Fachbereich Mathematik und Informatik/ Institut für Mathematik Prof. Dr. Volker John, john@wias-berlin.de Balázs Kossovics, b.kossovics@fu-berlin.de

Berlin, 29.04.2024

Numerik I

English translation of Übungsserie 03

Attention: Only solutions which provide a comprehensible reasoning will be graded. Every statement has to be argued. You can use results from the lecture. Statments without reasoning won't get any points.

1. Orthogonal matrices. Let

$$\mathbb{O}_m(\mathbb{R}) := \left\{ Q \in \mathbb{R}^{m \times m} : Q^T = Q^{-1} \right\}$$

be the set of orthogonal matrices in $\mathbb{R}^{m \times m}$. Prove the following statements.

- i) Let $Q \in \mathbb{O}_m(\mathbb{R})$, then $Q^T \in \mathbb{O}_m(\mathbb{R})$.
- ii) Let $Q \in \mathbb{O}_m(\mathbb{R})$, then $|\det(Q)| = 1$.
- iii) Let $Q_1, Q_2 \in \mathbb{O}_m(\mathbb{R})$, then $Q_1 Q_2 \in \mathbb{O}_m(\mathbb{R})$.
- $\begin{array}{l} \text{iv)} \ \|Q\mathbf{x}\|_2 = \|\mathbf{x}\|_2 \text{ is satisfied by every } \mathbf{x} \in \mathbb{R}^m \text{ .} \\ \text{v)} \text{ For every matrix } A \in \mathbb{R}^{m \times m} \text{ we have } \|A\|_2 = \|QA\|_2 = \|AQ\|_2. \end{array}$
- vi) For every matrix $A \in \mathbb{R}^{m \times m}$ we have $\kappa_2(A) = \kappa_2(QA) = \kappa_2(AQ)$.
- vii) Each $Q \in \mathbb{O}_m(\mathbb{R})$ satisfies $\kappa_2(Q) = 1$.

4 points

2. Generalized inverse. Let $A \in \mathbb{R}^{m \times n}$. The generalized inverse $A^+ \in \mathbb{R}^{n \times m}$ of A is uniquely determined by the Moore–Penrose conditions.

$$AA^{+}A = A, \ A^{+}AA^{+} = A^{+}, \ (AA^{+})^{T} = AA^{+}, \ (A^{+}A)^{T} = A^{+}A.$$

Compute the generalized inverse of $A = (1, 2, 3) \in \mathbb{R}^{1 \times 3}$ utilizing these conditions. 2 points

3. Spectral condition number. Let $A \in \mathbb{R}^{n \times n}$ a nonsingular matrix. Demonstrate the following identity for the condition number

$$\kappa_2(A^T A) = (\kappa_2(A))^2.$$

2 points

4. Projection. Let V be an inner product space and $P : V \to V$ a linear operator. Prove the following statements to be equivalent.

(a)
$$(x - Px, y) = 0$$
 for every $x \in V$ and every $y \in im(P) = \{Pz : z \in V\}$.

(b) $P^2 = P$ and (Px, y) = (x, Py) for every $x, y \in V$.

2 points

Do not forget the programming problem from Exercise Sheet 02!

The exercises should be solved in groups of two students. They have to be submitted until Sie Monday, 06.05.2024, 10:00, either in the box of the tutor or electronically via whiteboard.