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Chapter 1

Some Partial Differential
Equations From Physics

Remark 1.1 Contents. This chapter introduces some partial differential equations
(pde’s) from physics to show the importance of this kind of equations and to moti-
vate the application of numerical methods for their solution. O

1.1 The Heat Equation

Remark 1.2 Derivation. The derivation of the heat equation follows (Wladimirow,
1972, p. 39). Let x = (21,79,73)7 € Q C R®, where Q is a domain, ¢t € R, and
consider the following physical quantities

u(t,x) — temperature at time ¢ and at the point x with unit [K],

p(t,x) — density of the considered species with unit [kg/m?],

c(t, x) —specific heat capacity of the species with unit [J/(kg K)] = [W s/(kg K)],
k(t,x) — thermal conductivity of the species with unit [W/(m K)],

F(t,x) — intensity of heat sources or sinks with unit [W/m?].

Consider the heat equilibrium in an arbitrary volume V' C € and in an arbitrary
time interval (¢, + At). First, there are sources or sinks of heat: heat can enter or
leave V' through the boundary OV, or heat can be produced or absorbed in V. Let
n(x) be the unit outer normal at x € V. Due to Fourier’s law , one finds that the

heat
t+At t+At
/ / ts ds dt = / (kVu - n) (t,s) ds dt, [J],
v On ov

enters through OV into V. One obtains with partial integration (Gaussian theorem)

t+At
Q1= /75 /VV - (kVu)(t,x) dx dt.

In addition, the heat

@:= | o [ F) s at, w )= 1)

is produced in V.
Second, a law for the change of the temperature in V' has to be derived. Using
a Taylor expansion, on gets that the temperature at x changes in (¢,t + At) by

u(t + At,x) — u(t,x) = %(t,x)At +0((At)?).



Now, a linear ansatz is utilized, i.e.,

ou

With this ansatz, one has that for the change of the temperature in V' and for
arbitrary At, the heat

fLA t+At
Qs —/ / Y :/ / pntx) dx di
N . LT

is needed. This heat has to be equal to the heat sources, i.e., it holds Q3 = Q2+ Q1,
from what follows that

/ - / [CP ~ V- (kVu) ~ F] (t,x) dx dt = 0.

Since the volume V was chosen to be arbitrary and At was arbitrary as well, the
term in the integral has to vanish. One obtains the so-called heat equation

0

a—“ V- (kVu) =F in (0,T) x Q.
At this point of modeling one should check if the equation is dimensionally correct.
One finds that all terms have the unit [W/m3].

For a homogeneous species, ¢, p, and k are positive constants. Then, the heat

equation simplifies to

u(t + At,x) — u(t,x) =

% —e?Au=f in (0,T) x £, (1.1)

with 2 = k/(cp), [m?/s] and f = F/(cp),[K/s]. To obtain a well-posed problem,
(1.1) has to be equipped with an initial condition u(0,x) and appropriate boundary
conditions on (0, T)0f. O

Remark 1.3 Boundary conditions. For the theory and the numerical simulation
of partial differential equations, the choice of boundary conditions is of utmost
importance. For the heat equation , one can prescribe the following types of
boundary conditions:
) Dirichleﬂ condition: The temperature u(t,x) at a part of the boundary is pre-
scribed
u=g; on (0,T) x 0Qp

with 0Qp C 0. In the context of the heat equation, the Dirichlet condition is
also called essential boundary conditions.
° Neumamﬂ condition: The heat flux is prescribed at a part of the boundary
0
—ka—z =goon (0,T) x 00N
with 0Qx C 0. This boundary condition is a so-called natural boundary
condition for the heat equation.
e Mixed boundary condition, Robirﬂ boundary condition: At the boundary, there
is a heat exchange according to Newton’s law
0
kal + h(t — teny) = 0 on (0,T) x I,
with 99, C 99, the heat exchange coefficient h, [W/(m?K?)], and the temper-
ature of the environment ey, .

! Johann Peter Gustav Lejeune Dirichlet (1805 —1859)
2Carl Gottfried Neumann (1832 — 1925)
3Gustave Robin (1855 — 1897)



d

Remark 1.4 The stationary case. An important special case is that the temper-
ature is constant in time u(¢,x) = u(x). Then, one obtains the stationary heat
equation

—e?Au=f inQ. (1.2)

This equation is called Poissorﬁ equation. Its homogeneous form, i.e., with f(x) =0,
is called Laplacdﬂ equation. Solution of the Laplace equation are called harmonic
functions. The Poisson equation is the simplest partial differential equation. The
most part of this lecture will consider numerical methods for solving this equation.

O

Remark 1.5 Another application of the Poisson equation. The stationary distri-
bution of an electric field with charge distribution f(x) satisfies also the Poisson

equation (1.2)). O

Remark 1.6 Non-dimensional equations. The application of numerical methods
relies on equations for functions without physical units, the so-called non-dimensional
equations. Let

e L — a characteristic length scale of the problem, [m],

e U — a characteristic temperature scale of the problem, [K],

e T* — a characteristic time scale of the problem, [s].
If the new coordinates and functions are denoted with a prime, one gets with the
transformations

R
X = I U U t = T=
from (|1.1)) the non-dimensional equations
) ik o (0 ox\ o T
— (U n -z 2 — | = (U / [ 7 —_ 3 0. — Q/ —
8t’( “)at E;B:ﬂ; (3:5;( u)(‘?wi>8xi f m(’T*)X

U o 2U K 82 T
— 7 = = i — Q.
"ot L7 22 o) f in (O, T*> X

1= [

Usually, one denotes the non-dimensional functions like the dimensional functions,
leading to
ou  2T* T* ) T
a— L2 Auzﬁf m (0,1_‘*> XQ.
For the analysis, one sets L = 1lm, U = 1K, and T* = 1s which yields

% —e?Au=f in (0,T) x £, (1.3)

with a non-dimensional temperature diffusion £? and a non-dimensional right hand
side f(t,x).
The same approach can be applied to the stationary equation (|1.2)) and one gets

—?Au=f inQ, (1.4)

with the non-dimensional temperature diffusion £? and the non-dimensional right
hand side f(x). O

4Siméon Denis Poisson (1781 — 1840)
5Pierre Simon Laplace (1749 — 1829)



Remark 1.7 A standard approach for solving the instationary equation. The heat
equation is an initial value problem with respect to time and a boundary value
problem with respect to space. Numerical methods for solving initial value problems
were topic of Numerical Mathematics 2.

A standard approach for solving the instationary problem consists in using a
so-called one-step #-scheme for discretizing the temporal derivative. Consider two
consecutive discrete times t¢,, and t,41 with 7 = ¢,41 — ¢,. Then, the application
of a one-step #-scheme yields for the solution at ¢,

Up+1 — U
% — 0 Atpiy — (1= 0)e2Auy = 0fpiq + (1= 60) [y,

where the subscript at the functions denotes the time level. This equation is equiv-

alent to

Upg1 — TO2 AUy 1 = up + 7(1 — 0)e? Ay, + 10f1 1 +7(1 — 6) fr. (1.5)

For 6 = 0, one obtains the forward Euler scheme, for § = 0.5 the Crank—Nicolson
scheme (trapezoidal rule), and for = 1 the backward Euler scheme.

Given uy,, is a boundary value problem for u, ;. That means, one has to
solve in each discrete time a boundary value problem. For this reason, this lecture
will concentrate on the numerical solution of boundary value problems. a

Example 1.8 Demonstrations with the code MOONMD |JOHN AND MATTHIES|
(2004).

e Consider the Poisson equation in Q = (0,1)% with e = 1. The right
hand side and the Dirichlet boundary conditions are chosen such that u(z,y) =
sin(mz) sin(my) is the prescribed solution, see Figure Hence, this solution
satisfies homogeneous Dirichlet boundary conditions. Denote by wuy(x,y) the
computed solution, where h indicates the refinement of a mesh in 2. The errors
obtained on successively refined meshes with the simplest finite element method
are presented in Table

solution

EOOO

-0.750
éo.soo

EO.250

0.000

Figure 1.1: Solution of the two-dimensional example of Example [T.8

One can observe in Table that [lu — up| 2y converges with second order
and [|V(u — up)|| 12(q) converges with first order. A main topic of the numerical
analysis of discretizations for partial differential equations consists in showing
that the computed solution converges to the solution of an appropriate contin-
uous problem in appropriate norms. In addition, to prove a certain order of
convergence (in the asymptotic regime) is of interest.



Table 1.1: Example [I.8] two-dimensional example.

h  degrees of freedom | [lu —up| 20y V(v —un)llp2(0

1/4 25 8.522¢-2 8.391e-1
1/8 81 2.256e-2 4.318e-1
1/16 289 5.726e-3 2.175e-1
1/32 1089 1.437e-3 1.089e-1
1/64 4225 3.596e-4 5.451e-2
1/128 16641 8.993e-5 2.726e-2
1/256 66049 2.248e-5 1.363e-2
1/512 263169 5.621e-6 6.815e-3

e Consider the Poisson equation in Q= (0,1)2 withe =1 and f = 0. At
z = 1 the temperature profile should be u(x,y,1) = 162(1 — z)y(1 — y) and
at the opposite wall should be cooled u(z,y,0) = 0. At all other walls, there
should be an undisturbed temperature flux %(x, y,z) = 0. A approximation of
the solution computed with a finite element method is presented in Figure[1.2

solution

08
06

04
EO.Q
0

Figure 1.2: Contour lines of the solution of the three-dimensional example of Ex-

ample

The analytical solution is not known in this example (or it maybe hard to com-
pute). It is important for applications that one obtains, e.g., good visualizations
of the solution or approximate values for quantities of interest. One knows by
the general theory that the computed solution converges to the solution of the
continuous problem in appropriate norms and one hopes that the computed
solution is already sufficiently close.

O

1.2 The Diffusion Equation

Remark 1.9 Derivation. Diffusion is the transport of a species caused by the
movement of particles. Instead of Fourier’s law, Newton’s law for the particle flux
through OV per time unit is used

dQQ = —DVu-nds

with
e u(t,x) — particle density, concentration with unit [mol/m?],
e D(t,x) — diffusion coefficient with unit [m?2/s].



The derivation of the diffusion equation proceeds in the same way as for the heat
equation. It has the form

c% —V-(DVu)+qu=F in (0,T) x £, (1.6)

where
e ¢(t,x) — is the porosity of the species, [],
e ¢(t,x) — is the absorption coefficient of the species with unit [1/s],
e F(t,x) — describes sources and sinks, [mol/(s m?)].
The porosity and the absorption coefficient are positive functions. To obtain a well
posed problem, an initial condition and boundary conditions are necessary.
If the concentration is constant in time, one obtains

-V - (DVu)+qu=F in Q. (1.7)

Hence, the diffusion equation possesses a similar form as the heat equation. O

1.3 The Navier—Stokes Equations

Remark 1.10 Generalities. The Navierﬂ»Stokesﬂ equations are the fundamental
equations of fluid dynamics. In this section, a viscous fluid (with internal friction)
with constant density (incompressible) will be considered. O

Remark 1.11 Conservation of mass. The first basic principle of the flow of an
incompressible fluid is the conservation of mass. Let V be an arbitrary volume.
Then, the change of fluid in V satisfies

—%/pdx: /pv-nds :/V~(pv)dx,
v

\4 ov

—_——
change flux through the boundary of V'

where

o v(t,x) — velocity (vy,vs,v3)T at time ¢ and at point x with unit [m/s],

e p — density of the fluid, [kg/m?].
Since V' is arbitrary, the terms in the volume integrals have to be the same. One
gets the so-called continuity equation

pe +V-(pv)=0 in (0,T) x Q.

Since p is constant, one obtains the first equation of the Navier—Stokes equation,
the so-called incompressibility constraint,

V-v=0 in (0,T) x Q. (1.8)
]

Remark 1.12 Conservation of linear momentum. The second equation of the
Navier—Stokes equations represents Newton’s second law of motion

net force = mass X acceleration.

It states that the rate of change of the linear momentum must be equal to the net
force acting on a collection of fluid particles.

6Claude Louis Marie Henri Navier (1785 - 1836)
7George Gabriel Stokes (1819 - 1903)



The forces acting on an arbitrary volume V are given by

Fy = /—Pnds +/§’nds+/pgdx,

ov oV \4
—_— Y Y
outer pressure friction gravitation

where

e S'(t,x) — stress tensor with unit [N/m?],

e P(t,x) — the pressure with unit [N/m?],

e g(t,x) — standard gravity (directed), [m/s?].
The pressure possesses a negative sign since it is directed into V', whereas the stress
acts outwardly.

The integral on 0V can be transformed into an integral on V with integration

by parts. One obtains the force per unit volume

~VP+V-S +pg.

On the basis of physical considerations (Landau and Lifschitz, 1966, p. 53), one
uses the following ansatz for the stress tensor

S = n(VV + vl — %(V : v)]I) + (V- V)L,

where
e 7 — first order viscosity of the fluid, [kg/(m s)],
e ( —second order viscosity of the fluid, [kg/(m s)],
e [ — unit tensor.
For Newton’s second law of motion one considers the movement of particles with
velocity v(t,x(t)). One obtains the following equation

dv(t,x(t
VP4+V-S +pg = p dv(t,x(t))
~— dt
force per unit volume mass per unit volume .
acceleration

= p(vi+(v-V)v).

The second formula was obtained with the chain rule. The detailed form of the
second term is

v1(v1)g + v2(v1)y + v3(v1)2
(v-V)v=| v1(v2)s +v2(v2)y + v3(v2),
01(v3) + v2(v3)y + v3(v3)2

If both viscosities are constant, one gets

0 VP 1
(%-mw(v-wv—? :g+;(g+C)V(V~V)7
where v = n/p,[m?/s] is the kinematic viscosity. The second term on the right
hand side vanishes because of the incompressibility constraint (1.8]).
One obtains the dimensional Navier—Stokes equations
ov VP

E—I/Av—i—(v'V)v—T:g, V-v=0 in (0,T) x Q.

a

Remark 1.13 Non-dimensional Navier—Stokes equations. The final step in the
modeling process is the derivation of non-dimensional equations. Let



e [ — a characteristic length scale of the problem, [m],

e U — a characteristic velocity scale of the problem, [m/s],

e T* — a characteristic time scale of the problem, [s].
Denoting here the old coordinates with a prime, one obtains with the transforma-
tions o Y
=

the non-dimensional equations

L v .
Watu—ﬁAu—l—(u-V)u—i—Vp:f, V-u=0 in (0,T) x £,

with the redefined pressure and the new right hand side

P Lg
p(t,x) = W(t,x), f(t,x) = W(t,x).
This equation has two dimensionless characteristic parameters: the Strouhaﬂ num-
ber St and the Reynolds EI number Re
L UL
St = ﬁ, Re = 7
Setting T* = L/U, one obtains the form of the incompressible Navier-Stokes equa-
tions which can be found in the literature
Ou 1 .
¥ —Re 'Au+ (u-V)u+Vp = f in(0,7) x Q,
V-u = 0 in[0,T) x Q.

d

Remark 1.14 About the incompressible Navier—Stokes equations. The Navier—
Stokes equations are not yet understood completely. For instance, the existence
of an appropriately defined classical solution for  C R? is not clear. This problem
is among the so-called millennium problems of mathematics [Fefferman| (2000]) and
its answer is worth one million dollar. Also the numerical methods for solving the
Navier—Stokes equations are by far not developed sufficiently well as it is required
by many applications, e.g. for turbulent flows in weather prediction. O

Remark 1.15 Slow flows. Am important special case is the case of slow flows
which lead to a stationary (independent of time) flow field. In this case, the first
term in the in the momentum balance equation vanish. In addition, if the flow
is very slow, the nonlinear term can be neglected. One gets the so-called Stokes
equations
—Re 'Au+Vp = f inQ,
V-u = 0 in Q.

1.4 Classification of Second Order Partial Differ-
ential Equations

Definition 1.16 Quasi-linear and linear second order partial differential
equation. Let Q ¢ R? d € N. A quasi-linear second order partial differential

8Cenck Strouhal (1850 — 1923)
90sborne Reynolds (1842 - 1912)

10



equation defined on ) has the form

d
a;5(x)0;0ku + F (x,u,01u,...,0qu) =0 (1.9)
k=1

or in nabla notation
V- Ax)Vu + F (x,u, 1ty . .., Oqu) = 0.

A linear second order partial differential equation has the form

d
a;,(x)0;0ku + b(x) - Vu + ¢(x)u = F(x).
k=1

d

Remark 1.17 The matriz of the second order operator. If u(x) is sufficiently reg-
ular, then the application of the Schwarzm theorem yields 0;0,u(x) = 0r0;u(x). It
follows that equation contains the coefficient 0;0,u(x) twice, namely in a;(x)
and ay;j(x). For definiteness, one requires that

ajk(x) = ar;(x).

Now, one can write the coefficient of the second order derivative with the symmetric
matrix
au(x) R ald(x)
A(x) = : . :
agi(x) - aga(x)
All eigenvalues of this matrix are real and the classification of quasi-linear second
order partial differential equations is based on these eigenvalues. O

Definition 1.18 Classification of quasi-linear second order partial differ-
ential equation. On a subset Q C Q let o be the number of positive eigenvalues
of A(x), B be the number of negative eigenvalues, and v be the multiplicity of the
eigenvalue zero. The quasi-linear second order partial differential equation is
said to be of type (a, ,7) on Q. It is called to be

o elliptic on € if it is of type (d,0,0) = (0,d, 0),

e hyperbolic on €, if its type is (d —1,1,0) = (1,d — 1,0),

e parabolic on Q, if it is of type (d — 1,0,1) = (0,d — 1,1).
In the case of linear partial differential equations, one speaks of a parabolic equation
if in addition to the requirement from above it holds that

rank(A(x),b(x)) =d
in Q. O
Remark 1.19 Other cases. Definition [T.18 does not cover all possible cases. How-

ever, the other cases are only of little interest in practice. O

Example 1.20 Types of second order partial differential equations.

e For the Poisson equation one has a;; = —2 < 0 and a;; = 0 for i # j.
It follows that all eigenvalues of A are negative and the Poisson equation is an
elliptic partial differential equation. The same reasoning can be applied to the
stationary diffusion equation .

10Hermann Amandus Schwarz (1843 — 1921)

11



e In the heat equation there is besides the spatial derivatives also the tem-
poral derivative. The derivative in time has to be taken into account in the defi-
nition of the matrix A. Since this derivative is only of first order, one obtains in
A a zero row and a zero column. One has, e.g., a;; = -2 < 0,i=2,...,d+ 1,
a1 = 0, and a;; = 0 for ¢ # j. It follows that one eigenvalue is zero and
the others have the same sign. The vector of the first order term has the form
b = (1,0,...,0)7 € R¥*! where the one comes from the d;u(t,x). Now, one
can see immediately that (A, b) possesses full column rank. Hence, is a
parabolic partial differential equation.

e An example for a hyperbolic partial differential equation is the wave equation

Ofu—e*Au=f in (0,T) x Q.

1.5 Literature

Remark 1.21 Some books about the topic of this class. Books about finite differ-
ence methods are
o [Samarskij| (1984), classic book, the English version is
e [LeVeque (2007)
Much more books can be found about finite element methods
Ciarlet| (2002), classic text,
Strang and Fix| (2008)), classic text,
Braess| (2001)), very popular book in Germany,
Brenner and Scott| (2008]), rather abstract treatment, from the point of view of
functional analysis,
e Ern and Guermond, (2004)), modern comprehensive book,
e (Grossmann and Roos| (2007)
° m (2006)), written by somebody who worked a lot in the implementation of
the methods,
e Goering et al. (2010), introductory text, good for beginners,
e Deuflhard and Weiser| (2012), strong emphasis on adaptive methods
e Dziuk] (2010)).
These lists are not complete.
These lectures notes are based in some parts on lecture notes from Sergej
Rjasanow (Saarbriicken) and Manfred Dobrowolski (Wiirzburg). O

12



Chapter 2

Finite Difference Methods
for Elliptic Equations

Remark 2.1 Model problem. The model problem in this chapter is the Poisson
equation with Dirichlet boundary conditions

—Au = f inQ,

u = g on 0, (2.1)

where Q0 C R?. This chapter follows in wide parts [Samarskij| (1984). O

2.1 Basics on Finite Differences

Remark 2.2 Grid. This section considers the one-dimensional case. Consider the
interval [0, 1] which is decomposed by an equidistant grid

x; = ih, i=0,...,n, h=1/n, —nodes,
wp = {x; +i=0,...,n} — grid.
O
Definition 2.3 Grid function. A vector u, = (ug,...,u,)T € R**! which as-
signs every grid point a function value is called grid function. O

Definition 2.4 Finite differences. Let v(x) be a sufficiently smooth function and
denote by v; = v(x;), where x; are the nodes of the grid. The following quotients
are called

Vi1 — Vi :
Vi = —FL ' forward difference
x,1 h ,
Vi — Ui—1 .
Vg = 5 backward difference,
Vit+1 — Vi—1 .
vy = L7l contral difference
€T, 2h )
Vi1 — 205 + Vi1 .
Vgz,i = — second order difference
’ h2 )
see Figure 2.1 O

13
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Figure 2.1: Illustration of the finite differences.

Remark 2.5 Some properties of the finite differences. It is (exercise)

1
Vi = i(vzz +v35), Vzas = (Vz,i)z,i-

Using the Taylor series expansion for v(z) at the node x;, one gets (exercise)

Uei = V(%) + %hv”(ﬂfi) +0(h?),
vz = V'(x;)— %hv”(mi) +0 (hZ) ,
vi; = V(z;))+0O (hQ) ,

Ve = V'(x)+ O (hz) )
O

Definition 2.6 Consistent difference operator. Let L be a differential oper-
ator. The difference operator Ly, : R"T! — R"*+! is called consistent with L of
order k if

max |(Lu)(z;) = (Lpun)i| = [[(Lu)(x:) = (Laun)illoow, = O (R*)

0<i<n
for all sufficiently smooth functions u(z). O

Example 2.7 Consistency orders. The order of consistency measures the quality
of approximation of L by Ly,.

The difference operators vy ;, vz, Vs ; are consistent to L = % with order 1,1,
and 2, respectively. The operator vz, ; is consistent of second order to L = j—;, see
Remark 2.5 O

Example 2.8 Approzimation of a more complicated differential operator by differ-
ence operators. Consider the differential operator

d du

14



where k(z) is assumed to be continuously differentiable. Define the difference op-
erator L;, as follows

1
(Lnun)e = (auz)os = 3 (al@ir)uzs(@in) - a(edusi(x:))
1 Ujp1 — U Uj — Uj—1
= h Ait1 n —aq n )

where a is a grid function which has to be determined appropriately. One gets with
the product rule
(Lu); = k() (u')i + K(2i) (u");

and a Taylor series expansion for w;_1, u;41

i1~ G i+1+ a; h(ait1 — a;
(Lhun); = %(U/)i + %(U”)i + w(um)i Lo (hg)-

Thus, the difference of the differential operator and the difference operator is
itl — % i+1 1+ a;
(i = s = (’f/(“’"‘) B Hh) (et (’%) - “2> ();

w (W) + O (h?) . (2:2)

In order to define Lj; such that it is consistent of second order to L, one has to
satisfy the following two conditions

ai+1 + a4

e L G

3 =k(z;)+ 0O (hz) .

From the first requirement, it follows that a;11 —a; = O (h). Hence, the third term
in the consistency error equation ({2.2)) is of order O (h2) Possible choices for the
grid function are (ezercise)

ki + ki_ h
a; = ?17 a; =k <JUL - 2> , ;= (kikio)'?

Note that the 'natural’ choice, a; = k;, leads only to first order consistency.
(exercise) O

2.2 Finite Difference Approximation of the Lapla-
cian in Two Dimensions

Remark 2.9 The five point stencil. The Laplacian in two dimensions is defined by

0? 0?
Ly 2 zaiu—&—aju:um—l—uyy, x = (z,y).

Aulx) =52+ 5

The simplest approximation uses for both second order derivatives the second order
differences. One obtains the so-called five point stencil and the approximation
Uit1,j — 2Uij + Ui—1,

Ui j4+1 — 2uij + Ug,5—1
Au ~ Au = ugy + ugy = > + > ,
n2 h2

(2.3)

see Figure 2.2l From the consistency order of the second order difference it follows
immediately that Au approximates the Laplacian of order O (hi + hf/) a
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Figure 2.2: Five point stencils.

Remark 2.10 The five point stencil on curvilinear boundaries. There is a difficulty
if the five point stencil is used in domains with curvilinear boundaries. The approx-
imation of the second derivative requires three function values in each coordinate
direction

(@ = hg,y), (z,y), (& +hiy),
(w,y - hy_), (CU,y), (x,y + h’;_)7

see Figure A guideline of defining the approximation is that the five point
stencil is recovered in the case h, = h}. A possible approximation of this type is

82u N 1 (u(.’b—l—hj,y)—u(fb,y) u(x,y)—u(m—hm,y))

Preiad

5 - I (2.4)
with h, = (h} + h;)/2. Using a Taylor series expansion, one finds that the error
of this approximation is

Pu 1 <U(9ﬂ +hiy) —u(zy)  ul@y) —ulz—hy, y)>

0x?  h,

ha hz

- —%(hj - h;)% +0 ().

For h} # h;, this approximation is of first order.

(2,5 + A7)

(z —h,y) (=,9) (x+hg,y)

(z,y —Ay)
Figure 2.3: Sketch to Remark

A different way consists in using

Pu 1 (u(@+hiy) —ulry)  ulry) —u@—h;,y)
“5( )

022 hi B hy

16



with h, = max{h}, h; }. However, this approximation possesses only the order
zero, i.e., there is actually no approximation.
Altogether, there is a loss of order of consistency in this situation. O

Example 2.11 The Dirichlet problem. Consider the Poisson equation which is
equipped with Dirichlet boundary conditions (2.1)). First, R? is decomposed by a
grid with rectangular mesh cells z; = th;,y; = jhy, hz, hy >0, 4, j € Z. Denote by

wy = {o} inner nodes, five point stencil completely in €2,
wp = {x} inner nodes that are close to the boundary,
v = {x} boundary nodes,
wp = wp UJwy inner nodes,
wp Uy grid,
see Figure

- —4
T

Figure 2.4: Different types of nodes in the grid.

The finite difference approximation of problem (2.1)) which will be studied in the
following consists in finding a mesh function u(x) such that

—Au(x) = ¢x) xe€wy,
—ANu(x) = ¢(x) xe€w;, (2.5)
uwx) = g(x) xEm,

where ¢(x) is a grid function that approximates f(x) and A* is an approximation of
the Laplacian for nodes that are close to the boundary, e.g., defined by . The
discrete problem is a large sparse linear system of equations. The most important
questions are:
e Which properties possesses the solution of ?
e Converges the solution of to the solution of the Poisson problem and if yes,
with which order?
O

2.3 The Discrete Maximum Principle for a Finite
Difference Operator

Remark 2.12 Contents of this section. Solutions of the Laplace equation, i.e., of
(2.1) with f(x) = 0, fulfill so-called maximum principles. This section shows, that
the finite difference approximation of an operator, where the five point stencil of
the Laplacian is a special case, satisfies a discrete analog of one of the maximum
principles. O
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Theorem 2.13 Maximum principles for harmonic functions. Let 2 C R¢
be a bounded domain and v € C*() N C(Q) harmonic in Q, i.e. u(x) solves the
Laplace equation —Au = 0 in Q.
o Weak mazximum principle. It holds
Iileaé( u(x) = max u(x).
That means, u(x) takes it mazimal value at the boundary.
e Strong mazimum principle. If Q is connected and if the mazimum is taken in Q
(note that §2 is open), i.e., u(xo) = max, g u(x) for a point xo € Q, then u(x)
18 constant -
u(x) = maxu(x) = u(xg) Vxe€Q.
xe
Proof: See the literature, e.g., (Evans| 2010, p. 27, Theorem 4) or the class on the
theory of partial differential equations. |

Remark 2.14 Interpretation of the maximum principle. The Laplace equation
models the temperature distribution of a heated body without heat sources in 2.
Then, the weak maximum principle just states that the temperature in the interior
of the body cannot be higher than the highest temperature at the boundary.

There are maximum principles also for more complicated operators than the
Laplacian, e.g., see |Evans| (2010)).

Since the solution of the partial differential equation will be only approximated
by a discretization like a finite difference method, one has to expect that basic
physical properties are satisfied by the numerical solution also only approximately.
However, in applications, it is often very important that such properties are satisfied
exactly. O

Remark 2.15 The difference equation. In this section, a difference equation of the
form
a(x)u(x) = Z b(x,y)u(y) + F(x), x € wp, U, (2.6)
yES(x)
will be considered. In (2.6)), for each node x, the set S(x) is the set of all nodes
on which the sum has to be performed, x ¢ S(x). That means, a(x) describes the
contribution of the finite difference scheme of a node x to itself and b(x,y) describes
the contributions from the neighbors.
It will be assumed that the grid wy is connected, i.e., for all x,,x. € wy exist
X1,y Xm € wp, with x1 € S(X,), X2 € S(X1),...,%Xe € S(xpm). E.g., the situation

depicted in Figure [2.5]is not allowed.

'\\
Figure 2.5: Grid which is not allowed in Section [2.3

It will be assumed that the coefficients a(x) and b(x,y) satisfy the following
conditions:

a(x) > 0, b(x,y) >0, Vxe€w,Vye Skx),
1

a(x) = 1, b(x,y) =0V x € 7, (Dirichlet boundary condition).

18



The values of the Dirichlet boundary condition are incorporated in (2.6)) into the
function F(x). O

Example 2.16 Five point stencil for approximating the Laplacian. Inserting the
approximation of the Laplacian with the five point stencil (2.3) for x = (z,y) € wj,
into the scheme (2.6) gives

2(h2 + h2) 1 1
WU(%?J) = hf%U(ﬂc—khz,y)—khf%U(x—hz,y)
1 1
+h7U(x,y+hy)+h7U(x,y*hy) + ¢(x, y).
Y Y
It follows that
2(h2 + h2)
ax) = S
h2h?
b(x,y) € {h;%h,?%},
S(X) = {(a:—hx,y),(x+hx,y),(x,y—hy),(a:,y—l—hy)}.

For inner nodes that are close to the boundary, only the one-dimensional case
([2.4) will be considered for simplicity. Let x + h} € 73, then it follows by inserting

(£4) into (26)

1 /1 1 w(lx —h,,y)  ulz+hi,y)
=+ ) ule,y) = ——= + = +o(),
Fa (hw+ h> ue ) =T i oW
on v, —F(z)
where a(x) = i (% + %), b(x,y) = E:h; und S(z) ={(x — h,,y)}. O

Remark 2.17 Reformulation of the difference scheme. Scheme ([2.6)) can be refor-
mulated in the form

dx)u(x) = D b(x,y)(uly) — u(x)) + F(x) (2.7)

yes(x)
with d(x) = a(x) = Xy c g0 b(%,Y). O

Example 2.18 Five point stencil for approximating the Laplacian. Using the five
point stencil for approximating the Laplacian, form (2.7)) of the scheme is obtained
with ) )
2(hg +h 2 2
d(x) = 7( y)
hihZ h2

for x € wy.

The coefficients a(x) and b(x,y) are the weights of the finite difference stencil
for approximating the Laplacian. A minimal condition for consistency is that this
approximation vanishes for constant functions. It follows that also for the nodes
X € wy it is a(x) = X5, cg(x) b(x,y). However, as it was shown in Example E
in this case the contributions from the neighbors on ~;, are included in the scheme
in F(z). Hence, one obtains for nodes that are close to the boundary

dx)= > bxy)— Y. bxy)= >  bxy. (28
yES(x) YES(%),yZvn YES(%),yETn
D —
=a(x)
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In the one-dimensional case, one has, by the definition of h, and with h; = h, > h},

d(z) 1 ( 1 n 1 ) 1 1 2
€T = e —_— —_— = = — =
he \hi = hy hohi  hohd  hohd +hihd

2 1
> =
= hghg +hahy  hghy

> 0.

d

Lemma 2.19 Discrete maximum principle (DMP). Let u(x) # const on wy,
and d(x) > 0 for all x € wy,. Then, it follows from

Lpu(x) :=d(x)u(x) — Z b(x,y) (u(y) — u(x)) <0 (2.9)

yeS(x)

(or Lpu(x) > 0, respectively) on wy, that u(x) does not possess a positive mazimum
(or negative minimum, respectively) on wy,.

Proof: The proof is performed by contradiction. Let Lyu(x) < 0 for all x € w, and
assume that u(x) has a positive maximum on wy, at X, i.e., u(X) = maxxew, u(x) > 0.
Then, the idea of the proof consists in showing that with these assumptions there is a node
X € wy, with Lyu(X) > 0.

For the node X it holds that

Lnu(®) = d®u® - 3 bEy) (uly) - u(®) > d@u(x) > 0.
yesE) >0 <0 by definition of X

Hence, it follows that L,u(X) = 0 and, in particular, that d(X) = 0. All terms in the sum
are non-positive. Consequently, if the sum should be zero, all terms have to be zero, too.
Since it was assumed that b(X,y) is positive, it must also hold

u(y) = u(X) Vy e S(x).

From the assumption u(x) # const it follows that there exists a node X € wy, with u(X) >
u(x). Because the grid is connected, there is a path X, x1,...,Xm, X such that

x1 € S(X), u(x1)=1u(X),
x2 € 8(x1), u(x2) =u(x1) = u(x),
X € S(xm), uXm)=ulxm-1)=...=1u(X) > ux).
For the last node X, for which u(x) has the same value as for X, it holds that
Lru(xm) > d(Xm) w(xm) — b(Xm, %) (w(X) — u(xm)) > 0.
>0 >0 >0 <0

Hence, the node x,, is the wanted node x. |

Corollary 2.20 Non-negativity of the grid function. Let u(x) > 0 for x €
and Lpu(x) > 0 on wy. Then, the grid function u(x) is non-negative for all x €
wp Uyp.

Proof: Assume there is a node X € w;, with u(X) < 0. Then, the grid function has
a negative minimum on wp, which is a contradiction to the discrete maximum principle.
|

Corollary 2.21 Unique solution of the discrete Laplace equation with ho-
mogeneous Dirichlet boundary conditions. The Laplace equation Lyu(x) =0
possesses only the trivial solution u(x) =0 for x € wy Uyp,.

20



Proof: The statement of the corollary follows by applying Corollary and its
analog for the non-positivity of the grid function if u(x) < 0 for x € ~;, and Lpu(x) <0
on wyp. Note that in the definition Lpu(x) = 0 contains also the boundary values, which
are homogeneous Dirichlet. |

Corollary 2.22 Comparison lemma. Let

Lyu(x) = f(x) forx€wy; u(x)

Lyu(x) = f(x) forx€wy; u(x)

= g(x) for x € yp,
— g(x) for x €,
with | f(x)| < f(x) and |g(x)| < g(x). Then it is |u(x)| < u(x) for all x € wy, U~y,.

Proof: Exercise. [ |

Remark 2.23 Remainder of this section. The remaining corollaries presented in
this section will be applied in the stability proof in Section[2:4] In this proof, the ho-
mogeneous problem (right hand side vanishes) and the problem with homogeneous
Dirichlet boundary conditions will be analyzed separately. O

Corollary 2.24 Homogeneous problem. For the solution of the problem
Lpu(x) = 0, X € W,
U(X) = g(X), X € Yn,
with d(x) = 0 for all x € wy,, it holds that

12l (i) < N9ll100 (4 -
Proof: Consider the problem

Lhﬂ(x) = 0, X € Wh,
u(x) = g(x)=const =|gllec(y,)s X En

It is u(x) = [|gl;0c (,, ) = const, since for inner nodes that are not close to the boundary it
holds that
Lya(x) = d(x)u(x) — Y b(x,y) (aly) —u(x)) =0.
e yES() —
By definition of the problem, Lj vanishes for constant functions. With the same arguments
as in Example one can derive the representation for inner nodes that are close
to the boundary. Inserting into and using in addition u(x) = u(y) yields

Lya(x) =d®u®) = > bxyux) = Y  bxy)uly).
YES(x),yETR YES(x),YETR

This expression is exactly the contribution of the nodes on +;, that are included in F(x)
in the scheme (12.6]), see also Example That means, the finite difference equation is
also satisfied by the nodes that are close to the wall.

Now, the statement of the corollary follows by the application of Corollary [2.22] since
a(x) > |u(x)]. ]

Corollary 2.25 Problem with homogeneous boundary condition. For the
solution of the problem

LhU(X) = f(X)7 X € Wwp,
U(X) = Oa X € Y,

with d(x) > 0 for all x € wy, it is
—1
||qu°°(th’Yh) S HD leoo(wh)

with D = diag(d(x)) for x € wy,.
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Proof: Consider the grid function

fx) = |fx)|>f(x) Vx€ewn.
From the discrete maximum principle it follows that the solution of the problem
Lia(x) = f(x), X€Euwp,
u(x) = 0, X € Yh,
is non-negative, i.e., it holds @(x) > 0 for x € wp U~,. Define the node X by the condition
u(X) = @l io0 (e, ) -
In X, it is
Lya(x) = d®)ux) — Y bxy) (uly) - u(x) = /)],

yeES(X) 0

<o
from what follows that
ey < ) FACII I f&R)| _pr
() < ey < max et = max ) = D7 e,y -
Since u(x) < w(X) for all x € wp Uy, because of Corollary [2.22] the statement of the
corollary is proved. ]

Corollary 2.26 Another problem with homogeneous boundary condition.
Consider
Lyu(x) = f(x), x€uwp,
U(X) Oa X € Yh,
with f(x) = 0 for all x € wy,. With respect to the finite difference scheme it will

be assumed that d(x) = 0 for all x € wy, and d(x) > 0 for all x € w};. Then the
following estimate is valid

||u||l°°(th’Yh) S HDJ’_leOQ(wh)

with DT = diag(0,d(x)™"). The zero entries appear for x € w;, and the entries
d(x)™! for x € wi.

Proof: Let f(x) = |f(x)|, X € wn, and g(x) = 0,x € 4. The solution u(x) is
non-negative, u(x) > 0 for all x € wy, Uy, see the proof of Corollary Define X by

BR) = 0llioo o0 -
One can choose X € wy,, because if X € wy, then it holds that

dF)a®) - Y bEy) (uly) - u®) = f(%) =0,
— —_—

=0 yes® - o <0

ie. u(X) =1u(y) for all y € S(x). Let X € wj, and X,X1,...,Xm,X be a connection with
x; € wp, i =1,...,m. For x,, it holds analogously that

W(xim) = [l e o, 0y = TY) VY € S(xm).

Hence, it follow in particular that u(%x) = [[@l|;s,,, -, ) Such that one can choose X = %.
It follows that '
dx)  u®) - Y b&y) (aly) -u®) = (%)
_ yES(%) _—
>0 =lwllo0 (w), Uvy,) >0 <o

Since all terms in the sum over x € wj, are non-negative, it follows, using also Corol-

lary 2:22] that

~
=l

_ (x
”“Hlm(whuvh) < Hu”loo(“’hu"/h) < d(x)

~—

(%)
(%)

<

< 1D ey -
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2.4 Stability and Convergence of the Finite Differ-
ence Approximation of the Poisson Problem
with Dirichlet Boundary Conditions

Remark 2.27 Decomposition of the solution. A short form to write (2.5) is
Lyu(x) = f(x), x €wn, u(x)=g(x), X € Y.
The solution of (2.5) can be decomposed into

u(x) = w1 (x) + uz(x),

with
Lyui(x) = f(x), x€wp, wui(x)=0, x €7, (homogeneous boundary cond.),
Lyug(x) = 0, x Ewp, wu2(x)=g(x), x € v, (homogeneous right hand side).

d

Stability with Respect to the Boundary Condition
Remark 2.28 Stability with respect to the boundary condition. From Corollary
it follows that
||U2||loo(wh) < HQHzoo(%y (2.10)
O

Stability with Respect to the Right Hand Side

Remark 2.29 Decomposition of the right hand side. The right hand side will be
decomposed into

£ = £) + ()
with 5
roo={ J X 0= 160 - 0.

, X € wj,
Since the considered finite difference scheme is linear, also the function u;(x) can
be decomposed into
u1 (%) = ug (%) + uj(x)
with
Lpu3(x)

Lyui(x)

fo(x)v X € Wh, UT(X)ZO, X € Yh,
f*(X), X € Wh, YI,T(X):O, X € Yn-

a

Remark 2.30 Estimate for the inner nodes. Let B((0,0), R) be a circle with center
(0,0) and radius R, which is chosen such that R > ||x||, for all x € 2. Consider the
function

a(x) = a(R? —2? —y®) with a > 0,
which takes only non-negative values for (z,y) € 2. Applying the definition of the
five point stencil, it follows that

At(x) = —aA(z? +y* - R?)
(x+hg)? =222 4+ (v — hy)?  (y+hy)? — 2y + (y — hy)?
= —« +
h2 h2
— o= —T(x), x € wj,
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and

. 1 x—i—h;Q—xQ x2 — a:—h;2
Nu(x) = -« [h <( h"’)_ - (h_ )>
LA () Ry
hy hy hy
4+ h;  hP4h -
- —a(hx—i_h””—i— Y _ y)::—f(x),xew,*z.
h Iy

Hence, u(x) is the solution of the problem

Lyu(x) = f(x), X € wp,
ux) = a(R?—22-y?) >0, xE€.

It is u(x) > 0 for all x € 7;,. Choosing o = 1 172Nl (@) one obtains

T = da= [l 2 1F2E], x €,
Fx) > 0=|fx)| x € w.

Now, Lemma (Comparison Lemma) can be applied, which leads to

o —_ R2 °
||U1||zoc(wh) < ||“Hzoo(wh,) <aR’= e 1f ||l°°(wh) : (2.11)

One gets the final lower or equal estimate because (0,0) does not need to belong to
Q or wy,. a

Remark 2.31 Estimate for the nodes that are close to the boundary. Corollary
can be applied to estimate uj(x). For x € wy it is d(x) = 0, see Example For
X € wj one has
1
yES(X),yETn

with h = max{h,, h,}, since all terms are of the form

1 1 1 1
hehd’ hohy’ hyhy’ hyhy

see Example One obtains
* —+ px* 2 *
||U1||lm(wh) < ||D / ||loo(wh) <h|f ||zec(wh)- (2.12)
O

Lemma 2.32 Stability estimate The solution of the discrete Dirichlet problem
(2.5) satisfies

R2
|u||l°°(whu'yh) < Hng‘x’('yh) + e ||¢Hzoo(wg) +h? H¢||loo(w;;) (2.13)

with R > ||x||, for all x € Q and h = max{hy,hy}, i.e., the solution u(x) can be
bounded in the norm ||-[|;= ,, L, by the data of the problem.

Proof: The statement of the lemma is obtained by combining the estimates ([2.10]),

5.11), and (2.12). C
E.11),
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Convergence

Theorem 2.33 Convergence. Let u(x) be the solution of the Poisson equation

(2.1) and up(x) be the finite difference approzimation given by the solution of (2.5)).
Then, it is

||u - uh”loo(th’yh) S Ch2

with h = max{hg, hy}.
Proof: The error in the node (z;,y;) is defined by e;; = u(zi,y;) — un(zi,y;). With
—Au(wi, y5) = —Au(zi,y;) + O (h*) = f(zi,y;) + O (h%),

one obtains by subtracting the finite difference equation, the following problem for the
error

—Ae(x) = Y(x), x€wp, ¥(x)=0(h%),
—Ae(x) = Y(x), xeuwy, ¥(x)=0(1),
e(x) = 0, X € Yn,

where 1(x) is the consistency error, see Section Applying the stability estimate (2.13))
to this problem, one obtains immediately

R? 2 2
||e||loo(whun,hy) < T kuzoc(wg) +h \lellw(w;> =0 (h ) :

2.5 An Efficient Solver for the Dirichlet Problem
in the Rectangle

Remark 2.34 Contents of this section. This section considers the Poisson equation
in the special case Q = (0,1;) x (0,1,). In this case, a modification of the
difference stencil in a neighborhood of the boundary of the domain is not needed.
The convergence of the finite difference approximation was already established in
Theorem Applying this approximation results in a large linear system of
equations Au = f which has to be solved. This section presents an approach for
solving this system in the case of a rectangular domain in an almost optimal way.

O

Remark 2.35 The considered problem and its approximation. The considered con-
tinuous problem consists in solving

—Au = f inQ=(0,0;) x(0,1),
u = g on 0Jf,

and the corresponding discrete problem in solving

—Au(x) = ¢(x), x€wnp,
u(x) = g(x), X €y,

where the discrete Laplacian is of the form (for simplicity of notation, the subscript
h is omitted)

Uitl,j — 2Wij + Uiz1,j | Wij41 = 2Uij + Uij—1

Au = 2 + 2 =: Ayu+ Ayu, (2.14)
x Yy
with hy =l /ng, hy =1y/ny, 1 =0,...,n,7=0,...,n,, see Figure O
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Figure 2.6: Grid for the Dirichlet problem in the rectangular domain.

Remark 2.36 The linear system of equations. The difference scheme is
equivalent to a linear system of equations Au = f.

For assembling the matrix and the right hand side of the system, usually a
lexicographical enumeration of the nodes of the grid is used. The nodes are called
enumerated lexicographically if the node (i1, j;) has a smaller number than the node
(i2, j2), if for the corresponding coordinates it is

y1 <y2 or (y1 =y2) A (21 < x2).

Using this lexicographical enumeration of the nodes, one obtains for the inner nodes
a system of the form

A BlockTriDiag(C, B, C) € R~ Dy —1)x(ne=1)(n, =1)

1 2 2 1

_ T - = = = (ng—1)X(ng—1)

B = TrlDlag( h2’h2+h2’ h2) R X 7
T T Y T

C = Diag (—}32) e R(=—1)x(ne—1),

Y
o(x), : ) X € wy,
x =+ h,, . .

d(x) + 9}1723/7 i€{ln, —1}j & {l,n, — 1},

x
_ +h
f = q/)(x)—kw, i@ {1n, —1}j € {L,n, — 1},
Yy
+h +h

o) + LT hent) OIS e 1, )€ (1my 1),

T Yy

The last line of the right hand side vector is for inner nodes which are situated in
corner points of wy. In this approach, the known Dirichlet boundary values are
already substituted into the system and they appear in the right hand side vector.
The matrices B and C possess some modifications for nodes which have a neighbor
on the boundary.
The linear system of equations has the following properties:
e high dimension: N = (n, — 1)(n, — 1) ~ 10%---107,
e sparse: per row and column of the matrix there are only 3, 4, or 5 non-zero
entries,
e symmetric: hence, all eigenvalues are real,
e positive definite: all eigenvalues are positive. It holds that

1 1
din = Ao~ () =0,
z Yy
1 1 _
Amax = A(nwfl,nyfl) ~ 772 <h2 + hz) =0 (h 2) (215)
z Y

with h = max{h,, h,}, see Remark below.
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e high condition number: For the spectral condition number of a symmetric and
positive definite matrix it is

Ko(A) = Amax _ ¢ (h?).
)\min

Since the dimension of the matrix is large, iterative solvers are an appropriate
approach for solving the linear system of equations. The main costs for iterative
solvers are the matrix-vector multiplications (often one per iteration). The cost of
one matrix-vector multiplication is for sparse matrices proportional to the number
of unknowns. Hence, an optimal solver is given if the number of operations for
solving the linear system of equations is proportional to the number of unknowns.
It is known that the number of iterations of many iterative solvers depends on the
condition number of the matrix:

e (damped) Jacobi method, SOR, SSOR. The number of iteration is proportional
to k2(A). That means, if the grid is refined once, h — h/2, then the number
of unknowns is increased by around the factor 4 in two dimensions and also
the number of iterations increases by a factor of around 4. Altogether, for one
refinement step, the total costs increase by a factor of around 16.

e (preconditioned) conjugate gradient (PCG) method. The number of iterations is
proportional to \/k2(A), see the corresponding theorem from the class Numerical
Mathematics II. Hence, the total costs increase by a factor of around 8 if the
grid is refined once.

e multigrid methods. For multigrid methods, the number of iterations is constant.
Hence, the total costs are proportional to the number of unknowns and these
methods are optimal. However, the implementation of multigrid methods is
involved.

O

Remark 2.37 An eigenvalue problem. The derivation of an alternative direct
solver is based on the eigenvalues and eigenvectors of the discrete Laplacian. It is
possible to computed these quantities only in special situations, e.g., if the Poisson
problem with Dirichlet boundary conditions is considered, the domain is rectangu-
lar, and the Laplacian is approximated with the five point stencil.

Consider the following eigenvalue problem

—Av(x) = M(x), xX€wp,
o(x) = 0, X € Y.

The solution of this problem is sought in product form (separation of variables)

v(k) = v(k”)’mv§k?J)7yv k= (k:rv ky)T'

ij i
It is
Avgf) _ Axvl(k”)’mv§ky)’y + Ul(km)7wAij(ky),y _ —)\kvgk”)’wlék”)’y
with ¢ = 0,...,n4, 7 = 0,...,n, refers to the nodes and £k, = 1,...,n, — 1,
ky =1,...,n, — 1 refers to the eigenvalues. Note that the number of eigenvalues

is equal to the number of inner nodes, i.e. it is (ny — 1)(ny — 1). In this ansatz,
also a splitting of the eigenvalues in a contribution from the x coordinate and a
contribution from the y coordinate is included. From the boundary condition it
follows that

U(()k“”)’x = v%’i’”)’x = U(()ky)’y = ngy)’y =0.

Now, the eigenvalue problem can be split

(ko) (ka)ow

Arv; N L RN )

OSER RCAEI
i J
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with A\ = )\,(;i) + )\,(CZ). Both sides of this equation have to be constant since one of
them depends only on %, i.e., on x, and the other only on j, i.e., on y. The splitting
of Ak can be chosen such that the constant is zero. Then, one gets

y]

The solution of these eigenvalue problems is well known (exercise)

ky),® 2 . ki - 4 . kom
Z( ) lmsm< . ), )\ECI):h—ism2 (2n$ ,

2 j 4
v;ky)’y — sin (kyﬂ-]> , )\I(Cy) == sin? <ky7T) .
ly Ny Y hy 2ny

It follows that the solution of the full eigenvalue problem is

(k) 2 . kymi\ . kymj \ _i ko i . 9 kyl
;i 7\/@ sin < - ) sin ( n, ) k= Bz sin? 2n$ + h?/ sin o,

with i =0,...,n,7=0,...,nyand kb, =1,...,n, — 1,k, =1,...,n, — 1. Using
a Taylor series expansion, one obtains now the asymptotic behavior of the eigen-
values as given in . Note that because of the splitting of the eigenvalues into
the directional contributions, the number of individual terms for computing the
eigenvalues is only O (ng + ny).

Since the matrix corresponding to A is symmetric, the eigenvectors are orthog-
onal with respect to the Euclidean vector product. They become orthonormal with
respect to the weighted Euclidean vector product

<
|

o l l
:hwh hh/ 1 7 h$:i7h :i7
(u,v) y GZ u(x) ZZUJ x)vij(x ng Y ny
xEwp U 1=0 j=0
(2.16)
i.e., then it is
(009, ) = 5 1
This property can be checked by using the relation
E:Sin2 (m) = ﬁ, n > 1.
i=0 " 2
The norm induced by the weighted Euclidean vector product is given by
N 1/2
el = (0,002 = { hahy 33 wBix) | (2.17)
i=0 j=0

The weights are such that this norm is for constants (almost) independent of the
mesh, i.e.,

1/2
1|, = (hohy(ne +1)(n, +1)Y? = lz”‘""Jrl’”‘y+1 ~ (I,1,)"2.
h Yy Yy Yy
Ny Ty
O

Remark 2.38 Solver based on the eigenvalues and eigenvectors. One uses the

ansatz
= Z Frev® (x)
k
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with the Fourier coefficients

z N . .
fi = (f,009) = 2ty nzfjf”sm( o )sin("“y”), K = (k. Fy).
Ml 0 j=0 Nz TLy

The solution u(x) of ([2.14) is sought in the form
= Z uev ™ (x)
k
with unknown coefficients uy,. With this ansatz, one obtains

Au = Z uAv® = Zuk)\kv(k)
k k

Since the eigenfunctions form a basis of the space of the grid functions, a comparison
of the coefficients with the right hand side gives

S
or, for each component,
2h hy e ko ey
uw:Z% 0 = i ( Z)sin( yﬂ])»
k 'k Vizly ko=1 ky, = A Ty

1=0,...,n5,7=0,...,my.
Tt is possible to implement this approach with the Fast Fourier Transform (FFT)
with

o (nxny 10g2 Ny + Mgy IOgQ ny) =0 (N]Og2 N) , N = (nz - 1)(”1} - 1)7

operations. Hence, this method is almost optimal. O

2.6 A Higher Order Discretizations

Remark 2.39 Contents. The five point stencil is a second order discretization of
the Laplacian. In this section, a discretization of higher order will be studied. In
these studies, only the case of a rectangular domain Q = (0,1,) x (0, ;) and Dirichlet
boundary conditions will be considered. O

Remark 2.40 Derivation of a fourth order approzimation. Let u(x) be the solu-
tion of the Poisson equation (2.1]) and assume that u(x) is sufficiently smooth. It
is

0%u

oz’

Let the five point stencil be represented by the following operator

Lu(x) = Au(x) = Lyu(x) + Lyu(x), Lou:=

Au = Ayu+ Ayu.

Applying a Taylor series expansion, one finds that

hw 2 h 2 4
Au—Au=5Lzu+ 1;Lyu+(’)(h ) (2.18)

From the equation —Lu = f it follows that

L2u=—Lyf — LyLyu, Liu=—L,f— LyLyu.
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Inserting these expressions into (2.18]) gives

h2 h2 h2 +h;
Au—Au=—TLof = 5 Lyf = =" Lo Lyu+0 (h*). (2.19)
The operator L, L, ‘26 > can be approximated as follows

LoLyu~ Ay Ayu = ugagy.
The difference operator in this approximation requires nine points, see Figure

1

(Ui+17j+1 = 2uj 1+ Ui — 2ui41,5 + dug

—2u;_1 5+ U1 -1 — 2u4 -1 + Uz‘—1,j—1)-

Therefore it is called nine point stencil.

-9
1 1
4
) — —3
(2,7)
1 5 1

Figure 2.7: The nine point stencil.

One checks, as usual by using a Taylor series expansion, that this approximation
is of second order
LyLyu— AgAyu = O (h?).

Inserting this expansion into (2.19) and using the partial differential equation shows
that the difference equation

hZ + h;, h2
—(A o AA) <f+ Tlef + 15 yf>

is a fourth order approximation of the differential equation (2.1). In addition, one
can replace the derivatives of f(x) also by finite differences

Lof =Aof +O(h2), Lyf =AM, f+0(R2).
Finally, one obtains a finite difference equation —A'u = ¢ with

, h2+ b3 + hy h3 )
N=A+A,+ Achy, &=+ 2Aef + 2N f.

d

Remark 2.41 On the convergence of the fourth order approximation. The finite
difference problem with the higher order approximation property can be written
with the help of the second order differences. Since the convergence proof is based
on the five point stencil, the following lemma considers this stencil. It will be proved
that one can estimate the values of the grid function by the second order differences.
This result will be used in the convergence proof for the fourth order approximation.

O
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Lemma 2.42 Embedding lemma. Let
wp = {(thg,jhy) + i=1,...,n,—1,j=1,...,n, — 1},

and let y be a grid function on wp Uy, with y(x) = 0 for x € ~v,. Then, the following
estimate holds
||yHl°°(th'yh) < M HAth’

max{l2

2
with M = N gly}, A is the matriz obtained by using the five point stencil A =
zly

Ay + Ay for approzimating the second derivatives, and the norm on the right hand

side is defined in (2.17)).

Proof: Let {v}}, k = (ks, ky), be the orthonormal basis with

K 2 . (kﬂrz) . (kywj)
,Uij = ——=Ss1n sm | ——
llly Ng Ny

which was derived in Remark Then, there is a unique representation of the grid
function y = >°, ykv™ and it holds with (2-16)

1
Ay =D mh®, | Ayl; = T h > Rk
k Tk

It follows for x € wy, because of |sin(z)| < 1 for all z € R, that

Z v (x)
k

Applying the Cauchy—Schwarz inequality for sums gives

2
4
ot < ()
zly K
4 1 ’
= iy (i)

ly()| =

2
< 3 el [0 < 3 onl e[ (0) | < == DTl
k k b k

Yy

~

4 1
S op VD 5e
Yk k k
4 1
= 13 |\A?J||iz)\7~ (2:20)
wlby 'k

Now, one has to estimate the last sum. It is already known that

4 . kym 4 . kym
)\k:h—%51n2<221>+h—551n2(2747y), ke=1,...,ns—1, ky=1,...,ny — 1.

Setting | = max{ls,ly} and ke = la/Na, pa = 22T € (0,7/2), a € {z,y}, leads to

2nq
K2r? [singe \> = kir? sin ¢ ? k2 k2 4
A = 2 z Y V) >4 =24+ ) > - (B2+K).
() T (N) (B n) pE s
In performing this estimate, it was used that the function sin(¢)/¢ is monotonically de-

creasing on (0,7/2), see Figure 2.8 and that

sing _ sin(7/2) _ 2

Let G = {(z,y) : = >0,y > 0,22 4+y? > 1} be the first quadrant of the complex plane
without the part that belongs to the unit circle, see Figure The function (kzi + k§)72
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Figure 2.8: The function sin(¢)/¢.

has its smallest value in the square [k, —

the lower estimate of Ak, one obtains

1, ka] X [ky —

1, k,] in the point (kz,k,). Using

1 4 —2
> ow S o2 k4R
kk#(1,1) kK kk#(1,1)
l4
- 5 X @ /7/k dedy
k,k#(1,1) x

smallest value in bquare_/_’

P AN
— ki + k dxdy
16 kyfl( y)

k,k#(1,1)

/ (mz —|—y2) - dxdy
a

<

Polar:coordA ﬁ /(>c> /2 ﬁ d¢dp _ ﬁ, _i p=e _ Ll4
16/, J, o 162\ 2|, 64
For performing this computation, one has to exclude p — 0.
(ko k)

-

1 (ke — Liky— 1)
Figure 2.9: Illustration to the proof of Lemma

For )\(1,1) it is

A

] :
72 o\ . o (hem 2 o[ hym
= 5 () o (5) o () e (5)

v

(2.21)
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For this estimate, the following relations and the monotonicity of sin(z)/x, see Figure [2.8]

were used
. 2 . 2
he, < lﬂ7 o = ham < E, Sin ¢o > sin(7/4) _ ﬁ
2 2l 4 o w/4 w2

Collecting all estimates gives
1 1 om0
E:V AN+ D w36 S 16
k k,k#(1,1) Aic
Inserting this estimate into (2.20]), the final estimate has the form

2 12

191l 150 oy, oy < ﬁ I Ayll;, =M lAyll;, -
aly

Theorem 2.43 Convergence of the higher order finite difference scheme.
The finite difference scheme

—ANu(x) = é(x), x€wp,
u(x) = g(X), X € Y,
with ) h2 ) 12
+

converges of fourth order.

Proof: Analogously as in the proof of Theorem one finds that the following
equation holds for the error e = u(x;, y;) — uij:

—ANe(x) = ¥x), v=0 (h4) ;X € wh,
e(x) = 0, X € Y.

Let Qj be the vector space of grid functions, which are non-zero only in the interior, i.e.,
at the nodes from wy, and which vanish on v,. Let Aoy = —Aay, y € Qp, a € {z,y}. The
operators Ay : Q25 — €y, are linear and they have the following properties:
e They are symmetric and positive definite, i.e., Ao = A} > 0, where A}, is the adjoint
(transposed) of A, and (Aqu,v) = (u, Aqv), V u,v € Q4.
e They are elliptic, i.e., (Aqu,u) > )\ga)(% u), Yu € Qp, with

(o) _ 4 . Thea 8
A =t (52) 2
see (2.21)).

e They are bounded, i.e., it holds (Aqu,u) < <A@

Na—1

(@ _ 4 . ko 4
A"afl_ESln (2na) S@

and ||Aa ||, < 4/h2, since the spectral norm of a symmetric positive definite matrix is
the largest eigenvalue.
e They are commutative, i.e., Az Ay, = AyA,.
e It holds A, A, = (A:A,)".
The error equation on wy, is given by

(u,u) with

h2

Aze+ Aye — (ke + ky)AzAye =  with ko = 1o (2.22)
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Using the boundedness of the operators, one finds for all v € Q) that

(ke Az Ayv + Ky Az Ayv,v) = ((kads) Ayv,v) + ((kyAy) Azv,v)

hy 4 hy 4

12 12 12 2
1

= L+,

(Ay,v) + (Azv,v)

Now, it follows for all v € £} that

((Az + Ay — (ko + ky) Az Ay)v,v) = ((Ae + Ay) v,0) — (ke Az Ayv + Ky Az Ay, v)
—A
2
> 2 (At 4)v0) 20,

The matrices on both sides of this inequality are symmetric and because the matrix on
the lower estimate is positive definite, also the matrix at the upper estimate is positive
definite. Since matrices commute since the order of applying the finite differences in x and
y direction does not matter. Using these properties, one gets (ezercise)

2
HERYPE

< || Aell,, = ¥l
h

where the last equality follows from . The application of Lemma to the error
gives
12
312
lzly

Vel <i||,4'e|} _se
"4/, 4/,

(hzhy(nz + 1)(ny + 1))1/2 H¢|ll°°(th’yh) = O (h4) )

Az + Ay

1

lleG 100 (e, )

IA

Remark 2.44 On the discrete maximum principle. Reformulation of the finite
difference scheme —A’u = ¢ in the form studied for the discrete maximum principle
gives for u;;

a(xju(x) = Y bxy)uly) + ¢(x),

yeS(x)
2 2 1 4 5 (1 1
= —+—-——(h2+h? =-|=5+= 0
o) = 5z e 13 (et ) h2h2 3<h§+h§)> ’
1 1 ,, o 2 1(5 1Y\ . .
b(X’y) = hii - E (ha:+h1/) h%hz = 6 <h% - h@%) , 11,7,
(left, right node)
1 1 ) .
b(x,y) = —|—-335+:5),47=E1, (bottom, top node)
6 hZ = h2
b(x,y) L ( ! + ! ) i + 1,7 £ 1, (other neighbors)
’ = To0 | 79 75 |5 2 ) ) .
12 \h2 A2

Hence, the assumptions for the discrete maximum principle, see Remark are

satisfied only if

1 he

— < = <6
V5 hy

Consequently, the ratio of the grid widths has to be bounded and it has to be of
order one. In this case, one speaks of an isotropic grid. O
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2.7 Summary

Remark 2.45 Summary.

Finite difference methods are the simplest approach for discretizing partial differ-
ential equations. The derivatives are just approximated by difference quotients.

e They are very popular in the engineering community.
e One large drawback are the difficulties in approximating domains which are not

of tensor-product type. However, in the engineering communities, a number of
strategies have been developed to deal with this issue in practice.
Another drawback arises from the point of view of numerical analysis. The
numerical analysis of finite difference methods is mainly based on Taylor series
expansions. For this tool to be applicable, one has to assume a high regularity
of the solution. These assumptions are generally not realistic.
In Numerical Mathematics, one considers often other schemes then finite dif-
ference methods. However, there are problems, where finite difference methods
can compete with other discretizations, like finite element methods.

O

35



Chapter 3

Introduction to Sobolev
Spaces

Remark 3.1 Contents. Sobolev spaces are the basis of the theory of weak or
variational forms of partial differential equations. A very popular approach for
discretizing partial differential equations, the finite element method, is based on
variational forms. In this chapter, a short introduction into Sobolev spaces will be
given. Recommended literature are the books |Adams| (1975)); Adams and Fournier
(2003) and Evans| (2010). O

3.1 Elementary Inequalities

Lemma 3.2 Inequality for strictly monotonically increasing function. Let
f : Ry u{0} = R be a continuous and strictly monotonically increasing function
with f(0) =0 and f(x) = oo for v — oo. Then, for all a,b € Ry U{0} it is

a b
abé/o f(x) d$+/0 ) dy,

where f~1(y) is the inverse of f(x).

Proof: Since f(x) is strictly monotonically increasing, the inverse function exists.
The proof is based on a geometric argument, see Figure [3.1

Y i

b

) e
Figure 3.1: Sketch to the proof of Lemma [3.2

Consider the interval (0, a) on the z-axis and the interval (0, b) on the y-axis. Then, the
area of the corresponding rectangle is given by ab, foa f(x) dz is the area below the curve,
and fé’ f(y) dy is the area between the positive y-axis and the curve. From Figure
the inequality follows immediately. The equal sign holds only iff f(a) = b. |
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Remark 3.3 Young’s inequality. Young’s inequality
ab< S+ 18 VabeeR (3.1)
=9 2% s Uy + .

follows from Lemma with f(z) = ez, f~1(y) = e 'y. It is also possible to
derive this inequality from the binomial theorem. For proving the generalized Young
inequality

epP 1
S P~ a
ab < pa —l—qeqb, Y a,be Ry (3.2)

with p~* +¢~' = 1,p,q € (1,00), one chooses f(z) = zP~, f~1(y) = y/®=1 and
applies Lemmawith intervals where the upper bounds are given by ca and e~ !b.
O

Remark 3.4 Cauchy—Schwarz inequality. The Cauchyﬂ»Schwarzﬂ inequality (for
vectors, for sums)
|y < Iy lyll; ¥V xy R, (3.3)

where (-, -) is the Euclidean product and ||-||, the Euclidean norm, is well known.
One can prove this inequality with the help of Young’s inequality.

First, it is clear that the Cauchy—Schwarz inequality is correct if one of the
vectors is the zero vector. Now, let x,y with ||x||, = ||y|l, = 1. One obtains with
the triangle inequality and Young’s inequality

2 | <D loallyl < 33 feil+ 33 Il =1
1= 1= 1= 1=

Hence, the Cauchy—Schwarz inequality is correct for x,y. Last, one considers arbi-
trary vectors x # 0,¥ # 0. Now, one can utilize the homogeneity of the Cauchy—
Schwarz inequality. From the validity of the Cauchy—Schwarz inequality for x and
y, one obtains by a scaling argument

[, ¥)] =

=1 ~ j~p—1 ~
[(Ixlly " %, Ivlly " ¥)| < 1
—_—
x y
Both vectors x,y have the Euclidean norm 1, hence

1

e &Y< = &)< R 7],
ENEE S

The generalized Cauchy—Schwarz inequality or Holder inequality
n Up s n 1/q
|(x,y)] < <Z$i|p> (Z Iyi|q>
i=1 i=1

with p~! + ¢! = 1,p,q € (1,00), can be proved in the same way with the help of
the generalized Young inequality. O

Definition 3.5 Lebesgue spaces. The space of functions which are Lebesgue
integrable on 2 to the power of p € [1,00) is denoted by

v@={r: 16 axc<ocf,

L Augustin Louis Cauchy (1789 — 1857)
2Hermann Amandus Schwarz (1843 — 1921)
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which is equipped with the norm

1/p
o = [ 17700 i)
For p = oo, this space is

L>(Q) ={f : |f(x)] < oo almost everywhere in 2}

with the norm
[ fll oe () = €88 supyeql f(X)].
O

Lemma 3.6 Holder’s inequality. Let p~t +¢ ' = 1,p,q € [1,00]. If u € LP()
and v € L4(Q), then it is uv € L*(Q) and it holds that

||UU||L1(Q) < ||UHLP(Q) ”UHL(I(Q) : (3.4)

If p = q =2, then this inequality is also known as Cauchy—Schwarz inequality

luvll Lr ) < lull L2y VIl L2 (q) - (3.5)

Proof: p,q € (1,00). First, one has to show that |uv(x)| can be estimated from
above by an integrable function. Setting in the generalized Young inequality (3.2)) ¢ = 1,
a = |u(x)|, and b = |v(x)]| gives

1 1
lu(x)v(x)] < » lu(x)” + 2 v

Since the right hand side of this inequality is integrable, by assumption, it follows that
wv € LY(Q). In addition, Holder’s inequality is proved for the case lul o) = IVllpa@y =1
using this inequality

! P 1 v(x)|? dx =
/Q|u<x>v<x>| dxs;/9|u<x>| dx+q/9| (|* dx = 1.

The general inequality follows, for the case that both functions do not vanish almost
everywhere, with the same homogeneity argument as used for proving the Cauchy—Schwarz
inequality of sums. In the case that one of the functions vanishes almost everywhere,
is trivially satisfied.

p=1,g=o00. It is

/Q fu(x)o()] dx < / ()| €55 5D 0G0 dx = [ull 1 0] o ey -

3.2 Weak Derivative and Distributions

Remark 3.7 Contents. This section introduces a generalization of the derivative
which is needed for the definition of weak or variational problems. For an introduc-
tion to the topic of this section, see, e.g., [Haroske and Triebel (2008))

Let © C R% be a domain with boundary I' = 99, d € N, Q # (). A domain is
always an open set. O

Definition 3.8 The space C§°(Q2). The space of infinitely often differentiable real
functions with compact (closed and bounded) support in € is denoted by C§°(2)

Ce(Q) ={v : veC®(Q), supp(v) C N},

where

supp(v) = {x € Q : v(x) # 0}.
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Definition 3.9 Convergence in C§°(Q2). The sequence of functions {¢, (x)}52 ,
¢n € CF°(Q) for all n, is said to convergence to the zero functions if and only if
a) 3K C Q, K compact (closed and bounded) with supp(¢,,) C K for all n,

b) D*¢,(x) — 0 for n — oo on K for all multi-indices o = (aq,...,aq), |a| =
@1+ ...+ aq.
It is

im go(x) = 6(x) <=  lim (da(x) - 6(x)) = 0.

n— oo n—oo

d

Definition 3.10 Weak derivative. Let f, F € L _(Q). (Li

e e (€2): for each com-
pact subset Q' C Q it holds

o lu(x)| dx < 0oV u € Li,.(Q).)

If for all functions g € C§°(R) it holds that

[ Pl dx = (-1l [ jx)Dg(x) dx,
Q Q
then F'(x) is called weak derivative of f(x) with respect to the multi-index a. O

Remark 3.11 On the weak derivative.

e One uses the same notations for the derivative as in the classical case : F(x) =
D f(x).

o If f(x) is classically differentiable on 2, then the classical derivative is also the
weak derivative.

e The assumptions on f(x) and F(x) are such that the integrals in the definition
of the weak derivative are well defined. In particular, since the test functions
vanish in a neighborhood of the boundary, the behavior of f(x) and F(x) if x
approaches the boundary is not of importance.

e The main aspect of the weak derivative is due to the fact that the (Lebesgue)
integral is not influenced from the values of the functions on a set of (Lebesgue)
measure zero. Hence, the weak derivative is uniquely defined only up to a set
of measure zero. It follows that f(x) might be not classically differentiable on a
set of measure zero, e.g., in a point, but it can still be weakly differentiable.

e The weak derivative is uniquely determined, in the sense described above.

O

Example 3.12 Weak derivative. The weak derivative of the function f(z) = |z is

-1 <0
fl(x) = 0 =0
1 x>0

In x = 0, one can use also any other real number. The proof of this statement
follows directly from the definition and it is left as an exercise. O

Definition 3.13 Distribution. A continuous linear functional defined on C§°(£2)
is called distribution. The set of all distributions is denoted by (C§°(2))'.

Let u € C3°(Q) and o € (Cg°(Q))’, then the following notation is used for the
application of the distribution to the function

P(u(x)) = (¢, u) € R.
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Remark 3.14 On distributions. Distributions are a generalization of functions.
They assign each function from C§°(€2) a real number. O

Example 3.15 Regular distribution. Let u(x) € LL (). Then, a distribution is
defined by

tAuQW@wm:<w¢»V¢eq$m»

This distribution will be identified with u(x) € Li ().
Distributions with such an integral representation are called regular, otherwise

they are called singular. O

Example 3.16 Dirac distribution. Let £ € Q fixed, then
(0, 0) = d(&) V & € C3°(Q)

defines a singular distribution, the so-called Dirac distribution or J-distribution. It
is denoted by é¢ = 6(x — &). O

Definition 3.17 Derivatives of distributions. Let ¢ € (C5°(€))’ be a distribution.
The distribution ¢ € (Cg°())" is called derivative in the sense of distributions or
distributional derivative of ¢ if

(i, u) = (=1)1*N(p, D™u) Vu € C5°(Q),
a=(a,...,0q),0; >0,j=1,....d, |o| =a1 + ...+ ag. O

Remark 3.18 On derivatives of distributions. Fach distribution has derivatives in
the sense of distributions of arbitrary order.

If the derivative in the sense of distributions D%u(x) of u(x) € L .(Q) is a
regular distribution, then also the weak derivative of u(x) exists and both derivatives

are identified. O

3.3 Lebesgue Spaces and Sobolev Spaces

Remark 3.19 On the spaces LP(§2). These spaces were introduced in Defini-
tion
e The elements of LP(Q) are, strictly speaking, equivalence classes of functions
which are different only on a set of Lebesgue measure zero.
e The spaces LP(Q)) are Banach spaces (complete normed spaces). A space X is
complete, if each so-called Cauchy sequence {u,}52, € X, i.e., for all ¢ > 0
there is an index ng(g) such that for all 4, j > ng(g)

||’ll,z 7ujHX < €.

converges and the limit is an element of X.
e The space L?(£2) becomes a Hilbert spaces with the inner product

Um:AﬂMMMxnmm:mwﬁ.mEﬁﬁ.

e The dual space of a space X is the space of all bounded linear functionals defined
on X. Let © be a domain with sufficiently smooth boundary T'. of the Lebesgue
spaces LP(Q2), p € [1, 0], then

1 1
(LP(Q)) = LYQ) with p,q€ (1,00), —+— =1,
p g

/

(L'(Q) = L=,
(L=(Q) # LY.
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The spaces L!(Q), L>°(Q) are not reflexive, i.e., the dual space of the dual space
is not the original space again.
a

Definition 3.20 Sobolevﬂ spaces. Let k € NU {0} and p € [1,00], then the
Sobolev space W¥*?(Q) is defined by

WkP(Q) :={u e LP(Q) : D% € LP(Q) V a with |a| < k}.

This space is equipped with the norm

lullwrriy =D ID%u]l Loy - (3.6)
| <k

Remark 3.21 On the spaces WFP(Q).

Definition has the following meaning. From u € LP(Q), p € [1,00), it
follows in particular that u € L{ (), such that u(x) defines (represents) a
distribution. Then, all derivatives D®u exist in the sense of distributions. The
statement D%u € LP()) means that the distribution D®u € (C§°(£2))" can be
represented by a function from LP((Q).

One can add elements from W#?() and one can multiply them with real num-
bers. The result is again a function from W*?(Q). With this property, the space
WHP(Q) becomes a vector space (linear space). It is straightforward to check

that (3.6]) is a norm. (ezercise)

o It is Du(x) = u(x) for a = (0,...,0) and WoP(Q) = LP(Q).
e The spaces W*P?(Q) are Banach spaces.
e Sobolev spaces have for p € [1,00) a countable basis {,(x)}>2; (Schauder

basis), i.e., each element u(x) can be written in the form
oo
u®) =Y unpn(x), un ERN=1,... 00,
n=1

Sobolev spaces are uniformly convex for p € (1,00), i.e., for each ¢ € (0, 2] (note
that the largest distance in the ball is equal to 2) there is a d(¢) > 0 such that for
all u,v € WHP(Q) with [Jullyyen) = Vlwrw@) = 1, and [Ju = vllyrpq) > €

it holds that H“T'H’HW,C,pm) <1—4(¢), see Figure for an illustration.

Sobolev spaces are reflexive for p € (1, 00).

e On can show that C> () is dense in W*P?(Q), e.g., see (Alt, 1999, Satz 1.21, Satz

2.10) or (Adams, (1975, Lemma 3.15). With this property, one can characterize
the Sobolev spaces W*P(Q) as completion of the functions from C°°() with
respect to the norm . For domains with smooth boundary, one can even
show that C>°(Q) is dense in W*P((Q).

The Sobolev space H(Q) = W*2(Q) is a Hilbert space with the inner product

(u, ) fre () = D%u(x)D%v(x) dx
wo = ¥ /

and the norm [[ul| g () = (u,u)'/2.

3Sergei Lvovich Sobolev (1908 — 1989)
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Figure 3.2: Illustration of the uniform convexity of Sobolev spaces.

Definition 3.22 The space WrP(Q). The Sobolev space WiP(€2) is defined as
the completion of C§°(€2) in the norm of W¥*?(Q)

WEr(Q) = @) e,

3.4 The Trace of a Function from a Sobolev Space

Remark 3.23 Motivation. This class considers boundary value problems for par-
tial differential equations. In the theory of weak or variational solutions, the solu-
tion of the partial differential equation is searched in an appropriate Sobolev space.
Then, for the boundary value problem, this solution has to satisfy the boundary
condition. However, since the boundary of a domain is a manifold of dimension
(d — 1), and consequently it has Lebesgue measure zero, one has to clarify how a
function from a Sobolev space is defined on this manifold. This definition will be
presented in this section. O

Definition 3.24 Boundary of class C*®. A bounded domain Q C R? and its
boundary T' are of class C*®, 0 < a < 1 if for all xg € T there is a ball B(xq,7)
with 7 > 0 and a bijective map v : B(xg,r) — D C R such that

1) ¢ (B(xo,7) N ) C RY,

2) ¢ (B(xo,r)NT) C ORY,

3) ¥ € C**(B(xq,r)),~! € C*%(D), are Hélder continuous.

That means, T is locally the graph of a function with d — 1 arguments. (A function
u(x) is Holder continuous if

[ullgro ) = Z [D%ull @) + Z [D%u] o, ()

|a|<k |e|=k
e u(x) — uy)]
u(x) — u(y
D) o.05 = Sup {a}
[ ]CO (Q) xyef ‘X . y|
is finite.) O

Remark 3.25 Lipschitz boundary. It will be generally assumed that the boundary
of Qs of class C*'. That means, the map is Lipschit4|continuous. Such a boundary

4Rudolf Otto Sigismund Lipschitz (1832 — 1903)
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is simply called Lipschitz boundary and the domain is called Lipschitz domain. An
important feature of a Lipschitz boundary is that the outer normal vector is defined
almost everywhere at the boundary and it is almost everywhere continuous. O

Example 3.26 On Lipschitz domains.
e Domains with Lipschitz boundary are, for example, balls or polygonal domains
in two dimensions where the domain is always on one side of the boundary.
e A domain which is not a Lipschitz domain is a circle with a slit

Q={(z,y) : 2> +y* <1\ {(x,y) : >0,y =0}.

At the slit, the domain is on both sides of the boundary.

e In three dimension, a polyhedral domain is not not necessarily a Lipschitz do-
main. For instance, if the domain is build of two bricks which are laying on each
other like in Figure then the boundary is not Lipschitz continuous where
the edge of one brick meets the edge of the other brick.

O

Figure 3.3: Polyhedral domain in three dimensions which is not Lipschitz continuous
(at the corner where the arrow points to).

Theorem 3.27 Trace theorem. Let Q C R?, d > 2, with a Lipschitz boundary.
Then, there is exactly one linear and continuous operator v : W1P(Q) — LP(T),
p € [1,00), which gives for functions u € C(Q) N WLP(Q) the classical boundary
values

yu(x) = u(x), x €T, Yu e C(Q)NW(Q),

i.e., yu(x) = u(X)|xer-

Proof: The proof can be found in the literature, e.g., in |[Adams| (1975)); /Adams and
Fournier| (2003). ]

Remark 3.28 On the trace. The operator « is called trace or trace operator.
e Since a linear and continuous operator is bounded, there is a constant C > 0
with
Ivull pory < Cllullyyrngy ¥V ue WP (Q)
or
Iz wre @), Loy < C-

e By definition of the trace, one gets for u € C(Q) the classical boundary values.
By the density of C*°(Q) in WP(Q) for domains with smooth boundary, it
follows that C(€2) is also dense in W1P(Q) such that for all u € WP(Q) there
is a sequence {u, }2°; € C(Q) with u,, — u in W1P(Q). Then, the trace of u is
defined to be yu = limg_ o0 (Ytg)-
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o It is

yu(x) = 0 YueWiP(Q),
yD%u(x) = 0 YueWPPQ),|a| <k-1. (3.7)

3.5 Sobolev Spaces with Non-Integer and Nega-
tive Exponents

Remark 3.29 Motivation. Sobolev spaces with non-integer and negative expo-

nents are important in the theory of variational formulations of partial differential

equations.
Let Q € R? be a domain and p € (1,00) mit p~! + ¢~ = 1. O

Definition 3.30 The space W~"9(Q). The space W—%4(Q),k € NU {0}, con-
tains distributions which are defined on W*?((2)

WRQ) = {p € (CO) + lplly-ra < 0}
with

, U
lellyy—ra = sup L
u€CFe (2),u#0 ||uHWka(Q)

Remark 3.31 On the spaces W~FP(Q).
/
o It is W h9(Q) = [W(f’p(Q)} , i.e., W=%4(Q) can be identified with the dual
space of WEP(Q). In particular it is H~(Q) = (H} (Q))/
o It is
LCWEP(Q) c WHP(Q) C LP(Q) c W H(Q) c W24(Q) ...

a

Definition 3.32 Sobolev—Slobodeckij space. Let s € R, then the Sobolev—
Slobodeckij or Sobolev space H*(2) is defined as follows:
o s€Z. H*(Q)=W2(Q).
e s >0withs=Fk+o, k€ NU{0}, 0 € (0,1). The space H*(2) contains all
functions u for which the following norm is finite:

ull3e ) = lullfr ) + [ulipe »
with
(w, )y = (w,v)pr + (u v)kJr(,, |u|i+0 = (U, W) kto,
(D%u(x) — D*u(y)) (D*v(x) — D*v(y))
<u7v)k+a - / / )) d+2cr( ) ) dxd}’»
|| =k ”X*YHQ

e 5<0. H(Q) = [HJS(Q)]' with H; () :MH'HH—S(Q).
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3.6 Theorem on Equivalent Norms

Definition 3.33 Equivalent norms. Two norms [|-||; and ||-||, on the linear space
X are said to be equivalent if there are constants C'; and Cs such that

Cillully < flully < Colull, ¥ue X.
O

Remark 3.34 On equivalent norms. Many important properties, like continuity
or convergence, do not change if an equivalent norm is considered. O

Theorem 3.35 Equivalent norms in W*?(Q). Let Q C RY be a domain with

Lipschitz boundary T, p € [1,00], and k € N. Let {fi}._, be a system with the

following properties:

1) fi « WEP(Q) — R, U{0} is a semi norm,

2) 3C; > 0 with 0 < f;(v) < C; [v)l (), Vv € Wkp(Q),

3) fi is a norm on the polynomials of degree k — 1, i.e., if for v € P,y =
{Z|a|§k—1 C’axa} it holds that f;(v) =0, i=1,...,1, then it is v = 0.

Then, the norm |||y defined in (3.6) and the norm

1 1/p
||u‘|;/vk,p(9) = (Z fP(w) + “|€Vk,p(9)> with
i=1
1/p

e Z /Q|Dau(x)|1’ dx

lee|=Fk
are equivalent.
Remark 3.36 On semi norms. For a semi norm f;(-), one cannot conclude from
fi(v) = 0 that v = 0. The third assumptions however states, that this conclusion

can be drawn for all polynomials up to a certain degree. O

Example 3.37 Equivalent norms in Sobolev spaces.
e The following norms are equivalent to the standard norm in W1P(Q):

1/p

O Mullerey = (| fodx +hifm)
o 1/p

b Dl = (| [uds] )
" 1/p

O Dl = ([ dstlullyine)

o In WFP(Q) it is

/
(£

equivalent to the standard norm. Here, n denotes the outer normal on I'" with
[nfl, = 1.

p

P

» 1/p
ds + |u|€V,€,p(Q)>
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e In the case Wé“ P(Q), one does not need the regularity of the boundary. It is
||’U’H;/V§”’(Q) = ‘U|Wk,p(g)a

i.e., in the spaces WO]’C "P(Q) the standard semi norm is equivalent to the standard
norm.
In particular, it is for u € H}(Q) (k=1,p = 2)

C1 lull g0y < IVull 2oy < Collull g1 (q) -
It follows that there is a constant C > 0 such that

lull 2y < C IVl paiy YV u € Hy(Q). (3.8)

3.7 Some Inequalities in Sobolev Spaces

Remark 3.38 Motivation. This section presents a generalization of the last part of
Example It will be shown that for inequalities of type it is not necessary
that the trace vanishes on the complete boundary.

Let Q c R? be a bounded domain with boundary T' and let I'; C T with
measga—1 (I'1) = [ ds>0.

One considers the space

Vo = {veW"?(Q) : vp, =0} cWHP(Q)ifI CT,
Vo = WoP(Q)ifT, =T
with p € [1, 00). 0

Lemma 3.39 Friedrichﬂ inequality, Poincaréﬁ inequality, Poincaré—Fried-
richs inequality. Let p € [1,00) and measga—1 (I'1) > 0. Then it is for all u € Vy

/Q ()P dx < Cp /Q Va2 dx, (3.9)

where ||-||, is the Euclidean vector norm.

Proof: The inequality will be proved with the theorem on equivalent norms, Theo-

rem Let fi(u) : WH?(Q) — R4 U {0} with

fw = ([ e ds)l/p.

ry
This functions has the following properties:
1) fi(u) is a semi norm.

2) Tt is

o
IA

A= ( [ ds)l/p < ([ uer ds)l/p

HuHLP(F) = H’Y“HLP(F) <C Hu”Wl,p(Q) .

The last estimate follows from the continuity of the trace operator.

5Friedrichs
6Poincaré
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3) Let v € Py, i.e., v is a constant. Then, one obtains from

1/p
0= 1) = ([ 1o as) " = ol (meassas (T2,

'y

that |v| = 0.
Hence, all assumptions of Theorem [3.35|are satisfied. That means, there are two constants
C1 and Chowith

1/p
o ([ e s+ [ 19ulE ax) " < lulhys e < o fulfyriey Vo€ W),
IS

/

11 )

In particular, it follows that

/Q () dx + /Q IVu(x) [ dx < C3 ( / Jufs) ds + / Va2 dx)

/Q\u(x)v’ dx < Cp (/F Ju(s)[? ds+/9 1 Vu(x)|[ dx)

with Cp = CF. Since u € Vp vanishes on I', the statement of the lemma is proved. ]

or

Remark 3.40 On the Poincaré—Friedrichs inequality. In the space Vy becomes
|[w1.» & norm which is equivalent to ||-[|y1.5(). The classical Poincaré-Friedrichs
inequality is given for I'y =T and p =2

lull 2 < Cp [IVull 2 ¥ u € Hy(9),
where the constant depends only on the diameter of the domain €. a

Lemma 3.41 Another inequality of Poincaré—Friedrichs type. Let Q' C Q
with measga (') = [, dx >0, then for all u € W'P(Q) it is

[ ix<e (| [ uo x|+ [ v ax).

Proof: Ezxercise. [ ]

3.8 The Gaussian Theorem

Remark 3.42 Motivation. The Gaussian theorem is the generalization of the in-
tegration by parts from calculus. This operation is very important for the theory
of weak or variational solutions of partial differential equations. One has to study,
under which conditions on the regularity of the domain and of the functions it is
well defined. O

Theorem 3.43 Gaussian theorem. Let Q C R% d > 2, be a bounded domain
with Lipschitz boundary T'. Then, the following identity holds for all u € W11(€2)

diu(x) dx = / u(s)n;(s) ds, (3.10)

Q r

where n is the unit outer normal vector on I'.
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Proof: sketch. First of all, one proves the statement for functions from C*(Q). This
proof is somewhat longer and it is referred to the literature, e.g., [Evans| (2010).

The space C'(Q) is dense in W' (Q), see Remark Hence, for all u € WH1(Q)
there is a sequence {u,}32; € C*(Q) with

0= |y, ) = 0

and (3.10)) holds for all functions u,(x). It will be shown that the limit of the left hand
side converges to the left hand side of (3.10) and the limit of the right hand side converges
to the right hand side of (3.10)).

From the convergence in ||-[|y1.1(q), one has in particular

lim [ OQijun(x) dx = / diu(x) dx.
Q

n— oo Q
On the other hand, the continuity of the trace operator gives
li — Up <C 1l — Up =0,
i [fu = a1y < C T [[u = tnl|yyr =0

from what follows that
lim [ un(s) ds= / u(s) ds.
r r

n—00

Since for a Lipschitz boundary, the normal n is almost everywhere continuous, it is

lim [ un(s)n;(s) ds = / u(s)n;(s) ds.

Thus, the limits lead to (3.10]). |

Corollary 3.44 Vector field. Let the conditions of Theorem on the domain
Q be satisfied and let u € (Wl’l(Q))d be a vector field. Then it is

/QV ‘u(x) dx = /Fu(s) -n(s) ds.

Proof: The statement follows by adding (3.10) from i =1 to ¢ = d. [ |

Corollary 3.45 Integration by parts. Let the conditions of Theorem on
the domain Q be satisfied. Consider w € WHP(Q) and v € WH4(Q) with p € (1, 00)
and % + % = 1. Then it is

[ 2o ax = [ uis)otsin(s) ds = [ uix)onto dx.

Q

Proof: ezxercise. [ ]

Corollary 3.46 First Greerﬂ’s formula. Let the conditions of Theorem on
the domain Q0 be satisfied, then it is

/QVU(X) -Vo(x) dx = /F %(s)v(s) ds — /QAu(x)v(x) dx

for all w € H?(Q) and v € HY(Q).

Proof: From the definition of the Sobolev spaces it follows that the integrals are well
defined. Now, the proof follows the proof of Corollary where one has now to sum
over the components. [ ]

"Georg Green (1793 — 1841)
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Remark 3.47 On the first Green’s formula. The first Green’s formula is the for-
mula of integrating by parts once. The boundary integral can be equivalently writ-
ten in the form

/rVU(S) -n(s)v(s) ds.

The formula of integrating by parts twice is called second Green’s formula. a

Corollary 3.48 Second Green’s formula. Let the conditions of Theorem
on the domain S be satisfied, then one has

| (Qux)ot) - Avut) ix = [ (gﬁ(s)v(s) _ gfl(sm(s)) s

for all u,v € H?().

3.9 Sobolev Imbedding Theorems

Remark 3.49 Motivation. This section studies the question which Sobolev spaces
are subspaces of other Sobolev spaces. With this property, called imbedding, it is
possible to estimate the norm of a function in the subspace by the norm in the
larger space. O

Lemma 3.50 Imbedding of Sobolev spaces with same integration power p
and different orders of the derivative. Let Q C R? be a domain with p € [1,00)
and k < m, then it is W™P(Q) C WFP(Q).

Proof: The statement of this lemma follows directly from the definition of Sobolev
spaces, see Definition [3.20 |

Lemma 3.51 Imbedding of Sobolev spaces with the same order of the
derivative k and different integration powers. Let Q C R? be a bounded
domain, k > 0, and p, q € [1,00] with ¢ > p. Then it is W"4(Q) Cc WkP(Q).

Proof: exercise. [ ]

Remark 3.52 Imbedding of Sobolev spaces with the same order of the derivative k
and the same integration power p in imbedded domains. Let Q C R? be a domain
with sufficiently smooth boundary T', &k > 0, and p € [1,00]. Then there is a map
E : WkP(Q) — WFP(RY), the so-called (simple) extension, with

[ ] EU|Q =,

o [[Evllyep@ay < Cllvllysrq) with >0,
e.g., see (Adams, 1975, Chapter IV) for details. Likewise, the natural restriction
e 1 WHP(RY) — WHP(Q) can be defined and it is [|ev|lyyrm (o) < [Vllwrngay- O

Theorem 3.53 A Sobolev inequality. Let Q C R? be a bounded domain with
Lipschitz boundary T', k > 0, and p € [1,00) with

k>d forp=1,

k>d/p forp>1.

Then there is a constant C such that for all u € W*P(Q) it follows that u € C(1),
where

Cp()) ={veC(Q) : vis bounded},
and it is

||UHCB(Q) = HUHLOO(SZ) <C HUHWMP(Q)' (3.11)
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Proof: See literature, e.g., Adams| (1975)); |Adams and Fournier| (2003)). |

Remark 3.54 On the Sobolev inequality. The Sobolev inequality states that each
function with sufficiently many weak derivatives (the number depends on the di-

mension of  and the integration power) can be considered as a continuous and
bounded function in . One says that W*?(Q) is imbedded in C(f). Tt is

C () c Cr(Q) C C(Q).

Consider Q = (0,1) and fi(z) = 1/x and fa(z) = sin(1l/x). Then, f; € C(Q),
f1 € Cp(Q) and f2 € Cp(Q), f2 € C(Q).

Of course, it is possible to apply this theorem to weak derivatives of functions.
Then, one obtains imbeddings like W*P(Q) — C5(Q) for (k —s)p > d,p > 1. A
comprehensive overview on imbeddings can be found in |Adams| (1975); |/Adams and
Fournier| (2003). O

Example 3.55 H'() in one dimension. Let d = 1 and Q be a bounded interval.
Then, each function from H'(Q) (k = 1,p = 2) is continuous and bounded in . O

Example 3.56 H'(Q) in higher dimensions. The functions from H'(f2) are in
general not continuous for d > 2. This property will be shown with the following
example.
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Figure 3.4: The function f(x) of Example for d = 2.

Let @ = {x € R? : |x|, < 1/2} and f(x) = In|In|x]|,|, see Figure[3.4 For

x|, < 1/2 it is [In|x||,| = —In||x||, and one gets for x # 0
1 1 x; T
0if(x) = —1 B '
n[|x|l, fIx]l5 (1]l [[=l5 In [l

For p < d, one obtains

af( )” z; |? 1 P 1 d

—(x)| = < .

dz; %o | [y In fIxl, ([l In ||,
<1 >e

The estimate of the second factor can be obtained, e.g., with a discussion of the
curve. Using now spherical coordinates, p = e~* and S?~! is the unit sphere, yields

d 1/2 d—1
offdx < [ — 2 P dpdw
d 1 d a1 d ] d
Q @ [|x|l3 [T [|x]l| si=tJo  pd{np|

1/2 In2
= meas (Sd_l)/ dp - = —meas (Sd_l)/ % < 00,

o plnp o0

because of d > 2.
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It follows that 9, f € LP(Q) with p < d. Analogously, one proves that f € LP(Q)
with p < d. Altogether, one has f € W1P(Q) with p < d. However, it is f & L°(Q).
This example shows that the condition k& > d/p for p > 1 is sharp.

In particular, it was proved for p = 2 that from f € H'(Q) in general it does
not follow that f € C(Q). O

Example 3.57 The assumption of a Lipschitz boundary. Also the assumption that
Q is a Lipschitz domain is of importance.

Consider Q@ = {(z,y) € R? : 0 <z <1, |[y| < a",r > 1}, see Figure for
r=2.

domain without Lipschitz boundary in (0,0)

05 [ _—

15

Figure 3.5: Domain of Example [3.57]
For u(z,y) = 27°/P with 0 < e < r it is
Dpu = /P71 (—;) = C(e,p)z=*/P71, d,u=0.

It follows that

> / |D%u(z,y)" dady
Q

lee|=1

C(E,p)/ 7P dxdy
Q

cen [~ (f

T

dy) dx

1
C’(s,p)/ xT TP dg
0

This value is finite for —e — p 4+ 7 > —1 or for p < 1 + r — €, respectively. If one
choose