
Kapitel 6

Anfangswertprobleme

6.1 Einführung

Bemerkung 6.1 Gewöhnliche Differentialgleichungen, Anfangswertprobleme. Gewöhnliche Differential-
gleichungen sind Gleichungen, bei denen eine Funktion einer skalaren Variablen y(x) gesucht ist, welche
eine Gleichung der Form

F
�
x, y(x), y�(x), . . . , y(n)(x)

�
= 0 (6.1)

erfüllt. Differentialgleichungen erhält man bei der Modellierung von Prozessen aus der Natur und der
Wirtschaft.

Um eine konkrete Lösung von Differentialgleichungen vom Typ (6.1) zu berechnen, braucht man noch
Zusatzinformationen. Sind geeignete Daten zu einem gewissen Punkt x0 gegeben, so spricht man von
Anfangswertproblemen. ✷

Beispiel 6.2 Die Schwingungsdifferentialgleichung. Betrachte die Schwingung einer Feder. Es bezeichne,
bereits als entdimensionierte (ohne physikalische Einheit) Größen,

• t – Zeit,
• y(t) – Ort,
• y�(t) – Geschwindigkeit,
• y��(t) – Beschleunigung,
• y0 – Ursprungslage der Feder im Nullpunkt des Koordinatensystems t = 0.

Aus dem Newtonschen Gesetz F = ma folgt mit m = 1, a = y��(t), der Federkonstanten β > 0 und der
Reibungskonstanten α > 0

y��(t) = −βy(t)� �� �
Rückstellkraft

−αy�(t)� �� �
Reibungskraft

+g(t)� �� �
äußere Kraft

. (6.2)

Das ist die Schwingungsdifferentialgleichung. Hier wird in (6.2) der Fall g(t) = 0 betrachtet.
Bei der Federschwingung sind zwei grundsätzlich unterschiedliche Situationen möglich:

1. Die Reibungskraft ist groß im Vergleich zur Federkraft. Dann wird die Feder nicht wirklich schwingen,
sondern sich einfach in ihre Ursprungslage y0 zurückbegeben.

2. Die Reibungskraft ist klein im Vergleich zur Federkraft. Dann wird man eine (gedämpfte) Schwingung
erhalten.

1. Fall: große Reibungskraft im Vergleich zur Federkraft. Man macht den Ansatz für eine exponentiell
abklingende Funktion

y(t) = aebt, b < 0, a �= 0.

Einsetzen dieses Ansatzes in (6.2) ergibt

ab2ebt = −βaebt − αabebt = −a (β + αb) ebt.
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Diese Gleichung ist genau dann erfüllt, falls

b2 = − (β + αb) ⇐⇒ b1,2 = −α

2
±

�
α2

4
− β.

Da b reell sein soll, erhält man damit eine mathematische Bedingung dafür, dass die Reibungskraft groß
im Vergleich zur Federkraft ist:

α2

4
≥ β.

Im Fall, dass die Gleichheit in dieser Beziehung nicht gilt, erhält man zwei negative Lösungen für b,
also auch zwei Lösungen aus dem Ansatz. Man rechnet leicht nach, dass jede Linearkombination eine
Lösung von (6.2) ist

y(t) = a1e
b1t + a2e

b2t, a1, a2 ∈ R =⇒ lim
t→∞

y(t) = 0.

Es wird gezeigt, dass diese Kurve höchstens eine Nullstelle besitzt. Umstellen der Nullstellengleichung
ergibt

1 = −a2
a1

e(b2−b1)t, a1 �= 0.

Wegen der strengen Monotonie der Exponentialfunktion kann es höchstens einen Wert t geben, der diese
Gleichung erfüllt. In Abbildung 6.1 ist eine mögliche Lösung im Falle der Anfangsauslenkung y(0) = 1
dargestellt, für die Parameter α = 3,β = 1, a1 = −1, a2 = 2.

Im Fall der Gleichheit α2/4 = β kann man nachrechnen, dass neben e−αt/2 auch te−αt/2 eine Lösung
von (6.2) ist und die allgemeine Lösung hat die Gestalt

y(t) = (a1 + a2t) e
−αt/2, a1, a2 ∈ R =⇒ lim

t→∞
y(t) = 0.

Beide Fälle werden als aperiodischer Kriechfall bezeichnet.
2. Fall: kleine Reibungskraft im Vergleich zur Federkraft. In diesem Fall wird man eine gedämpfte

Schwingung erwarten. Die Dämpfung kann man wieder mit einer Exponentialfunktion beschreiben und
die Schwingung mit einer Winkelfunktion. Ein geeigneter Ansatz ist

y(t) = eat (c1 cos(bt) + c2 sin(bt)) , a < 0, b �= 0.

Man schreibt diesen Ansatz zunächst in anderer Form. Seien λ ∈ R und A ∈ R+. Setzt man c1 = A cosλ,
c2 = A sinλ, so erhält man mit einem Additionstheorem für die Kosinusfunktion

y(t) = Aeat (cosλ cos(bt) + sinλ sin(bt)) = Aeat cos(bt− λ).

Einsetzen in (6.2) liefert

Aeat
�
(a2 − b2 + αa+ β) cos(bt− λ)− b(2a+ α) sin(bt− λ)

�
= 0.

Das ist genau dann erfüllt, wenn der letzte Faktor für alle t verschwindet, also wenn

a = −α

2
, b = ±

�
a2 + αa+ β = ±

�
α2

4
− α2

2
+ β = ±

�

−α2

4
+ β.

gelten. Die Lösung ist eine gedämpfte Schwingung, siehe in Abbildung 6.1 für α = 0.1,β = 3,λ = 1, A = 2
und den Anfangswert y(0) = 1.

In beiden Fällen stellt man fest, dass man aus dem gegebenen einen Anfangswert noch keine Lösung
des Anfangswertproblems bestimmen kann, da man zwei unbekannte Koeffizienten festlegen muss. Dazu
braucht man beispielsweise zwei Bedingungen für den Anfangspunkt, zum Beispiel für y(0) und die
Anfangsgeschwindigkeit y�(0). ✷

Bemerkung 6.3 Allgemeine Situation. Im Allgemeinen kann man eine Differentialgleichung nur in Spe-
zialfällen analytisch lösen. Generell kann man jedoch Existenz und Eindeutigkeit einer Lösung von (6.1)
mit geeigneten Anfangsbedingungen untersuchen. Zudem kann man sich mit Hilfe von numerischen Nähe-
rungsverfahren eine Vorstellung von der Gestalt der Lösung verschaffen, obwohl man keine explizite
Formel für diese besitzt. ✷
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Abbildung 6.1: Beispiele für Lösungen der Schwingungsdifferentialgleichung, links: aperiodischer Kriech-
fall, rechts: gedämpfte Schwingung.

6.2 Grundbegriffe, einige integrierbare Typen von gewöhnli-
chen Differentialgleichungen 1. Ordnung

Bemerkung 6.4 Inhalt. Dieses Kapitel behandelt einige Typen von gewöhnlichen Differentialgleichun-
gen 1. Ordnung, bei denen man, teilweise nur in Spezialfällen, die Lösung analytisch berechnen kann.
Weitere Typen finden Interessenten im Anhang C. ✷

6.2.1 Definitionen und Beispiele

Definition 6.5 Gewöhnliche Differentialgleichung 1. Ordnung, explizite gewöhnliche Diffe-
rentialgleichung 1. Ordnung. Eine gewöhnliche Differentialgleichung wird von erster Ordnung ge-
nannt, wenn in ihr keine höhere Ableitung von y(x) als die erste Ableitung vorkommt. Die allgemeine
gewöhnliche Differentialgleichung 1. Ordnung lautet

F
�
x, y(x), y�(x)

�
= 0.

Eine Funktion y(x) ist Lösung dieser Gleichung in einem Intervall I ⊂ R wenn y(x) in I differenzierbar
ist und F

�
x, y(x), y�(x)

�
= 0 für alle x ∈ I gilt.

Die gewöhnliche Differentialgleichung 1. Ordnung wird explizit genannt, wenn man sie in der Form

dy

dx
= y�(x) = f(x, y(x)) (6.3)

schreiben kann, wobei f(x, y) eine auf einer Menge G der (x, y)-Ebene erklärte reellwertige Funktion ist.
Eine Funktion y : I → R ist Lösung von (6.3), wenn y(x) in I differenzierbar ist und für alle x ∈ I gilt

ist (x, y(x)) ∈ G, dann y�(x) = f(x, y(x)).

✷

Beispiel 6.6 Organisches Wachstum.Die absolute Wachstumsrate von Bakterienkulturen auf unerschöpfli-
chem Nährboden ist proportional zur Anzahl N der im Augenblick t vorhandenen Bakterien

N �(t) = αN(t). (6.4)

Hierbei ist α die relative Wachstumsrate der Bakterienart. Die Lösung dieser Differentialgleichung ist
eine differenzierbare und demzufolge stetige Funktion. Das steht streng genommen im Widerspruch zur
Tatsache, dass N eine natürliche Zahl sein muss. In der Praxis ist N jedoch sehr groß, so dass man mit
dem mathematischen Modell, welches durch die Differentialgleichung (6.4) gegeben ist, nur einen kleinen
Modellfehler begeht. Die Lösung von (6.4) wird im Abschnitt 6.2.3 behandelt.

Für Ableitungen nach der Zeit verwendet man statt N �(t) auch oft die Bezeichnung Ṅ(t). ✷
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Abbildung 6.2: Skizze zur geometrischen Interpretation.
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Abbildung 6.3: Beispiel 6.8. Richtungsfeld der Lösung.

Bemerkung 6.7 Geometrische Interpretation. Die explizite Differentialgleichung (6.3) gestattet eine
einfache geometrische Interpretation. Geht eine Lösung y(x) von (6.3) durch den Punkt (x0, y0) ∈ G,
das heißt y(x0) = y0, so beträgt ihre Steigung an dieser Stelle

y�(x0) = f (x0, y0) = tanα,

wobei α der Anstiegswinkel ist, siehe Abbildung 6.2.
Man nennt das Tripel (x0, y0, tanα) = (x0, y0, f (x0, y0)), oder sein geometrisches Äquivalent, Li-

nienelement. Die Gesamtheit aller Linienelemente (x, y, f(x, y)) heißt Richtungsfeld. Eine Kurve y(x)
erweist sich als Lösung der Differentialgleichung (6.3), wenn sie in das vorgegebene Richtungsfeld passt.
Das heißt, in jedem Kurvenpunkt stimmt ihre Tangentenrichtung mit der Richtung des Linienelements
überein. ✷

Beispiel 6.8 Richtungsfeld einer gewöhnlichen Differentialgleichung 1. Ordnung. Gesucht sei die Lösung
von

y�(x) = x, x ∈ R.
Mit den obigen Bezeichnungen ist f(x, y) = x. Diese Funktion ist für konstantes x konstant. Das Rich-
tungsfeld ist in Abbildung 6.3 skizziert.

Die Gesamtheit aller Lösungen einer Differentialgleichung nennt man allgemeine Lösung. Die allge-
meine Lösung der obigen Differentialgleichung ist

y(x) =
x2

2
+ c, c ∈ R.
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Man sieht an diesem Beispiel, dass diese Differentialgleichung zum einen unendlich viele Lösungen besitzt.
Zum anderen gibt es für jeden Punkt (x, y) ∈ R2 genau eine Lösung, die diesen Punkt enthält.

In der Praxis ist es oft nicht so wichtig, alle Lösungen zu kennen, sondern eine Lösung zu finden, die
durch einen vorgegebenen Punkt verläuft. ✷

Definition 6.9 Anfangswertproblem, Anfangswert. Gegeben sind eine auf einer Menge G ⊂ R2

erklärte Funktion f(x, y) und ein fester Punkt (x0, y0) ∈ G. Dann nennt man das Problem

y�(x) = f (x, y(x)) , y (x0) = y0

Anfangswertproblem (AWP). Die Nebenbedingung wird Anfangswert genannt. ✷

6.2.2 Gewöhnliche Differentialgleichung mit getrennten Variablen

Definition 6.10 Gewöhnliche Differentialgleichung mit getrennten Variablen. Eine gewöhnli-
che Differentialgleichung der Form

y�(x) = f(x)g(y) (6.5)

nennt man gewöhnliche Differentialgleichung mit getrennten Variablen. ✷

Beispiel 6.11 Unbestimmtes Integral. Ein Spezialfall von (6.5) ist die Differentialgleichung

y�(x) = f(x).

Der Lösungsweg für diese Differentialgleichung ist bereits aus der Schule bekannt: unbestimmte Integrati-
on. Existiert eine Stammfunktion F (x) von f(x), so ist die allgemeine Lösung dieser Differentialgleichung

y(x) = F (x) + c,

wobei c ∈ R eine beliebige Konstante ist.
Man spricht anstelle des

”
Auffindens der Lösung einer Differentialgleichung“ auch oft von der

”
Inte-

gration einer Differentialgleichung“. ✷

Satz 6.12 Existenz und Eindeutigkeit der Lösung des Anfangswertproblems. Die Funktion
f(x) sei im Intervall (a, b) ⊂ R und die Funktion g(y) sei im Intervall (c, d) ⊂ R stetig und es gelte
g(y) �= 0 für alle y ∈ (c, d). Dann ist das Anfangswertproblem

y�(x) = f(x)g(y), y(x0) = y0, x0 ∈ (a, b), y0 ∈ (c, d), (6.6)

eindeutig lösbar. Seien G(y) die Stammfunktion von 1/g(y) mit G(y0) = 0 und F (x) die Stammfunktion
von f(x) mit F (x0) = 0. Dann ist

y(x) =
�
G−1 ◦ F

�
(x) = G−1(F (x)) (6.7)

die Lösung des gestellten Anfangswertproblems in einer Umgebung von x0. Hierbei ist G
−1(y) die Um-

kehrfunktion von G(y).

Beweis: Für Interessenten.
i) Eindeutigkeit. Angenommen, y(x) sei eine Lösung des AWP (6.6) mit y(x0) = y0. Dann gilt

y
�
(x)

g(y(x))
= f(x).

Da beide Funktionen dieser Gleichung stetig sind, kann man sie integrieren

� x

x0

y
�
(x)

g(y(x))
dx =

� x

x0

f(x) dx.
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Da G(y) die Stammfunktion von 1/g(y) ist und F (x) die Stammfunktion von f(x), erhält man mit dem Hauptsatz
der Differential- und Integralrechnung

G(y(x))−G(y(x0)� �� �
=y0

)

� �� �
=0

= F (x)− F (x0)� �� �
=0

. (6.8)

Da 1/g(y) �= 0 ist, ist G(y) eine streng monotone Funktion. Daraus folgt, dass die Umkehrfunktion G
−1

(y)
existiert. Damit ergibt sich aus (6.8)

y(x) =
�
G

−1 ◦ F
�
(x) = G

−1
(F (x)).

Das heißt, existiert eine Lösung des AWP (6.6), so kann man sie in der Form (6.7) darstellen. Die Eindeutigkeit
folgt aus der Eindeutigkeit der Funktionen F (x) und G(y).

ii) Existenz. Man zeigt durch nachrechnen, dass (6.7) eine Lösung des AWP (6.6) ist. Es gilt

y
�
(x)

Kettenregel
=

�
G

−1
��

(F (x))F
�
(x)

Abl.Umkehrfunktion
=

1

G
�
�
G

−1
(F (x))

�F �
(x)

(6.7)
=

1

G
�
(y(x))

F
�
(x)

G
�
(y)=1/g(y)

=
f(x)

1
g(y)

= f(x)g(y).

Für die Anfangsbedingung gilt
y(x0) = G

−1
(F (x0)) = G

−1
(0) = y0.

Beispiel 6.13 Differentialgleichung mit getrennten Variablen. Betrachte

y�(x) =
x

y(x)
, x ∈ (a, b), y ∈ (c, d), 0 �∈ (c, d)

y(x0) = y0 ∈ (c, d).

Mit der obigen Herangehensweise erhält man

f(x) = x =⇒ F (x) =

� x

x0

t dt =
x2

2
− x2

0

2

und

g(y) =
1

y
=⇒ 1

g(y)
= y =⇒ G(y) =

� y

y0

t dt =
y2

2
− y20

2
.

Nach (6.8), oder (6.7) durch Anwendung von G auf beide Seiten, folgt

y2

2
− y20

2
=

x2

2
− x2

0

2
. (6.9)

Durch Umstellen erhält man die Lösung

y =

�
x2 − x2

0 + y20 falls c > 0,

y = −
�
x2 − x2

0 + y20 falls d < 0.

Die Wahl von x kann in Abhängigkeit von (x0, y0) eingeschränkt sein. Nach (6.9) kann man die Lösung
auch in der Form

y2 − x2 = y20 − x2
0 =: c0

schreiben. Dies ist eine Hyperbel. Sei c0 > 0, dann hat man für c > 0 einen oberen Ast, siehe Abbil-
dung 6.4, und für d < 0 einen unteren Ast.

Für c0 < 0 besteht die Lösung aus je einem Teil des linken beziehungsweise des rechten Astes einer
Hyperbel. Im Fall c0 = 0 ist die Lösung y = |x| oder y = − |x|, jeweils mit x �= 0. ✷
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Abbildung 6.4: Beispiel 6.13, oberer Hyperbelast, Lösung im Fall c > 0, c0 = 1.

Bemerkung 6.14 Methode der Trennung der Variablen. Man braucht sich die Lösungsformel für das
Anfangswertproblem (6.6) nicht zu merken, da es einen einfachen, wenngleich mathematisch nicht ganz
exakten, Weg zur Berechnung der Lösung gibt – die Methode der Trennung der Variablen:

dy

dx
= f(x)g(y) behandle linke Seite wie einen Bruch

dy

g(y)
= f(x)dx integriere unbestimmt

�
dy

g(y)
=

�
f(x) dx finde Stammfunktionen

G(y) = F (x) + c fasse Integrationskonstanten zusammen

y = G−1 (F (x) + c) löse nach y auf.

Die Konstante c wird zum Schluss aus der Anfangsbedingung bestimmt. ✷

Beispiel 6.15 Methode der Trennung der Variablen. Betrachte die Methode der Trennung der Variablen
in Beispiel 6.13. Man hat

dy

dx
=

x

y
=⇒

ydy = xdx =⇒�
y dy =

�
x dx =⇒

y2

2
=

x2

2
+ c.

Nun hat man zunächst die allgemeine Lösung der Differentialgleichung. Die Anfangsbedingung ergibt

y20
2

=
x2
0

2
+ c =⇒ c =

1

2

�
y20 − x2

0

�
.

✷

Bemerkung 6.16 Der Fall, dass g(y) eine Nullstelle besitzt. Sei y1 ∈ (c, d) mit g(y1) = 0. Dann ist eine
Lösung des AWP (6.6) mit der Anfangsbedingung y(x0) = y1 sofort durch y(x) = y1 für alle x ∈ (a, b)
gegeben, da dann g(y) = g(y1) = 0 und beide Seiten der Differentialgleichung von (6.6) gleich Null sind.
Es kann jedoch passieren, dass es weitere Lösungen dieses AWPs gibt, siehe Übungsaufgaben. ✷
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6.2.3 Lineare Differentialgleichungen

Definition 6.17 Lineare Differentialgleichung 1. Ordnung. Eine gewöhnliche Differentialgleichung
der Gestalt

y�(x) + f(x)y(x) = g(x), (6.10)

wobei f(x), g(x) definiert und stetig in (a, b) ⊂ R sind, heißt lineare Differentialgleichung 1. Ordnung.
Für g(x) ≡ 0 spricht man von einer homogenen linearen Differentialgleichung 1. Ordnung. ✷

Bemerkung 6.18 Zu linearen Differentialgleichungen.

• Die gewöhnliche Differentialgleichung heißt linear, weil y�(x) und y(x) nur linear auftreten.
• Die homogene lineare Differentialgleichung 1. Ordnung ist eine spezielle Differentialgleichung mit
getrennten Variablen.

• Man sieht sofort, dass y(x) ≡ 0 eine Lösung der homogenen linearen Differentialgleichung 1. Ordnung
ist.

✷

Satz 6.19 Superpositionsprinzip.

i) Sind y1(x) und y2(x) zwei Lösungen der homogenen linearen Differentialgleichung 1. Ordnung, so ist
auch jede Linearkombination c1y1(x) + c2y2(x) mit beliebigen Konstanten c1, c2 ∈ R eine Lösung der
homogenen linearen Differentialgleichung 1. Ordnung.

ii) Sind yi(x) eine Lösung der inhomogenen linearen Differentialgleichung 1. Ordnung und yh(x) eine
Lösung der homogenen linearen Differentialgleichung 1. Ordnung, dann ist yi(x)+yh(x) eine Lösung
der inhomogenen linearen Differentialgleichung 1. Ordnung.

iii) Sind yi(x) und ỹi(x) zwei Lösungen der inhomogenen linearen Differentialgleichung 1. Ordnung, so
ist ihre Differenz Lösung der homogenen linearen Differentialgleichung 1. Ordnung.

Beweis: Alle Aussagen beweist man durch direktes Nachrechnen.
i) Es gilt für beliebige c1, c2 ∈ R

(c1y1(x) + c2y2(x))
�
+ f(x) (c1y1(x) + c2y2(x))

= c1y
�
1(x) + c2y

�
2(x) + f(x) (c1y1(x) + c2y2(x))

= c1
�
y
�
1(x) + f(x)y1(x)

�
� �� �

=0

+c2
�
y
�
2(x) + f(x)y2(x)

�
� �� �

=0

= 0,

da y1(x), y2(x) nach Voraussetzung Lösungen der homogenen Differentialgleichung sind. Man nutzt im Beweis
die Linearität der Differentiation und die Linearität der Differentialgleichung.

ii), iii) Übungsaufgaben.

Satz 6.20 Allgemeine Lösung der inhomogenen linearen Differentialgleichung 1. Ordnung.
Man erhält alle Lösungen der inhomogenen linearen Differentialgleichung 1. Ordnung, indem man zu ei-
ner speziellen Lösung der inhomogenen linearen Differentialgleichung yi(x) alle Lösungen der homogenen
linearen Differentialgleichung {yh(x)} addiert.

Beweis: Jede Funktion yi(x)+ ỹh(x) mit ỹh(x) ∈ {yh(x)} ist nach dem Superpositionsprinzip ii) Lösung der
inhomogenen linearen Differentialgleichung 1. Ordnung. Also ist yi(x) + {yh(x)} eine Teilmenge der Gesamtheit
aller Lösungen.

Sei ỹi(x) eine beliebige andere Lösung der inhomogenen linearen Differentialgleichung. Nach Superpositions-
prinzip iii) ist dann ỹi(x) − yi(x) eine Lösung der homogenen linearen Differentialgleichung. Also gibt es ein
ỹh(x) ∈ {yh(x)} mit

ỹi(x)− yi(x) = ỹh(x) ⇐⇒ ỹi(x) = yi(x) + ỹh(x).

Demzufolge lässt sich jede Lösung der inhomogenen linearen Differentialgleichung in der oben angegebenen Form

darstellen.

allgemeine Lösung der inhomogenen linearen Differentialgleichung

= spezielle Lösung der inhomogenen linearen Differentialgleichung

+ allgemeine Lösung der homogenen linearen Differentialgleichung
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Satz 6.21 Existenz und Darstellung der allgemeinen Lösung der homogenen linearen Diffe-
rentialgleichung 1. Ordnung. Sei f(x) in (a, b) stetig. Es gibt eine Funktion yh(x) mit D(yh) = (a, b),
yh ∈ C1(a, b), yh(x) �= 0 für alle x ∈ (a, b), so dass

{cyh(x) : c ∈ R}

die Gesamtheit aller Lösungen der homogenen linearen Differentialgleichung 1. Ordnung ist. Das ist ein
eindimensionaler Unterraum von C1(a, b). Es gilt

yh(x) = exp

�
−
� x

x0

f(t) dt

�

mit x0 ∈ (a, b) beliebig.

Beweis: Für Interessenten.
Betrachte die homogene lineare Differentialgleichung

y
�
h(x) + f(x)yh(x) = 0 ⇐⇒ y

�
h(x) = −f(x)yh(x).

Das ist eine Differentialgleichung mit getrennten Variablen. Betrachte o.B.d.A. den Fall yh(x) > 0 für alle
x ∈ (a, b). Dann hat die Differentialgleichung die Lösung

yh(x) = exp

�
−
� x

x0

f(t) dt

�

mit x0 ∈ (a, b), denn man erhält mit der Kettenregel und der Differentiation nach der oberen Integrationsgrenze

y
�
h(x) = exp

�
−
� x

x0

f(t) dt

�
(−f(x)) = −f(x)yh(x).

Zur Erinnerung: Differentiation nach der oberen Integrationsgrenze, wobei F (x) eine Stammfunktion von f(x)
ist:

d

dx

� x

x0

f(t) dt =
d

dx

�
F (x)− F (x0)

�
= F

�
(x) = f(x),

mit dem Hauptsatz der Differential- und Integralrechnung.
Da f(x) stetig ist, ist yh(x) differenzierbar. Außerdem gilt wegen der Exponentialfunktion yh(x) > 0 für alle

x ∈ (a, b). Nach dem Superpositionsprinzip ist {cyh(x)} mit c ∈ R Lösung der homogenen linearen Differential-
gleichung.

Es bleibt zu zeigen, dass es neben {cyh(x) : c ∈ R} keine anderen Lösungen gibt. Sei ỹh ∈ C
1
(a, b) eine

beliebige Lösung der homogenen linearen Differentialgleichung 1. Ordnung. Man setzt

ỹh(x) = w(x)yh(x) =⇒ w(x) =
ỹh(x)

yh(x)
, yh(x) �= 0.

Da ỹh, yh ∈ C
1
(a, b) und yh(x) �= 0 folgt w ∈ C

1
(a, b). Es ist

w
�
(x) =

ỹ
�
h(x)yh(x)− ỹh(x)y

�
h(x)

(yh(x))
2

Dgl. einsetzen
=

−f(x)ỹh(x)yh(x) + ỹh(x)f(x)yh(x)

(yh(x))
2 = 0.

Damit ist w(x) eine Konstante und ỹh(x) = cyh(x). Es gibt also keine weiteren Lösungen als {cyh(x) : c ∈ R}.

Satz 6.22 Existenz einer Lösung der inhomogenen linearen Differentialgleichung 1. Ord-
nung. Seien f(x), g(x) in (a, b) stetig. Dann gibt es eine Lösung yi(x) der inhomogenen linearen Dif-
ferentialgleichung 1. Ordnung mit D(yi) = (a, b), yi ∈ C1(a, b), so dass {yi(x) + cyh(x) : c ∈ R}
die Gesamtheit aller Lösungen der inhomogenen linearen Differentialgleichung 1. Ordnung ist (affine
Mannigfaltigkeit mit Trägerpunkt yi(x)).
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Beweis: Nutze den Ansatz
yi(x) = c(x)yh(x),

wobei yh(x) die im Satz 6.21 angegebene Lösung der homogenen linearen Differentialgleichung 1. Ordnung ist.
Dieser Ansatz wird Variation der Konstanten genannt. Man versucht, eine stetig differenzierbare Funktion c(x) so
zu bestimmen, dass yi(x) eine Lösung der inhomogenen linearen Differentialgleichung 1. Ordnung ist. Einsetzen
des Ansatzes in die Differentialgleichung liefert

c
�
(x)yh(x) + c(x)y

�
h(x) + f(x)c(x)yh(x) = g(x) ⇐⇒

c
�
(x)yh(x) + c(x)

�
y
�
h(x) + f(x)yh(x)

�
� �� �

=0

= g(x).

Damit genügt c(x) der Differentialgleichung mit getrennten Variablen

c
�
(x) =

g(x)

yh(x)
=⇒ c(x) =

� x

x0

g(t)

yh(t)
dt, x0 ∈ (a, b).

Rücksubstitution liefert

yi(x) =

�� x

x0

g(t)

yh(t)
dt

�
yh(x).

Diese Funktion ist stetig differenzierbar, da beide Faktoren stetig differenzierbar sind. Nach Konstruktion löst

yi(x) die inhomogene lineare Differentialgleichung 1. Ordnung. Nach dem Superpositionsprinzip und Satz 6.21

ist {yi(x) + cyh(x) : c ∈ R} die Gesamtheit aller Lösungen der inhomogenen linearen Differentialgleichung

1. Ordnung.

Satz 6.23 Eindeutige Lösbarkeit des Anfangswertproblems. Seien f(x), g(x) in (a, b) stetig.
Dann besitzt das Anfangswertproblem

y�(x) + f(x)y(x) = g(x), y(x0) = y0, x0 ∈ (a, b),

mit beliebigem y0 ∈ R eine eindeutige Lösung.

Beweis: Seien x0 ∈ (a, b) und y0 ∈ R gegeben. Einsetzen der Anfangsbedingung in die im Satz 6.22 angege-
bene allgemeine Lösung ergibt

yi(x0) + cyh(x0) = y(x0) = y0.

Mit Hilfe der in den Beweisen von Satz 6.21 und 6.22 konstruierten Darstellung der allgemeinen Lösung folgt

0 + c · 1 = y0 =⇒ c = y0.

Damit ist die Konstante eindeutig bestimmt.

Bemerkung 6.24 Fazit.

• Die homogene lineare Differentialgleichung 1. Ordnung wird mit Trennung der Veränderlichen gelöst.
• Eine spezielle Lösung der inhomogenen linearen Differentialgleichung 1. Ordnung findet man mit der
Methode der Variation der Konstanten.

• Ob man die allgemeine Lösung explizit angeben kann, hängt
”
lediglich“ davon ab, ob man die auf-

tretenden Integrale explizit berechnen kann.
• Ein Anfangswertproblem löst man, indem man zuerst die allgemeine Lösung berechnet und dann in

diese die Anfangsbedingung einsetzt.
• Besitzen die Koeffizientenfunktionen f(x) und g(x) in (6.10) eine

”
günstige“ Gestalt, so kann man eine

spezielle Lösung der inhomogenen Differentialgleichung auch mit einem geeigneten Ansatz gewinnen.
Sind f(x) und g(x) beispielsweise Polynome, so setzt man auch yi(x) als Polynom mit geeignetem
Grad an. Diese Herangehensweise nennt man Störgliedansätze, siehe Übungsaufgaben.

✷

Beispiel 6.25 Lösung eines linearen Anfangswertproblems 1. Ordnung. Gesucht ist die Lösung des An-
fangswertproblems

y�(x) + y(x) = cos(x), y(0) = 4711.
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i) allgemeine Lösung der homogenen Differentialgleichung.

y�h + yh = 0 =⇒�
dy

yh
= −

�
dx =⇒

ln |yh| = −x+ c0 =⇒
yh(x) = ce−x, c ∈ R.

ii) spezielle Lösung der inhomogenen Differentialgleichung mit Variation der Konstanten. Der Ansatz
ist

yi(x) = c(x)e−x.

Einsetzen in die Differentialgleichung ergibt, mit zweimaliger partieller Integration,

c�(x)e−x + c(x)
�
−e−x

�
+ c(x)e−x

� �� �
=0

= cos(x) =⇒

c�(x) = ex cos(x) =⇒

c(x) =

� x

0

et cos(t) dt =⇒

c(x) =
1

2
ex (cos(x) + sin(x))− 1

2
.

Einsetzen in den Ansatz ergibt

yi(x) = c(x)yh(x) =
1

2
(cos(x) + sin(x))− 1

2
e−x.

Der zweite Term gehört zur allgemeinen Lösung der homogenen Differentialgleichung. Damit erhält man
als allgemeine Lösung der inhomogenen Differentialgleichung

yallg(x) =
1

2
(cos(x) + sin(x)) + c0e

−x, c0 ∈ R.

Wichtig: Wenn Zeit ist, die allgemeine Lösung durch Einsetzen in die Differentialgleichung kontrol-
lieren.

iii) Anfangsbedingung. Einsetzen in die allgemeine Lösung der inhomogenen Differentialgleichung
ergibt

yallg(0) =
1

2
+ c0 = 4711 =⇒ c0 = 4710.5.

Damit lautet die Lösung des Anfangswertproblems

y(x) =
1

2
(cos(x) + sin(x)) + 4710.5e−x.

Wichtig: Nicht die fertigen Formeln merken, sondern den Weg!!! ✷

6.2.4 Die Bernoullische Differentialgleichung

Definition 6.26 Bernoulli1sche Differentialgleichung. Eine gewöhnliche Differentialgleichung der
Gestalt

y�(x) = f0(x)y
α(x) + f1(x)y(x) (6.11)

mit f0, f1 ∈ C([a, b]), α ∈ R, α �= 1, f0(x) �≡ 0 heißt Bernoullische Differentialgleichung. ✷

Satz 6.27 Transformation der Bernoullische Differentialgleichung in eine lineare Differen-
tialgleichung 1. Ordnung. Ist y(x) eine Lösung der Bernoullischen Differentialgleichung (6.11) mit
y(x) > 0 für alle x ∈ (a, b), so genügt

z(x) = y1−α(x)

1
Jakob Bernoulli (1654 – 1705)
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der linearen Differentialgleichung 1. Ordnung

z�(x) = (1− α) (f0(x) + f1(x)z(x)) . (6.12)

Umgekehrt erhält man aus jeder Lösung z(x) von (6.12) mit z(x) > 0 für alle x ∈ (a, b) durch

y(x) = z1/(1−α)(x)

eine Lösung von (6.11).
Das Anfangswertproblem zu (6.11) mit y(x0) = y0, x0 ∈ (a, b), ist eindeutig lösbar, falls y0 > 0 ist.

Beweis: Für Interessenten.
Aus (6.11) folgt durch Division mit y

α
(x) > 0

(1− α)y
−α

(x)y
�
(x) =

�
f0(x) + f1(x)y

1−α
(x)

�
(1− α) ⇐⇒

�
y
1−α

��
(x) =

�
f0(x) + f1(x)y

1−α
(x)

�
(1− α).

Setze z(x) = y
1−α

(x) > 0. Daraus folgt mit (6.11)

z
�
(x) = (1− α)y

−α
(x)y

�
(x) = (1− α)

�
f0(x) + f1(x)y

1−α
(x)

�
= (1− α) (f0(x) + f1(x)z(x)) .

Das ist eine lineare Differentialgleichung 1. Ordnung. Da alle Umformungen äquivalent waren folgt, dass falls
y(x) (6.11) löst, so löst z(x) auch (6.12) und umgekehrt.

Das Anfangswertproblem zu (6.12) mit z(x0) = z0 ∈ R+
beliebig (da z(x) > 0) ist nach Satz 6.23 eindeutig

lösbar. Damit ist auch das Anfangswertproblem zu (6.11) mit y0 = y(x0) = z
1/(1−α)
0 > 0 eindeutig lösbar. Die

Abbildung R+ → R+
, z0 �→ y0 ist bijektiv für α �= 1. Damit hat das Anfangswertproblem zu (6.11) für jedes

y0 > 0 eine eindeutige Lösung.

Beispiel 6.28 Lösung einer Bernoullischen Differentialgleichung. Gesucht ist die Lösung von

y�(x) + 2xy(x) = 2x3y3(x), y(0) = 2.

Der Ansatz lautet

z(x) = y−2(x) =
1

y2(x)
=⇒ z�(x) = −2y−3(x)y�(x).

Einsetzen in die Differentialgleichung liefert

y�(x)

y3(x)
+ 2

x

y2(x)
= 2x3 ⇐⇒

−z�(x)
2

+ 2xz(x) = 2x3 ⇐⇒

z�(x) = 4xz(x)− 4x3.

Das ist eine lineare Differentialgleichung 1. Ordnung.
Für die homogene Gleichung erhält man

z�h(x) = 4xzh(x) =⇒ zh(x) = ce2x
2

, c ∈ R.

Eine spezielle Lösung der inhomogenen Gleichung kann man mit Variation der Konstanten finden. Der
Ansatz ist

zi(x) = c(x)e2x
2

.

Einsetzen in Differentialgleichung liefert

c�(x)e2x
2

= −4x3 =⇒ c�(x) = −4x3e−2x
2

.
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Abbildung 6.5: Lösung des Anfangswertproblems aus Beispiel 6.28.

Zweimalige partielle Integration ergibt

c(x) = e−2x
2
�
1

2
+ x2

�
.

Einsetzen in den Ansatz liefert

zi(x) =
1

2
+ x2 =⇒ z(x) =

1

2
+ x2 + ce2x

2

, c ∈ R.

In diesem Beispiel hätte auch ein Störgliedansatz mit einem quadratischen Polynom schnell zum Ziel
geführt.

Für die Lösung des Anfangswertproblems der Bernoullischen Differentialgleichung benötigt man nur
die Lösung mit z(x) > 0 in einer Umgebung von x0 = 0. Durch Rücksubstitution erhält man

y(x) = z−1/2(x) =

�
1

2
+ x2 + ce2x

2
�−1/2

> 0.

Einsetzen der Anfangsbedingung ergibt

y(0) =

�
1

2
+ c

�−1/2

= 2 =⇒ 1 = 4

�
1

2
+ c

�
=⇒ c = −1

4
.

Die Lösung des Anfangswertproblems ist

y(x) =

�
1

2
+ x2 − 1

4
e2x

2
�−1/2

,

siehe Abbildung 6.5.
Man beachte:

• Der Definitionsbereich von y(x) ist beschränkt.
• Für y0 < 0 ist das Anfangswertproblem nicht lösbar.
• Wichtig: Substitution z(x) = y1−α(x) merken !!!

✷

6.2.5 Die Riccatische Differentialgleichung

Definition 6.29 Riccati2sche Differentialgleichung. Eine gewöhnliche Differentialgleichung der Ge-
stalt

y�(x) = f0(x)y
2(x) + 2f1(x)y(x) + f2(x) (6.13)

mit fi ∈ C(a, b), i ∈ {0, 1, 2}, f0(x) �≡ 0, heißt Riccatische Differentialgleichung. ✷

2
Jacobo Francesco Riccati (1676 – 1754)
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Bemerkung 6.30 Spezialfälle. Spezialfälle von (6.13) sind

• f0(x) ≡ 0, lineare Differentialgleichung,
• f2(x) ≡ 0, Bernoullische Differentialgleichung.

✷

Bemerkung 6.31 Normalform. Seien f1 ∈ C1(a, b), f0 ∈ C2(a, b) sowie f0(x) �= 0 in (a, b). Dann kann
man die Riccatische Differentialgleichung mittels der Transformation

z(x) = f0(x)y(x) +
1

2f0(x)

�
f �
0(x) + 2f1(x)f0(x)

�

in die sogenannte Normalform
z�(x) = z2(x)− f(x) (6.14)

mit

f(x) =

�
−f0f2 + f2

1 − f �
1 +

1

4f2
0

�
4f0f

�
0f1 + 3(f �

0)
2 − 2f0f

��
0

��
(x)

überführen (Übungsaufgabe). Eine Funktion y(x) ist genau dann Lösung von (6.13) wenn z(x) Lösung
von (6.14) ist. ✷

Bemerkung 6.32 Lösbarkeit. Die Riccatische Differentialgleichung ist im Allgemeinen nicht durch ele-
mentare Rechenoperationen und Aufsuchen von Stammfunktionen lösbar. Dies ist nur in folgenden Spe-
zialfällen von (6.14) möglich:

• f(x) = c ∈ R für alle x ∈ (a, b) =⇒ Trennung der Veränderlichen,
• f(x) = c/x2, c ∈ R \ {0}. Dann führt die Transformation u(x) = 1/z(x) zu

u�(x) = −1 + c

�
u(x)

x

�2

.

Das ist eine sogenannte homogene Differentialgleichung, siehe Anhang C.1.
• Der wichtigste Fall ist der Folgende. Ist eine Lösung z0(x) von (6.14) bekannt, dann können alle

weiteren Lösungen durch elementare Rechenoperationen und Aufsuchen der Stammfunktion bestimmt
werden. Die allgemeine Lösung lautet

z(x) = z0(x) +
1

u0(x) + cu1(x)
, c ∈ R,

wobei u0(x) eine spezielle Lösung einer inhomogenen linearen Differentialgleichung ist und u1(x)
Lösung einer homogenen linearen Differentialgleichung.

✷

Satz 6.33 Eindeutigkeit der Lösung des Anfangswertproblems. Seien die Voraussetzungen von
Bemerkung 6.31 erfüllt. In jedem Intervall (α,β) ⊂ (a, b) existiert höchstens eine Lösung des An-
fangswertproblems der Riccatischen Differentialgleichung (6.14) mit der Anfangsbedingung z(x0) = z0,
x0 ∈ (α,β).

Beweis: Seien z1, z2 ∈ C
1
(α, β) zwei Lösungen des Anfangswertproblems. Dann erfüllt die Differenz y(x) =

z1(x)− z2(x) das Anfangswertproblem

y
�
(x) = z

�
1(x)− z

�
2(x) = z

2
1(x)− f(x)−

�
z
2
2(x)− f(x)

�
= z

2
1(x)− z

2
2(x)

=
�
z1(x)− z2(x)

��
z1(x) + z2(x)

�
=: y(x)f̃(x)

mit f̃(x) := z1(x) + z2(x) und y(x0) = 0. Man kann sich f̃(x) als gegebene Funktion denken. Für jede stetige

Funktion f̃(x) erfüllt y(x) das Anfangswertproblem einer linearen Differentialgleichung, welches gemäß Satz 6.23

eindeutig lösbar ist. Die Lösung lautet y(x) ≡ 0.

Bemerkung 6.34 Existenz einer Lösung. Die Existenz einer Lösung wird später, Folgerung 6.64, be-
wiesen. ✷
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Satz 6.35 Konstruktion aller Lösungen mit einer bekannten Lösung. Sei z0 ∈ C1(a, b) eine
Lösung der Riccatischen Differentialgleichung (6.14) mit f ∈ C(a, b). Die Funktion y ∈ C1(α,β), (α,β) ⊂
(a, b), ist genau dann eine von z0(x) verschiedene Lösung von (6.14), das heißt y(x) �= z0(x) in (α,β),
wenn

u(x) =
1

y(x)− z0(x)
(6.15)

in (α,β) eine nicht verschwindende Lösung, das heißt u(x) �= 0 für alle x ∈ (α,β), der linearen Diffe-
rentialgleichung

u�(x) + 2z0(x)u(x) + 1 = 0 (6.16)

ist.

Beweis: Für Interessenten.
Verwende den zu (6.15) äquivalenten Ansatz

z0(x) = y(x)− 1

u(x)
=⇒ z

�
0(x) = y

�
(x) +

u
�
(x)

u
2
(x)

.

Dieser Ansatz ist wohldefiniert, da u(x) �= 0 in (α,β). Einsetzen in (6.14) ergibt

y
�
(x) +

u
�
(x)

u
2
(x)

= y
2
(x)− 2y(x)

u(x)
+

1

u
2
(x)

− f(x) =⇒

y
�
(x)− y

2
(x) + f(x) =

1

u
2
(x)

�
1− 2y(x)u(x)− u

�
(x)

�

=
1

u
2
(x)

�
1− 2z0(x)u(x)− 2

u(x)

u(x)
− u

�
(x)

�

= − 1

u
2
(x)

�
1 + 2z0(x)u(x) + u

�
(x)

�
. (6.17)

i) Ist y(x) die Lösung von (6.14), so ist die linke Seite von (6.17) gleich Null und u(x) erfüllt die Differenti-
algleichung (6.16), da 1/u

2
(x) > 0.

ii) Genügt andererseits u(x) der Gleichung (6.16) und ist u(x) �= 0 in (α,β), so erfüllt y(x) (6.14) und es gilt
y(x) �= z0(x) in (α,β), da

y(x) = z0(x) +
1

u(x)
.

Da 1/u(x) �= 0 ist, gilt y(x) �= z0(x) für alle x ∈ (α, β).

Bemerkung 6.36 Bestimmung aller Lösungen von (6.14). Die Bestimmung aller Lösungen von
(6.14), im Falle dass eine Lösung bekannt ist, erfolgt wie der Beweis der beiden letzten Sätze, siehe auch
das folgende Beispiel. Sei z0(x) eine bekannte Lösung von (6.14).

• Sei z1(x) einen andere Lösung von (6.14), dann erfüllt die Differenz y(x) = z1(x) − z0(x) die Diffe-
rentialgleichung

y�(x) = y2(x) + 2z0(x)y(x).

Das ist eine Bernoullische Differentialgleichung, deren allgemeine Lösung man bestimmen kann.
• Oder man verwendet den Ansatz vom Beweis von Satz 6.35:

y(x) = z0(x) +
1

u(x)

und berechnet u(x) durch Lösen von (6.16).

✷

Beispiel 6.37 Lösung einer Riccatischen Differentialgleichung. Gesucht ist die Lösung von

y�(x) = y2(x)− (2x+ 1)y(x) + (1 + x+ x2),

vgl. (Kamke, 1945, S. 43).
i) Finden einer speziellen Lösung. Das ist der schwierigste Teil, im Allgemeinen hilft nur scharfes

Hinsehen und Probieren. In diesem Beispiel ist z0(x) = x eine Lösung.

94



ii) Ansatz. Mit dem Ansatz

y(x) = z0(x) +
1

u(x)
=⇒ y�(x) = 1− u�(x)

u2(x)
.

gelangt man hier auch ohne Überführung in die Normalform zu einer linearen Differentialgleichung.
Einsetzen in die Differentialgleichung für y(x) ergibt

u�(x) = u(x)− 1.

iii) Lösen der linearen Differentialgleichung. Nur Lösungen ohne Nullstelle sind von Interesse:

u(x) = 1 + cex, c > 0.

iv) Rücksubstitution.

y(x) = z0(x) +
1

u(x)
= x+

1

1 + cex
, c > 0.

Das ist die allgemeine Lösung der Riccatischen Differentialgleichung. ✷

6.3 Allgemeine Existenz- und Eindeutigkeitssätze

6.3.1 Allgemeines

Bemerkung 6.38 Inhalt. Man hat bei den Spezialfällen von gewöhnlichen Differentialgleichungen 1.
Ordnung aus Abschnitt 6.2 gesehen, dass es immer schwieriger wurde, analytische Lösungen anzugeben.
Bei einer allgemeinen Differentialgleichung erster Ordnung wird das nicht mehr möglich sein. Trotzdem
kann man auch im allgemeinen Fall Existenz und Eindeutigkeit von Lösungen von zugehörigen Anfangs-
wertproblemen untersuchen.

In diesem Abschnitt werden zwei grundlegende Sätze behandelt:

• Satz von Picard-Lindelöf (sukzessive Approximation, Fixpunktiteration):

◦ beruht auf dem Banachschen Fixpunktsatz,
◦ Voraussetzung: Stetigkeit und partielle Lipschitz-Bedingung der rechten Seite,
◦ Ergebnis: Existenz und Eindeutigkeit.

• Satz von Peano (Polygonzüge):

◦ Voraussetzung: Stetigkeit der rechten Seite,
◦ Ergebnis: Existenz.

✷

Bemerkung 6.39 Explizite Systeme gewöhnlicher Differentialgleichungen 1. Ordnung. In diesem Ka-
pitel werden explizite Systeme gewöhnlicher Differentialgleichungen 1. Ordnung betrachtet, da Unter-
suchungen für Systeme nicht anders sind als für eine einzelne Gleichung. Seinen yi : I ⊂ R → R,
fi : D(fi) = D → R mit D ⊂ Rn+1, i = 1, . . . , n. Dann werden die Vektoren

y(x) =




y1(x)
y2(x)

...
yn(x)


 , f(x,y) =




f1(x, y1, . . . , yn)
f2(x, y1, . . . , yn)

...
fn(x, y1, . . . , yn)




definiert. Die betrachteten Systeme haben dann die Form

y�(x) = f(x,y) oder y�i(x) = fi(x, y1, . . . , yn), i = 1, . . . , n. (6.18)

Das zugehörige Anfangswertproblem lautet wie folgt. Gegeben seien n + 1 reelle Zahlen x(0), y01 , . . . , y
0
n

mit (x(0), y01 , . . . , y
0
n) ∈ D. Gesucht ist eine Lösung von (6.18) mit yi(x

(0)) = y0i , i = 1, . . . , n. ✷
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