
Kapitel 5

Berechnung von Eigenwerten und
Eigenvektoren

5.1 Einführung

Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Ei-
genwertproblems. Gegeben sei A ∈ Rn×n, bestimme λ ∈ C und v ∈ Cn, v �= 0, so dass

Av = λv (5.1)

gilt. Hierbei heißt λ Eigenwert und v Eigenvektor zum Eigenwert λ.
In der Vorlesung wird vor allem der Fall betrachtet, dass A eine symmetrische Matrix ist. Dann sind

alle Eigenwerte und alle Eigenvektoren reell. ✷

Beispiel 5.2 Spektralnorm und Spektralkondition einer symmetrischen Matrix. Für eine symmetrische
invertierbare Matrix A gelten �A�2 = |λmax(A)| und �A−1�2 = |λmin(A)|−1

. Damit muss man für die Be-
rechnung der Spektralnorm von A den betragsmäßig größten Eigenwert bestimmen und zur Berechnung
der Spektralkondition κ2(A) = �A�2 �A

−1�2 noch zusätzlich den betragsmäßig kleinsten Eigenwert. Es
ist jedoch nicht nötig, alle Eigenwerte zu berechnen. ✷

Beispiel 5.3 Modellierung von Schwingungsabläufen, Sturm1–Liouville2-Problem. Die mathematische
Modellierung zur Beschreibung der Überlagerung von Schwingungsvorgängen kann durch das sogenannte
Sturm–Liouville-Problem

u��(x) + λr(x)u(x) = 0, x ∈ (0, 1), (5.2)

mit den Randbedingungen u(0) = u(1) = 0 erfolgen. In (5.2) ist die Funktion r ∈ C([0, 1]) mit r(x) > 0
gegeben und die Funktionen u(x) sowie die Zahlen λ sind gesucht. Die Funktion r(x) beschreibt Eigen-
schaften des Materials im Punkt x. Es handelt sich um ein Eigenwertproblem für ein Randwertproblem
mit gewöhnlicher Differentialgleichung. Dies ist die eindimensionale Version von Modellen, wie man sie
etwa beim Brückenbau verwendet, um Resonanzen zu vermeiden, die einen Brückeneinsturz verursachen
könnten. Die Randbedingungen besagen, dass die Brücke an beiden Enden fest ist.

Im Fall r(x) ≡ 1 rechnet man direkt nach, dass λ = (kπ)2 und u(x) = sin(kπx), k = 0, 1, 2, . . .
Lösungen von (5.2) sind. Es gibt also unendliche viele Paare, welche das Eigen-Randwertproblem erfüllen.

Ist r(x) nicht konstant, dann gibt es aber im Allgemeinen keine geschlossene Formel, um die Lösungen
darzustellen. Man muss die Lösungen numerisch approximieren. Dazu kann man [0, 1] in ein äquidistantes
Gitter mit n Intervallen und der Schrittweite h = 1/n zerlegen. Nun werden die Funktionen r(x) und
u(x) in (5.2) in den Gitterpunkten xi, i = 0, . . . , n, betrachtet und die zweite Ableitung in den inneren
Gitterpunkten wird durch einen Differenzenquotienten approximiert, siehe später in Abschnitt 7.4,

u��(xi) ≈
u(xi + h)− 2u(xi) + u(xi − h)

h2 , i = 1, . . . , n− 1. (5.3)

1
Jacques Charles Francois Sturm (1803 – 1855)

2
Joseph Liouville (1809 – 1882)
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Mit Taylor-Entwicklung kann man nachrechnen, dass diese Approximation genau bis auf Terme der
Ordnung h2 ist, wenn u(x) glatt genug ist, vergleiche Beispiel 7.47. In den Randpunkten braucht man
die zweite Ableitung nicht, da dort die Lösung gegeben ist.

Bezeichne ui die approximierte Lösung im Gitterpunkt xi, i = 0, . . . , n. Dann wird in der Praxis in
(5.3) u(xi) durch ui usw. ersetzt. Einsetzen der Approximationen in (5.2) ergibt für die Knoten

u0 = 0,

ui+1 − 2ui + ui−1

h2 + λr(xi)ui = 0, i = 1, . . . , n− 1,

un = 0.

Die Randwerte kann man in die Gleichung für i = 1 beziehungsweise i = n− 1 einsetzen und man erhält
letztlich ein Gleichungssystem mit (n− 1) Gleichungen für die (n− 1) Unbekannten uT = (u1, . . . , un−1)
der Gestalt

−Bu+ λDu = 0

mit

B =
1

h2




2 −1

−1
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1
−1 2




, D =




r(x1)
r(x2)

. . .

. . .

r(xn−1)




.

Da nach Voraussetzung r(xi) > 0 für alle i ist, kann man

D1/2 = diag

��
r(x1), . . . ,

�
r(xn−1)

�

bilden. Damit erhält man

Bu = λDu = λD1/2D1/2u ⇐⇒ D−1/2Bu = λD1/2u.

Setzt man v = D1/2u, so ergibt sich ein Eigenwertproblem der Gestalt (5.1)

Av = D−1/2BD−1/2v = λv.

Da A symmetrisch

AT =
�
D−1/2BD−1/2

�T

= D−T/2BTD−T/2 = D−1/2BD−1/2 = A

und positiv definit ist, sind alle Eigenwerte reell und positiv.
In dieser Aufgabe sind alle Eigenwerte und alle Eigenfunktionen gesucht. Man kann jedoch nur n− 1

der Eigenwerte und Eigenfunktionen des Randwertproblems numerisch approximieren. ✷

5.2 Zur Theorie des Eigenwertproblems

Bemerkung 5.4 Inhalt. Dieser Abschnitt stellt einige Aussagen zur Theorie des Eigenwertproblems
(5.1) zusammen, die zum Teil schon aus der linearen Algebra bekannt sind. ✷

Bemerkung 5.5 Das charakteristische Polynom. Die Zahl λ ∈ C ist genau dann Eigenwert von A ∈
Rn×n, wenn

p(λ) = det (A− λI) = 0.

Man nennt p(λ) ∈ Pn das charakteristische Polynom der Matrix A. Seine Nullstellen sind die Eigenwerte
von A. Da die Nullstellenberechnung eines Polynoms ein nichtlineares Problem ist, folgt, dass auch das
Eigenwertproblem nichtlinear ist. Es ist insbesondere deutlich komplexer als die Lösung eines linearen
Gleichungssystems.
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Die Verwendung des charakteristischen Polynoms zur Berechnung der Eigenwerte von A besitzt jedoch
in der Praxis entscheidende Nachteile. Zuerst müssen die Koeffizienten des Polynoms berechnet werden.
Das ist für große n aufwändig. Des Weiteren hängen die Nullstellen oft sensibel von den Koeffizienten
des charakteristischen Polynoms ab. Das Problem ist also schlecht konditioniert, insbesondere wenn
die Matrix mehrfache Eigenwerte besitzt. Insgesamt ist das charakteristische Polynom zur numerischen
Approximation von Eigenwerten einer Matrix nicht brauchbar (Übungsaufgabe). ✷

Bemerkung 5.6 Weitere bekannte Aussagen, Begriffe.

• Das charakteristische Polynom p(λ) besitzt nach dem Fundamentalsatz der Algebra genau n (mit
entsprechender Vielfachheit gezählte) reelle oder komplexe Nullstellen λ1, . . . ,λn.

• Der Eigenwert λi heißt einfacher Eigenwert, wenn die entsprechende Nullstelle des charakteristischen
Polynoms einfach ist.

• Die Menge aller Eigenwerte von A
σ(A) = {λ1, . . . ,λn}

heißt Spektrum von A.
• Zwei Matrizen A,B ∈ Rn×n heißen ähnlich (über dem Körper der reellen Zahlen), wenn es eine
invertierbare Matrix T ∈ Rn×n gibt mit der Eigenschaft

B = T−1AT.

Ähnliche Matrizen besitzen das gleiche Spektrum

σ(A) = σ(T−1AT )

für eine beliebige invertierbare Matrix T ∈ Rn×n, da sie dasselbe charakteristische Polynom besitzen

det(B − λI) = det
�
T−1AT − λT−1T

�
= det

�
T−1(A− λI)T

�

= det
�
T−1

�
det(A− λI) det(T ) = det(A− λI).

• Die Matrix A ∈ Rn×n heißt diagonalisierbar, wenn A zu einer Diagonalmatrix ähnlich ist. Die Matrix
A ist genau dann diagonalisierbar, wenn sie n linear unabhängige Eigenvektoren hat. Die Eigenvek-
toren sind gerade die Spalten der entsprechenden matrix T .

• Besitzt A ∈ Rn×n n verschiedene Eigenwerte, so ist A diagonalisierbar.

✷

Lemma 5.7 Reelle Schur3-Faktorisierungen. Zu jeder Matrix A ∈ Rn×n gibt es eine orthogonale
Matrix Q ∈ Rn×n, so dass

Q−1AQ = QTAQ =




R11

. . . ∗
. . .

0
. . .

Rmm




= R ∈ Rn×n. (5.4)

Dabei ist für jedes i ∈ {1, . . . ,m}, m ≤ n, entweder Rii ∈ R oder Rii ∈ R2×2. Im letzteren Fall hat
Rii ein Paar von konjugiert komplexen Eigenwerten. Die Menge aller Eigenwerte der Rii, i = 1, . . . ,m,
bilden das Spektrum von A. Die Zerlegung ist nicht eindeutig.

Beweis: Für einen Beweis sei auf die Literatur verwiesen, zum Beispiel (Golub & Van Loan, 1996, S. 341).

3
Issai Schur (1875 – 1941)
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Folgerung 5.8 Diagonalisierbarkeit symmetrischer Matrizen. Jede symmetrische Matrix A ∈
Rn×n lässt sich mittels einer orthogonalen Matrix Q ∈ Rn×n durch eine Ähnlichkeitstransformation auf
Diagonalgestalt bringen

R = Q−1AQ = D = diag (λ1, . . . ,λn) .

Die Matrix A besitzt somit nur reelle Eigenwerte und n linear unabhängige, zueinander orthogonale
Eigenvektoren, nämlich die Spalten von Q.

Beweis: Die Symmetrie von R folgt direkt aus (5.4) und der Symmetrie von A

R
T
=

�
Q

−1
AQ

�T

= Q
T
A

T
Q

−T
= Q

−1
AQ = R.

Auf Grund der Symmetrie von R muss der mit ∗ markierte Block in (5.4) ein Nullblock sein, so dass

R = diag (R11, . . . , Rmm) .

Es können nun noch symmetrische 2× 2 Blöcke Rii auftreten. Man rechnet aber direkt nach, dass symmetrische

2×2 Matrizen mit nichtverschwindenden Nebendiagonalelementen immer zwei unterschiedliche reelle Eigenwerte

besitzen, da die Diskriminante des charakteristischen Polynoms positiv ist (Übungsaufgabe). Somit widerspricht

das Auftreten von symmetrischen 2× 2 Blöcken den Aussagen von Lemma 5.7 und R muss eine Diagonalmatrix

sein.

5.3 Kondition des Eigenwertproblems

Bemerkung 5.9 Inhalt. In diesem Abschnitt wird untersucht, wie stark sich Eigenwerte und Eigenvek-
toren bei Störungen der Koeffizienten von A verändern. ✷

Satz 5.10 Einfluss von Störungen auf die Eigenwerte. Sei A ∈ Rn×n diagonalisierbar, das heißt
es existiert eine Matrix T ∈ Rn×n mit

T−1AT = diag (λ1, . . . ,λn) .

Sei ΔA ∈ Rn×n eine Störung von A und sei µ ein Eigenwert der gestörten Matrix A+ΔA. Dann gilt

min
1≤i≤n

|λi − µ| ≤ �T�p
���T−1

���
p
�ΔA�p (5.5)

für alle p ∈ [1,∞].

Beweis: Auch hier sei für den Beweis wieder auf die Literatur, zum Beispiel Golub & Van Loan (1996) oder

Stoer & Bulirsch (2005).

Bemerkung 5.11 Interpretation von Satz 5.10. Die absolute Kondition des Eigenwertproblems

sup
ΔA

min1≤i≤n |λi − µ|
�ΔA�p

hängt von κp(T ) = �T�p �T
−1�p und nicht von κp(A) ab. Da die Spalten von T gerade die Eigen-

vektoren von A sind, bedeutet (5.5) gerade, dass für eine diagonalisierbare Matrix die Kondition der
Eigenvektorbasis eine große Rolle bei der Empfindlichkeit der Eigenwerte von A bezüglich Störungen
spielt. ✷

Beispiel 5.12 Kondition eines Eigenwertproblems. Betrachte

A =

�
0 1
0 0

�

und die gestörte Matrix

A+ΔA =

�
0 1
δ 0

�
, (ΔA)

T
ΔA =

�
δ2 0
0 0

�
,
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mit δ > 0. Die Eigenwerte von A sind λ1 = λ2 = 0 und die von A + ΔA sind λ̃1,2 = ±
√
δ. Für die

Spektralkondition κ2 des Eigenwertproblems ergibt sich somit, wobei man die Spektralnorm aus den
Eigenwerten von (ΔA)

T
ΔA berechnen kann,

κ2 ≥

���λ̃1 − λ1

���
�A+ΔA−A�2

=

���λ̃1 − λ1

���
�ΔA�2

=

√
δ

δ
=

1√
δ
→ ∞

für δ → 0.
Offenbar kann das Eigenwertproblem für beliebige Matrizen beliebig schlecht konditioniert sein. ✷

Folgerung 5.13 Kondition des Eigenwertproblems für symmetrische Matrizen. Sei A ∈ Rn×n

symmetrisch und sei µ ein Eigenwert der gestörten Matrix A+ΔA. Dann gilt

min
1≤i≤n

|λi − µ| ≤ �ΔA�2 .

Das Eigenwertproblem für symmetrische Matrizen ist also gut konditioniert.

Beweis: Nach Folgerung 5.8 lässt sich A mittels einer Orthogonalmatrix Q diagonalisieren. Da für Ortho-

gonalmatrizen κ2(Q) = 1 gilt, folgt die Behauptung direkt aus (5.5).

5.4 Abschätzungen für Eigenwerte

Bemerkung 5.14 Inhalt. In diesem Abschnitt werden Abschätzungen für Eigenwerte angegeben, welche
man aus direkt zugänglichen Informationen, zum Beispiel den Einträgen der Matrix, erhält, ohne dass
man die Eigenwerte explizit berechnen muss. ✷

Lemma 5.15 Eigenschaften von Eigenwerten und des Spektrums. Seien A,B ∈ Rn×n. Dann
gelten die folgenden Aussagen.

i) Falls det(A) �= 0 und λ ein Eigenwert von A ist, so ist λ−1 ein Eigenwert von A−1.
ii) Ist λ ∈ σ(A), dann ist αλ ∈ σ(αA) für beliebiges α ∈ C.
iii) Ist λ ∈ σ(A), dann ist (λ− α) ∈ σ(A− αI). Man nennt α Spektralverschiebung oder Shift.
iv) Ist λ ∈ σ(A), dann ist λ ∈ σ(A).

v) Es gilt σ(A) = σ(AT ), da beide Matrizen dasselbe charakteristische Polynom besitzen.
vi) Es gilt σ(AB) = σ(BA).

Beweis: Alle Aussagen sind aus der Linearen Algebra bekannt.

Lemma 5.16 Abschätzung von Eigenwerten mit Matrixnormen. Es gilt |λ| ≤ �A� für jedes
λ ∈ σ(A) und jede Matrixnorm �·�, die mit einer Vektornorm verträglich ist.

Beweis: Seien λ ∈ σ(A) und v ein zugehöriger Eigenvektor mit �v� = 1, wobei die Vektornorm zur Ma-
trixnorm verträglich ist. Dann gilt mit einer Normeigenschaft, der Eigenwertaufgabe und der Verträglichkeit der
Normen

|λ| = |λ| �v� = �λv� = �Av� ≤ �A� �v� = �A� .

Bemerkung 5.17 Zur Abschätzung von Eigenwerten mit Matrixnormen.

• Der Spektralradius einer Matrix A ∈ Rn×n ist definiert durch

ρ(A) = max{|λ| : λ ∈ σ(A)}.

Aus Lemma 5.16 folgt sofort, dass ρ(A) ≤ �A� für jede Matrixnorm.
• Man kann zeigen, siehe Numerik II, dass es zu jedem ε > 0 eine Matrixnorm �·� gibt, so dass die
Ungleichung �A� ≤ ρ(A) + ε gilt.

✷
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Satz 5.18 Kreissatz von Gerschgorin4. Sei A ∈ Rn×n und seien

Ki =



z ∈ C : |z − aii| ≤

n�

j=1,i�=j

��aij
��




die Gerschgorin-Kreise. Dann gilt

σ(A) ⊆
n�

i=1

Ki. (5.6)

Das heißt, alle Eigenwerte liegen in der Vereinigung der Gerschgorin-Kreise.

Beweis: Sei λ ein beliebiger Eigenwert von A mit Eigenvektor x. Für einen Index i gilt |xi| ≥
��xj

�� für alle
j �= i. Da x ein Eigenvektor ist, gilt insbesondere |xi| > 0. Die i-te Gleichung des Eigenwertproblems hat die
Gestalt

n�

j=1,j �=i

aijxj + (aii − λ)xi = 0.

Mit Dreiecksungleichung folgt

|λ− aii| |xi| =

������

n�

j=1,j �=i

aijxj

������
≤

n�

j=1,j �=i

��aij

�� ��xj

�� .

Nun ergibt Division mit |xi| > 0 und |xi| ≥
��xj

��

|λ− aii| ≤
n�

j=1,j �=i

��aij

��
��xj

��
|xi|

≤
n�

j=1,j �=i

��aij

�� .

Also liegt λ in einem der Gerschgorin-Kreise und damit erst recht in der Vereinigung aller Gerschgorin-Kreise.

Folgerung 5.19 Weitere Einschränkungen des Bereiches der Eigenwerte. Sei A ∈ Rn×n mit
den Gerschgorin-Kreisen Ki und seien KT

i die Gerschgorin-Kreise von AT . Dann gilt

σ(A) ⊆
�

n�

i=1

Ki

�
∩
�

n�

i=1

KT
i

�
.

Falls A symmetrisch ist, gilt

σ(A) ⊆
n�

i=1

(Ki ∩ R) .

Beweis: Aus Lemma 5.15 v) und dem Kreissatz von Gerschgorin für A
T
folgt

σ(A) = σ
�
A

T
�
⊆

n�

i=1

K
T
i .

Zusammen mit (5.6) folgt damit die erste Aussage.

Die zweite Aussage folgt daraus, dass alle Eigenwerte einer symmetrischen Matrix reell sind.

Beispiel 5.20 Anwendung des Kreissatzes von Gerschgorin. Betrachte die Matrix

A =




4 −1 0
0 −2 −1
−1 −1 3


 .

Die Eigenwerte von A sind (mit MATLAB berechnet) λ1 = −2.2223, λ2,3 = 3.6111± 0.0974i.

4
Semjon Aronowitsch Gerschgorin (1901 – 1933)
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1

K̃1K̃3

λ2

K̃2

λ3

i

λ1

Abbildung 5.1: Beispiel 5.20. Eigenwerte und Gerschgorin-Kreise.

Zunächst kann man den Betrag der Eigenwerte mit Normen von A abschätzen. Man erhält

�A�1 = 5, �A�F = 5.7446, �A�∞ = 5.

Damit ergibt sich |λi| ≤ 5, i = 1, 2, 3.

Die Gerschgorin-Kreise von A und AT sind

K1 = {z : |z − 4| ≤ 1}, KT
1 = {z : |z − 4| ≤ 1},

K2 = {z : |z + 2| ≤ 1}, KT
2 = {z : |z + 2| ≤ 2},

K3 = {z : |z − 3| ≤ 2}, KT
3 = {z : |z − 3| ≤ 1}.

Es gilt K1 ∪K2 ∪K3 = K2 ∪K3. Betrachtet man nun den Schnitt gemäß Folgerung 5.19, so erhält man,
da KT

1 ∪KT
3 ⊂ K3 ist, womit man K3 weglassen kann,

σ(A) ⊂ K̃1 ∪ K̃2 ∪ K̃3

mit
K̃1 = {z : |z − 4| ≤ 1}, K̃2 = {z : |z + 2| ≤ 1}, K̃3 = {z : |z − 3| ≤ 1},

siehe Abbildung 5.1. ✷

5.5 Die Potenzmethode oder Vektoriteration

Bemerkung 5.21 Grundidee. Die Potenzmethode oder Vektoriteration ist ein Verfahren zur Berech-
nung des betragsgrößten Eigenwertes und eines zugehörigen Eigenvektors einer Matrix A. Dieses Verfah-
ren geht auf von Mises5 zurück. Es liefert das Grundkonzept für die Entwicklung weiterer Verfahren zur
Berechnung von Eigenwerten und -vektoren.

Der Einfachheit halber werden für die Konvergenzanalyse einige Annahmen gemacht. Die Matrix
A ∈ Rn×n sei diagonalisierbar. Weiter gelte für die Eigenwerte

|λ1| > |λ2| ≥ . . . ≥ |λn| ≥ 0,

das heißt, es soll nur einen betragsgrößten Eigenwert geben und dieser soll einfach sein. Wegen der Dia-
gonalisierbarkeit sind alle Eigenwerte reell, ihre algebraische Vielfachheit stimmt mit ihrer geometrischen
Vielfachheit überein, alle Eigenvektoren vj , j = 1, . . . , n, sind reell und die Eigenvektoren spannen Rn

auf.
Für die Potenzmethode benötigt man einen Startvektor x(0) ∈ Rn. Dieser lässt sich als Linearkom-

bination der Eigenvektoren darstellen

x(0) =

n�

j=1

cjvj .

5
Richard von Mises (1883 – 1953)

71



Sei x(0) so gewählt, dass c1 �= 0 gilt. Multipliziert man die Darstellung von x(0) mit der k-ten Potenz Ak

von, so erhält man

Akx(0) =

n�

j=1

cjA
kvj =

n�

j=1

cjλ
k
jvj .

Damit gilt

x(k) := Akx(0) = λk
1


c1v1 +

n�

j=2

cj

�
λj

λ1

�k

vj


 =: λk

1

�
c1v1 + r(k)

�
. (5.7)

Wegen
��λj/λ1

�� < 1 folgt

lim
k→∞

r(k) = lim
k→∞

n�

j=2

cj

�
λj

λ1

�k

vj = 0.

Das bedeutet, für große k dominiert in (5.7) der Beitrag vom ersten Eigenwert und Eigenvektor. ✷

Satz 5.22 Konvergenz der Vektoriteration. Sei A ∈ Rn×n und erfülle A die Voraussetzungen aus

Bemerkung 5.21. Sei x(k) ∈ Rn die k-te Iterierte der Potenzmethode und sei

λ(k) =

�
x(k)

�T

Ax(k)

���x(k)
���
2

2

=

�
x(k)

�T

x(k+1)

���x(k)
���
2

2

.

Dann gilt
���λ1 − λ(k)

��� = O
�����

λ2

λ1

����
k
�
.

Beweis: Dass λ
(k)

eine Approximation von λ1 ist, wird im Beweis gezeigt.
Man betrachtet den Abstand zwischen dem Unterraum S

(k)
:= {αx(k)

: α ∈ R} und dem Eigenvektor v1,
wobei man o.B.d.A. diesen Vektor normiert, so dass �v1�2 = 1,

d
�
S

(k)
,v1

�
:= min

x∈S
(k)

�x− v1�2 = min
α∈R

���αx(k) − v1

���
2
.

Nun formt man (5.7) äquivalent um �
λ
k
1c1

�−1

x
(k)

= v1 + c
−1
1 r

(k)
. (5.8)

Eine Abschätzung für d(S
(k)

,v1) erhält man, wenn man den Wert

α = αk :=
�
λ
k
1c1

�−1

, (5.9)

wählt. Damit, der Darstellung von r
(k)

und der aus (5.7) folgenden Asymptotik von r
(k)

ergibt sich

d
�
S

(k)
,v1

�
≤

���αkx
(k) − v1

���
2
=

���c−1
1

���
���r(k)

���
2
= O

�����
λ2

λ1

����
k
�
.

Da die rechte Seite für k → ∞ gegen Null strebt, ist αkx
(k)

eine Approximation an v1, also

Aαkx
(k) ≈ λ1αkx

(k) ⇐⇒ Ax
(k) ≈ λ1x

(k)
.

Durch Multiplikation dieser Beziehung von links mit (x
(k)

)
T
und Division durch �x(k)�22 folgt, dass

λ1 ≈

�
x

(k)
�T

Ax
(k)

���x(k)
���
2

2

=

�
x

(k)
�T

x
(k+1)

���x(k)
���
2

2

= λ
(k)

eine Approximation an λ1 ist. Genauso wie αkx
(k)

eine Approximation von v1 ist, zeigt man, dass αk+1x
(k+1)

mit αk+1 = (λ
k+1
1 c1)

−1
= αk/λ1, was aus (5.9) folgt, eine Approximation von v1 ist.
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Jetzt muss man noch die Güte dieser Approximation untersuchen. Sei 1 ∈ Rn
der Vektor, der in jeder

Komponente Eins ist. Man erhält mit (5.8), der Definition von r
(k)

, der Asymptotik von r
(k)

und �v1�2 = 1

λ
(k)

=

�
αkx

(k)
�T �

αkx
(k+1)

�

���αkx
(k)

���
2

2

= λ1

�
αkx

(k)
�T �

αk+1x
(k+1)

�

���αkx
(k)

���
2

2

= λ1

�
v1 + c

−1
1 r

(k)
�T �

v1 + c
−1
1 r

(k+1)
�

���v1 + c
−1
1 r

(k)
���
2

2

= λ1

�
v1 +O

����λ2
λ1

���
k
�
1

�T �
v1 +O

����λ2
λ1

���
k+1

�
1

�

����v1 +O
����λ2

λ1

���
k
�
1

����
2

2

= λ1

1 +O
����λ2

λ1

���
k
�

1 +O
����λ2

λ1

���
k
� = λ1

�
1 +O

�����
λ2

λ1

����
k
��

. (5.10)

Mit Nutzung von �v1�2 = 1 sieht man die Gültigkeit des vorletzten Schrittes aus

�
v1 +O

�����
λ2

λ1

����
k
�
1

��
v1 +O

�����
λ2

λ1

����
k+1

�
1

�

= 1 +O
�����

λ2

λ1

����
k
�

+O
�����

λ2

λ1

����
k+1

�
+O

�����
λ2

λ1

����
2k+1

�

= 1 +O
�����

λ2

λ1

����
k
�
,

vergleiche Definition des Landau
6
-Symbols. Der letzte Schritt ergibt sich aus (h.o.t. = higher order terms)

1 +O
����λ2

λ1

���
k
�

1 +O
����λ2

λ1

���
k
� =

1 + C1

���λ2
λ1

���
k

+ h.o.t.

1 + C2

���λ2
λ1

���
k

+ h.o.t.
=

1 + C2

���λ2
λ1

���
k

+ (C1 − C2)
���λ2
λ1

���
k

+ h.o.t.

1 + C2

���λ2
λ1

���
k

+ h.o.t.

= 1 +

����
λ2

λ1

����
k

C1 − C2 + h.o.t.

1 + C2

���λ2
λ1

���
k

+ h.o.t.

= 1 +

����
λ2

λ1

����
k

(C1 − C2 + h.o.t.) = 1 +O
�����

λ2

λ1

����
k
�
,

wobei C1, C2 ≥ 0 und die Terme höherer Ordnung an unterschiedlichen Stellen verschieden sein können.
Durch Umstellen von (5.10) folgt

���λ1 − λ
(k)

��� = O
�����

λ2

λ1

����
k
�
.

Bemerkung 5.23 Symmetrische Matrizen. Falls A eine symmetrische Matrix ist, kann man sogar

���λ1 − λ(k)
��� = O

�����
λ2

λ1

����
2k
�

zeigen. ✷

6
Edmund Georg Hermann Landau (1877 – 1938)
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Bemerkung 5.24 Skalierung der Iterierten. Wendet man das bisherige Verfahren an, so gelten, da

x(k) ≈ λk
1c1v1 wegen (5.7),

���x(k)
���
2

→ ∞ falls |λ1| > 1,
���x(k)

���
2

→ 0 falls |λ1| < 1.

Aus diesen Gründen ist es zweckmäßig, die Iterierten zu skalieren. Damit werden starke Änderungen in
der Größenordnung und das Verlassen des Bereichs der Gleitkommazahlen vermieden. Die Konvergenz-

aussagen ändern sich durch Skalierung auch nicht, da weder der Unterraum S(k) noch die Iterierte λ(k)

von einer Skalierung von x(k) abhängen. ✷

Algorithmus 5.25 Potenzmethode, Vektoriteration. Seien A ∈ Rn×n und y(0) �= 0 mit �y(0)�2 = 1
gegeben. Für k = 0, 1, . . . berechne man

ỹ(k+1) = Ay(k)

λ(k) =
�
ỹ(k+1)

�T

y(k)

y(k+1) =
ỹ(k+1)

���ỹ(k+1)
���
2

.

Die Bezeichnung y(k) wurde gewählt, um die normierten Vektoren von den nichtnormierten Vektoren

x(k) zu unterscheiden. ✷

Bemerkung 5.26 Zu Algorithmus 5.25.

• Wählt man als Startiterierte x(0), so weist man mit vollständiger Induktion nach, dass in exakter
Arithmetik

y(k) =
x(k)

���x(k)
���
2

=
Akx(0)

���Akx(0)
���
2

.

Also liefert Algorithmus 5.25, bis auf Skalierung in x(k), die oben analysierten Folgen {x(k)} und

{λ(k)}. Insbesondere ist y(k) als ein Nicht-Null-Vielfaches von x(k) eine Approximation eines Eigen-
vektors zum Eigenwert λ1.

• Die Konvergenzgeschwindigkeit der Potenzmethode hängt wesentlich vom Verhältnis von |λ1| und
|λ2| ab.

✷

Beispiel 5.27 Sturm-Liouville-Problem. Betrachte das in Beispiel 5.3 hergeleitete Eigenwertproblem
Av = λv. Sei r(x) ≡ 1, dann sind die Eigenwerte von A bekannt

λn−j =
4

h2 sin2
�
jπh

2

�
, j = 1, . . . , n− 1, h =

1

n
.

Es ist λ1 > λ2 > . . . > λn−1 > 0. Dann erhält man mit einem Additionstheorem für die Sinusfunktion,
Taylorentwicklung und Polynomdivision

����
λ2

λ1

���� =
sin2

�
(n−2)πh

2

�

sin2
�

(n−1)πh
2

� =
sin2

�
π
2 − πh

�

sin2
�
π
2 − πh

2

� =
cos2(πh)

cos2
�
πh
2

�

≈

�
1− (πh)

2

2

�2

�
1− (πh/2)

2

2

�2 =
1− π2h2 + π

4
h
4

4

1− π
2
h
2

4 + π
4
h
4

64

≈ 1− 3

4
π2h2.

Man erkennt, dass man im Fall h � 1 mit einer sehr langsamen Konvergenz λ(k) → λ1 rechnen muss. ✷
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Bemerkung 5.28 Fazit. Falls A diagonalisierbar ist, λ1 ein einfacher Eigenwert ist und es keine weiteren
Eigenwerte gibt, deren Betrag gleich |λ1| ist, dann konvergiert Algorithmus 5.25. Die Konvergenz kann
aber sehr langsam sein. ✷

Bemerkung 5.29 Berechnung anderer Eigenwerte, inverse Vektoriteration, Spektralverschiebung. Sei
A ∈ Rn×n nichtsingulär und diagonalisierbar. Die Eigenwertgleichung Avi = λivi, i = 1, . . . , n, ist
äquivalent zu

1

λi

vi = A−1vi.

Damit würde die Vektoriteration angewandt mit A−1 unter der Annahme

|λ1| ≥ |λ2| ≥ . . . ≥ |λn−1| > |λn|

den betragsmäßig größten Eigenwert λ−1
n von A−1 berechnen, das heißt den betragsmäßig kleinsten

Eigenwert von A.
Nach Lemma 5.15, iii), ist λi ein Eigenwert von A genau dann, wenn λi−µ ein Eigenwert von A−µI

ist. Angenommen, man hätte eine Schätzung µ ≈ λi eines beliebigen einfachen reellen Eigenwertes von
A, so dass

|λi − µ| <
��λj − µ

�� , für alle i �= j. (5.11)

Dann ist (λi−µ)−1 der betragsmäßig größte Eigenwert von (A−µI)−1. Zur Berechnung dieses Eigenwertes
kann man die Vektoriteration anwenden. ✷

Algorithmus 5.30 Inverse Vektoriteration mit Spektralverschiebung. Gesucht ist der einfache reelle

Eigenwert λi von A ∈ Rn×n. Wähle µ so, dass (5.11) gilt und wähle einen Startvektor y(0) �= 0 mit

�y(0)�2 = 1. Für k = 0, 1, . . . berechne man

(A− µI) ỹ(k+1) = y(k) (5.12)

λ(k) =
1

�
ỹ(k+1)

�T

y(k)
+ µ

y(k+1) =
ỹ(k+1)

���ỹ(k+1)
���
2

.

✷

Bemerkung 5.31 Zu Algorithmus 5.30.

• In (5.12) muss man ein lineares Gleichungssystem mit der Matrix (A− µI) lösen. Dafür berechnet
man einmal eine LU - oder QR-Zerlegung von (A− µI).

• Die Vektoriteration, Algorithmus 5.25 für (A− µI)−1, strebt gegen (λi − µ)−1. Das bedeutet für die
Iterierten aus Algorithmus 5.30, dass

λ(k) =
1

�
ỹ(k+1)

�T

y(k)
+ µ → λi − µ+ µ = λi

für k → ∞.
• Die Konvergenzgeschwindigkeit von Algorithmus 5.30 hängt wie bei der Vektoriteration vom Verhält-

nis der betragsgrößten Eigenwerte ab. Das ist hier

maxj �=i

���λj − µ
��−1

�

|λi − µ|−1 =

�
minj �=i

��λj − µ
���−1

|λi − µ|−1 =
|λi − µ|

minj �=i

��λj − µ
�� .

Hat man also eine gute Schätzung µ von λi, dann gilt

|λi − µ|
minj �=i

��λj − µ
�� � 1

und das Verfahren konvergiert sehr schnell. In der Praxis ist allerdings im Allgemeinen nicht klar,
wie man µ wählen sollte.
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• Die Konvergenzgeschwindigkeit kann verbessert werden, wenn man während der Iteration den Para-

meter µ geeignet anpasst, zum Beispiel mit der aktuellen Iterierten µ = λ(k). Nach jeder Anpassung
muss man allerdings die Matrix (A− µI) neu faktorisieren, so dass die Kosten dieses Iterationsschrit-
tes vergleichsweise sehr hoch sind.

✷

5.6 Das QR-Verfahren

Bemerkung 5.32 Inhalt. Sei A ∈ Rn×n eine symmetrische Matrix. Aus Folgerung 5.13 ist bekannt,
dass das Eigenwertproblem für A gut konditioniert ist. Dieser Abschnitt stellt ein Verfahren zur Appro-
ximation aller Eigenwerte und Eigenvektoren von A vor. ✷

Bemerkung 5.33 Transformationen von A durch Orthogonaltransformationen. Aus Folgerung 5.8 ist
bekannt, dass alle Eigenwerte von A reell sind, A diagonlisierbar ist und eine Orthonormalbasis aus
Eigenvektoren {v1, . . . ,vn} existiert, so dass

Q−1AQ = diag (λ1, . . . ,λn)

mit Q = [v1, . . . ,vn].
Im Allgemeinen ist es jedoch nicht möglich, Q in endlich vielen Schritten zu bestimmen. Damit wäre

auch ein endliches Verfahren zur Bestimmung aller Nullstellen eines Polynoms n-ten Grades gefunden.
Ein solches Verfahren, basierend auf elementaren Rechenoperation und der Quadratwurzel, kann es aber
nach dem Satz von Abel7 nicht geben.

Es ist auch nicht möglich,Amit Orthogonaltransformationen, zum Beispiel mit Housholder-Spiegelungen,
auf Diagonalgestalt zu bringen. Mit einer ersten Housholder-Spiegelung kann man die Elemente der er-
sten Spalte unterhalb der Diagonalen zu Null machen. Wendet man dann eine Housholder-Spiegelung
auf die erste Zeile an, dann wird die erste Spalte wieder gefüllt

A =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




Q1

v.l.
−→




∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗




Q2
v.r.
−→




∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




.

Man verliert auch die Symmetrie der Matrix.
Es ist jedoch möglich, A mit orthogonalen Transformationen auf Tridiagonalgestalt zu bringen. Ver-

wendet man eine orthogonale Matrix deren erste Zeile der erste Einheitsvektor ist und deren Spalten
durch eine Housholder-Spiegelung so konstruiert sind, dass die Elemente der ersten Spalte unter a21
verschwinden, so erhält man

A =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




Q1

v.l.
−→




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗




QT
1

v.r.
−→




∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗




.

Die Multiplikation von rechts mit QT
1 hat keine Auswirkungen auf die erste Spalte. Auf diese Art und

Weise fährt man fort bis man eine Tridiagonalmatrix erhält. ✷

Lemma 5.34 Transformationen auf Tridiagonalgestalt. Sei A ∈ Rn×n symmetrisch. Dann exi-
stiert eine orthogonale Matrix Q ∈ Rn×n, die das Produkt von (n− 2) Householder-Spiegelungen ist, so

dass QAQT eine symmetrische Tridiagonalmatrix ist.

7
Niels Henrik Abel (1802 – 1829)
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Beweis:Die Fortsetzung des in Bemerkung 5.33 beschriebenen Prozesses und die Eigenschaften der Householder-
Matrizen Q1, . . . , Qn−2 liefern

QAQ
T
= Qn−2 . . . Q1AQ

T
1 . . . Q

T
n−2 =




∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




.

Die Symmetrie der Matrix folgt aus der linken oder mittleren Darstellung und der Symmetrie von A.

Bemerkung 5.35 Reduktion des Eigenwertproblems. Die Matrizen A und QAQT sind ähnlich und sie
besitzen gemäß Bemerkung 5.6 dieselben Eigenwerte. Damit hat man also das Problem der Bestimmung
der Eigenwerte einer symmetrischen Matrix auf das Problem der Bestimmung der Eigenwerte einer
symmetrischen Tridiagonalmatrix reduziert. ✷

Bemerkung 5.36 Iteration mit Tridiagonalmatrizen. Die numerische Approximation der Eigenwerte
einer Tridiagonalmatrix wird iterativ erfolgen. Die grundlegende Idee wurde in Rutishauser (1958) vor-
gestellt. Sei

B = B1 =




∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




.

Dann kann man eine Faktorisierung von B bestimmen, wobei in Rutishauser (1958) die LU-Zerlegung
vorgeschlagen wurde. Für Tridiagonalmatrizen erhält man ein Produkt von zwei Bidiagonalmatrizen

B = B1 = LU =




1 0 0 0 0
∗ 1 0 0 0
0 ∗ 1 0 0
0 0 ∗ 1 0
0 0 0 ∗ 1







∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗




.

Nun vertauscht man die Faktoren

B2 = UL =




∗ ∗ 0 0 0
0 ∗ ∗ 0 0
0 0 ∗ ∗ 0
0 0 0 ∗ ∗
0 0 0 0 ∗







1 0 0 0 0
∗ 1 0 0 0
0 ∗ 1 0 0
0 0 ∗ 1 0
0 0 0 ∗ 1




und wiederholt das Verfahren mit B2. In den Arbeiten Francis (1962) und Kublanovskaja (1961) wurde
das Verfahren modifiziert, indem statt der LU-Zerlegung die stabilere QR-Zerlegung verwendet wurde.

Mit diesem Verfahren erhält man eine Folge von Matrizen {Bk}k∈N. ✷

Lemma 5.37 Eigenschaften der Matrizen {Bk}k∈N. Die Matrizen {Bk}k∈N seien mit dem Verfah-
ren aus Bemerkung 5.36 definiert, wobei die Faktorisierung mittels einer QR-Zerlegung vorgenommen
wurde Bk = QkRk, Bk+1 := RkQk. Dann gelten mit B = B1:

i) Bk ist ähnlich zu B, k ≥ 1.
ii) Falls B symmetrisch ist, so ist auch Bk symmetrisch, k ≥ 1.
iii) Falls B symmetrisch und tridiagonal ist, so ist auch Bk symmetrisch und tridiagonal, k ≥ 1.

Beweis: i). Die Aussage ist bewiesen, wenn man gezeigt hat, dass Bk und Bk+1 für beliebiges k ≥ 1 ähnlich
sind. Nach Konstruktion der Matrizen {Bk}k∈N und einer Eigenschaft von Orthogonalmatrizen, Lemma 2.14, gilt

QkBk+1Q
T
k = QkRkQkQ

T
k = QkRk = Bk. (5.13)

Das ist genau die Ähnlichkeit der beiden Matrizen.
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ii). Diese Aussage wird durch vollständige Induktion nach k gezeigt. Der Induktionsanfang, die Symmetrie
von B1 = B ist klar. Gelte also die Symmetrie für Bk. Dann folgt mit (5.13)

B
T
k+1 =

�
Q

T
k BkQk

�T

= Q
T
k B

T
k Qk = Q

T
k BkQk = Bk+1.

iii). Der Beweis wird mit vollständiger Induktion nach k erbracht. Der Induktionsanfang ist wieder klar. Sei
nun Bk eine symmetrische Tridiagonalmatrix. Dann kann man mit (n−1) Givens-Drehungen Gi,k die Einträge der
unteren Hauptnebendiagonalen zu Null machen und erhält eine Dreiecksmatrix Rk mit dem Besetzheitsmuster

Bk = QkRk = G1,k . . . Gn−1,kRk = G1,k . . . Gn−1,k




∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗




.

Beispielsweise im ersten Schritt, bei der Givens-Drehung G1,k, wird ein Vielfaches der zweiten Zeile von Bk zur
ersten Zeile addiert. Da Bk tridiagonal ist, also b2j = 0 für j > 3, bleiben alle Elemente der ersten Zeile der
resultierenden Matrix mit einem Spaltenindex größer als Drei Null. Damit hat man eine konkrete Form von Rk.
Nun ist

Bk+1 = RkQk = RkG1,k . . . Gn−1,k =




∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗




G2,k . . . Gn−1,k

=




∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗




G3,k . . . Gn−1,k = . . . =




∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




,

da G1,k nur Nichtnulleinträge im Durchschnitt der ersten beiden Zeilen und Spalten erzeugt oder ändert, G2,k nur

im Durchschnitt der zweiten und dritten Zeile und Spalte, und so weiter. Nach Teil ii) ist Bk+1 aber auch sym-

metrisch. Das bedeutet, dass der ganze Fill-in im Dreieck über der oberen Hauptnebendiagonalen verschwindet.

Damit ist Bk+1 tridiagonal.

Satz 5.38 Iteration zur Approximation der Eigenwerte. Sei A ∈ Rn×n symmetrisch mit Eigen-
werten λ1, . . . ,λn, welche die Eigenschaft

|λ1| > |λ2| > . . . > |λn| > 0

haben mögen. Weiter seien die Matrizenfolgen {Ak}k∈N, {Qk}k∈N und {Rk}k∈N durch folgenden Algo-
rithmus definiert:

1. (Initialisierung.) setze A1 = A, k = 1,
2. (Faktorisierung von Ak.) berechne QR-Zerlegung Ak = QkRk,
3. (Bildung von Ak+1.) bestimme Ak+1 = RkQk,
4. setze k = k + 1, gehe zu 2.

Dann gibt es (Vorzeichen-) Matrizen Sk = diag(σ
(k)
1 , . . . ,σ(k)

n ) mit |σ(k)
i | = 1 so dass

lim
k→∞

Sk−1QkSk = I

und
lim
k→∞

SkRkSk−1 = lim
k→∞

Sk−1AkSk = diag (λ1, . . . ,λn) = D.

Es gilt also insbesondere, da aus der Existenz des Grenzwertes folgt, dass Sk−1 = Sk ab einem gewissen
Index ist,

lim
k→∞

a
(k)
jj = λj , j = 1, . . . , n,

wobei a
(k)
jj das j-te Diagonalelement von Ak ist.
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Beweis: Der Beweis ist recht umfangreich und deshalb wird auf die Literatur verwiesen, zum Beispiel auf

Wilkinson (1965). Die Vorzeichenmatrix erscheint im Beweis, da die Givens-Drehungen nur bis auf das Vorzeichen

bestimmt sind.

Bemerkung 5.39 Zu Satz 5.38.

• Satz 5.38 bietet einen Algorithmus zur Konstruktion einer Schur-Faktorisierung von A gemäß (5.4).
• Der Algorithmus aus Satz 5.38 lässt sich als Verallgemeinerung der Vektoriteration auffassen. Er

entspricht der Projektion auf die Unterräume, die von den Spalten von Ak aufgespannt werden, siehe
(Stoer & Bulirsch, 2005, S. 58).

✷

Algorithmus 5.40 QR-Verfahren zur Eigenwertberechnung. Sei die symmetrische Matrix A ∈ Rn×n

gegeben.

1. Transformiere A mit Hilfe von Householder-Spiegelungen auf Tridiagonalgestalt B = QTAQ.
2. Wende auf B den Algorithmus aus Satz 5.38 mit Givens-Drehungen an, wobei

GBGT ≈ D

und G das Produkt aller Givens-Matrizen ist. Die Diagonale von GBGT approximiert die Eigenwerte
von A und die Spalten von GQT , mit Q aus Schritt 1, die zugehörigen Eigenvektoren.

✷

Bemerkung 5.41 Zum QR-Verfahren.

• Der Aufwand des ersten Schrittes beträgt O( 23n
3) Multiplikationen/Divisionen. Jede Iteration im 2.

Schritt benötigt O(n2) Multiplikationen/Divisionen.
• Man kann zeigen, dass die Konvergenzgeschwindigkeit des QR-Verfahrens von den Quotienten

��λj+1/λj

��
für j = 1, . . . , n − 1, abhängt. Liegt dieser Wert für einen oder mehrere Indizes nahe bei Eins, dann
ist die Effizienz des Verfahrens schlecht. Abhilfe kann man auch hier mit einer Spektralverschiebung
schaffen, vergleiche Algorithmus 5.30.

• Mit einigen Modifikationen lässt sich das Verfahren auch auf nichtsymmetrische Matrizen anwenden,
siehe beispielsweise Stoer & Bulirsch (2005).

✷
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