Kapitel 6

Anfangswertprobleme

6.1 Einfiihrung

Bemerkung 6.1 Gewdhnliche Differentialgleichungen, Anfangswertprobleme. Gewohnliche Differential-
gleichungen sind Gleichungen, bei denen eine Funktion einer skalaren Variablen y(z) gesucht ist, welche
eine Gleichung der Form

F (x,y(x),y’(x% - ,y<">(x)) —0 (6.1)

erfiillt. Differentialgleichungen erhélt man bei der Modellierung von Prozessen aus der Natur und der
Wirtschaft.

Um eine konkrete Losung von Differentialgleichungen vom Typ (6.1) zu berechnen, braucht man noch
Zusatzinformationen. Sind geeignete Daten zu einem gewissen Punkt z, gegeben, so spricht man von
Anfangswertproblemen. O

Beispiel 6.2 Die Schwingungsdifferentialgleichung. Betrachte die Schwingung einer Feder. Es bezeichne,
bereits als entdimensionierte (ohne physikalische Einheit) Grofen,
e t — Zeit,
y(t) - Ort,
y' (t) — Geschwindigkeit,
y" (t) — Beschleunigung,
Yo — Ursprungslage der Feder im Nullpunkt des Koordinatensystems ¢t = 0.
Aus dem Newtonschen Gesetz F' = ma folgt mit m =1, a = y”(t), der Federkonstanten 8 > 0 und der
Reibungskonstanten a > 0

y'(t) = =Byt —ay'(t) +9(t) - (6.2)
——r N—— ——
Riickstellkraft Reibungskraft &uflere Kraft

Das ist die Schwingungsdifferentialgleichung. Hier wird in (6.2) der Fall g(¢) = 0 betrachtet.
Bei der Federschwingung sind zwei grundsétzlich unterschiedliche Situationen moglich:
1. Die Reibungskraft ist grofl im Vergleich zur Federkraft. Dann wird die Feder nicht wirklich schwingen,
sondern sich einfach in ihre Ursprungslage y, zuriickbegeben.
2. Die Reibungskraft ist klein im Vergleich zur Federkraft. Dann wird man eine (geddmpfte) Schwingung
erhalten.
1. Fall: grof$e Reibungskraft im Vergleich zur Federkraft. Man macht den Ansatz fiir eine exponentiell
abklingende Funktion
y(t) = ae”, b<0, a#0.

Einsetzen dieses Ansatzes in (6.2) ergibt

ab’e” = —Bae® — aabe” = —a (B + ab) e
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Diese Gleichung ist genau dann erfiillt, falls

2
« «

b2:*(,6+04b) < b1)2:7§i Z*B
Da b reell sein soll, erhdlt man damit eine mathematische Bedingung dafiir, dass die Reibungskraft grof§

im Vergleich zur Federkraft ist:
2

Q
— > [.
1 2P

Im Fall, dass die Gleichheit in dieser Beziehung nicht gilt, erhélt man zwei negative Losungen fiir b,
also auch zwei Losungen aus dem Ansatz. Man rechnet leicht nach, dass jede Linearkombination eine
Losung von (6.2) ist

y(t) = are™ + age™", ay,a0 e R = lim y(t) = 0.
t—o0

Es wird gezeigt, dass diese Kurve hichstens eine Nullstelle besitzt. Umstellen der Nullstellengleichung
ergibt

1= —%e(brbl)t, a; # 0.
ay

Wegen der strengen Monotonie der Exponentialfunktion kann es hichstens einen Wert ¢ geben, der diese
Gleichung erfiillt. In Abbildung 6.1 ist eine mogliche Losung im Falle der Anfangsauslenkung y(0) = 1
dargestellt, fiir die Parameter a = 3,8 =1,a; = —1,a, = 2.

Im Fall der Gleichheit o /4 = 8 kann man nachrechnen, dass neben e
von (6.2) ist und die allgemeine Losung hat die Gestalt

—at/2 —at/2

auch te eine Losung

y(t) = (a1 + ast) e aj,a0 €ER = tlim y(t) = 0.
— oo

Beide Fille werden als aperiodischer Kriechfall bezeichnet.

2. Fall: kleine Reibungskraft im Vergleich zur Federkraft. In diesem Fall wird man eine gedampfte
Schwingung erwarten. Die Dédmpfung kann man wieder mit einer Exponentialfunktion beschreiben und
die Schwingung mit einer Winkelfunktion. Ein geeigneter Ansatz ist

y(t) = ™ (¢ cos(bt) + cosin(bt)), a < 0,b# 0.

Man schreibt diesen Ansatz zunichst in anderer Form. Seien A € R und A € RT. Setzt man ¢; = Acos A,
¢y = Asin A, so erhélt man mit einem Additionstheorem fiir die Kosinusfunktion

y(t) = Ae™ (cos A cos(bt) + sin Asin(bt)) = Ae™ cos(bt — \).
Einsetzen in (6.2) liefert
Ae™ ((a2 —b* + aa + B) cos(bt — \) — b(2a + «) sin(bt — /\)) =0.

Das ist genau dann erfiillt, wenn der letzte Faktor fiir alle ¢t verschwindet, also wenn

2 2 2
__“ — 44/g2 Y Y
a=-g, b=4 a+aa+ﬂ:|:\/4 2+5 ﬁ:\/ 4+ﬂ.

gelten. Die Losung ist eine geddmpfte Schwingung, siehe in Abbildung 6.1 fiira =0.1,6 =3, =1, A =2
und den Anfangswert y(0) = 1.

In beiden Fillen stellt man fest, dass man aus dem gegebenen einen Anfangswert noch keine Lésung
des Anfangswertproblems bestimmen kann, da man zwei unbekannte Koeflizienten festlegen muss. Dazu
braucht man beispielsweise zwei Bedingungen fiir den Anfangspunkt, zum Beispiel fiir y(0) und die
Anfangsgeschwindigkeit ' (0). |

Bemerkung 6.3 Allgemeine Situation. Im Allgemeinen kann man eine Differentialgleichung nur in Spe-
zialfdllen analytisch 16sen. Generell kann man jedoch Existenz und Eindeutigkeit einer Losung von (6.1)
mit geeigneten Anfangsbedingungen untersuchen. Zudem kann man sich mit Hilfe von numerischen Néhe-
rungsverfahren eine Vorstellung von der Gestalt der Losung verschaffen, obwohl man keine explizite
Formel fiir diese besitzt. m|
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Abbildung 6.1: Beispiele fiir Losungen der Schwingungsdifferentialgleichung, links: aperiodischer Kriech-
fall, rechts: geddmpfte Schwingung.

6.2 Grundbegriffe, einige integrierbare Typen von gewdhnli-
chen Differentialgleichungen 1. Ordnung

Bemerkung 6.4 Inhalt. Dieses Kapitel behandelt einige Typen von gewdhnlichen Differentialgleichun-
gen 1. Ordnung, bei denen man, teilweise nur in Spezialfillen, die Losung analytisch berechnen kann.
Weitere Typen finden Interessenten im Anhang C. o

6.2.1 Definitionen und Beispiele

Definition 6.5 Gewd6hnliche Differentialgleichung 1. Ordnung, explizite gew&6hnliche Diffe-
rentialgleichung 1. Ordnung. Eine gewdhnliche Differentialgleichung wird von erster Ordnung ge-
nannt, wenn in ihr keine hohere Ableitung von y(x) als die erste Ableitung vorkommt. Die allgemeine
gewohnliche Differentialgleichung 1. Ordnung lautet

F (z,y(z),y (z)) = 0.

Eine Funktion y(z) ist Losung dieser Gleichung in einem Intervall I C R wenn y(z) in I differenzierbar
ist und F (z,y(z),y (z)) = 0 fiir alle x € I gilt.
Die gewohnliche Differentialgleichung 1. Ordnung wird explizit genannt, wenn man sie in der Form

P —y(@) = fy(@) (63)

schreiben kann, wobei f(x,y) eine auf einer Menge G der (z, y)-Ebene erklirte reellwertige Funktion ist.
Eine Funktion y : I — R ist Losung von (6.3), wenn y(z) in I differenzierbar ist und fiir alle z € I gilt

ist (z,y(x)) €G, dann y'(z) = f(z,y()).
O

Beispiel 6.6 Organisches Wachstum. Die absolute Wachstumsrate von Bakterienkulturen auf unerschopfli-
chem Nédhrboden ist proportional zur Anzahl N der im Augenblick ¢ vorhandenen Bakterien

N'(t) = aN(t). (6.4)

Hierbei ist « die relative Wachstumsrate der Bakterienart. Die Losung dieser Differentialgleichung ist
eine differenzierbare und demzufolge stetige Funktion. Das steht streng genommen im Widerspruch zur
Tatsache, dass N eine natiirliche Zahl sein muss. In der Praxis ist N jedoch sehr grof}, so dass man mit
dem mathematischen Modell, welches durch die Differentialgleichung (6.4) gegeben ist, nur einen kleinen
Modellfehler begeht. Die Losung von (6.4) wird im Abschnitt 6.2.3 behandelt.

Fiir Ableitungen nach der Zeit verwendet man statt N”(t) auch oft die Bezeichnung N (t). O
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Abbildung 6.2: Skizze zur geometrischen Interpretation.
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Abbildung 6.3: Beispiel 6.8. Richtungsfeld der Losung.

Bemerkung 6.7 Geometrische Interpretation. Die explizite Differentialgleichung (6.3) gestattet eine
einfache geometrische Interpretation. Geht eine Losung y(z) von (6.3) durch den Punkt (z4,y,) € G,
das heifit y(zy) = yg, so betréigt ihre Steigung an dieser Stelle

y'(z0) = f (z0,40) = tana,

wobei a der Anstiegswinkel ist, siche Abbildung 6.2.

Man nennt das Tripel (zg,yo,tana) = (2q,%o, f (2o, ¥o)), oder sein geometrisches Aquivalent, Li-
nienelement. Die Gesamtheit aller Linienelemente (x,y, f(x,y)) heiBt Richtungsfeld. Eine Kurve y(x)
erweist sich als Losung der Differentialgleichung (6.3), wenn sie in das vorgegebene Richtungsfeld passt.
Das heifit, in jedem Kurvenpunkt stimmt ihre Tangentenrichtung mit der Richtung des Linienelements
iiberein. m|

Beispiel 6.8 Richtungsfeld einer gewohnlichen Differentialgleichung 1. Ordnung. Gesucht sei die Losung
von

()= zeR
Mit den obigen Bezeichnungen ist f(x,y) = x. Diese Funktion ist fiir konstantes x konstant. Das Rich-
tungsfeld ist in Abbildung 6.3 skizziert.

Die Gesamtheit aller Losungen einer Differentialgleichung nennt man allgemeine Losung. Die allge-
meine Losung der obigen Differentialgleichung ist

+c, ceR

y(z) = %
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Man sieht an diesem Beispiel, dass diese Differentialgleichung zum einen unendlich viele Lésungen besitzt.
Zum anderen gibt es fiir jeden Punkt (x,y) € R? genau eine Losung, die diesen Punkt enthélt.

In der Praxis ist es oft nicht so wichtig, alle Losungen zu kennen, sondern eine Loésung zu finden, die
durch einen vorgegebenen Punkt verlauft. O

Definition 6.9 Anfangswertproblem, Anfangswert. Gegeben sind eine auf einer Menge G C R?
erklérte Funktion f(x,y) und ein fester Punkt (zg,7yy) € G. Dann nennt man das Problem

y'(z) = f(z,y@), y(wo) =10

Anfangswertproblem (AWP). Die Nebenbedingung wird Anfangswert genannt. O

6.2.2 Gewohnliche Differentialgleichung mit getrennten Variablen

Definition 6.10 Gewohnliche Differentialgleichung mit getrennten Variablen. Eine gewohnli-
che Differentialgleichung der Form

y'(2) = f(2)g(y) (6.5)

nennt man gewohnliche Differentialgleichung mit getrennten Variablen. O

Beispiel 6.11 Unbestimmtes Integral. Ein Spezialfall von (6.5) ist die Differentialgleichung

Der Losungsweg fiir diese Differentialgleichung ist bereits aus der Schule bekannt: unbestimmte Integrati-
on. Existiert eine Stammfunktion F(x) von f(x), so ist die allgemeine Losung dieser Differentialgleichung

y(x) = Fz) + ¢,

wobei ¢ € R eine beliebige Konstante ist.
Man spricht anstelle des ,,Auffindens der Losung einer Differentialgleichung® auch oft von der , Inte-
gration einer Differentialgleichung*. O

Satz 6.12 Existenz und Eindeutigkeit der Lésung des Anfangswertproblems. Die Funktion
f(z) sei im Intervall (a,b) C R und die Funktion g(y) sei im Intervall (c,d) C R stetig und es gelte
g(y) # 0 fiir alle y € (¢,d). Dann ist das Anfangswertproblem

y'(x) = f(2)g(y), y(xzo) =yo. w0 € (a;b), yo € (c,d), (6.6)

eindeutig losbar. Seien G(y) die Stammfunktion von 1/g(y) mit G(yy) = 0 und F(zx) die Stammfunktion
von f(x) mit F(xq) = 0. Dann ist

y(@) = (G710 F) (@) = G (F(x) (6.7)

die Losung des gestellten Anfangswertproblems in einer Umgebung von xqy. Hierbei ist G_l(y) die Um-
kehrfunktion von G(y).

Beweis: Fiir Interessenten.
1) Eindeutigkeit. Angenommen, y(x) sei eine Losung des AWP (6.6) mit y(z) = yo. Dann gilt

Da beide Funktionen dieser Gleichung stetig sind, kann man sie integrieren

/ g?yiﬁ) a= [ :f(m) ax.
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Da G(y) die Stammfunktion von 1/g(y) ist und F'(x) die Stammfunktion von f(z), erhélt man mit dem Hauptsatz
der Differential- und Integralrechnung

Gly(@)) - Gly(xo)) = F@) ~ F (xo). (6.8)
ey —

Da 1/g(y) # 0 ist, ist G(y) eine streng monotone Funktion. Daraus folgt, dass die Umkehrfunktion G~ (y)
existiert. Damit ergibt sich aus (6.8)

y(@) = (67 o F) () = G (F(x)),

Das heif3t, existiert eine Losung des AWP (6.6), so kann man sie in der Form (6.7) darstellen. Die Eindeutigkeit
folgt aus der Eindeutigkeit der Funktionen F'(x) und G(y).
11) Existenz. Man zeigt durch nachrechnen, dass (6.7) eine Losung des AWP (6.6) ist. Es gilt

v o EE (@) Fe) P

Abl.Umkehrfunktion 1
- 1

©7) -
= G’(y(x))F( :
G w)=1/9(y) f(lx) = f(z)g(y)
9(y)

Fiir die Anfangsbedingung gilt
-1 -1
y(zo) =G (F(20)) = G (0) = yo.

|
Beispiel 6.13 Differentialgleichung mit getrennten Variablen. Betrachte
/ x
y(x) = —, z€(a,b), y€(c,d), 0&(c,d
@ = s we(b). ye(ed). 0 (ed
y(zo) = o € (c,d).
Mit der obigen Herangehensweise erhélt man
T 1,2 ZL’2
f@)=2 = F(x):/ tdt=— -2
- 2 2
und ) )
1 1 Y Yy %
gy =- = —=y = Gy:/tdt:———.
2 y 9y ) v 2 2
Nach (6.8), oder (6.7) durch Anwendung von G auf beide Seiten, folgt
I e
0 0
T 27 % (6.9)

Durch Umstellen erhélt man die Losung

y = \/1‘2—3334—3/8 falls ¢ > 0,
y = —\/3:2—3:8+y§ falls d < 0.

Die Wahl von z kann in Abhingigkeit von (xg,¥g) eingeschrinkt sein. Nach (6.9) kann man die Losung
auch in der Form
2 2 2 2
Yy —T =Yg — Zg=:C

schreiben. Dies ist eine Hyperbel. Sei ¢y > 0, dann hat man fiir ¢ > 0 einen oberen Ast, siche Abbil-
dung 6.4, und fiir d < 0 einen unteren Ast.

Fiir ¢y < 0 besteht die Losung aus je einem Teil des linken beziehungsweise des rechten Astes einer
Hyperbel. Im Fall ¢ = 0 ist die Losung y = |z| oder y = — |z], jeweils mit 2 # 0. |
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Abbildung 6.4: Beispiel 6.13, oberer Hyperbelast, Losung im Fall ¢ > 0, ¢ = 1.

Bemerkung 6.14 Methode der Tremnung der Variablen. Man braucht sich die Loésungsformel fiir das
Anfangswertproblem (6.6) nicht zu merken, da es einen einfachen, wenngleich mathematisch nicht ganz
exakten, Weg zur Berechnung der Losung gibt — die Methode der Trennung der Variablen:

dy

W f(x)g(y) behandle linke Seite wie einen Bruch
x
dy . . .
— = f(x)dz integriere unbestimmt
9(y)
dy .
—— = [ f(z)dz finde Stammfunktionen
9(y)
Gly) = Flx)+c fasse Integrationskonstanten zusammen
y = G '(F(x)+c¢) lose nach y auf.
Die Konstante ¢ wird zum Schluss aus der Anfangsbedingung bestimmt. m|

Beispiel 6.15 Methode der Trennung der Variablen. Betrachte die Methode der Trennung der Variablen
in Beispiel 6.13. Man hat

d x
- vy
ydy = zdx —
/ydy = /xdx =
yj = i—i—c.
2 2

Nun hat man zun#chst die allgemeine Losung der Differentialgleichung. Die Anfangsbedingung ergibt

yg I(Q) 179 2
Se=gte = e=5(-4b)

O

Bemerkung 6.16 Der Fall, dass g(y) eine Nullstelle besitzt. Sei y; € (¢, d) mit g(y;) = 0. Dann ist eine
Losung des AWP (6.6) mit der Anfangsbedingung y(zy) = y; sofort durch y(z) = y, fiir alle x € (a,b)
gegeben, da dann g(y) = ¢g(y;) = 0 und beide Seiten der Differentialgleichung von (6.6) gleich Null sind.
Es kann jedoch passieren, dass es weitere Losungen dieses AWPs gibt, siche Ubungsaufgaben. a
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6.2.3 Lineare Differentialgleichungen

Definition 6.17 Lineare Differentialgleichung 1. Ordnung. Eine gewohnliche Differentialgleichung
der Gestalt

Y (x) + f(2)y(z) = g(x), (6.10)
wobei f(x),g(x) definiert und stetig in (a,b) C R sind, heifit lineare Differentialgleichung 1. Ordnung.
Fiir g(x) = 0 spricht man von einer homogenen linearen Differentialgleichung 1. Ordnung. m|

Bemerkung 6.18 Zu linearen Differentialgleichungen.
e Die gewchnliche Differentialgleichung heifit linear, weil y'(z) und y(z) nur linear auftreten.
e Die homogene lineare Differentialgleichung 1. Ordnung ist eine spezielle Differentialgleichung mit
getrennten Variablen.
e Man sieht sofort, dass y(x) = 0 eine Losung der homogenen linearen Differentialgleichung 1. Ordnung
ist.
O

Satz 6.19 Superpositionsprinzip.

i) Sind y, (z) und yo(x) zwei Lisungen der homogenen linearen Differentialgleichung 1. Ordnung, so ist
auch jede Linearkombination c,y;(x) + coyo(x) mit beliebigen Konstanten c;,cy € R eine Lisung der
homogenen linearen Differentialgleichung 1. Ordnung.

it) Sind y;(x) eine Lisung der inhomogenen linearen Differentialgleichung 1. Ordnung und yp(x) eine
Lésung der homogenen linearen Differentialgleichung 1. Ordnung, dann ist y;(x) + yp,(z) eine Lisung
der inhomogenen linearen Differentialgleichung 1. Ordnung.

i11) Sind y;(x) und §;(x) 2wei Lisungen der inhomogenen linearen Differentialgleichung 1. Ordnung, so
ist ihre Differenz Lésung der homogenen linearen Differentialgleichung 1. Ordnunyg.

Beweis: Alle Aussagen beweist man durch direktes Nachrechnen.
i) Es gilt fiir beliebige ¢;,c, € R
(e191(x) + caya ()" + f () (e1y1(2) + caya ()
= ayi(@) +eys(@) + f(2) (e (@) + ey (@)
= o (1h(@) + f(@)y (@) +es (y2(2) + f(2)ys(2)) =0,

=0 =0

da y,(z),y2(z) nach Voraussetzung Lésungen der homogenen Differentialgleichung sind. Man nutzt im Beweis
die Linearitat der Differentiation und die Linearitéit der Differentialgleichung.
ii), i) Ubungsaufgaben. [ ]

Satz 6.20 Allgemeine L6sung der inhomogenen linearen Differentialgleichung 1. Ordnung.
Man erhdlt alle Lésungen der inhomogenen linearen Differentialgleichung 1. Ordnung, indem man zu ei-
ner speziellen Losung der inhomogenen linearen Differentialgleichung y;(x) alle Lésungen der homogenen
linearen Differentialgleichung {y;(x)} addiert.

Beweis: Jede Funktion y;(x) + g (x) mit gy, (z) € {yn(z)} ist nach dem Superpositionsprinzip ii) Lésung der
inhomogenen linearen Differentialgleichung 1. Ordnung. Also ist y;(x) + {y(z)} eine Teilmenge der Gesamtheit
aller Losungen.

Sei §;(x) eine beliebige andere Losung der inhomogenen linearen Differentialgleichung. Nach Superpositions-
prinzip iii) ist dann §;(z) — y;(x) eine Losung der homogenen linearen Differentialgleichung. Also gibt es ein
In(z) € {yn(x)} mit

Ui(x) —yi(z) = Gn(z) <= Gi(@) = yi(z) + Gu(2).
Demzufolge lisst sich jede Losung der inhomogenen linearen Differentialgleichung in der oben angegebenen Form
darstellen. n

allgemeine Losung der inhomogenen linearen Differentialgleichung
= spezielle Losung der inhomogenen linearen Differentialgleichung

+ allgemeine Losung der homogenen linearen Differentialgleichung
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Satz 6.21 Existenz und Darstellung der allgemeinen Lésung der homogenen linearen Diffe-
rentialgleichung 1. Ordnung. Sei f(z) in (a,b) stetig. Es gibt eine Funktion y,(x) mit D(y,) = (a,b),
yn € C(a,b), yp(x) # 0 fir alle z € (a,b), so dass

{cyn(z) = ceR}

die Gesamtheit aller Losungen der homogenen linearen Differentialgleichung 1. Ordnung ist. Das ist ein
eindimensionaler Unterraum von C'(a,b). Es gilt

Yn(x) = exp ( /xj f(t) dt)

mit xy € (a,b) beliebig.

Beweis: Fiir Interessenten.
Betrachte die homogene lineare Differentialgleichung

vn(@) + f@yn(2) =0 = y(z) = —f(@)yn(z).

Das ist eine Differentialgleichung mit getrennten Variablen. Betrachte 0.B.d.A. den Fall y,(z) > 0 fiir alle
z € (a,b). Dann hat die Differentialgleichung die Lsung

un (&) = exp (— / ") dt)

mit zy € (a,b), denn man erhélt mit der Kettenregel und der Differentiation nach der oberen Integrationsgrenze

yn(z) = exp ( /x f) dt) (=f(2)) = = f(@)yn ().

Zur Erinnerung: Differentiation nach der oberen Integrationsgrenze, wobei F(z) eine Stammfunktion von f(x)
ist:

[ 1)@= L) - P - P - 1),

mit dem Hauptsatz der Differential- und Integralrechnung.

Da f(z) stetig ist, ist y,(x) differenzierbar. AuBlerdem gilt wegen der Exponentialfunktion y; () > 0 fiir alle
z € (a,b). Nach dem Superpositionsprinzip ist {cy;, (z)} mit ¢ € R Lésung der homogenen linearen Differential-
gleichung.

Es bleibt zu zeigen, dass es neben {cy,(z) : ¢ € R} keine anderen Lsungen gibt. Sei §, € C'(a,b) eine
beliebige Losung der homogenen linearen Differentialgleichung 1. Ordnung. Man setzt

() = w@u(@) = w(x)=2E @) 2o

Yn ()
Da 4,y € Cl(a, b) und y, (z) # 0 folgt w € C’l(a,b). Es ist
~/ ~ /
w' () _ G (@)yn(z) — y};(x)yh(w)
(yn(z))
Dgl. einsetzen  —f(x)gn(2)yn (@) + Gn(@) f(@)ynlz) _
(yn(2))”
Damit ist w(z) eine Konstante und ¢, (z) = cy,(z). Es gibt also keine weiteren Losungen als {cy,(z) : ¢ € R}.

Satz 6.22 Existenz einer L6sung der inhomogenen linearen Differentialgleichung 1. Ord-
nung. Seien f(x),g(x) in (a,b) stetig. Dann gibt es eine Lisung y;(x) der inhomogenen linearen Dif-
ferentialgleichung 1. Ordnung mit D(y;) = (a,b), y; € C'(a,b), so dass {y;(x) + cyp(x) : ¢ € R}
die Gesamtheit aller Losungen der inhomogenen linearen Differentialgleichung 1. Ordnung ist (affine
Mannigfaltigkeit mit Tragerpunkt y;(x)).
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Beweis: Nutze den Ansatz
yi(x) = c(z)yn(z),
wobei yj, (x) die im Satz 6.21 angegebene Losung der homogenen linearen Differentialgleichung 1. Ordnung ist.
Dieser Ansatz wird Variation der Konstanten genannt. Man versucht, eine stetig differenzierbare Funktion ¢(x) so
zu bestimmen, dass y;(z) eine Lésung der inhomogenen linearen Differentialgleichung 1. Ordnung ist. Einsetzen
des Ansatzes in die Differentialgleichung liefert

(@)yn(@) + c(@)yn(x) + f@)e(@)yn(z) = g(z)
(@)yn(x) + c(z) (yn(z) + f(@)yn(z)) g(z).

=0

Damit geniigt c¢(z) der Differentialgleichung mit getrennten Variablen

d(z) = 9(z) = cx)= /Z: yi(gt)) dt, zo € (a,b).

_ (/7@ -
) = (/ a dt) e

Diese Funktion ist stetig differenzierbar, da beide Faktoren stetig differenzierbar sind. Nach Konstruktion 16st

Riicksubstitution liefert

y;(z) die inhomogene lineare Differentialgleichung 1. Ordnung. Nach dem Superpositionsprinzip und Satz 6.21
ist {y;() + cyn(z) : ¢ € R} die Gesamtheit aller Losungen der inhomogenen linearen Differentialgleichung
1. Ordnung. |

Satz 6.23 Eindeutige Losbarkeit des Anfangswertproblems. Seien f(z),g(x) in (a,b) stetig.
Dann besitzt das Anfangswertproblem

Y (@) + f(@)y(e) = g(x),  y(zo) = yo, w0 € (a,b),
mit beliebigem yo € R eine eindeutige Losung.

Beweis: Seien z € (a,b) und y, € R gegeben. Einsetzen der Anfangsbedingung in die im Satz 6.22 angege-
bene allgemeine Losung ergibt
Yi(zo) + cyn(2o) = y(z0) = Yo

Mit Hilfe der in den Beweisen von Satz 6.21 und 6.22 konstruierten Darstellung der allgemeinen Losung folgt
O+c-1l=yy = c=1yp.

Damit ist die Konstante eindeutig bestimmt. |

Bemerkung 6.24 Fuazit.

e Die homogene lineare Differentialgleichung 1. Ordnung wird mit Trennung der Verénderlichen gelost.

e Eine spezielle Losung der inhomogenen linearen Differentialgleichung 1. Ordnung findet man mit der
Methode der Variation der Konstanten.

e Ob man die allgemeine Losung explizit angeben kann, hiingt ,lediglich® davon ab, ob man die auf-
tretenden Integrale explizit berechnen kann.

e Ein Anfangswertproblem 16st man, indem man zuerst die allgemeine Losung berechnet und dann in
diese die Anfangsbedingung einsetzt.

o Besitzen die Koeffizientenfunktionen f(z) und g(z) in (6.10) eine ,,giinstige* Gestalt, so kann man eine
spezielle Losung der inhomogenen Differentialgleichung auch mit einem geeigneten Ansatz gewinnen.
Sind f(z) und g(z) beispielsweise Polynome, so setzt man auch y;(z) als Polynom mit geeignetem
Grad an. Diese Herangehensweise nennt man Storgliedansiitze, siehe Ubungsaufgaben.

O

Beispiel 6.25 Lisung eines linearen Anfangswertproblems 1. Ordnung. Gesucht ist die Losung des An-
fangswertproblems
y' (z) +y(z) = cos(x), y(0) = 4T711.
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i) allgemeine Lisung der homogenen Differentialgleichung.

vty = 0 =
d
Yo —/daz ==
Yn
Inly,| = —2+c¢ =
yp(z) = ce ", ceR.

it) spezielle Losung der inhomogenen Differentialgleichung mit Variation der Konstanten. Der Ansatz
ist
yi(x) = c(z)e”®

Einsetzen in die Differentialgleichung ergibt, mit zweimaliger partieller Integration,

d(x)e ™ + c(x) (—ef‘r) +c(z)e” = cos(z) =

d(x) = e"cos(z) =

/etcos(t) dt =
0

o
—
&
Z
I

clz) = %ew (cos(zx) + sin(x)) — %

Einsetzen in den Ansatz ergibt

(@) = clx)yn () = 5 (cos(a) +sin(a)) — 2"

Der zweite Term gehort zur allgemeinen Losung der homogenen Differentialgleichung. Damit erh#lt man
als allgemeine Losung der inhomogenen Differentialgleichung

1 _
Yang () = 3 (cos(z) +sin(x)) + coe™ ", ¢y € R.

Wichtig: Wenn Zeit ist, die allgemeine Lésung durch Einsetzen in die Differentialgleichung kontrol-
lieren.

i11) Anfangsbedingung. Einsetzen in die allgemeine Losung der inhomogenen Differentialgleichung
ergibt

1
Yang(0) = 3= 4711 = ¢, = 4710.5.

Damit lautet die Losung des Anfangswertproblems
1 _
y(z) = 5 (cos(x) + sin(x)) + 4710.5¢~".

Wichtig: Nicht die fertigen Formeln merken, sondern den Weg!!! a

6.2.4 Die Bernoullische Differentialgleichung

Definition 6.26 Bernoulli'sche Differentialgleichung. Eine gewohnliche Differentialgleichung der
Gestalt

y'(x) = fo(x)y” (z) + fr(2)y(z) (6.11)
mit fy, f1 € C([a,b]), o € R, a # 1, fo(x) #Z 0 heiBit Bernoullische Differentialgleichung. |
Satz 6.27 Transformation der Bernoullische Differentialgleichung in eine lineare Differen-

tialgleichung 1. Ordnung. Ist y(x) eine Lisung der Bernoullischen Differentialgleichung (6.11) mit
y(z) > 0 fir alle x € (a,b), so geniigt

! Jakob Bernoulli (1654 — 1705)
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der linearen Differentialgleichung 1. Ordnung
Z(x) = (1—a) (fole) + f(2)2(2)). (6.12)
Umgekehrt erhdlt man aus jeder Lésung z(x) von (6.12) mit z(x) > 0 fiir alle x € (a,b) durch
y(@) =207 (@)

eine Losung von (6.11).
Das Anfangswertproblem zu (6.11) mit y(xq) = yo, o € (a,b), ist eindeutig losbar, falls yo > 0 ist.

Beweis: Fiir Interessenten.
Aus (6.11) folgt durch Division mit y*(z) > 0

(1-a)y @y @ = (fo@+h@y "@)0-a)
() @ = (folo) + Al @) (1 - ).
Setze z(z) = y'~“(z) > 0. Daraus folgt mit (6.11)
Y@) = (1—ay @y @ = (1-a) (S@) + A2y @) = (1= a) (fol2) + f1(2)2())

Das ist eine lineare Differentialgleichung 1. Ordnung. Da alle Umformungen &quivalent waren folgt, dass falls
y(z) (6.11) 16st, so lost z(z) auch (6.12) und umgekehrt.

Das Anfangswertproblem zu (6.12) mit z(xy) = zo € R" beliebig (da z(z) > 0) ist nach Satz 6.23 eindeutig
losbar. Damit ist auch das Anfangswertproblem zu (6.11) mit yq = y(xzq) = zé”lfa) > 0 eindeutig losbar. Die
Abbildung RY — RY, 2, — y, ist bijektiv fiir o # 1. Damit hat das Anfangswertproblem zu (6.11) fiir jedes

1o > 0 eine eindeutige Losung. ™

Beispiel 6.28 Lisung einer Bernoullischen Differentialgleichung. Gesucht ist die Losung von
Y (2) + 2zy(x) = 227y (2),  y(0) = 2.

Der Ansatz lautet

y'(x) x 23
R R
_Z (;) +222(z) = 22° ==
Z(x) = dzz(z) —4a°.

Das ist eine lineare Differentialgleichung 1. Ordnung.
Fiir die homogene Gleichung erhélt man

222

() = dazy(x) =  zu(x) =ce™ , ceR.

Eine spezielle Losung der inhomogenen Gleichung kann man mit Variation der Konstanten finden. Der
Ansatz ist
Einsetzen in Differentialgleichung liefert

2 2
d(2)e* = -4 = d(x)= -4z,
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Abbildung 6.5: Losung des Anfangswertproblems aus Beispiel 6.28.

Zweimalige partielle Integration ergibt

Einsetzen in den Ansatz liefert

1 1 2
z(r)==+12° = z(@)=z+2"+ce

5 5 , ceR.

In diesem Beispiel hétte auch ein Storgliedansatz mit einem quadratischen Polynom schnell zum Ziel
gefiihrt.

Fiir die Losung des Anfangswertproblems der Bernoullischen Differentialgleichung benétigt man nur
die Losung mit z(z) > 0 in einer Umgebung von z, = 0. Durch Riicksubstitution erhilt man

1 ~1/2
y(z) = 2 Y (2) = (2 + 2%+ cezw2> > 0.

Einsetzen der Anfangsbedingung ergibt

1 ~1/2 1 1
= (= =2 1=4(= ==
y(0) (2+c) = <2—|—c> = ¢ 1

Die Losung des Anfangswertproblems ist

siehe Abbildung 6.5.
Man beachte:
e Der Definitionsbereich von y(x) ist beschrinkt.
e Fiir y, < 0 ist das Anfangswertproblem nicht l6sbar.
o Wichtig: Substitution z(z) = y'~*(x) merken !!!

6.2.5 Die Riccatische Differentialgleichung

Definition 6.29 Riccati’sche Differentialgleichung. Eine gewohnliche Differentialgleichung der Ge-
stalt

Y (@) = fol@)y’ (@) + 21 (@)y(x) + fole) (6.13)
mit f; € C(a,b), i € {0,1,2}, fo(x) £ 0, heiflit Riccatische Differentialgleichung. m|

% Jacobo Francesco Riccati (1676 — 1754)
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Bemerkung 6.30 Spezialfille. Spezialfiille von (6.13) sind
e fy(z) =0, lineare Differentialgleichung,
e fy(x) =0, Bernoullische Differentialgleichung.
O

Bemerkung 6.31 Normalform. Seien f; € C'(a,b), fo € C*(a,b) sowie fy(z) # 0 in (a,b). Dann kann
man die Riccatische Differentialgleichung mittels der Transformation

1 /
() = Fololy(o) + 532 (7o) + 24,(0) o)
in die sogenannte Normalform
(@) = 22(x) - [(2) (6.14)
mit )
f(z) = (f0f2 +H- A+ ﬁ Afofofy +3(£0)° - 2fof(/)/}> (2)

0
iiberfithren (Ubungsaufgabe). Eine Funktion y(x) ist genau dann Losung von (6.13) wenn z(z) Losung
von (6.14) ist. m|

Bemerkung 6.32 Ldsbarkeit. Die Riccatische Differentialgleichung ist im Allgemeinen nicht durch ele-
mentare Rechenoperationen und Aufsuchen von Stammfunktionen lésbar. Dies ist nur in folgenden Spe-
zialfillen von (6.14) méglich:

o f(z) =ceRfirallez € (a,b) = Trennung der Verdnderlichen,

o f(z) =c¢/2* ¢ e R\ {0}. Dann fithrt die Transformation u(x) = 1/z(x) zu

u'(r) =—1+4c¢ (Mm))z

X

Das ist eine sogenannte homogene Differentialgleichung, siche Anhang C.1.

e Der wichtigste Fall ist der Folgende. Ist eine Losung zo(z) von (6.14) bekannt, dann kénnen alle
weiteren Losungen durch elementare Rechenoperationen und Aufsuchen der Stammfunktion bestimmt
werden. Die allgemeine Losung lautet

1

—_—, e R,
uo(@) + cug ()’ €

2(x) = zo(z) +
wobei ug(z) eine spezielle Losung einer inhomogenen linearen Differentialgleichung ist und u,(z)

Losung einer homogenen linearen Differentialgleichung.
O

Satz 6.33 Eindeutigkeit der L6sung des Anfangswertproblems. Seien die Voraussetzungen von
Bemerkung 6.31 erfillt. In jedem Intervall (o, ) C (a,b) existiert hichstens eine Lésung des An-
fangswertproblems der Riccatischen Differentialgleichung (6.14) mit der Anfangsbedingung z(xq) = zg,

Ty € (aaﬂ)'

Beweis: Seien 2;, 2, € C* (a, B) zwei Losungen des Anfangswertproblems. Dann erfiillt die Differenz y(z) =
z1(x) — zo(x) das Anfangswertproblem

Y@ = @) - 5@ =@ - f@) - (@) - f@) = F@ - 2@
= (zl(m) — zz(:c)) (z1 (z) + zQ(m)) =: y(:c)f(m)

mit f(z) := 21 (z) + 2o(x) und y(z,) = 0. Man kann sich f(z) als gegebene Funktion denken. Fiir jede stetige
Funktion f(z) erfiillt y(x) das Anfangswertproblem einer linearen Differentialgleichung, welches gemifl Satz 6.23
eindeutig 16sbar ist. Die Losung lautet y(x) = 0. [ |

Bemerkung 6.34 FEuxistenz einer Losung. Die Existenz einer Losung wird spéter, Folgerung 6.64, be-
wiesen. O

93



Satz 6.35 Konstruktion aller Lésungen mit einer bekannten Loésung. Sei z, € C’l(a,b) eine
Lésung der Riccatischen Differentialgleichung (6.14) mit f € C(a,b). Die Funktiony € C*(a, 8), (a, 8) C
(a,b), ist genau dann eine von zy(x) verschiedene Lisung von (6.14), das heifit y(x) # zo(x) in (o, B),
wenn

1
Ue) = D = 2@

in (o, B) eine nicht verschwindende Lisung, das heifit u(x) # 0 fir alle x € (a, ), der linearen Diffe-
rentialgleichung

(6.15)

u' () + 220 (2)u(z) +1=0 (6.16)
18t.

Beweis: Fiir Interessenten.
Verwende den zu (6.15) dquivalenten Ansatz

/ U’(x) o 2 o) — M 1  Ha
Y@+ ST = @ s @
V@) @) @) = s (1 @) @)
b zo(2)ul(z) — waz) _ "z
i (1 20@ute) 255 i ))
= —u%(x) (1 + 220 (z)u(z) + v/ ()) . (6.17)

1) Ist y(z) die Losung von (6.14), so ist die linke Seite von (6.17) gleich Null und u(x) erfiillt die Differenti-
algleichung (6.16), da 1/u*(z) > 0.
it) Geniigt andererseits u(z) der Gleichung (6.16) und ist u(z) # 0 in («, 8), so erfiillt y(z) (6.14) und es gilt
y(iIJ) # ZO(‘T") in (a75)7 da
. 1
y(x) = zo(z) + w@)

Da 1/u(z) # 0 ist, gilt y(z) # 2¢(x) fiir alle z € (o, §). [ |

Bemerkung 6.36 Bestimmung aller Lésungen von (6.14). Die Bestimmung aller Lésungen von
(6.14), im Falle dass eine Losung bekannt ist, erfolgt wie der Beweis der beiden letzten Sétze, siehe auch
das folgende Beispiel. Sei zy(z) eine bekannte Losung von (6.14).
e Sei z;(x) einen andere Losung von (6.14), dann erfiillt die Differenz y(x) = z;(x) — 2zo(z) die Diffe-
rentialgleichung

2
Y (x) =y () + 220(2)y ().
Das ist eine Bernoullische Differentialgleichung, deren allgemeine Losung man bestimmen kann.
e Oder man verwendet den Ansatz vom Beweis von Satz 6.35:

und berechnet u(z) durch Losen von (6.16).

Beispiel 6.37 Ldsung einer Riccatischen Differentialgleichung. Gesucht ist die Losung von
Y (2) =y’ () — 2z + Dy(e) + (1 + 2 +27%),

vgl. (Kamke, 1945, S. 43).
i) Finden einer speziellen Lisung. Das ist der schwierigste Teil, im Allgemeinen hilft nur scharfes
Hinsehen und Probieren. In diesem Beispiel ist zg(x) = z eine Losung.
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it) Ansatz. Mit dem Ansatz

y(x) = 2p(2) + — = y(2)=1-
gelangt man hier auch ohne Uberfithrung in die Normalform zu einer linearen Differentialgleichung.
Einsetzen in die Differentialgleichung fiir y(x) ergibt

u'(x) = u(z) — 1.
i1i) Losen der linearen Differentialgleichung. Nur Losungen ohne Nullstelle sind von Interesse:
ux) =1+ce”, ¢>0.

iv) Riicksubstitution.

(1) = 2(2) + —— =7 + — >0
r)=z2)+——=0c+-——=, ¢ .

) 0 U({E) 1 + cew )

Das ist die allgemeine Losung der Riccatischen Differentialgleichung. O

6.3 Allgemeine Existenz- und Eindeutigkeitssitze

6.3.1 Allgemeines

Bemerkung 6.38 Inhalt. Man hat bei den Spezialfillen von gewohnlichen Differentialgleichungen 1.
Ordnung aus Abschnitt 6.2 gesehen, dass es immer schwieriger wurde, analytische Losungen anzugeben.
Bei einer allgemeinen Differentialgleichung erster Ordnung wird das nicht mehr méglich sein. Trotzdem
kann man auch im allgemeinen Fall Existenz und Eindeutigkeit von Losungen von zugehorigen Anfangs-
wertproblemen untersuchen.
In diesem Abschnitt werden zwei grundlegende Sétze behandelt:
e Satz von Picard-Lindelsf (sukzessive Approximation, Fixpunktiteration):
o beruht auf dem Banachschen Fixpunktsatz,
o Voraussetzung: Stetigkeit und partielle Lipschitz-Bedingung der rechten Seite,
o Ergebnis: Existenz und Eindeutigkeit.
e Satz von Peano (Polygonziige):
o Voraussetzung: Stetigkeit der rechten Seite,
o Ergebnis: Existenz.

Bemerkung 6.39 FEzplizite Systeme gewdhnlicher Differentialgleichungen 1. Ordnung. In diesem Ka-
pitel werden explizite Systeme gewohnlicher Differentialgleichungen 1. Ordnung betrachtet, da Unter-
suchungen fiir Systeme nicht anders sind als fiir eine einzelne Gleichung. Seinen y; : I C R — R,
fi + D(f;)=D — Rmit Dc R"™ i=1,...,n. Dann werden die Vektoren

ylEx; ilg'raylv"wyng
y(x): yZ:x 7 f(q;,y): Qxayli"wyn
yn(‘r) fn('raylv"'ayn)

definiert. Die betrachteten Systeme haben dann die Form

Y'(x) = flz,y) oder yi(x) = filz,y1,- yn), i=1,....m. (6.18)
Das zugehorige Anfangswertproblem lautet wie folgt. Gegeben seien n + 1 reelle Zahlen :c(o), y(l), e yg
mit (m(o),y(l), . ,yg) € D. Gesucht ist eine Losung von (6.18) mit yi(x(o)) = y?, i=1,...,n. m|

95



