with the entries aij = ah(φj ,φi), where {φi} is a basis of Sh, is uniformly non-
singular, i.e., its non-singularity is independent of h (eigenvalues are bounded
away from zero uniformly with respect to h). For the second bilinear form,
only its boundedness will be assumed

ãh(u, v) ≤ M �u�h �v�h ∀ u, v ∈ Sh + V h. (7.2)

Let the linear functionals {fh(·)} : Sh → R be given. Then, the following
discrete problems will be considered: Find uh ∈ Sh with

ah(uh, vh) = fh(vh) ∀ vh ∈ Sh. (7.3)

Because the stiffness matrix is assumed to be non-singular, there is a unique
solution of (7.3).

Note the similarities of the whole setup with the assumptions for the The-
orem of Lax–Milgram. In fact, the current setup can be considered as a
generalization of the Lax–Milgram theory. ✷

Theorem 7.3. Abstract finite element error estimate. Let the condi-
tions (7.1) and (7.2) be satisfied and let uh be the solution of (7.3). Then,
the following error estimate holds for each ũ ∈ V h

��ũ− uh
��
h
≤ C inf

vh∈Sh

�
��ũ− vh

��
h
+ sup

wh∈Sh

��ãh(vh, wh)− ah(vh, wh)
��

�wh�h

�

+C sup
wh∈Sh

��ãh(ũ, wh)− fh(wh)
��

�wh�h
(7.4)

with C = C(m,M).

1 note that this condition can be formulated as an inf-sup condition:

0 < m ≤ inf
vh∈Sh

sup
wh∈Sh

ah(vh, wh)��vh
��
h

��wh
��
h
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Proof. Because of (7.1), there is for each vh ∈ Sh a wh ∈ Sh with
��wh

��
h
= 1 and

m
��uh − vh

��
h
≤ ah(uh − vh, wh).

Using the definition of uh from (7.3), one obtains

m
��uh − vh

��
h
≤ fh(wh)− ah(vh, wh) + ãh(vh, wh) + ãh(ũ− vh, wh)− ãh(ũ, wh).

From (7.2) and
��wh

��
h
= 1, it follows that

ãh(ũ− vh, wh) ≤ M
��ũ− vh

��
h
.

Rearranging the terms appropriately and using
��wh/

��wh
��
h

��
h
= 1 yields

m
��uh − vh

��
h
≤ M

��ũ− vh
��
h
+ sup

wh∈Sh

��ãh(vh, wh)− ah(vh, wh)
��

��wh
��
h

+ sup
wh∈Sh

��ãh(ũ, wh)− fh(wh)
��

��wh
��
h

. (7.5)

Applying the triangle inequality

��ũ− uh
��
h
≤

��ũ− vh
��
h
+

��uh − vh
��
h
,

inserting the estimate (7.5), and taking into account that vh was chosen arbitrarily, so that
the infimum can be taken, gives (7.4). �

Remark 7.4. To Theorem 7.3.

• An important special case of this theorem is the case that the stiffness
matrix is uniformly positive definite, i.e., the condition

m
��vh

��2
h
≤ ah(vh, vh) ∀ vh ∈ Sh, ∀ h. (7.6)

is satisfied. Dividing (7.6) by
��vh

��
h
reveals that condition (7.1) is implied

by (7.6).
• If the continuous problem is also defined with the bilinear form ãh(·, ·),
then

sup
wh∈Sh

��ãh(vh, wh)− ah(vh, wh)
��

�wh�h
can be considered as consistency error of the bilinear forms, i.e., it mea-
sures the difference between the bilinear forms used in the continuous and
discrete problem, and the term

sup
wh∈Sh

��ãh(ũ, wh)− fh(wh)
��

�wh�h
as consistency error of the right-hand sides.

✷
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Theorem 7.5. First Strang2 lemma Let Sh be a conforming finite element
space, i.e., Sh ⊂ V , with �·�h = �·�V and let the space V h be independent of
h. Consider a continuous problem of the form

ãh(u, v) = f(v) ∀ v ∈ V,

then the following error estimate holds

��u− uh
��
V
≤ C inf

vh∈Sh

�
��u− vh

��
V
+ sup

wh∈Sh

��ãh(vh, wh)− ah(vh, wh)
��

�wh�V

�

+C sup
wh∈Sh

��f(wh)− fh(wh)
��

�wh�V
.

Proof. The statement of this theorem follows directly from Theorem 7.3. �

7.2 Finite Element Method with the Non-Conforming
Crouzeix–Raviart Element

Remark 7.6. The continuous problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded
domain with Lipschitz boundary. Let

Lu = f in Ω, u = 0 on ∂Ω, (7.7)

where the operator is given by

Lu = −∇ · (A∇u)

with A = AT and

A(x) = (aij(x))
d
i,j=1, aij ∈ W 1,p(Ω), p > d. (7.8)

It will be assumed that there are two positive real numbers m,M such that

m �ξ�22 ≤ ξTA(x)ξ ≤ M �ξ�22 ∀ ξ ∈ Rd,x ∈ Ω. (7.9)

Hence, A(x) is positive definite for all x ∈ Ω, so that the operator L is
elliptic, see Definition 1.18. From the Sobolev inequality, Theorem 3.51, it
follows that aij ∈ L∞(Ω). With

a(u, v) =

�

Ω

(A(x)∇u(x)) ·∇v(x) dx

and the Cauchy–Schwarz inequality, one obtains

2 Gilbert Strang, born 1934
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|a(u, v)| ≤ �A�L∞(Ω)

�

Ω

|∇u(x) ·∇v(x)| dx ≤ C �∇u�L2(Ω) �∇v�L2(Ω)

for all u, v ∈ H1
0 (Ω). In addition, it follows from (7.9) that

m �∇u�2L2(Ω) ≤ a(u, u) ∀ u ∈ H1
0 (Ω).

Hence, the bilinear form is bounded and elliptic. Using the Theorem of Lax–
Milgram, Theorem 4.5, it follows that for given f ∈ H−1(Ω) there es a unique
weak solution u ∈ H1

0 (Ω) of

a(u, v) = f(v) ∀ v ∈ H1
0 (Ω). (7.10)

✷

Remark 7.7. Assumptions and the discrete problem. The non-conforming
Crouzeix–Raviart finite element P nc

1 was introduced in Example 5.30. To
simplify the presentation, it will be restricted here on the two-dimensional
case. In addition, to avoid the estimate of the error coming from approximat-
ing the domain, it will be assumed that Ω is a convex domain with polygonal
boundary. It can be shown that in this case the boundary is Lipschitz. In
addition, it is assumed that f ∈ L2(Ω) and aij ∈ W 1,∞(Ω).

Let {T h} be a family of regular triangulations of Ω with triangles. Let
P nc
1 (nc – non-conforming) denote the finite element space of piecewise linear

functions that are continuous at the midpoints of the edges. This space is
non-conforming if it is applied for the discretization of a second order elliptic
equation since the continuous problem is given in H1

0 (Ω) and the functions
of H1

0 (Ω) do not possess jumps. The functions of P nc
1 have generally jumps,

see Figure 7.1, and they are not weakly differentiable. In addition, the space
is also non-conforming with respect to the boundary condition, which is not
satisfied exactly. The functions from P nc

1 that will be sought as an approx-
imation of the solution of the boundary value problem (7.7) vanish in the
midpoint of the edges at the boundary. However, in the other points at the
boundary, their value is generally not equal to zero.

The bilinear form

a(u, v) =

�

Ω

(A(x)∇u(x)) ·∇v(x) dx

will be extended to H1
0 (Ω) + P nc

1 by

ah(u, v) =
�

K∈T h

�

K

(A(x)∇u(x)) ·∇v(x) dx ∀ u, v ∈ H1
0 (Ω) + P nc

1 .

Then, the non-conforming finite element method is given by: Find uh ∈ P nc
1

with
ah(uh, vh) = (f, vh) ∀ vh ∈ P nc

1 .
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Fig. 7.1 Function from Pnc
1 .

The goal of this section consists in proving the linear convergence with re-

spect to h in the energy norm �·�h =
�
ah(·, ·)

�1/2
. It can be proved that the so-

lution of the continuous problem (7.10) is smooth, i.e., that u ∈ H2(Ω), since
f ∈ L2(Ω), the coefficients aij(x) are weakly differentiable with bounded
derivatives, and Ω is a convex domain with polygonal boundary. ✷

Remark 7.8. The error equation. The first step of proving an error estimate
consists in deriving an equation for the error. To this end, multiply the contin-
uous problem (7.7) with a test function from vh ∈ P nc

1 , integrate the product
on Ω, and apply integration by parts on each triangle. This approach gives

(f, vh) = −
�

K∈T h

�

K

∇ · (A(x)∇u(x)) vh(x) dx

=
�

K∈T h

�

K

(A(x)∇u(x)) ·∇vh(x) dx

−
�

K∈T h

�

∂K

(A(s)∇u(s)) · nK(s)vh(s) ds

= ah(u, vh)−
�

K∈T h

�

∂K

(A(s)∇u(s)) · nK(s)vh(s) ds,

where nK is the unit outer normal at the edges of the triangles. Subtracting
the finite element equation, one obtains

ah(u− uh, vh) = −
�

K∈T h

�

∂K

(A(s)∇u(s)) · nK(s)vh(s) ds ∀ vh ∈ P nc
1 .

(7.11)
✷

Lemma 7.9. Estimate of the right-hand side of the error equation
(7.11). Assume that u ∈ H2(Ω) and aij ∈ W 1,∞(Ω), i, j = 1, 2, then it is


