
Kapitel 7

Lineare
Zwei–Punkt–Randwertprobleme

Bemerkung 7.1 Gewöhnliche Differentialgleichungen, Randwertprobleme. Dieses Kapitel betrachtet
Probleme, welche lineare gewöhnliche Differentialgleichungen zweiter Ordnung beinhalten. In diesen
Problemen sind jedoch Daten in den beiden Randpunkten eines begrenzten Intervalls vorgegeben, im
Gegensatz zu Anfangswertproblemen, wie sie in Kapitel 6 behandelt wurden. ✷

7.1 Das Modellproblem

Definition 7.2 Lineares Zwei–Punkt–Randwertproblem. Ein lineares Zwei–Punkt–Randwertproblem
besitzt die Gestalt

− εu�� + b(x)u� + c(x)u = f(x), für x ∈ (d, e), (7.1)

mit den Randbedingungen
αdu(d) + βdu

�(d) = γd,
αeu(e) + βeu

�(e) = γe.
(7.2)

Hierbei gelte b, c, f ∈ C([d, e]), 0 < ε ∈ R und die Konstanten αd,αe,βd,βe, γd, γe seien gegeben. ✷

Bemerkung 7.3 Bedeutung linearer Zwei–Punkt–Randwertprobleme. Das Randwertproblem (7.1), (7.2)
ist das einfachste Modellproblem zur Beschreibung von Prozessen, welche Diffusion, Transport und Re-
aktion beinhalten.

Ein Beispiel aus Goering (1977) ist wie folgt. Fließt einem Strömungsreaktor bei konstanter Tempe-
ratur kontinuierlich eine Reaktionsmasse zu und ein Produkt ab, so berechnet sich die Konzentrations-
verteilung c(t, x, y, z), [kmol/m3], im Reaktor gemäß der partiellen Differentialgleichung

∂c

∂t
+ div (cu)

� �� �
Konvektion

−div (D gradc)� �� �
Diffusion

= r(c)����
Reaktion

,

wobei u(x), [m/s], der Vektor der Strömungsgeschwindigkeit, r(c), [kmol/m3
s], eine die Reaktion beschrei-

bende Funktion und D, [m
2
/s], der Diffusionskoeffizient sind.

Bei einem stationären Reaktorbetrieb, das heißt die zeitliche Änderung ist sehr langsam und kann ver-
nachlässigt werden, bei konstanten Parametern D, u und wenn die Konzentration sich nur in x–Richtung
ändert, erhält man aus der partiellen Differentialgleichung eine gewöhnliche Differentialgleichung für c(x)

−Dc��(x) + uc�(x) = r(c(x)).

Sei x ∈ [0, L], wobei L, [m], die Reaktorlänge bezeichne.
Sowohl für die mathematische Analysis als auch für numerische Simulationen ist der Übergang zu

dimensionslosen Problemen wichtig. Mit den dimensionslosen Größen

ξ :=
x

L
, γ :=

c

c0
,
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wobei c0, [kmol/m3], eine Referenzkonzentration ist, gelangt man zu einer dimensionslosen gewöhnlichen
Differentialgleichung. Es gelten mit Kettenregel

dγ(ξ)

dξ
=

d(c(x)/c0)

dx

dx

dξ
= L

c�(x)
c0

und
d2γ(ξ)

dξ2
= L2 c

��(x)
c0

.

Einsetzen in die Differentialgleichung ergibt, im Fall u �= 0,

− 1

Pe
γ��(ξ) + γ�(ξ) = ρ(γ(ξ)), ξ ∈ (0, 1), mit Pe :=

uL

D
, ρ =

L

uc0
r.

Die dimensionslose Zahl Pe wird Péclet–Zahl1 genannt. Zur Vervollständigung der Problemstellung sind
jetzt noch Randbedingungen für ξ ∈ {0, 1} nötig.

Aus der eben beschriebenen Anwendung heraus werden die Terme in (7.1) wie folgt genannt:

• −εu�� – Diffusionsterm,
• b(x)u� – Konvektions–, Advektions– oder Transportterm,
• c(x)u – Reaktionsterm.

Das Modellproblem (7.1), (7.2) wird Konvektions-Diffusions-Reaktions-Problem genannt, falls b(x) �≡ 0
beziehungsweise c(x) �≡ 0.

Die Péclet–Zahl gibt das Verhältnis von Konvektion und Diffusion an. Falls dieses Verhältnis groß
ist, wird dies in der numerischen Lösung von (7.1), (7.2) zu erheblichen Schwierigkeiten führen. ✷

Definition 7.4 Randbedingungen.

1. Randbedingungen der Gestalt
u(d) = γd, u(e) = γe

heißen Randbedingungen erster Art oder Dirichlet2–Randbedingungen,
2. Randbedingungen der Gestalt

u�(d) = γd, u�(e) = γe

heißen Randbedingungen zweiter Art oder Neumann3–Randbedingungen,
3. Seien γd, γe ∈ R, αd,αe ∈ R \ {0}, dann nennt man

αdu(d) + u�(d) = γd, αeu(e) + u�(e) = γe

Randbedingungen dritter Art oder Robin4–Randbedingungen.

Dirichlet–Randbedingungen sind in Anwendungen am wichtigsten und sie werden am häufigsten in der
Analysis betrachtet. Deshalb wird sich in der Vorlesung auf diese konzentriert werden. ✷

Bemerkung 7.5 Normierung eines linearen Zwei–Punkt–Randwertproblems.

• Man kann ohne Beschränkung der Allgemeinheit x ∈ [0, 1] annehmen. Das erreicht man durch die
Transformation

x �→ x− d

e− d
.

• Man kann ebenfalls ohne Beschränkung der Allgemeinheit homogene Randbedingungen γd = γe = 0
annehmen, indem man von u(x) eine glatte Funktion ψ(x), welche die ursprünglichen Randbedin-
gungen erfüllt, subtrahiert. Sind beispielsweise Dirichlet–Randbedingungen

u(d) = γd, u(e) = γe,

gegeben, dann setzt man

ψ(x) = γd
x− e

d− e
+ γe

x− d

e− d

1
Jean Claude Eugene Péclet (1793 – 1857)

2
Johann Peter Gustav Lejeune Dirichlet (1805 – 1859)

3
Carl Gottfried Neumann (1832 – 1925)

4
Victor Gustave Robin (1855 – 1897)
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und
u∗(x) = u(x)− ψ(x).

Dann ist u∗(x) die Lösung eines linearen Zwei–Punkt–Randwertproblems mit homogenen Dirichlet–
Randbedingungen.

✷

Definition 7.6 Modellproblem.Das Modellproblem ist ein lineares Konvektions-Diffusions-Reaktions-
Problem

Lu := −εu�� + b(x)u� + c(x)u = f(x) für x ∈ (0, 1), (7.3)

mit den Randbedingungen
u(0) = u(1) = 0. (7.4)

Hierbei gelten b, c, f ∈ C([0, 1]), 0 < ε ∈ R. ✷

Bemerkung 7.7 Differentialoperator. In (7.3) bezeichnet L einen Differentialoperator. Unter einem
Operator versteht man eine Abbildung zwischen zwei (Funktionen–)Räumen. Insoweit ist der Begriff des
Operators synonym zum Begriff der Abbildung. Ein linearer Operator ist eine lineare Abbildung A auf
einem linearen Raum X, so dass

A(αu+ βv) = αAu+ βAv

für alle Skalare α,β und alle u, v ∈ X ist. Ein Differentialoperator ist ein Operator, der, angewandt
auf geeignete Funktionen, Ableitungen enthält. Zur vollständigen Definition eines Operators ist dessen
Definitionsbereich anzugeben.

Der Differentialoperator L ist ein linear Differentialoperator 2. Ordnung (die höchste Ableitung ist
die zweite Ableitung) mit dem Definitionsbereich C2(0, 1) ∩ C([0, 1]). ✷

Beispiel 7.8 Konvektions–Diffusions–Problem. Das Randwertproblem

−εu�� + u� = 1 auf (0, 1), u(0) = u(1) = 0

besitzt die Lösung

u(x) = x− exp
�
− 1−x

ε

�
− exp

�
− 1

ε

�

1− exp
�
− 1

ε

� .

Je kleiner der Parameter ε ist, umso steiler wird die Lösung in der Nähe des rechten Randes, siehe
Abbildung 7.1. Diesen Teil der Lösung nennt man Grenzschicht. Solche starken Änderungen der Lösung
in einem sehr kleinen Bereich führen zu Schwierigkeiten bei der numerischen Approximation der Lösung,
vergleiche Beispiel 7.68. ✷

Bemerkung 7.9 Transformation des Modellproblems auf ein symmetrisches Problem. Sei b(x) hinrei-
chend glatt. Definiert man

ũ(x) := u(x) exp

�
− 1

2ε

� x

0

b(ξ) dξ

�
, x ∈ [0, 1], (7.5)

so kann man (7.3), (7.4) in das symmetrische Problem

−εũ��(x) + c̃(x)ũ(x) = f̃(x), x ∈ (0, 1), ũ(0) = ũ(1) = 0,

transformieren, wobei

c̃(x) :=
1

4ε
b2(x)− 1

2
b�(x) + c(x), f̃(x) := f(x) exp

�
− 1

2ε

� x

0

b(ξ) dξ

�
,

sind. Übungsaufgabe ✷
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Abbildung 7.1: Beispiel 7.8. Lösung für ε = 0.1 links und ε = 0.0001 rechts.

7.2 Lösungsverhalten

Bemerkung 7.10 Das Modellproblem. Für die Untersuchung der Lösbarkeit des Randwertproblems
(7.3), (7.4) spielt die Größe von ε > 0 keine Rolle. Nach Division durch ε und Umbenennung der Daten
betrachtet man das Problem

Lu := −u��(x) + b(x)u�(x) + c(x)u(x) = f(x), für x ∈ (0, 1), (7.6)

mit den Randbedingungen
u(0) = u(1) = 0. (7.7)

✷

Definition 7.11 Klassische Lösung. Eine Funktion u(x) wird klassische Lösung von (7.6), (7.7) ge-
nannt, falls

• u ∈ C2(0, 1) ∩ C([0, 1]),
• u(x) erfüllt die Gleichung (7.6) identisch, d.h. für alle x ∈ (0, 1),
• u(x) genügt den Randbedingungen (7.7).

✷

7.2.1 Betrachtung der Differentialgleichung (7.6)

Bemerkung 7.12 Allgemeines. Eine klassische Lösung von (7.6) muss die ersten beiden Eigenschaf-
ten der obigen Definition besitzen. Da ein lineares Problem untersucht wird, wird man wie üblich die
allgemeine Lösung als die Summe einer speziellen Lösung und der allgemeinen Lösung des homogenen
Problems darstellen können (Superpositionsprinzip). Die Charakterisierung der allgemeinen Lösung des
homogenen Problems erfordert die Einführung einiger neuer Begriffe. ✷

Definition 7.13 Linear unabhängige Funktionen. Zwei Funktionen u1(x) und u2(x) heißen im
Intervall (a, b) linear unabhängig, wenn aus

c1u1(x) + c2u2(x) = 0 für alle x ∈ (a, b)

folgt, dass c1 = c2 = 0 ist. Sie heißen linear abhängig, wenn sie nicht linear unabhängig sind. ✷
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Bemerkung 7.14 Wronski5–Determinante. Sind zwei in (a, b) linear abhängige Funktionen in (a, b)
stetig differenzierbar, so folgt aus der Bedingung für die lineare Abhängigkeit auch, dass

c1u
�
1(x) + c2u

�
2(x) = 0 für alle x ∈ (a, b).

Demzufolge sind mit u1(x), u2(x) auch u�
1(x), u

�
2(x) linear abhängig. Das bedeutet, dass das homogene

lineare Gleichungssystem �
u1(x) u2(x)
u�
1(x) u�

2(x)

��
c1
c2

�
=

�
0
0

�

eine nichttriviale Lösung besitzt. Es folgt, dass die sogenannte Wronski–Determinante

W (x) := det

�
u1(x) u2(x)
u�
1(x) u�

2(x)

�

für alle x ∈ (a, b) gleich Null sein muss. Die Umkehrung gilt allerdings nicht: die Wronski–Determinante
kann für alle x ∈ (a, b) verschwinden, auch wenn zwei Funktionen linear unabhängig sind. Ein Beispiel
dazu findet man in Emmrich (2004). ✷

Lemma 7.15 Lineare Unabhängigkeit zweier Lösungen der homogenen Differentialgleichung.
Sei x0 ∈ (0, 1) beliebig gewählt. Zwei in (0, 1) gegebene klassische Lösungen der homogenen linearen Dif-
ferentialgleichung zweiter Ordnung mit stetigen Koeffizienten sind genau dann linear unabhängig, wenn
die zugehörige Wronski–Determinante an der Stelle x0 ungleich Null ist.

Beweis: Für Interessenten.
i) W (x0) �= 0 =⇒ lineare Unabhängigkeit. Seien u1(x) und u2(x) klassische Lösungen von

−u
��
(x) + b(x)u

�
(x) + c(x)u(x) = 0, x ∈ (0, 1),

wobei b, c ∈ C(0, 1) sind. Für die Wronski–Determinante gilt dann mit Produktregel

W
�
(x) =

�
u1(x)u

�
2(x)− u

�
1(x)u2(x)

��

= u
�
1(x)u

�
2(x) + u1(x)u

��
2 (x)− u

��
1 (x)u2(x)− u

�
1(x)u

�
2(x)

= u1(x)u
��
2 (x)− u

��
1 (x)u2(x)

= u1(x)
�
b(x)u

�
2x(x) + c(x)u2(x)

�
− u2(x)

�
b(x)u

�
1x(x) + c(x)u1(x)

�

= b(x)
�
u1(x)u

�
2x(x)− u

�
1x(x)u2(x)

�
+ c(x) (u1(x)u2(x)− u1(x)u2(x))

= b(x)W (x).

Mithin löst die Wronski–Determinante die homogene lineare Differentialgleichung 1. Ordnung

y
�
(x) = b(x)y(x).

Die allgemeine Lösung dieser Differentialgleichung ist durch die die Liouvillesche
6
Formel, vergleiche (6.11),

gegeben. Angewandt auf die Differentialgleichung für W (x) gilt dann für jedes x0 ∈ (0, 1)

W (x) = W (x0) exp

�� x

x0

b(ξ) dξ

�
, x ∈ (0, 1).

Da die Exponentialfunktion nur positive Werte annimmt, ist die Wronski–Determinante genau dann für alle
x ∈ (0, 1) gleich Null beziehungsweise ungleich Null, wenn sie an einer beliebigen Stelle x0 ∈ (0, 1) gleich Null
beziehungsweise ungleich Null ist. Insbesondere gilt im Fall W (x0) �= 0 nach Bemerkung 7.14, dass u1(x) und
u2(x) nicht linear abhängig sind.

ii) lineare Unabhängigkeit =⇒ W (x0) �= 0. Der Beweis wird indirekt geführt. Angenommen, u1(x) und u2(x)
seien zwei linear unabhängige Lösungen und die Wronski–Determinante verschwinde in x0 ∈ (0, 1). Nach Teil i)
verschwindet sie dann im gesamten Intervall (0, 1). Dann gibt es eine nichttriviale Lösung des Gleichungssystems

�
u1(x) u2(x)
u
�
1(x) u

�
2(x)

��
c1
c2

�
=

�
0
0

�
.

5
Joseph Marie Wronski (1758 – 1853)

6
Joseph Liouville (1809 – 1882)
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Betrachte die Funktion
v(x) := c1u1(x) + c2u2(x).

Insbesondere gelten dann v(x0) = v
�
(x0) = 0. Wegen der Linearität genügt v(x) ebenfalls der Differentialglei-

chung. Somit löst v(x) das Anfangswertproblem

−v
��
(x) + b(x)v

�
(x) + c(x)v(x) = 0, x ∈ (x0, 1), v(x0) = v

�
(x0) = 0

für jedes x0 ∈ (0, 1). Mit dem globalen Satz von Picard–Lindelöf, Satz 6.52, zeigt man, dass dieses Anfangswert-

problem nur die triviale Lösung besitzt. Also ist v(x) = 0 für alle x ∈ (0, 1). Dies widerspricht jedoch der linearen

Unabhängigkeit von u1(x) und u2(x).

Satz 7.16 Superpositionsprinzip. Betrachte die homogene lineare Differentialgleichung

−u�� + b(x)u� + c(x)u = 0, x ∈ (0, 1),

mit Koeffizienten b, c ∈ C([0, 1]). Dann gibt es zwei linear unabhängige Lösungen in C2([0, 1]) und jede
klassische Lösung ist als Linearkombination dieser darstellbar.

Beweis: Die Aussagen des Satzes werden mit Hilfe der Theorie von Anfangswertproblemen gezeigt. i) Exi-
stenz und Eindeutigkeit der Lösung des Anfangswertproblems.Man kann die Differentialgleichung zweiter Ordnung
(7.6) als äquivalentes System erster Ordnung schreiben

d

dx

�
u(x)
u
�
(x)

�
=

�
0 1

c(x) b(x)

��
u(x)
u
�
(x)

�
.

Nach dem globalen Satz von Picard–Lindelöf, Satz 6.52, gibt es zu vorgegebenen Anfangsbedingungen u(x0),
u
�
(x0), x0 ∈ (0, 1), eine eindeutig bestimmte Lösung (u(x), u

�
(x)) des Anfangswertproblems in [0, 1]. Jede Kom-

ponente der Lösung liegt in C
1
([0, 1]), woraus u ∈ C

2
([0, 1]) folgt.

ii) Existenz von zwei linear unabhängigen Lösungen. Seien u1(x) die Lösung zu den Anfangswerten u(x0) =
1, u

�
(x0) = 0 und u2(x) zu den Anfangswerten u(x0) = 0, u

�
(x0) = 1. Für die Wronski–Determinante gilt

W (x0) = u1(x0)u
�
2(x0)− u

�
1(x0)u2(x0) = 1.

Nach Lemma 7.15 sind u1(x) und u2(x) linear unabhängig.
iii) Darstellung jeder klassischen Lösung als Linearkombination. Jede Linearkombination

u(x) = c1u1(x) + c2u2(x), c1, c2 ∈ R,

ist wieder Lösung der Differentialgleichung. Betrachte, mit u1(x), u2(x) aus Teil ii), eine Funktion der Gestalt

u(x) = u(x0)u1(x) + u
�
(x0)u2(x), x ∈ [a, b], u(x0), u

�
(x0) ∈ R.

Diese Funktion erfüllt das Anfangswertproblem zu den beliebig vorgegebenen Anfangswerten u(x0), u
�
(x0). Aus

der Eindeutigkeit der Lösung des Anfangswertproblems folgt, dass jede Lösung der Differentialgleichung in dieser

Gestalt dargestellt werden kann.

Satz 7.17 Klassische Lösung der inhomogenen Differentialgleichung. Betrachte die inhomogene,
lineare Differentialgleichung

−u�� + b(x)u� + c(x)u = f(x), x ∈ (0, 1),

mit b, c, f ∈ C([0, 1]). Dann gibt es eine klassische Lösung up(x), die sogenannte partikuläre Lösung, und
jede klassische Lösung ist darstellbar als

u(x) = c1u1(x) + c2u2(x) + up(x), c1, c2 ∈ R,

wobei {u1(x), u2(x)} ein System von zwei linear unabhängigen Lösungen (Fundamentalsystem) der zu-
gehörigen homogenen Gleichung ist. Es gilt u ∈ C2([0, 1]).

Beweis:Mit dem globalen Existenz– und Eindeutigkeitssatz von Picard–Lindelöf, , Satz 6.52, Übungsaufgabe.
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7.2.2 Betrachtung des Randwertproblems (7.6), (7.7)

Beispiel 7.18 Nichteindeutigkeit der Lösung eines Dirichlet–Randwertproblems. Betrachte die Differen-
tialgleichung

−u��(x)− u(x) = 0.

Die allgemeine Lösung dieser homogenen, linearen Differentialgleichung lautet

u(x) = c1 cosx+ c2 sinx, c1, c2 ∈ R.

• Seien die Randbedingungen
u(0) = u(π/2) = 1

gegeben, dann lautet die eindeutig bestimmte Lösung u(x) = cosx+ sinx.
• Sind die Randbedingungen

u(0) = u(π) = 1

gegeben, dann besitzt das Randwertproblem keine Lösung, da gleichzeitig c1 = 1 als auch c1 = −1
gelten müssten.

• Seien die Randbedingungen
u(0) = 1, u(π) = −1

vorgelegt, dann gibt es unendlich viele Lösungen, denn es folgt aus den Randbedingungen lediglich
c1 = 1. Der Wert c2 kann beliebig gewählt werden.

Dieses Beispiel zeigt, dass selbst in einfachen Fällen keine eindeutige Lösung des Randwertproblems
(7.6), (7.7) existieren muss. Es wird sich zeigen, dass die Koeffizientenfunktionen bestimmte Bedingungen
erfüllen müssen, damit diese Eigenschaft gegeben ist. ✷

Satz 7.19 Existenz und Eindeutigkeit der Lösung des Modellproblems mit homogener rech-
ter Seite. Gegeben sei das Randwertproblem (7.6), (7.7) mit b ∈ C1([0, 1]), c ∈ C([0, 1]) und f(x) ≡ 0.
Gilt für alle x ∈ (0, 1)

c̃(x) :=
1

4
b2(x)− 1

2
b�(x) + c(x) ≥ 0, (7.8)

so besitzt das Problem (7.6), (7.7) nur die triviale Lösung.

Beweis: Zunächst ist offensichtlich, dass u(x) ≡ 0 eine Lösung des gestellten Problems ist.
Angenommen, u(x) �≡ 0 sei eine weitere klassische Lösung. Nach Satz 7.17 gilt u ∈ C

2
([0, 1]). Mit der

Transformation (7.5) erhält man das symmetrische
7
Problem

−ũ
��
(x) + c̃(x)ũ(x) = 0, x ∈ (0, 1), ũ(0) = ũ(1) = 0.

Eine Lösung dieses Problems ist ũ(x) ≡ 0. Sei ũ(x) eine weitere Lösung. Multipliziere nun die Gleichung mit
dieser Lösung und integriere partiell. Das führt auf

0 =

� 1

0

�
−ũ

��
(x)ũ(x) + c̃(x)ũ

2
(x)

�
dx

= −ũ
��
(1)ũ(1) + ũ

��
(0)ũ(0) +

� 1

0

��
ũ
�
(x)

�2
+ c̃(x)ũ

2
(x)

�
dx

=

� 1

0

��
ũ
�
(x)

�2
+ c̃(x)ũ

2
(x)

�
dx, (7.9)

da ũ(x) an den Randpunkten verschwindet. Wegen c̃(x) ≥ 0 ist der Integrand nichtnegativ, also muss er ver-

schwinden. Daraus folgt insbesondere
�
ũ
�
(x)

�2
= 0, also ũ

�
(x) = 0, woraus ũ(x) gleich konstant folgt. Wegen der

Stetigkeit von ũ(x) und wegen der Randbedingungen folgt ũ(x) ≡ 0. Daraus ergibt sich mit (7.5) aber auch

u(x) = ũ(x) exp

�
1

2

� x

0

b(ξ) dξ

�
≡ 0,

im Widerspruch zur Annahme.

7
Die letzte Zeile in (7.9) ist die symmetrische Bilinearform (u

�
, v

�
)
L

2 + (c̃
1/2

u, c̃
1/2

v)
L

2 .
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Bemerkung 7.20 Konstante Koeffizienten. Im Spezialfall konstanter Koeffizienten reduziert sich Be-
dingung (7.8) auf

D :=
b2

4
+ c ≥ 0.

Auch für den Fall D < 0 kann man das Lösungsverhalten des Randwertproblems genau beschreiben,
Übungsaufgabe. ✷

Bemerkung 7.21 Anderes Kriterium zur Eindeutigkeit der Lösung des vollhomogenen Randwertpro-
blem. Betrachte das Randwertproblem (7.6), (7.7) mit homogener rechter Seite. Seien u1(x), u2(x) zwei
linear unabhängige Lösungen der Gleichung und bezeichne

R := det

�
u1(0) u2(0)
u1(1) u2(1)

�
.

Die allgemeine Lösung der homogenen Differentialgleichung lautet

u(x) = c1u1(x) + c2u2(x).

Die Koeffizienten bestimmen sich aus den Randbedingungen

0 = c1u1(0) + c2u2(0), 0 = c1u1(1) + c2u2(1),

was zur Lösung des linearen Gleichungssystems

�
u1(0) u2(0)
u1(1) u2(1)

��
c1
c2

�
=

�
0
0

�

äquivalent ist. Diese Lösung ist genau dann eindeutig (c1 = c2 = 0), falls R �= 0 gilt. Genau in diesem
Fall besitzt das vollhomogene Randwertproblem nur die triviale Lösung. ✷

Bemerkung 7.22 Zum inhomogenen Randwertproblem. Betrachte nun das Randwertproblem (7.6),
(7.7) mit inhomogener rechter Seite. Seien u1(x), u2(x) zwei linear unabhängige Lösungen der zugehörigen
homogenen Differentialgleichung und

A(x) := det

�
u1(0) u2(0)
u1(x) u2(x)

�
, B(x) := det

�
u1(x) u2(x)
u1(1) u2(1)

�
.

Für die Betrachtung des Randwertproblems mit inhomogener rechter Seite, wird der Begriff der
Greenschen Funktion benötigt. ✷

Definition 7.23 Green8sche Funktion. Die Funktion Γ(x, ξ) heißt Greensche Funktion für das ho-
mogene Randwertproblem Lu = 0, u(0) = u(1) = 0, wenn:

1. Γ(x, ξ) ist stetig auf dem Quadrat Q := {(x, ξ) : x, ξ ∈ [0, 1]}.
2. In jedem der Dreiecke

Q1 := {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}, Q2 := {(x, ξ) : 0 ≤ x ≤ ξ ≤ 1}

existieren stetige partielle Ableitungen Γx(x, ξ) und Γxx(x, ξ).
3. Bei festem ξ ∈ I = (0, 1) ist Γ(x, ξ) als Funktion von x eine Lösung von LΓ = 0 für x �= ξ, x ∈ I.
4. Auf der Diagonalen x = ξ besitzt die erste Ableitung eine Sprung der Form

Γx(x+ 0, x)− Γx(x− 0, x) =
1

p(x)
, 0 < x < 1,

mit9

p(x) = exp

�� x

0

b(s) ds

�
.

8
Georg Green (1793 – 1841)

9
Falls man nicht ε = 1 betrachtet, dann soll p(x) = exp

�
1
ε

� x
0 b(s) ds

�
gelten.
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5. Γ(0, ξ) = Γ(1, ξ) = 0 für alle ξ ∈ (0, 1).

✷

Satz 7.24 Existenz und Eindeutigkeit der Lösung des Modellproblems mit inhomogener
rechter Seite. Betrachte das Modellproblem (7.6), (7.7) mit b, c, f ∈ C([0, 1]). Besitzt das zugehörige
Randwertproblem für die Gleichung mit homogener rechter Seite nur die triviale Lösung, so besitzt das
Randwertproblem (7.6), (7.7) genau eine klassische Lösung. Diese hat die Gestalt

u(x) =

� 1

0

Γ(x, ξ)f(ξ) dξ

mit der Greenschen Funktion

Γ(x, ξ) =
1

R W (ξ)

�
A(ξ)B(x) für 0 ≤ ξ ≤ x ≤ 1,
A(x)B(ξ) für 0 ≤ x ≤ ξ ≤ 1.

Beweis: Idee. Dass Γ(x, ξ) eine Greensche Funktion ist, rechnet man direkt mit Hilfe der Definition nach.

Die Existenz einer Lösung zeigt man, indem man nachrechnet, dass u(x) Lösung des Randwertproblems (7.6),

(7.7) ist. Die Eindeutigkeit folgt schließlich analog zu Bemerkung 7.21, indem man zeigt, dass sich die freien

Parameter der allgemeinen Lösung der homogenen Gleichung unter den gegebenen Voraussetzungen eindeutig

bestimmen lassen.

Bemerkung 7.25 Zu Satz 7.24. Dass das vollhomogene Problem nur die triviale Lösung besitzt, ist
beispielsweise gegeben, wenn (7.8) erfüllt ist. Es gibt auch andere hinreichende Bedingungen als (7.8)
dafür, dass das vollhomogene Problem nur die triviale Lösung besitzt, siehe Folgerung 7.35.

Die Umkehrung des vorstehenden Satzes gilt auch. ✷

Satz 7.26 Existenz und Eindeutigkeit der Lösung des Modellproblems mit homogener rech-
ter Seite. Besitzt das inhomogene Randwertproblem (7.6), (7.7) für ein f(x) ∈ C([0, 1]) genau eine klas-
sische Lösung, so besitzt das zugehörige Randwertproblem mit homogener rechter Seite nur die triviale
Lösung.

Beweis: Sei u(x) die eindeutige klassischen Lösung des inhomogenen Randwertproblems für f(x). Sei uh(x)

eine nichttrivale Lösung des vollhomogenen Randwertproblems, dann folgt auf Grund der Linearität des Problems,

dass dann u(x) + uh(x) eine klassischen Lösung des Randwertproblems zum selben f(x) ist, im Widerspruch zur

vorausgesetzten Einzigkeit dieser Lösung.

Folgerung 7.27 Existenz und Eindeutigkeit der Lösung des Modellproblems mit beliebigen
Dirichlet–Randdaten. Betrachte das Modellproblem (7.6) mit b ∈ C1([0, 1]), c, f ∈ C([0, 1]) und mit
den Dirichlet–Randdaten u(0) = a, u(1) = b mit a, b ∈ R. Gilt für alle x ∈ (0, 1) die Beziehung (7.8),
dann existiert genau eine klassische Lösung.

Beweis: Inhomogene Dirichlet–Randdaten können in die rechte Seite transformiert werden, siehe Bemer-

kung 7.5. Diese Transformation ist zweimal stetig differenzierbar und sie kann so erfolgen, dass die neue rechte

Seite stetig in [0, 1] ist. Für das so erhaltene Problem mit homogenen Dirichlet–Randbedingungen kann man

die obigen Aussagen anwenden. Nach Satz 7.19 besitzt das vollhomogene Problem nur die triviale Lösung. Aus

Satz 7.24 folgt, dass es genau eine klassische Lösung des Problems mit inhomogener rechter Seite gibt. Da die

Rücktransformation zweimal stetig differenzierbar ist, existiert damit genau eine klassische Lösung für das Pro-

blem mit inhomogenen Dirichlet–Randbedingungen.

7.3 Maximumprinzip und Stabilität

Bemerkung 7.28 Betrachteter Differentialoperator. Im Folgenden sei L der durch

(Lu)(x) := −u��(x) + b(x)u�(x) + c(x)u(x), x ∈ (0, 1)

definierte lineare Differentialoperator, der für b, c ∈ C([0, 1]) offenbar C2(0, 1) in C(0, 1) abbildet. ✷
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Lemma 7.29 Abschätzungen für den Differentialoperator. Seien b ∈ C([0, 1]) und c(x) = 0 für
alle x ∈ [0, 1]. Dann gilt für jedes u ∈ C2(0, 1) ∩ C([0, 1])

i) aus (Lu)(x) ≤ 0 für alle x ∈ (0, 1) folgt u(x) ≤ max{u(0), u(1)} für x ∈ [0, 1],
ii) aus (Lu)(x) ≥ 0 für alle x ∈ (0, 1) folgt u(x) ≥ min{u(0), u(1)} für x ∈ [0, 1].

Beweis: Es braucht nur i) gezeigt zu werden. Die Aussage ii) ergibt sich dann, wenn u(x) durch −u(x)
ersetzt wird.

Es wird zuerst gezeigt, dass aus der schärferen Voraussetzung (Lu)(x) < 0 auf (0, 1) die Behauptung folgt.
Angenommen, die Funktion u(x) nimmt ihr Maximum nicht am Rand, sondern im Inneren des Intervalls an.
Dann gibt es ein x0 ∈ (0, 1), mit u

�
(x0) = 0 (lokales Extremum) und u

��
(x0) ≤ 0 (lokales Maximum). Es folgt

−u
��
(x0) + b(x0)u

�
(x0) = −u

��
(x0) ≥ 0,

was im Widerspruch zur Voraussetzung steht.
Nun wird i) gezeigt. Hierzu sei für δ,λ > 0

w(x) = δe
λx

, x ∈ [0, 1].

Ist λ hinreichend groß, λ > maxx∈[0,1] b(x), so gilt für alle x ∈ (0, 1)

(Lw)(x) = −λ
2
w(x) + b(x)λw(x) = −λ (λ− b(x))w(x) < 0.

Mit der Linearität des Differentialoperators folgt

(L(u+ w)) (x) = (Lu)(x) + (Lw)(x) < 0.

Nach dem ersten Teil des Beweises gilt

u(x) + w(x) ≤ max{u(0) + w(0), u(1) + w(1)}.

Für δ → 0 ergibt sich die Behauptung.

Satz 7.30 Maximumprinzip. Seien b, c ∈ C([0, 1]) und c(x) auf [0, 1] nichtnegativ. Dann gilt für jedes
u ∈ C2(0, 1) ∩ C([0, 1])

i) aus (Lu)(x) ≤ 0 für alle x ∈ (0, 1) folgt u(x) ≤ max{0, u(0), u(1)} für x ∈ [0, 1],
ii) aus (Lu)(x) ≥ 0 für alle x ∈ (0, 1) folgt u(x) ≥ min{0, u(0), u(1)} für x ∈ [0, 1].

Beweis: Wiederum ergibt sich die zweite Aussage aus der ersten, wenn man dort u(x) durch −u(x) ersetzt.
Da u(x) in [0, 1] stetig ist, ist die Menge

M+
:= {x ∈ (0, 1) : u(x) > 0}

entweder leer oder die Vereinigung offener Teilintervalle von (0, 1), Analysis I. Sei M+
= ∅, sei also u(x) in (0, 1)

nichtpositiv. Dann ist die die Behauptung trivialerweise erfüllt.
Sei M+

= (0, 1). Dann gilt für x ∈ (0, 1)

−u
��
(x) + b(x)u

�
(x) ≤ −u

��
(x) + b(x)u

�
(x) + c(x)u(x) = (Lu)(x) ≤ 0.

Nach Lemma 7.29 folgt
u(x) ≤ max{u(0), u(1)},

was die Behauptung auch in diesem Falle zeigt.
Sei nun ∅ �= M+ �= (0, 1). Es wird gezeigt, dass M+

an 0 oder 1 heranreichen muss. Sei (a0, b0) ⊆ M+
. Gelten

a0 �= 0 und u(a0) > 0, so folgt, wegen der Stetigkeit von u(x), dass entweder u(0) > 0 oder ein 0 ≤ a1 < a0

existiert mit u(a1) = 0. Analoges gilt für b0. Man kann daher a0 = 0 oder u(a0) = 0 sowie b0 = 1 oder u(b0) = 0
annehmen. Das heißt man wählt M+

größtmöglich. Nach der Voraussetzung gilt für alle x ∈ (a0, b0), und damit
für alle x ∈ [a0, b0],

(Lu)(x) ≤ 0 =⇒ −u
��
(x) + b(x)u

�
(x) ≤ −c(x)u(x) ≤ 0.

Damit kann man wieder Lemma 7.29 anwenden. Es folgt also für alle x ∈ (a0, b0)

0 < u(x) ≤ max{u(a0), u(b0)}. (7.10)

Offenbar kann nicht zugleich u(a0) = u(b0) = 0 gelten, denn dies würde dieser Relation widersprechen. Der Fall
a0 = 0, b0 = 1 wurde bereits betrachtet. Es bleiben die Fälle a0 = 0 und u(b0) = 0 sowie u(a0) = 0 und b0 = 1.
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Damit ist gezeigt: Ist die Menge M+
nicht leer, so gibt es Zahlen â, b̂ ∈ [0, 1] mit â ≤ b̂, so dass

M+
= (0, â) ∪ (b̂, 1),

wobei u(â) = 0 wenn â �= 0, und u(b̂) = 0, wenn b̂ �= 1. Mit (7.10) gilt für x ∈ (0, 1)

u(x) ≤ max

�
max

x∈[0,â]
u(x), max

x∈[b̂,1]
u(x), 0

�

≤ max
�
max{u(0), u (â)},max{u(b̂), u(1)}, 0

�

= max{0, u(0), u(1)}.

Bemerkung 7.31 Physikalische Interpretation. Das Modellproblem (7.6), (7.7) lässt sich schreiben als

(Lu)(x) = f(x), u(0) = u0, u(1) = u1.

Ist (Lu)(x) ≤ 0 für alle x ∈ (0, 1), das heißt f(x) ≤ 0 für alle x ∈ (0, 1), so gibt es in (0, 1) keine Quellen
von u(x). Das Maximumprinzip besagt dann, dass falls wenigstens einer der Randwerte positiv ist, u(x)
seinen größten Wert auf dem Rand annimmt. Im Inneren des Intervalls kann u(x) höchstens gleich groß
sein. Ist u(x) beispielsweise eine Konzentration und gibt es im Gebiet keine Konzentrationsquellen, dann
existiert im Gebiet kein lokales Konzentrationsmaximum, welches höher als die Konzentration am Rand
ist. ✷

Folgerung 7.32 Inverse Monotonie, Isotonie, Vergleichsprinzip. Unter den Voraussetzungen von
Satz 7.30 folgt für zwei Funktionen u, v ∈ C2(0, 1) ∩ C([0, 1]) mit u(0) ≤ v(0) und u(1) ≤ v(1) aus
(Lu)(x) ≤ (Lv)(x) für x ∈ (0, 1), dass u(x) ≤ v(x) für x ∈ [0, 1].

Beweis: Satz 7.30 ist auf die Differenz (u− v)(x) anzuwenden.

Satz 7.33 Stabilität der Lösung und stetige Abhängigkeit von den Daten. Vorgelegt sei das
Randwertproblem (7.6), (7.7), mit b, c, f ∈ C([0, 1]). Ist c(x) auf [0, 1] nichtnegativ, so gilt für jede
klassische Lösung u(x) die Abschätzung

�u�C([0,1]) ≤ Λ �f�C([0,1]) ,

wobei die Konstante Λ > 0 von b(x), c(x) abhängt, aber nicht von f(x).

Beweis: Für ein noch zu spezifizierendes λ > 0 setzt man

w(x) := Be
λx −A, x ∈ (0, 1),

mit
A := ΛB, B := �f�C([0,1]) , Λ := e

λ − 1 > 0.

Dann gilt für x ∈ (0, 1)

(Lw)(x) = −
�
λ
2 − λb(x)− c(x)

�
Be

λx −Ac(x)

≤ −
�
λ
2 − λb(x)− c(x)

�
Be

λx
.

Nun wählt man λ derart, dass
�
λ
2 − λb(x)− c(x)

�
e
λx ≥ 1. Diese Relation ist erfüllt, wenn λ groß genug ist,

etwa

λ ≥ max
x∈[0,1]


 b(x)

2
+

�
b
2
(x)

4
+ c(x) + 1


 ,

da e
λx ≥ 1. An dieser Stelle sieht man die Abhängigkeit von Λ von b(x) und c(x). Dann gilt für alle x ∈ (0, 1)

(Lw)(x) ≤ −B = −�f�C([0,1]) .

129



Es folgt für alle x ∈ (0, 1) mit Hilfe der Normdefinition im Raum der stetigen Funktionen

(L(±u+ w))(x) = ±f(x) + (Lw)(x) ≤ |f(x)|− �f�C([0,1]) ≤ 0.

Nach dem Maximumprinzip gilt

±u(x) + w(x) ≤ max{0,±u(0) + w(0),±u(1) + w(1)} = max{0, w(0), w(1)}.

Damit folgt für alle x ∈ (0, 1)
±u(x) ≤ max{0, w(0), w(1)}− w(x).

Aus e
λx ≥ 1 folgt

w(x) ≥ B −A = w(0), w(1) = Be
λ −A,

also

|u(x)| ≤ max{0, w(0), w(1)}− w(x) ≤ max{0, B −A,Be
λ −A}+A−B

= max{A−B, 0, B(e
λ − 1)} = max{A−B, 0,ΛB} = max{A−B, 0, A} = A,

was die Behauptung war.

Bemerkung 7.34 Nichtnormiertes Problem. Für das nichtnormierte Problem (7.1), (7.2) mit Dirichlet–
Randbedingungen u(d) = α, u(e) = β erhält man analog

�u�C([d,e]) ≤ Λ �f�C([d,e]) +max {|α| , |β|} ,

wobei Λ jetzt auch von e− d abhängen kann, aber nicht von α,β abhängt, (Emmrich, 2004, Satz 2.5.4),
Übungsaufgabe.

Dass diese Abschätzung tatsächlich eine Stabilitätsabschätzung ist, sieht man, wenn man sie auf die
Differenz u(x) − ũ(x) anwendet. Dabei sei u(x) Lösung des exakten Problems und ũ(x) Lösung eines
Problems mit gestörter rechter Seite f̃ oder gestörten Randbedingungen α̃, β̃. Aus der Linearität des
Problems folgt sofort

�u− ũ�C([d,e]) ≤ Λ
���f − f̃

���
C([d,e])

+max
�
|α− α̃| ,

���β − β̃
���
�
.

Das bedeutet, Änderungen der Lösung hängen stetig, in der Norm von C([d, e]), von den Daten ab. ✷

Folgerung 7.35 Eindeutigkeit der Lösung des homogenen Problems. Gegeben sei das Rand-
wertproblem (7.6), (7.7), mit b, c ∈ C([0, 1]) und f(x) ≡ 0. Ist c(x) auf [0, 1] nichtnegativ, so besitzt das
Problem nur die triviale Lösung u(x) ≡ 0.

Beweis: Das folgt unmittelbar aus der Abschätzung von Satz 7.33, da �f�C([0,1]) = 0 ist.

Bemerkung 7.36 Alternativer Beweis. Diese Aussage folgt auch schon aus dem Maximumprinzip, Satz
7.30, weil für ein homogenes Problem beide Teile i) und ii) dieses Satzes gelten und u(0) = u(1) = 0 ist.

✷

Folgerung 7.37 Eindeutigkeit der Lösung des inhomogenen Problems. Vorgelegt sei das Rand-
wertproblem (7.6), (7.7) mit b, c, f ∈ C([0, 1]). Ist c(x) auf [0, 1] nichtnegativ, so besitzt das Randwert-
problem genau eine klassischen Lösung.

Beweis: Das folgt unmittelbar aus Folgerung 7.35 und Satz 7.24.

Lemma 7.38 Nichtexistenz eines nichtnegativen Maximums. Seien b, c ∈ C([0, 1]), sei c(x) auf
[0, 1] nichtnegativ und gelte u ∈ C2(0, 1) ∩ C([0, 1]). Gilt (Lu)(x) < 0 für alle x ∈ (0, 1), so kann u(x)
kein nichtnegatives Maximum im Inneren des Intervalls annehmen.

Beweis: Angenommen, es gäbe ein nichtnegatives inneres Maximum x0 ∈ (0, 1). Dann sind u(x0) ≥ 0,
u
�
(x0) = 0 und u

��
(x0) ≤ 0. Damit folgt

(Lu)(x0) = −u
��
(x0) + b(x0)u

�
(x0) + c(x0)u(x0) ≥ 0,

im Widerspruch zur Voraussetzung.
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Abbildung 7.2: Illustration zum Beweis von Satz 7.39, x0 = 0.5, x1 = 0.3, x2 = 0.8.

Satz 7.39 Starkes Maximumprinzip. Seien b, c ∈ C([0, 1]) und sei c(x) auf [0, 1] nichtnegativ. Nimmt
u ∈ C2(0, 1) ∩ C([0, 1]) im Inneren des Intervalls ein nichtnegatives Maximum an und gilt (Lu)(x) ≤ 0
für alle x ∈ (0, 1), so ist u(x) konstant.

Beweis: Die Funktion u(x) nehme in x0 ein nichtnegatives lokales Maximum an. Es gilt insbesondere u(x0) ≥
0.

Angenommen, u(x) sei nicht konstant. Dann gibt es ein x2 ∈ (0, 1) mit u(x2) < u(x0). Ohne Beschränkung
der Allgemeinheit sei x2 > x0, der Fall x2 < x0 kann analog behandelt werden. Wähle x2 und x1 ∈ [0, x0) so,
dass u(x) in x0 das größte lokale Maximum bezüglich [x1, x2] annimmt. Dieses wird in einem abgeschlossenen
Intervall angenommen.

Es sei für δ,λ > 0

w(x) := δ
�
e
λ(x−x0) − 1

�
, x ∈ [x1, x2].

Offenbar gelten

w(x)





< 0 für x < x0,
= 0 für x = x0,
> 0 für x > x0.

Nun wählt man λ hinreichend groß, etwa

λ > max
x∈[x1,x2]


 b(x)

2
+

�
b
2
(x)

4
+ c(x)


 ,

so dass für alle x ∈ (x1, x2) gilt

(Lw)(x) = −
�
λ
2 − λb(x)− c(x)

�
δe

λ(x−x0) − c(x)δ < 0.

Dann gilt nach Voraussetzung auch

(L(u+ w))(x) = (Lu)(x) + (Lw)(x) < 0, x ∈ (x1, x2).

Jetzt wird δ so klein gewählt, dass
u(x2) + w(x2) < u(x0).

Daraus folgte, vergleiche Abbildung 7.2,

u(x) + w(x) < u(x0), für x ∈ (x1, x0),

u(x0) + w(x0) = u(x0) ≥ 0,

u(x2) + w(x2) < u(x0),

womit die Funktion (u + w)(x) in (x1, x2) ein nichtnegatives Maximum annimmt. Das steht nach Lemma 7.38

im Widerspruch zu (L(u+ w))(x) < 0. Demzufolge ist die Annahme, dass u(x) nicht konstant ist, falsch.

Bemerkung 7.40 Minimumprinzipien. Durch Ersetzung von u(x) mit −u(x) erhält man aus den Ma-
ximumprinzipien entsprechende Minimumprinzipien. ✷
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7.4 Finite–Differenzen–Verfahren

Bemerkung 7.41 Zu Finite–Differenzen–Verfahren. Finite–Differenzen–Verfahren sind nur eine von
mehreren Möglichkeiten zur Berechnung von numerischen Approximationen der Lösung von Randwert-
problemen. Sie sind vom methodischen Standpunkt am einfachsten und deswegen wird sich diese Vorle-
sung auf die Einführung dieser Verfahren beschränken. ✷

7.4.1 Begriffe und Bezeichnungen

Bemerkung 7.42 Idee. Die grundlegende Idee von Finite–Differenzen–Verfahren besteht darin, dass
man die Ableitungen in der Differentialgleichung durch geeignete finite Differenzen ersetzt. Dazu wird
das Intervall [0, 1] mittels eines, der Einfachheit halber, äquidistanten Gitters zerlegt:

xi = ih, i = 0, . . . , N, h = 1/N,

ωh = {xi : i = 0, . . . , N} – Gitter.

✷

Definition 7.43 Gitterfunktion. Ein Vektor vh = (v0, . . . , vN )T ∈ RN+1, der jedem Gitterpunkt
einen Funktionswert zuordnet, heißt Gitterfunktion. Die Restriktion einer Funktion v ∈ C([0, 1]) auf eine
Gitterfunktion wird mit Rhv bezeichnet, das heißt

Rhv := (v(x0), v(x1), . . . , v(xN ))
T
.

✷

Beispiel 7.44 Gitterfunktionen. Sei ein Gitter mit den Punkten {0, 0.25, 0.5, 0.75, 1} gegeben. Dann ist
die Gitterfunktion zu v(x) = x2

Rhv =

�
0,

1

16
,
1

4
,
9

16
, 1

�T

.

Unterschiedliche Funktionen können für ein gegebenes Gitter die gleiche Gitterfunktion haben. Betrachte
beispielsweise v(x) = sin(4πx) auf dem obigen Gitter. Die zugehörige Gitterfunktion ist

Rhv = (0, 0, 0, 0, 0)
T
.

Dies ist offensichtlich auch die Gitterfunktion von v(x) = 0. Das obige Gitter ist zu grob, um die Funktion
v(x) = sin(4πx) vernünftig auflösen zu können. ✷

Definition 7.45 Differenzenoperatoren. Sei v(x) eine genügend glatte Funktion. Bezeichne vi =
v(xi), wobei xi Knoten eines Gitters ist. Die folgenden Differenzenquotienten (finite Differenzen) nennt
man

D+v(xi) = vx,i =
vi+1 − vi

h
– Vorwärtsdifferenz,

D−v(xi) = vx,i =
vi − vi−1

h
– Rückwärtsdifferenz,

D0v(xi) = vx̊,i =
vi+1 − vi−1

2h
– zentrale Differenz,

D+D−(v)(xi) = vxx,i =
vi+1 − 2vi + vi−1

h2 – zweite Differenz,

vergleiche Abbildung 7.3. ✷

Bemerkung 7.46 Zu Differenzenquotienten. Die Formel für D+D−(v)(xi) kontrolliert man durch di-
rektes Nachrechnen. Weiter gilt

D0v(xi) =
1

2

�
(D+v(xi) +D−v(xi)

�
.

✷
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Abbildung 7.3: Illustration der Differenzenquotienten.

Definition 7.47 Konsistenz eines Differenzenoperators, diskrete Maximumsnorm. Sei L ein
Differentialoperator. Der Differenzenoperator Lh : RN+1 → RN+1 heißt mit L konsistent mit der
Ordnung k, wenn

max
0≤i≤N

|(Lv)(xi)− Lhvh)i| =: �Lv − Lhvh�∞,d = O(hk)

gilt. Hierbei ist �·�∞,d die diskrete Maximumsnorm im Raum der Gitterfunktionen. ✷

Beispiel 7.48 Konsistenzordnungen der Standard–Differenzenoperatoren. Die Konsistenz ist ein Maß
für die Approximationsgüte von Lh. Aus der Taylor–Entwicklung für v(x) an der Stelle xi ergibt sich

D+v(xi) = v�(xi) +O(h),

D−v(xi) = v�(xi) +O(h),

D0v(xi) = v�(xi) +O(h2),

D+D−(v)(xi) = v��(xi) +O(h2).

Die Differenzenoperatoren D+v(xi), D
−v(xi), D

0v(xi) sind damit konsistent zu L = d/dx mit der Ord-
nung 1,1 beziehungsweise 2. Der Operator D+D−(v)(xi) ist von zweiter Ordnung konsistent mit L =
d
2
/dx2. ✷

7.4.2 Klassische Konvergenztheorie für zentrale Differenzen

Bemerkung 7.49 Betrachtetes Problem. In diesem Abschnitt wird das 2–Punkt–Randwertproblem

Lu := −u�� + b(x)u� + c(x)u = f(x), für x ∈ (0, 1), u(0) = u(1) = 0, (7.11)

betrachtet, das heißt ε = 1, um die klassische Lösungstheorie darzustellen. Es wird angenommen, dass
die Parameterfunktionen b, c, f hinreichend glatt sind und dass c(x) ≥ 0 für alle x ∈ [0, 1] gilt. Damit ist
die Existenz und Eindeutigkeit einer Lösung gesichert, vergleiche Folgerung 7.37. ✷

Definition 7.50 Zentrales Differenzenschema. Das zentrale Differenzenschema für (7.11) besitzt
die Gestalt

−D+D−ui + biD
0ui + ciui = fi, für i = 1, . . . , N − 1,

u0 = uN = 0. (7.12)

✷
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