Kapitel 5

Berechnung von Eigenwerten und
Eigenvektoren

5.1 Einfiihrung

Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Losung des Fi-
genwertproblems. Gegeben sei A € R"*", bestimme A € C und v € C", v # 0, so dass

Av = v (5.1)

gilt. Hierbei heifit A Eigenwert und v Eigenvektor zum Eigenwert .
In der Vorlesung wird vor allem der Fall betrachtet, dass A eine symmetrische Matrix ist. Dann sind
alle Eigenwerte und alle Eigenvektoren reell. O

Beispiel 5.2 Spektralnorm und Spektralkondition einer symmetrischen Matriz. Fiir eine symmetrische
invertierbare Matrix A gelten [|A[ly = |[Apax(A4)] und A7 s = |Amin(4)] . Damit muss man fiir die Be-
rechnung der Spektralnorm von A den betragsméfig grofiten Eigenwert bestimmen und zur Berechnung
der Spektralkondition ko (A4) = ||4], |A™"||5 noch zusitzlich den betragsmiiBig kleinsten Eigenwert. Es
ist jedoch nicht nétig, alle Eigenwerte zu berechnen. O

Beispiel 5.3 Modellierung von Schwingungsabldufen, Sturm' ~Liouville®-Problem. Die mathematische
Modellierung zur Beschreibung der Uberlagerung von Schwingungsvorgéingen kann durch das sogenannte
Sturm-Liouville-Problem

u”(x) + Mr(z)u(z) =0, =€ (0,1), (5.2)

mit den Randbedingungen u(0) = u(1) = 0 erfolgen. In (5.2) ist die Funktion r € C([0,1]) mit r(z) > 0
gegeben und die Funktionen u(x) sowie die Zahlen A sind gesucht. Die Funktion r(x) beschreibt Eigen-
schaften des Materials im Punkt z. Es handelt sich um ein Eigenwertproblem fiir ein Randwertproblem
mit gewOhnlicher Differentialgleichung. Dies ist die eindimensionale Version von Modellen, wie man sie
etwa beim Briickenbau verwendet, um Resonanzen zu vermeiden, die einen Briickeneinsturz verursachen
konnten. Die Randbedingungen besagen, dass die Briicke an beiden Enden fest ist.

Im Fall 7(z) = 1 rechnet man direkt nach, dass A = (kr)? und u(z) = sin(krz), k = 0,1,2,...
Losungen von (5.2) sind. Es gibt also unendliche viele Paare, welche das Eigen-Randwertproblem erfiillen.

Ist r(x) nicht konstant, dann gibt es aber im Allgemeinen keine geschlossene Formel, um die Losungen
darzustellen. Man muss die Losungen numerisch approximieren. Dazu kann man [0, 1] in ein dquidistantes
Gitter mit n Intervallen und der Schrittweite h = 1/n zerlegen. Nun werden die Funktionen r(z) und
u(x) in (5.2) in den Gitterpunkten z;, ¢ = 0, ..., n, betrachtet und die zweite Ableitung in den inneren
Gitterpunkten wird durch einen Differenzenquotienten approximiert, siehe spéter in Abschnitt 7.4,

u(x; + h) — 2u(z;) + u(x; — h)

u”(xi) ~ h2

. i=1,...,n—1. (5.3)

! Jacques Charles Francois Sturm (1803 — 1855)
% Joseph Liouville (1809 — 1882)
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Mit Taylor-Entwicklung kann man nachrechnen, dass diese Approximation genau bis auf Terme der
Ordnung h? ist, wenn u(z) glatt genug ist, vergleiche Beispiel 7.47. In den Randpunkten braucht man
die zweite Ableitung nicht, da dort die Losung gegeben ist.

Bezeichne u; die approximierte Losung im Gitterpunkt x;, ¢ = 0,...,n. Dann wird in der Praxis in
(5.3) u(z;) durch u; usw. ersetzt. Einsetzen der Approximationen in (5.2) ergibt fiir die Knoten

Uy = 07
L ou. .
Yit1 UQZ—FuZ*l +Ar(z)u; = 0, i=1,...,n—1,
h
u, = 0.

Die Randwerte kann man in die Gleichung fiir ¢ = 1 beziehungsweise i = n — 1 einsetzen und man erhélt
letztlich ein Gleichungssystem mit (n — 1) Gleichungen fiir die (n — 1) Unbekannten w” = (uy, ..., u,_1)
der Gestalt
—Bu+ADu =0

mit
r(zy)

-1 . e r(wy)
1
w2

B=

-1 2 r(xn—l)

Da nach Voraussetzung r(z;) > 0 fiir alle ¢ ist, kann man

DY? = diag <\/@m)

bilden. Damit erh&lt man
Bu=ADu=AD"?D'"?*u «— D '?Bu=AD"?u.
Setzt man v = DY/ u, so ergibt sich ein Eigenwertproblem der Gestalt (5.1)
Av =D ?BD 2y = ).

Da A symmetrisch
AT — (D—l/zBD—1/2>T —_pTRRTp-T/2 _ p-12p-1/2 _ 4

und positiv definit ist, sind alle Eigenwerte reell und positiv.
In dieser Aufgabe sind alle Figenwerte und alle Eigenfunktionen gesucht. Man kann jedoch nur n — 1
der Eigenwerte und Eigenfunktionen des Randwertproblems numerisch approximieren. O

5.2 Zur Theorie des Eigenwertproblems

Bemerkung 5.4 Inhalt. Dieser Abschnitt stellt einige Aussagen zur Theorie des Eigenwertproblems
(5.1) zusammen, die zum Teil schon aus der linearen Algebra bekannt sind. |

Bemerkung 5.5 Das charakteristische Polynom. Die Zahl A\ € C ist genau dann Eigenwert von A €
R™". wenn

p(A) =det (A—XI)=0.

Man nennt p(A) € P, das charakteristische Polynom der Matrix A. Seine Nullstellen sind die Eigenwerte
von A. Da die Nullstellenberechnung eines Polynoms ein nichtlineares Problem ist, folgt, dass auch das
Eigenwertproblem nichtlinear ist. Es ist insbesondere deutlich komplexer als die Lésung eines linearen
Gleichungssystems.
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Die Verwendung des charakteristischen Polynoms zur Berechnung der Eigenwerte von A besitzt jedoch
in der Praxis entscheidende Nachteile. Zuerst miissen die Koeffizienten des Polynoms berechnet werden.
Das ist fiir grofle n aufwéndig. Des Weiteren héngen die Nullstellen oft sensibel von den Koeffizienten
des charakteristischen Polynoms ab. Das Problem ist also schlecht konditioniert, insbesondere wenn
die Matrix mehrfache Eigenwerte besitzt. Insgesamt ist das charakteristische Polynom zur numerischen
Approximation von Eigenwerten einer Matrix nicht brauchbar (Ubungsaufgabe). O

Bemerkung 5.6 Weitere bekannte Aussagen, Begriffe.
e Das charakteristische Polynom p(\) besitzt nach dem Fundamentalsatz der Algebra genau n (mit
entsprechender Vielfachheit geziihlte) reelle oder komplexe Nullstellen Aq, ..., A,.
e Der Eigenwert \; heifit einfacher Eigenwert, wenn die entsprechende Nullstelle des charakteristischen
Polynoms einfach ist.
e Die Menge aller Eigenwerte von A
o(A)=1{\,..., A\, }

heifit Spektrum von A.
e Zwei Matrizen A, B € R™™" heiflen ihnlich (iiber dem Korper der reellen Zahlen), wenn es eine
invertierbare Matrix 7' € R™™" gibt mit der Eigenschaft

B =T 'AT.
Ahnliche Matrizen besitzen das gleiche Spektrum

o(A) = o(T AT)

nxn

fiir eine beliebige invertierbare Matrix 7€ R""", da sie dasselbe charakteristische Polynom besitzen

det(B — ) det (T*lAT - AT*IT) = det (T*l(A - )J)T)

= det (T*l) det(A — AI) det(T) = det(A — AI).

e Die Matrix A € R™*" heiBt diagonalisierbar, wenn A zu einer Diagonalmatrix dhnlich ist. Die Matrix
A ist genau dann diagonalisierbar, wenn sie n linear unabhéngige Eigenvektoren hat. Die Eigenvek-
toren sind gerade die Spalten der entsprechenden matrix 7.

e Besitzt A € R™™" n verschiedene Eigenwerte, so ist A diagonalisierbar.

O

Lemma 5.7 Reelle Schur?’-Faktorisierungen. Zu jeder Matriz A € R™*"™ gibt es eine orthogonale
Matriz Q € R™™"™, so dass

Ry
QTMAQ=Q"AQ = = ReR™™, (5.4)

Rmm

Dabei ist fiir jedes i € {1,...,m}, m < n, entweder R;; € R oder R;; € R**%. Im letzteren Fall hat
R;; ein Paar von konjugiert komplexen Eigenwerten. Die Menge aller Figenwerte der R;;, 1 =1,...,m,
bilden das Spektrum von A. Die Zerlegung ist nicht eindeutig.

Beweis: Fiir einen Beweis sei auf die Literatur verwiesen, zum Beispiel (Golub & Van Loan, 1996, S. 341).
|

31ssai Schur (1875 — 1941)
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Folgerung 5.8 Diagonalisierbarkeit symmetrischer Matrizen. Jede symmetrische Matriz A €
R"™ ™ lisst sich mittels einer orthogonalen Matriz Q € R™*™ durch eine Ahnlichkeitstransformation auf
Diagonalgestalt bringen

R=Q 'AQ = D = diag(\y,..., \,) -

Die Matriz A besitzt somit nur reelle Eigenwerte und n linear unabhdngige, zueinander orthogonale
Eigenvektoren, ndmlich die Spalten von Q.

Beweis: Die Symmetrie von R folgt direkt aus (5.4) und der Symmetrie von A
RT — (QflAQ)T _ QTATQfT _ QflAQ - R
Auf Grund der Symmetrie von R muss der mit * markierte Block in (5.4) ein Nullblock sein, so dass
R =diag (Ry1,..-, Rpm) -

Es kénnen nun noch symmetrische 2 x 2 Blocke R;; auftreten. Man rechnet aber direkt nach, dass symmetrische
2 x 2 Matrizen mit nichtverschwindenden Nebendiagonalelementen immer zwei unterschiedliche reelle Eigenwerte
besitzen, da die Diskriminante des charakteristischen Polynoms positiv ist (Ubungsaufgabe). Somit widerspricht
das Auftreten von symmetrischen 2 x 2 Blocken den Aussagen von Lemma 5.7 und R muss eine Diagonalmatrix
sein. |

5.3 Kondition des Eigenwertproblems

Bemerkung 5.9 Inhalt. In diesem Abschnitt wird untersucht, wie stark sich Eigenwerte und Eigenvek-
toren bei Storungen der Koeffizienten von A veréndern. O

Satz 5.10 Einfluss von Stdrungen auf die Eigenwerte. Sei A € R™*" diagonalisierbar, das heifit
es existiert eine Matriz T € R™"™ mit

T VAT = diag( My, ..., \y) -
Sei AA € R™™ eine Storung von A und sei pn ein Eigenwert der gestorten Matriz A+ AA. Dann gilt

min |\~ <17, 77 184, (5.5)

1<i<n
fir alle p € [1, ).

Beweis: Auch hier sei fiir den Beweis wieder auf die Literatur, zum Beispiel Golub & Van Loan (1996) oder
Stoer & Bulirsch (2005). ]

Bemerkung 5.11 Interpretation von Satz 5.10. Die absolute Kondition des Eigenwertproblems

sup ming <<, [A; — g
AA |AA]l,

héngt von k,(T) = [T, HT_1||p und nicht von x,(A) ab. Da die Spalten von T gerade die Eigen-
vektoren von A sind, bedeutet (5.5) gerade, dass fiir eine diagonalisierbare Matrix die Kondition der
Eigenvektorbasis eine grofie Rolle bei der Empfindlichkeit der Eigenwerte von A beziiglich Stérungen
spielt. 0O

Beispiel 5.12 Kondition eines Figenwertproblems. Betrachte
01
=)

_ (0 1 T (80
A+AA—<5 o)’ (AA) AA_<0 o)’

und die gestorte Matrix
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mit § > 0. Die Eigenwerte von A sind A; = Ay = 0 und die von A + AA sind 5\172 = ++/6. Fiir die
Spektralkondition k, des Eigenwertproblems ergibt sich somit, wobei man die Spektralnorm aus den
Eigenwerten von (AA)” AA berechnen kann,

‘;\1*)\1’ _’:\1*>\1’ NZ) 1

Ko 2> = = =
TATAA-Al,  AAl, 5 Vs

fir 6 — 0.
Offenbar kann das Eigenwertproblem fiir beliebige Matrizen beliebig schlecht konditioniert sein. O

Folgerung 5.13 Kondition des Eigenwertproblems fiir symmetrische Matrizen. Sei A € R"*"
symmetrisch und sei p ein Eigenwert der gestorten Matriz A+ AA. Dann gilt

o .
lrg%m ul < [[AA],

Das Eigenwertproblem fiir symmetrische Matrizen ist also gut konditioniert.

Beweis: Nach Folgerung 5.8 lisst sich A mittels einer Orthogonalmatrix @ diagonalisieren. Da fiir Ortho-
gonalmatrizen k5 (Q) = 1 gilt, folgt die Behauptung direkt aus (5.5). [ |

5.4 Abschitzungen fiir Eigenwerte

Bemerkung 5.14 Inhalt. In diesem Abschnitt werden Abschitzungen fiir Eigenwerte angegeben, welche
man aus direkt zugénglichen Informationen, zum Beispiel den Eintrdgen der Matrix, erhélt, ohne dass
man die Eigenwerte explizit berechnen muss. 0O

nxn
. Dann

Lemma 5.15 Eigenschaften von Eigenwerten und des Spektrums. Seien A, B € R
gelten die folgenden Aussagen.

i) Falls det(A) # 0 und X\ ein Eigenwert von A ist, so ist \™* ein Eigenwert von A",

it) Ist X € o(A), dann ist a) € o(aA) fir beliebiges o € C.

iii) Ist X € o(A), dann ist (A — «) € o(A — al). Man nennt « Spektralverschiebung oder Shift.
iv) Ist X € 0(A), dann ist X € o(A).

v) Es gilt o(A) = U(AT), da beide Matrizen dasselbe charakteristische Polynom besitzen.

vi) Es gilt 0(AB) = o(BA).

Beweis: Alle Aussagen sind aus der Linearen Algebra bekannt. |

Lemma 5.16 Abschitzung von Eigenwerten mit Matrixnormen. Es gilt |\ < ||A| fir jedes
X € 0(A) und jede Matriznorm ||-||, die mit einer Vektornorm vertréglich ist.

Beweis: Seien A € o(A) und v ein zugehoriger Eigenvektor mit ||v|| = 1, wobei die Vektornorm zur Ma-
trixnorm vertraglich ist. Dann gilt mit einer Normeigenschaft, der Eigenwertaufgabe und der Vertréglichkeit der
Normen

Al = Aol = (Aol = [[Av]| < [[A]l [[o]] = Al -

Bemerkung 5.17 Zur Abschdtzung von Eigenwerten mit Matriznormen.
e Der Spektralradius einer Matrix A € R™*" ist definiert durch

p(A) =max{|A| : A€ o(4)}.

Aus Lemma 5.16 folgt sofort, dass p(A) < ||A|| fiir jede Matrixnorm.
e Man kann zeigen, siehe Numerik II, dass es zu jedem &€ > 0 eine Matrixnorm |[|-|| gibt, so dass die
Ungleichung || A|| < p(A) + € gilt.
O
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Satz 5.18 Kreissatz von Gerschgorin4. Sei A € R™™" und seien

Ki=¢z€C : |z—ay| < Z ‘aij‘
J=1i#j
die Gerschgorin-Kreise. Dann gilt
o(4) € | J K. (5.6)
i=1

Das heifit, alle Eigenwerte liegen in der Vereinigung der Gerschgorin-Kreise.

Beweis: Sei A ein beliebiger Eigenwert von A mit Eigenvektor @. Fiir einen Index i gilt |z;| > }xj‘ fiir alle
j # i. Da @ ein Eigenvektor ist, gilt insbesondere |z;| > 0. Die i-te Gleichung des Eigenwertproblems hat die
Gestalt

Z a;;x; + (a; — \)x; = 0.
J=1,j#1

Mit Dreiecksungleichung folgt

n

n
N —aullz = | Y aya| < D ay| ]
J=1,5i J=1,j#i
Nun ergibt Division mit |z;| > 0 und |z;| > |z;]
- ;] -
A —a;| < Z ‘az’j| X < Z |aij{~
1

j=1,j7i J=1,5#i

Also liegt A in einem der Gerschgorin-Kreise und damit erst recht in der Vereinigung aller Gerschgorin-Kreise.

|
Folgerung 5.19 Weitere Einschrinkungen des Bereiches der Eigenwerte. Sei A € R™*" mit
den Gerschgorin-Kreisen K; und seien KiT die Gerschgorin-Kreise von A", Dann gilt
n n
o(A) C (U Ki> N (U Kf) :
i=1 i=1
Falls A symmetrisch ist, gilt
n
o(A) C | (K, NR).
i=1
Beweis: Aus Lemma 5.15 v) und dem Kreissatz von Gerschgorin fiir A” folgt
o(A) =0 (AT) c|Jk!
i=1
Zusammen mit (5.6) folgt damit die erste Aussage.
Die zweite Aussage folgt daraus, dass alle Eigenwerte einer symmetrischen Matrix reell sind. ]

Beispiel 5.20 Anwendung des Kreissatzes von Gerschgorin. Betrachte die Matrix

4 -1 0
A= 0 -2 -1
-1 -1 3

Die Eigenwerte von A sind (mit MATLAB berechnet) \; = —2.2223, Ay 3 = 3.6111 £ 0.09744.

4Semjon Aronowitsch Gerschgorin (1901 — 1933)
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Abbildung 5.1: Beispiel 5.20. Eigenwerte und Gerschgorin-Kreise.

Zuniichst kann man den Betrag der Eigenwerte mit Normen von A abschiitzen. Man erhélt
[All; =5, [|Allp =5.7446, [A] = 5.

Damit ergibt sich |A\;| <5,7=1,2,3.
Die Gerschgorin-Kreise von A und A" sind

K, = {z:]z—-4] <1}, Kl = {z: |z—4] <1},
Ky = {z:[z4+2/<1}, K3 = {z:|z+2/<2},
Ky = {z:]:-3/<2}, K3 = {z:[z-3 <1}

Es gilt K; UKy U K3 = Ky U K. Betrachtet man nun den Schnitt geméf Folgerung 5.19, so erhélt man,
da KlT u K3T C K3 ist, womit man K5 weglassen kann,

o(A) C K, UK, UK,

mit
IN(lz{z Dz =4 <1}, f(Q:{z: |z + 2| < 1}, [~(3:{z: |z — 3| < 1},
siehe Abbildung 5.1. a

5.5 Die Potenzmethode oder Vektoriteration

Bemerkung 5.21 Grundidee. Die Potenzmethode oder Vektoriteration ist ein Verfahren zur Berech-
nung des betragsgrofiten Eigenwertes und eines zugehorigen Eigenvektors einer Matrix A. Dieses Verfah-
ren geht auf von Mises® zuriick. Es liefert das Grundkonzept fiir die Entwicklung weiterer Verfahren zur
Berechnung von Eigenwerten und -vektoren.

Der Einfachheit halber werden fiir die Konvergenzanalyse einige Annahmen gemacht. Die Matrix
A € R™" sei diagonalisierbar. Weiter gelte fiir die Eigenwerte

Al > Azl > ... > [N, >0,

das heif3t, es soll nur einen betragsgrofiten Eigenwert geben und dieser soll einfach sein. Wegen der Dia-
gonalisierbarkeit sind alle Eigenwerte reell, ihre algebraische Vielfachheit stimmt mit ihrer geometrischen
Vielfachheit iiberein, alle Eigenvektoren v;, j = 1,...,n, sind reell und die Eigenvektoren spannen R"
auf.
Fiir die Potenzmethode bendtigt man einen Startvektor z® € R™. Dieser lisst sich als Linearkom-
bination der Eigenvektoren darstellen
n
x(o) = Z Cj'Uj.
j=1

®Richard von Mises (1883 — 1953)
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Sei 2% so gewahlt, dass ¢; # 0 gilt. Multipliziert man die Darstellung von 2 mit der k-ten Potenz A*

von, so erhélt man
n n
k_(0) _ Z k.o Z k
j=1 =1

Damit gilt

n A\ k
2" = ARz = )\]f vy + ch ()\j) v | = )\]f (clvl + r(k)) . (5.7)
j=2 !

Wegen ’/\j/)w’ < 1 folgt
; (k) _ 1 23 o
Jim 0 = Jim 3, (1) 0, =0
j:
Das bedeutet, fiir groe k& dominiert in (5.7) der Beitrag vom ersten Eigenwert und Eigenvektor. O
Satz 5.22 Konvergenz der Vektoriteration. Sei A € R™*" und erfiille A die Voraussetzungen aus
Bemerkung 5.21. Sei z®) € R" die k-te Iterierte der Potenzmethode und sei

(w(m)TAw(k) ) (ww))Tm(km

2 - 2
=] =]
2 2

k>
Beweis: Dass A" eine Approximation von A, ist, wird im Beweis gezeigt.

Man betrachtet den Abstand zwischen dem Unterraum S := {amm : a € R} und dem Eigenvektor v,
wobei man 0.B.d.A. diesen Vektor normiert, so dass [|v;]], = 1,

(k) _

Dann gilt
A

][

k . . k
d (S( ),vl) = min |z — v, = min Ham( —

-
Nun formt man (5.7) dquivalent um
1 i
(A]fa) 2 =) 4o 'r, (5.8)

Eine Abschiitzung fiir d(S*,v,) erhslt man, wenn man den Wert
p !
a=qy = ()\101) , (5.9)

wiihlt. Damit, der Darstellung von »™ und der aus (5.7) folgenden Asymptotik von r*) ergibt sich

Fl=o (3)

eine Approximation an v, also

0(50) < oce -

-1
= ’01
2

Da die rechte Seite fiir k — oo gegen Null strebt, ist akm(k)

(k (k)

Aapx ) Aapx — Az™ ~ Alm(k).

Durch Multiplikation dieser Beziehung von links mit (m(k>)T und Division durch ||a:(k) |5 folgt, dass

(ww))TAw(m (w<k>)Tw<k+1>
AL~ = ="

2 2
=] =]
2 2

(k)

(k+1)

eine Approximation an A; ist. Genauso wie ajx"’ eine Approximation von v, ist, zeigt man, dass oy, 1@

mit a1 = (/\]1”101)71 = ai /A, was aus (5.9) folgt, eine Approximation von v, ist.
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Jetzt muss man noch die Giite dieser Approximation untersuchen. Sei 1 € R"™ der Vektor, der in jeder
Komponente Eins ist. Man erhélt mit (5.8), der Definition von 7*, der Asymptotik von »*) und loil, =1

T T
w _ (o) (=) () (orne?)
A = =

|2 - e

HCM}C(L‘

2

(vl + cf1r<k))T (U1 + cflr(k“))
|

o
A

- 1

2

= A

2
—1_(k
v+ r< )H
2

)2 (oo

Az
Al

Az
>\1

)

. 2
A
’U1+O<ﬁ )1
2
k
1—1-(9(% > WL
W) (o). -
1+O<§—f ) !

Mit Nutzung von ||v,|, = 1 sieht man die Giiltigkeit des vorletzten Schrittes aus
A | A |FH1
— 1 — 1
A | Ay [EH Ay |26+
) o (3 ) ol
k)

vergleiche Definition des LandauS—Symbols. Der letzte Schritt ergibt sich aus (h.o.t. = higher order terms)

1+0

Az

1+0 X

/N -~/

A, |* k k k
1+O(7’j ) 140 (32| +hot.  14+C |2 +(C—Cy) |32| +hot.
A | :10*2kh - 140,22 +n
_ 1+ % F Cl—CQ‘IL‘h.O.t.
140y i—f +h.o.t.
A k A k
= 14|22 (C;,=Cy+hot)=1+0[ 2] ),
)\1 )\1

wobei C',Cy > 0 und die Terme hoherer Ordnung an unterschiedlichen Stellen verschieden sein kénnen.

Durch Umstellen von (5.10) folgt
WL
n-a®=o (132 ).
‘ ! by

|
Bemerkung 5.23 Symmetrische Matrizen. Falls A eine symmetrische Matrix ist, kann man sogar
A\, |2k
n-AW| =0 |32
‘ ! A
zeigen. O

5Edmund Georg Hermann Landau (1877 — 1938)
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Bemerkung 5.24 Skalierung der Iterierten. Wendet man das bisherige Verfahren an, so gelten, da
z®) ~ )\’fclvl wegen (5.7),

Hm(k)H — oo falls || >1,
2

Hw(k)H — 0 falls |M\| <1
2

Aus diesen Griinden ist es zweckmiBig, die Iterierten zu skalieren. Damit werden starke Anderungen in
der Groflenordnung und das Verlassen des Bereichs der Gleitkommazahlen vermieden. Die Konvergenz-

aussagen dndern sich durch Skalierung auch nicht, da weder der Unterraum S® noch die Tterierte A

von einer Skalierung von z®) abhéngen. |

Algorithmus 5.25 Potenzmethode, Vektoriteration. Seien A € R™*" und y(o) # 0 mit ||y(0)||2 =1
gegeben. Fiir £k =0,1,... berechne man

GED — ay®

RO (Q<k+1>>Ty(k)

y = y((::ll))
o7

Die Bezeichnung y(k) wurde gewéhlt, um die normierten Vektoren von den nichtnormierten Vektoren
z®) zu unterscheiden. a

Bemerkung 5.26 Zu Algorithmus 5.25.
e Wihlt man als Startiterierte 33(0), so weist man mit vollstdndiger Induktion nach, dass in exakter
Arithmetik
%) 2 AF L0

(k) _ —
y - - .
2 2

Also liefert Algorithmus 5.25, bis auf Skalierung in a:(k), die oben analysierten Folgen {:c(k)} und
{)\(k)}. Insbesondere ist y(k) als ein Nicht-Null-Vielfaches von z'® eine Approximation eines Eigen-
vektors zum Eigenwert A;.
e Die Konvergenzgeschwindigkeit der Potenzmethode hingt wesentlich vom Verhiltnis von |A;| und
[As] ab.
O

Beispiel 5.27 Sturm-Liouville-Problem. Betrachte das in Beispiel 5.3 hergeleitete Eigenwertproblem
Av = M. Sei r(z) = 1, dann sind die Eigenwerte von A bekannt

4 . 5 (jmh . 1
)\n_j:?sln <2 s ]:1,777,—1,}1:5

Esist A; > Ay > ... > \,_; > 0. Dann erhilt man mit einem Additionstheorem fiir die Sinusfunktion,
Taylorentwicklung und Polynomdivision

o (“5) st (5-nh) _ cota)
T () Tl (G- F) el ()

h)? 2
(1-t-) e
(1 _ <7rh/2)"‘)2 1w
2

4 64

Man erkennt, dass man im Fall h < 1 mit einer sehr langsamen Konvergenz PR A rechnen muss. O
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Bemerkung 5.28 Fuzit. Falls A diagonalisierbar ist, A; ein einfacher Eigenwert ist und es keine weiteren
Eigenwerte gibt, deren Betrag gleich |A| ist, dann konvergiert Algorithmus 5.25. Die Konvergenz kann
aber sehr langsam sein. ]

Bemerkung 5.29 Berechnung anderer FEigenwerte, inverse Vektoriteration, Spektralverschiebung. Sei
A € R™"™ nichtsinguldr und diagonalisierbar. Die Eigenwertgleichung Av, = A\w,, i = 1,...,n, ist

dquivalent zu
1

A

7

-1
v; = A v;.

Damit wiirde die Vektoriteration angewandt mit A™! unter der Annahme
Al > Aol >0 > [ Aq] > A

den betragsméflig grofiten Eigenwert A, ! von A7! berechnen, das heifit den betragsméfig kleinsten
Eigenwert von A.

Nach Lemma 5.15, iii), ist A; ein Eigenwert von A genau dann, wenn \; — p ein Eigenwert von A — pl
ist. Angenommen, man hétte eine Schitzung u ~ \; eines beliebigen einfachen reellen Eigenwertes von
A, so dass

INi — pl < |Nj—p|, fiiralle i # j. (5.11)

Dann ist (\;— u)71 der betragsméiBig grofite Eigenwert von (A—pul )71. Zur Berechnung dieses Eigenwertes
kann man die Vektoriteration anwenden. a

Algorithmus 5.30 Inverse Vektoriteration mit Spektralverschiebung. Gesucht ist der einfache reelle

Eigenwert )\; von A € R™*". Wihle p so, dass (5.11) gilt und wihle einen Startvektor y(o) # 0 mit
). — G

ly™|lo = 1. Fiir k =0,1,... berechne man

(A—pu) g™ = 4y (5.12)
1
= T m
(5) v
(k+1) gty
L
O

Bemerkung 5.31 Zu Algorithmus 5.30.
e In (5.12) muss man ein lineares Gleichungssystem mit der Matrix (A — pf) 16sen. Dafiir berechnet
man einmal eine LU- oder QR-Zerlegung von (A — pul).
e Die Vektoriteration, Algorithmus 5.25 fiir (A — u[)fl, strebt gegen (\; — u)fl. Das bedeutet fiir die
Iterierten aus Algorithmus 5.30, dass

1
)\(k):—(k+1) T TE A=A
(#“)

fiir k — oo.
e Die Konvergenzgeschwindigkeit von Algorithmus 5.30 héngt wie bei der Vektoriteration vom Verhlt-
nis der betragsgroften Eigenwerte ab. Das ist hier

aX; i (Mj - M|71> (minj; |A; — )

-1
_ A — u
1 - 1 - . .
Ai =l Ai = ul ming.; |A; = pl
Hat man also eine gute Schétzung p von \;, dann gilt
A\ —
.|"—u| <1
min iz [A; =yl

und das Verfahren konvergiert sehr schnell. In der Praxis ist allerdings im Allgemeinen nicht klar,
wie man p wéhlen sollte.
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e Die Konvergenzgeschwindigkeit kann verbessert werden, wenn man wéhrend der Iteration den Para-
meter p geeignet anpasst, zum Beispiel mit der aktuellen Iterierten p = A% Nach jeder Anpassung
muss man allerdings die Matrix (A — pI) neu faktorisieren, so dass die Kosten dieses Iterationsschrit-
tes vergleichsweise sehr hoch sind.

O

5.6 Das QR-Verfahren

Bemerkung 5.32 Inhalt. Sei A € R™*" eine symmetrische Matrix. Aus Folgerung 5.13 ist bekannt,
dass das Eigenwertproblem fiir A gut konditioniert ist. Dieser Abschnitt stellt ein Verfahren zur Appro-
ximation aller Eigenwerte und Eigenvektoren von A vor. O

Bemerkung 5.33 Transformationen von A durch Orthogonaltransformationen. Aus Folgerung 5.8 ist
bekannt, dass alle Eigenwerte von A reell sind, A diagonlisierbar ist und eine Orthonormalbasis aus
Eigenvektoren {vy,...,v,} existiert, so dass

Q'AQ = diag (A1, ..., \y)

mit Q = [vq,...,v,].

Im Allgemeinen ist es jedoch nicht moglich, @ in endlich vielen Schritten zu bestimmen. Damit wére
auch ein endliches Verfahren zur Bestimmung aller Nullstellen eines Polynoms n-ten Grades gefunden.
Ein solches Verfahren, basierend auf elementaren Rechenoperation und der Quadratwurzel, kann es aber
nach dem Satz von Abel” nicht geben.

Es ist auch nicht moglich, A mit Orthogonaltransformationen, zum Beispiel mit Housholder-Spiegelungen,
auf Diagonalgestalt zu bringen. Mit einer ersten Housholder-Spiegelung kann man die Elemente der er-
sten Spalte unterhalb der Diagonalen zu Null machen. Wendet man dann eine Housholder-Spiegelung
auf die erste Zeile an, dann wird die erste Spalte wieder gefiillt

* % x k % * % ok ok % * 0 0 0 O

* % x  k % 0 0 * * % x * % x k %

A= % *x *x x x ! 0 * x * =x Q2 ¥ % ok k%
- V.l. V.r.

¥ % ok ok % — 0 * % * x — ¥ % ok k¥

¥ % x k % 0 * * * x * % ok ok

Man verliert auch die Symmetrie der Matrix.

Es ist jedoch moglich, A mit orthogonalen Transformationen auf Tridiagonalgestalt zu bringen. Ver-
wendet man eine orthogonale Matrix deren erste Zeile der erste Einheitsvektor ist und deren Spalten
durch eine Housholder-Spiegelung so konstruiert sind, dass die Elemente der ersten Spalte unter as;
verschwinden, so erhélt man

* % % k% ¥ x ok %k % *x x 0 0 O

¥ % % ok % 0 * % ok ok ¥ T ¥ % x k ¥

A=|* * * x x ! 0 * * x x ! 0 * x *x *
- v.l. V.I.

* ok ok k% — 0 * % *x x — 0 *x =* % =

* %k k% 0 * * * x 0 * * * %

Die Multiplikation von rechts mit Qip hat keine Auswirkungen auf die erste Spalte. Auf diese Art und
Weise fiahrt man fort bis man eine Tridiagonalmatrix erhélt. O

Lemma 5.34 Transformationen auf Tridiagonalgestalt. Sei A € R™™" symmetrisch. Dann exi-
stiert eine orthogonale Matriz Q € R™*", die das Produkt von (n — 2) Householder-Spiegelungen ist, so
dass QAQT eine symmetrische Tridiagonalmatriz ist.

"Niels Henrik Abel (1802 — 1829)
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Beweis: Die Fortsetzung des in Bemerkung 5.33 beschriebenen Prozesses und die Eigenschaften der Householder-

Matrizen Qq,...,Q,_, liefern

* % 0 0 0
* *x *x 0 0
QAQT =Q, 5...Q1AQT ..QT =10 % x x 0
0 0 = =% =%
0 0 0 = =«
Die Symmetrie der Matrix folgt aus der linken oder mittleren Darstellung und der Symmetrie von A. |

Bemerkung 5.35 Reduktion des Figenwertproblems. Die Matrizen A und QAQT sind &hnlich und sie
besitzen geméfl Bemerkung 5.6 dieselben Eigenwerte. Damit hat man also das Problem der Bestimmung
der Eigenwerte einer symmetrischen Matrix auf das Problem der Bestimmung der Eigenwerte einer
symmetrischen Tridiagonalmatrix reduziert. O

Bemerkung 5.36 [teration mit Tridiagonalmatrizen. Die numerische Approximation der Eigenwerte
einer Tridiagonalmatrix wird iterativ erfolgen. Die grundlegende Idee wurde in Rutishauser (1958) vor-
gestellt. Sei

* x 0 0 0
* x x 0 0
B=B;=|0 x x x 0
0 0 x % =%
0 0 0 * =«

Dann kann man eine Faktorisierung von B bestimmen, wobei in Rutishauser (1958) die LU-Zerlegung
vorgeschlagen wurde. Fiir Tridiagonalmatrizen erhédlt man ein Produkt von zwei Bidiagonalmatrizen

1 0 0 0 O *x x 0 0 O
*x 1 0 0 O 0 = = 0 O
B=B,=LU=|0 = 1 0 0 0 0 x x O
00 x« 1 0 0 0 0 *x =
00 0 = 1 0 0 0 0 =«
Nun vertauscht man die Faktoren

* x 0 0 0 1 0 0 0 O

0 = = 0 0 *x 1 0 0 O

B, =UL=1]0 0 * % 0 0 « 1 0 O

0 0 0 x =x 0 0 = 1 0

00 0 0 =« 0 0 0 % 1

und wiederholt das Verfahren mit B,. In den Arbeiten Francis (1962) und Kublanovskaja (1961) wurde
das Verfahren modifiziert, indem statt der LU-Zerlegung die stabilere QR-Zerlegung verwendet wurde.
Mit diesem Verfahren erhélt man eine Folge von Matrizen { B, }en- |

Lemma 5.37 Eigenschaften der Matrizen {B}},cn. Die Matrizen {By,},cn seien mit dem Verfah-
ren aus Bemerkung 5.36 definiert, wobei die Faktorisierung mittels einer QR-Zerlegung vorgenommen
wurde By, = Q Ry, Byi1 := RpQy. Dann gelten mit B = By :

i) By, ist dhnlich zu B, k > 1.

it) Falls B symmetrisch ist, so ist auch By, symmetrisch, k > 1.

i11) Falls B symmetrisch und tridiagonal ist, so ist auch By, symmetrisch und tridiagonal, k > 1.

Beweis: i). Die Aussage ist bewiesen, wenn man gezeigt hat, dass By, und By, fiir beliebiges & > 1 dhnlich
sind. Nach Konstruktion der Matrizen { B}, } .y und einer Eigenschaft von Orthogonalmatrizen, Lemma 2.14, gilt

QrBr1Qk = QuRyQ1Qk = QxRy = By. (5.13)

Das ist genau die Ahnlichkeit der beiden Matrizen.
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11). Diese Aussage wird durch vollstdndige Induktion nach k gezeigt. Der Induktionsanfang, die Symmetrie
von B, = B ist klar. Gelte also die Symmetrie fiir B. Dann folgt mit (5.13)

T
Bl = (QFBr@i) = QTBI Qi = QIBQx = By,
113). Der Beweis wird mit vollstdndiger Induktion nach k erbracht. Der Induktionsanfang ist wieder klar. Sei

nun By, eine symmetrische Tridiagonalmatrix. Dann kann man mit (n—1) Givens-Drehungen G, ;, die Eintrége der
unteren Hauptnebendiagonalen zu Null machen und erhélt eine Dreiecksmatrix R mit dem Besetzheitsmuster

B, =QuRr =G G pBe =G Grovg

SO OO ¥
S OO * ¥
O O ¥ *x ¥
O ¥ ¥ ¥ O
*¥ ¥ ¥ O O

Beispielsweise im ersten Schritt, bei der Givens-Drehung G j, wird ein Vielfaches der zweiten Zeile von B), zur
ersten Zeile addiert. Da By, tridiagonal ist, also by; = 0 fiir j > 3, bleiben alle Elemente der ersten Zeile der
resultierenden Matrix mit einem Spaltenindex grofier als Drei Null. Damit hat man eine konkrete Form von Ry.
Nun ist

* *x x 0 0
x x x x 0
Bii1w = RQr=RGip..Goo1p=10 0 x * *x|[Gop...Gp1i
0 0 0 x =«
0 0 0 0 =«
* *x *x 0 O * *x x 0 0
*x x x x 0 x x x x 0
= 0 * * * x|Ggp...Gugp=...=|0 * * x x|,
0 0 0 % =« 0 0 % x =
0 0 0 0 =« 0 0 0 x =«

da G j, nur Nichtnulleintrage im Durchschnitt der ersten beiden Zeilen und Spalten erzeugt oder dndert, G ;, nur
im Durchschnitt der zweiten und dritten Zeile und Spalte, und so weiter. Nach Teil ii) ist By, aber auch sym-
metrisch. Das bedeutet, dass der ganze Fill-in im Dreieck {iber der oberen Hauptnebendiagonalen verschwindet.
Damit ist By, tridiagonal. |

Satz 5.38 Iteration zur Approximation der Eigenwerte. Sei A € R™™" symmetrisch mit Eigen-
werten Aq,...,\,, welche die Eigenschaft

Al > A2l > ... > A, >0

haben mégen. Weiter seien die Matrizenfolgen {Ay}ren, {Qk treny und {Ry}ren durch folgenden Algo-
rithmus definiert:
1. (Initialisierung.) setze Ay = A, k =1,
2. (Faktorisierung von Ay.) berechne QR-Zerlegung A;, = Qi Ry,
3. (Bildung von A, ,.) bestimme Ay 1 = R, Qy,
4. setze k =k 41, gehe zu 2.
Dann gibt es (Vorzeichen-) Matrizen S, = clmg(ayc)7 . ,a%k)) mit |O'i(k)| =1 so dass

lim Sk*leSk =1
k—o0

und
lim SkRkSk—l = lim Sk—lAkSk = dmg ()\1, ey )‘n) =D.
k—o00 k—o00

Es gilt also insbesondere, da aus der Existenz des Grenzwertes folgt, dass S,_; = S}, ab einem gewissen

Index ist,
; (k) _ :
kli}ngoajj =X, Jj=1...,n,
wobei ay;) das j-te Diagonalelement von Ay, ist.
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Beweis: Der Beweis ist recht umfangreich und deshalb wird auf die Literatur verwiesen, zum Beispiel auf
Wilkinson (1965). Die Vorzeichenmatrix erscheint im Beweis, da die Givens-Drehungen nur bis auf das Vorzeichen
bestimmt sind. u

Bemerkung 5.39 Zu Satz 5.58.
e Satz 5.38 bietet einen Algorithmus zur Konstruktion einer Schur-Faktorisierung von A gemé8 (5.4).
e Der Algorithmus aus Satz 5.38 lédsst sich als Verallgemeinerung der Vektoriteration auffassen. Er
entspricht der Projektion auf die Unterrdume, die von den Spalten von A, aufgespannt werden, siehe
(Stoer & Bulirsch, 2005, S. 58).
O

Algorithmus 5.40 QR-Verfahren zur Eigenwertberechnung. Sei die symmetrische Matrix A € R"™*"
gegeben.

1. Transformiere A mit Hilfe von Householder-Spiegelungen auf Tridiagonalgestalt B = QT AQ.

2. Wende auf B den Algorithmus aus Satz 5.38 mit Givens-Drehungen an, wobei

GBGT ~ D

und G das Produkt aller Givens-Matrizen ist. Die Diagonale von GBGT approximiert die Eigenwerte
von A und die Spalten von GQT, mit @ aus Schritt 1, die zugehorigen Eigenvektoren.
O

Bemerkung 5.41 Zum QR-Verfahren.

e Der Aufwand des ersten Schrittes betrigt (’)(%ng) Multiplikationen/Divisionen. Jede Iteration im 2.
Schritt benstigt O(n”) Multiplikationen /Divisionen.

e Man kann zeigen, dass die Konvergenzgeschwindigkeit des QR-Verfahrens von den Quotienten |)\j 11/ |
fir j =1,...,n —1, abhéngt. Liegt dieser Wert fiir einen oder mehrere Indizes nahe bei Eins, dann
ist die Effizienz des Verfahrens schlecht. Abhilfe kann man auch hier mit einer Spektralverschiebung
schaffen, vergleiche Algorithmus 5.30.

e Mit einigen Modifikationen ldsst sich das Verfahren auch auf nichtsymmetrische Matrizen anwenden,
siehe beispielsweise Stoer & Bulirsch (2005).

O

79



