
Appendix A

Topics on the Theory of Ordinary
Differential Equations

A.1 Ordinary Differential Equations of Higher Order

Remark A.1. Motivation. The notation of stiffness comes from the consider-
ation of first order systems of ordinary differential equations. There are some
connections of such systems to ordinary differential equations of higher order,
e.g. a solution method for linear first order systems requires the solution of
a higher order linear differential equation, see Remark A.36. ✷

A.1.1 Definition, Connection to First Order Systems

Definition A.2. General and explicit n-th order ordinary differential

equation. The general ordinary differential equation of order n has the form

F
(

x, y(x), y′(x), . . . , y(n)(x)
)

= 0. (A.1)

This equation is called explicit, if one can write it in the form

y(n)(x) = f
(

x, y(x), y′(x), . . . , y(n−1)(x)
)

. (A.2)

The function y(x) is a solution of (A.1) in an interval I if y(x) is n times
continuously differentiable in I and if y(x) satisfies (A.1).

Let x0 ∈ I be given. Then, (A.1) together with the conditions

y(x0) = y0, y′(x0) = y1, . . . , y
(n−1)(x0) = yn−1

is called initial value problem for (A.1). ✷

77



78 A Topics on the Theory of Ordinary Differential Equations

Example A.3. Special cases. The general resp. explicit ordinary differential
equation of higher order can be solved analytically only in special cases. Two
special cases, that will not be considered here, are as follows:

• Consider the second order differential equation

y′′(x) = f(x, y′(x)).

Substituting y′(x) = z(x), one obtains a first order differential equation
for z(x)

z′(x) = f(x, z(x)).

If one can solve this equation analytically, one gets y′(x). If it is then pos-
sible to find a primitive of y′(x), one has computed an analytical solution
of the differential equation of second order. In the case of an initial value
problem with

y(x0) = y0, y′(x0) = y1,

the initial value for the first order differential equation is

z(x0) = y1.

The second initial value is needed for determining the constant of the
primitive of y′(x).

• Consider the differential equation of second order

y′′(x) = f(y, y′).

Let a solution y(x) of this differential equation be known and let y−1(y)
its inverse function, i.e. y−1(y(x)) = x. Then, one can use the ansatz

p(y) := y′
(
y−1(y)

)
.

With the rule for differentiating the inverse function ((f−1)′(y0) =
1/f ′(x0)), one obtains

dp

dy
(y) = y′′

(
y−1(y)

) d

dy

(
y−1(y(x))

)
=

y′′
(
y−1(y)

)

y′(x)
=

y′′
(
y−1(y)

)

y′ (y−1(y))

=
y′′

(
y−1(y)

)

p(y)
=

y′′(x)

p(y)
.

This approach leads then to the first order differential equation

p′(y) =
f(y, p(y))

p(y)
.

✷



A.1 Ordinary Differential Equations of Higher Order 79

Theorem A.4. Connection of explicit ordinary differential equa-

tions of higher order and systems of differential equations of first

order. Every explicit differential equation of n-th order (A.2) can be trans-
formed equivalently to a system of n differential equations of first order

y′k(x) = yk+1(x), k = 1, . . . , n− 1,

y′n(x) = f(x, y1(x), . . . , yn(x)) (A.3)

or (note that the system is generally nonlinear, since the unknown functions
appear also in f(·, . . . , ·))

y′(x) =








y′1(x)
y′2(x)
...

y′n(x)








=








0 1 0 · · · 0
0 0 1 · · · 0
...
...
...

...
...

0 0 0 · · · 0















y1(x)
y2(x)
...

yn(x)








+








0
0
...

f(x, y1, . . . , yn)








for the n functions y1(x), . . . , yn(x). The solution of (A.2) is y(x) = y1(x).

Proof. Insert in (A.2)

y1(x) := y(x), y2(x) := y′1(x) = y′(x), y3(x) := y′2(x) = y′′(x), . . .

yn(x) := y′n−1(x) = y(n−1)(x).

If y ∈ Cn(I) is a solution of (A.2), then y1(x), . . . , yn(x) is obviously a solution of (A.3)

in I.
Conversely, if y1(x), . . . , yn(x) ∈ C1(I) is a solution of (A.3), then it holds

y2(x) = y′1(x), y3(x) = y′2(x) = y′′1 (x), . . . , yn(x) = y
(n−1)
1 (x)

y′n(x) = y
(n)
1 (x) = f(x, y1, . . . , yn).

Hence, the function y1(x) is n times continuously differentiable and it is the solution of
(A.2) in I. �

Example A.5. Transform of a higher order differential equation into a system
of first order equations. The third order differential equation

y′′′(x) + 2y′′(x)− 5y′(x) = f(x, y(x))

can be transformed into the form

y1(x) = y(x)

y′1(x) = y2(x)(= y′(x))

y′2(x) = y3(x)(= y′′(x))

y′3(x) = y′′′(x) = −2y′′(x) + 5y′(x) + f(x, y(x))

= −2y3(x) + 5y2(x) + f(x, y1(x)).

✷
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A.1.2 Linear Differential Equations of n-th Order

Definition A.6. Linear n-th order differential equations. A linear dif-
ferential equation of n-th order has the form

an(x)y
(n)(x)+an−1(x)y

(n−1)(x)+. . .+a1(x)y
′(x)+a0(x)y(x) = f(x), (A.4)

where the functions a0(x), . . . , an(x) are continuous in the interval I, in which
a solution of (A.4) is searched, and it holds an(x) 6= 0 in I. The linear n-th
order differential equation is called homogeneous if f(x) = 0 for all x ∈ I

an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + . . .+ a1(x)y
′(x) + a0(x)y(x) = 0. (A.5)

✷

Theorem A.7. Superposition principle for linear differential equa-

tions of higher order. Consider the linear differential equation of n-th
order (A.4), then the superposition principle holds:

i) If y1(x) and y2(x) are two solutions of the homogeneous equation (A.5),
then c1y1(x)+ c2y2(x), c1, c2 ∈ R, is a solution of the homogeneous equa-
tion, too.

ii) If y0(x) is a solution of the inhomogeneous equation and y1(x) is a solu-
tion of the homogeneous equation, then y0(x) + y1(x) is a solution of the
inhomogeneous equation.

iii) If y1(x) and y2(x) are two solutions of the inhomogeneous equation, then
y1(x)− y2(x) is a solution of the homogeneous equation.

Proof. Direct calculations, exercise. �

Corollary A.8. General solution of the inhomogeneous differential

equation. The general solution of (A.4) is the sum of the general solution
of the homogeneous linear differential equation of n-th order (A.5) and one
special solution of the inhomogeneous n-th order differential equation (A.4).

Remark A.9. Transform in a linear system of ordinary differential equations
of first order. A linear differential equation of n-th order can be transformed
equivalently into a linear n× n system

y′k(x) = yk+1(x), k = 1, . . . , n− 1,

y′n(x) = −
n−1∑

i=0

ai(x)

an(x)
yi+1(x) +

f(x)

an(x)

or
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y′(x) =








y′1(x)
y′2(x)

...
y′n(x)








=








0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

− a0(x)
an(x)

− a1(x)
an(x)

− a2(x)
an(x)

· · · −an−1(x)
an(x)















y1(x)
y2(x)

...
yn(x)








+








0
0
...

f(x)
an(x)








=: A(x)y(x) + f(x). (A.6)

✷

Theorem A.10. Existence and uniqueness of a solution of the initial

value problem. Let I = [x0−a, x0+a] and ai ∈ C(I), i = 0, . . . , n, f ∈ C(I).
Then, the linear differential equation of n-th order (A.4) has exactly one
solution y ∈ Cn(I) for given initial value

y(x0) = y0, y′(x0) = y1, . . . , y
(n−1)(x0) = yn−1.

Proof. Since (A.4) is equivalent to the system (A.6), one can apply the theorem on global
existence and uniqueness of a solution of an initial value problem from Picard–Lindelöf, see
lecture notes Numerical Mathematics I or the literature. To this end, one has to show the
Lipschitz continuity of the right-hand side of (A.6) with respect to y1, . . . , yn. Denoting

the right-hand side by F (x,y) gives

‖F(x,y)− F(x, ỹ)‖[C(I)]n = ‖A(y − ỹ)‖[C(I)]n ≤ ‖A‖[C(I)]n,∞ ‖y − ỹ‖[C(I)]n ,

where one uses the triangle inequality to get

‖Ai·y‖C(I) = max
x∈I

∣
∣
∣
∣
∣
∣

n∑

j=1

aij(x)yj(x)

∣
∣
∣
∣
∣
∣

≤ max
x∈I

n∑

j=1

|aij(x)| max
j=1,...,n

{

max
x∈I

|yj(x)|

}

= ‖Ai·‖C(I) ‖y‖[C(I)]n

for i = 1, . . . , n. Now, one can choose

L = ‖A‖[C(I)]n,∞ = max
x∈I

{

max

{

1,

∣
∣
∣
∣

a1(x)

an(x)

∣
∣
∣
∣
+ . . .+

∣
∣
∣
∣

an−1(x)

an(x)

∣
∣
∣
∣

}}

.

All terms are bounded since I is closed (compact) and continuous functions are bounded
on compact sets. �

Definition A.11. Linearly independent solutions, fundamental sys-

tem. The solutions yi(x) : I → R, i = 1, . . . , k, of (A.5) are called linearly
independent if from

k∑

i=1

ciyi(x) = 0, for all x ∈ I, ci ∈ R,
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it follows that ci = 0 for i = 1, . . . , k. A set of n linearly independent solutions
is called a fundamental system of (A.5). ✷

Definition A.12. Wronski1 matrix, Wronski determinant. Let yi(x),
i = 1, . . . , k, be solutions of (A.5). The matrix

W(x) =








y1(x) . . . yk(x)
y′1(x) . . . y′k(x)

...

y
(n−1)
1 (x) . . . y

(n−1)
k (x)








is called Wronski matrix. For k = n the Wronski determinant is given by
det(W)(x) =: W (x). ✷

Lemma A.13. Properties of the Wronski matrix and Wronski de-

terminant. Let I = [a, b] and let y1(x), . . . , yn(x) be solutions of (A.5).

i) The Wronski determinant fulfills the linear first order differential equation

W ′(x) = −
an−1(x)

an(x)
W (x).

ii) It holds for all x ∈ I

W (x) = W (x0) exp

(

−

∫ x

x0

an−1(t)

an(t)
dt

)

with arbitrary x0 ∈ I.
iii) If there exists a x0 ∈ I with W (x0) 6= 0, then it holds W (x) 6= 0 for all

x ∈ I.
iv) If there exists a x0 ∈ I with rank(W(x0)) = k, then there are at least k

solutions of (A.5), e.g. y1(x), . . . , yk(x), linearly independent.

Proof. i) Let Sn be the set of all permutations of {1, . . . , n} and let σ ∈ Sn. Denote the

entries of the Wronski matrix by W(x) =
(
yjk(x)

)n

j,k=1
. If σ = (σ1, . . . , σn), then let

n∏

j=1

yj,σj
(x) = (y1,σ1

y2,σ2
. . . yn,σn ) (x).

Applying the Laplace2 formula for determinants and the product rule yields

1 Joseph Marie Wronski (1758 – 1853)
2 Pierre–Simon (Marquis de) Laplace (1749 – 1827)
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d

dx
det(W(x)) =

d

dx




∑

σ∈Sn



sgn(σ)

n∏

j=1

yj,σj
(x)









=
∑

σ∈Sn



sgn(σ)

n∑

i=1





n∏

j=1,j 6=i

yj,σj
(x)



 y′i,σi
(x)





=

n∑

i=1




∑

σ∈Sn



sgn(σ)

n∏

j=1,j 6=i

yj,σj
(x)y′i,σi

(x)









=

n∑

i=1

det






· · · · · · · · ·
(

y
(i−1)
1 (x)

)′
· · ·

(

y
(i−1)
n (x)

)′

· · · · · · · · ·




 .

exercise for n = 2, 3. In the last step, again the Laplace formula for determinants was

applied. In the i-th row of the last matrix is the first derivative of the corresponding
row of the Wronski matrix, i.e. there is the i-th order derivative of (y1(x), . . . , yn(x)).

The rows with dots in this matrix coincide with the respective rows of W(x). For

i = 1, . . . , n − 1, the determinants vanish, since in these cases there are two identical
rows, namely row i and i+ 1. Thus, it is

d

dx
det(W(x)) = det











y1(x) . . . yn(x)

y′1(x) . . . y′n(x)
...

y
(n−2)
1 (x) . . . y

(n−2)
n (x)

y
(n)
1 (x) . . . y

(n)
n (x)











.

Now, one uses that y1(x), . . . , yn(x) are solutions of (A.5) and one replaces the n-th

derivative in the last row by (A.5). Using rules for the evaluation of determinants, one
obtains

d

dx
det(W(x)) =

n∑

i=1

−
ai−1(x)

an(x)
det








y1(x) . . . yn(x)
y′1(x) . . . y′n(x)

...

y
(i−1)
1 (x) . . . y

(i−1)
n (x)








.

Apart of the last term, all other determinants vanish, since all other terms have two

identical rows, namely the i-th row and the last row.

ii) This term is the solution of the initial value problem for the Wronski determinant and
the initial value W (x0), see the respective theorem in the lecture notes of Numerical

Mathematics I.

iii) This statement follows directly from ii) since the exponential does not vanish.

iv) exercise
�

Theorem A.14. Existence of a fundamental system, representation

of the solution of a homogeneous linear differential equation of n-
th order by the fundamental system. Let I = [a, b] with x0 ∈ I. The
homogeneous equation (A.5) has a fundamental system in I. Each solution of
(A.5) can be written as a linear combination of the solutions of an arbitrary
fundamental system.
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Proof. Consider n homogeneous initial value problems with the initial values

y
(i−1)
j (x0) = δij , i, j = 1, . . . , n.

Each of these initial value problems has a unique solution yj(x), see Theorem A.10. It is
W (x0) = 1 for these solutions. From Lemma A.13, iii), it follows that {y1(x), . . . , yn(x)}

is a fundamental system.
Let y(x) be an arbitrary solution of (A.5) with the initial values y(i−1)(x0) = ỹi−1,

i = 1, . . . , n, and {y1(x), . . . , yn(x)} an arbitrary fundamental system. The system








y1(x0) . . . yn(x0)

y′1(x0) . . . y′n(x0)
.
.
.

y
(n−1)
1 (x0) . . . y

(n−1)
n (x0)















c0
c1
...

cn−1








=








ỹ0
ỹ1
...

ỹn−1








has a unique solution since the matrix spanned by a fundamental system is not singular.

The function
∑n

i=1 ci−1yi(x) satisfies the initial conditions (these are just the equations

of the system) and, because of the superposition principle, it is a solution of (A.5). Since
the solution of the initial value problem to (A.5) is unique, Theorem A.10, it follows that

y(x) =
∑n

i=1 ci−1yi(x). �

Theorem A.15. Special solution of the inhomogeneous equation. Let
{y1(x), . . . , yn(x)} be a fundamental system of the homogeneous equation
(A.5) in I = [a, b]. In addition, let Wl(x) be the determinant, which is ob-
tained from the Wronski determinant W (x) with respect to {y1(x), . . . , yn(x)}
by replacing the l-th column by (0, 0, . . . , f(x)/an(x))

T . Then,

y(x) =
n∑

l=1

yl(x)

∫ x

x0

Wl(t)

W (t)
dt, x0, x ∈ I,

is a solution of the inhomogeneous equation (A.4).

Proof. The proof uses the principle of the variation of the constants. This principle will be

explained in a simpler setting in Remark A.27. For details of the proof, see the literature.
�

A.1.3 Linear n-th Order Differential Equations with

Constant Coefficients

Definition A.16. Linear differential equation of n-th order with con-

stant coefficients. A linear n-th order differential equation with constant
coefficients has the form

any
(n)(x) + an−1y

(n−1)(x) + . . .+ a1y
′(x) + a0y(x) = f(x), (A.7)

with ai ∈ R, i = 0, . . . , n, an 6= 0. ✷
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A.1.3.1 The Homogeneous Equation

Remark A.17. Basic approach for solving the homogeneous linear differential
equation of n-th order with constant coefficients. Because of the superposi-
tion principle, one needs the general solution of the homogeneous differential
equation. That means, one has to find a fundamental system, i.e. n linearly
independent solutions.

Consider
n∑

i=0

aiy
(i)
h (x) = 0. (A.8)

In the case of a differential equation of first order, i.e. n = 1,

a1y
′

h(x) + a0yh(x) = 0,

one can get the solution by the method of separating the variables (un-
knowns), see lecture notes of Numerical Mathematics I. One obtains

yh(x) = c exp

(

−
a0
a1

x

)

, c ∈ R.

One uses the same structural ansatz for computing the solution of (A.8)

yh(x) = eλx, λ ∈ C. (A.9)

It follows that
y′h(x) = λeλx, . . . , y

(n)
h (x) = λneλx.

Inserting into (A.8) gives

(
anλ

n + an−1λ
n−1 + . . .+ a1λ+ a0

)
eλx = 0. (A.10)

It is eλx 6= 0, also for complex λ. Because, using Euler’s formula, it holds for
λ = a+ ib, a, b ∈ R, that

eλx = eax (cos(bx) + i sin(bx)) = eax cos(bx) + ieax sin(bx).

A complex number is zero iff its real part and its imaginary part are vanish.
It is eax > 0 and there does not exist a (bx) ∈ R such that at the same time
sin(bx) and cos(bx) vanish. Hence, eλx 6= 0.

The equation (A.10) is satisfied iff one of the factors is equal to zero. Since
the second factor cannot vanish, it must hold

p(λ) := anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0 = 0.

The function p(λ) is called characteristic polynomial of (A.8). The roots of
the characteristic polynomial are the values of λ in the ansatz of yh(x).
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From the fundamental theorem of algebra it holds that p(λ) has exactly
n roots, which do not need to be mutually different. Since the coefficients of
p(λ) are real numbers, it follows that with each complex root λ1 = a + ib,
a, b ∈ R, b 6= 0, also its conjugate λ2 = a− ib is a root of p(λ).

It will be shown that the basic ansatz (A.9) is not sufficient in the case of
multiple roots. ✷

Theorem A.18. Linearly independent solutions in the case of real

roots with multiplicity k. Let λ0 ∈ R be a real root of the characteristic
polynomial p(λ) with multiplicity k, 1 ≤ k ≤ n. Then, one can obtain with
λ0 the k linearly independent solutions of (A.8)

yh,1(x) = eλ0x, yh,2(x) = xeλ0x, . . . , yh,k(x) = xk−1eλ0x. (A.11)

Proof. For k = 2.

yh,1(x), yh,2(x) solve (A.8). This statement is already clear for yh,1(x) since this func-
tion has the form of the ansatz (A.9). For yh,2(x) it holds

y′h,2(x) = (1 + λ0x) e
λ0x,

y′′h,2(x) =
(
2λ0 + λ2

0x
)
eλ0x,

...

y
(n)
h,2(x) =

(
nλn−1

0 + λn
0 x
)
eλ0x.

Inserting into the left-hand side of (A.8) yields

eλ0x

n∑

i=0

ai(iλ
i−1
0 + λi

0x) = eλ0x

(

x

n∑

i=0

aiλ
i
0

︸ ︷︷ ︸

p(λ0)

+

n∑

i=0

aiiλ
i
0

︸ ︷︷ ︸

p′(λ0)

)

. (A.12)

It is p(λ0) = 0, since λ0 is a root of p(λ). The second term is the derivative p′(λ) of p(λ)
at λ0. Since the multiplicity of λ0 is two, one can write p(λ) in the form

p(λ) = (λ− λ0)
2 p0(λ),

where p0(λ) is a polynomial of degree n− 2. It follows that

p′(λ) = 2 (λ− λ0) p0(λ) + (λ− λ0)
2 p′0(λ).

Hence, it holds p′(λ0) = 0, (A.12) vanishes, and yh,2(x) is a solution of (A.8).
yh,1(x), yh,2(x) are linearly independent. One has to show, Lemma A.13, that the Wron-

ski determinant does not vanish. It holds

W (x) = det

(
yh,1(x) yh,2(x)

y′
h,1(x) y′

h,2(x)

)

= det

(
eλ0x xeλ0x

λ0e
λ0x (1 + λ0x)eλ0x

)

= e2λ0x det

(
1 x

λ0 1 + λ0x

)

= e2λ0x (1 + λ0x− λ0x) = e2λ0x > 0

for all x ∈ I.



A.1 Ordinary Differential Equations of Higher Order 87

Roots of multiplicity k > 2. The principle proof is analogous to the case k = 2, where one
uses the factorization p(λ) = (λ− λ0)

k p0(λ). The computation of the Wronski determinant
becomes more involved. �

Remark A.19. Complex roots. The statement of Theorem A.18 is true also
for complex roots of p(λ). The Wronski determinant is e2λ1x 6= 0. However,
the corresponding solutions, e.g.

ỹ1,h(x) = eλ1x = e(a+ib)x

are complex-valued. Since one has real coefficients in (A.8), one likes to ob-
tain also real-valued solutions. Such solutions can be constructed from the
complex-valued solutions.

Let λ1 = a+ ib, λ1 = a− ib, a, b ∈ R, b 6= 0, be a conjugate complex roots
of p(λ), then one obtains with Euler’s formula

eλ1x = e(a+ib)x = eax (cos(bx) + i sin(bx)) ,

eλ1x = e(a−ib)x = eax (cos(bx)− i sin(bx)) .

Because of the superposition principle, each linear combination is also solu-
tion of (A.8). ✷

Theorem A.20. Linearly independent solution for simple conjugate

complex roots. Let λ1 ∈ C, λ1 = a+ib, b 6= 0, be a simple conjugate complex
root of the characteristic polynomial p(λ) with real coefficients. Then,

yh,1(x) = Re
(
eλ1x

)
= eax cos(bx), yh,2(x) = Im

(
eλ1x

)
= eax sin(bx),

are real-valued, linearly independent solutions of (A.8).

Proof. Use the superposition principle for proving that the functions are solutions and

the Wronski determinant for proving that they are linearly independent, exercise. �

Theorem A.21. Linearly independent solution for conjugate com-

plex roots with multiplicity greater than one. Let λ1 ∈ C, λ1 = a+ ib,
b 6= 0, be a conjugate complex root with multiplicity k of the characteristic
polynomial p(λ) with real coefficients. Then,

yh,1(x) = eax cos(bx), . . . , yh,k(x) = xk−1eax cos(bx),

yh,k+1(x) = eax sin(bx), . . . , yh,2k(x) = xk−1eax sin(bx) (A.13)

are real-valued, linearly independent solutions of (A.8).

Proof. The proof is similarly to the previous theorems. �

Theorem A.22. Fundamental system for (A.8). Let p(λ) be the charac-
teristic polynomial of (A.8) with the roots λ1, . . . , λn ∈ C, where the roots
are counted in correspondence to their multiplicity. Then, the set of solutions
of form (A.11) and (A.13) form a fundamental system of (A.8).
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Proof. A real root with multiplicity k gives k linearly independent solutions and a con-
jugate complex root with multiplicity k gives 2k linearly independent solutions. Thus, the
total number of solutions of form (A.11) and (A.13) is equal to the number of roots of p(λ).
This number is equal to n, because of the fundamental theorem of algebra. It is known

from Theorem A.14 that a fundamental system has exactly n functions. Altogether, the
correct number of functions is there.

One can show that solutions that correspond to different roots are linearly independent,

e.g., (Günther et al., 1974, p. 75). The linearly independence of the solutions that belong
to the same root, was already proved. �

Example A.23. Homogeneous second order linear differential equation with
constant coefficients.

1. Consider
y′′(x) + 6y′(x) + 9y(x) = 0.

The characteristic polynomial is

p(λ) = λ2 + 6λ+ 9

with the roots λ1 = λ2 = −3. One obtains the fundamental system

yh,1(x) = e−3x, yh,2(x) = xe−3x.

The general solution of the homogeneous equation has the form

yh(x) = c1yh,1(x) + c2yh,2(x) = c1e
−3x + c2xe

−3x, c1, c2 ∈ R.

2. Consider

y′′(x) + 4y(x) = 0 =⇒ p(λ) = λ2 + 4 =⇒ λ1,2 = ±2i.

It follows that

yh,1(x) = cos(2x), yh,2(x) = sin(2x)

yh(x) = c1 cos(2x) + c2 sin(2x), c1, c2 ∈ R.

✷

A.1.3.2 The Inhomogeneous Equation

Remark A.24. Goal. Because of the superposition principle, a special solution
of (A.7) has to be found. This section sketches several possibilities to obtain
such a solution. ✷

Remark A.25. Appropriate ansatz (Störgliedansätze). If the right-hand side
f(x) possesses a special form, it is possible to obtain a solution of the inho-
mogeneous equation (A.7) with an appropriate ansatz. From (A.7) it becomes
clear, that this way works only if on the left-hand side and the right-hand
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side of the equation are the same types of functions. In particular, one needs
the same types of functions for yi(x) and all derivatives up to order n. This
approach works, e.g., for the following classes of right-hand sides:

• f(x) is a polynomial

f(x) = b0 + b1x+ . . .+ bmxm, bm 6= 0.

The appropriate ansatz is also a polynomial

yi(x) = xk (c0 + c1x+ . . .+ cmxm) ,

where 0 is a root of p(λ) with multiplicity k.
• If the right-hand side is

f(x) = (b0 + b1x+ . . .+ bmxm) eax,

then one can use the following ansatz

yi(x) = xk (c0 + c1x+ . . .+ cmxm) eax,

where a is a root of p(λ) with multiplicity k. The first class of functions
is just a special case for a = 0.

• For right-hand sides of the form

f(x) = (b0 + b1x+ . . .+ bmxm) cos(bx),

f(x) = (b0 + b1x+ . . .+ bmxm) sin(bx),

one can use the ansatz

yi(x) = xk (c0 + c1x+ . . .+ cmxm) cos(bx)

+xk (d0 + d1x+ . . .+ dmxm) sin(bx),

if ib is a root of p(λ) with multiplicity k.

One can find the ansatz for more right-hand sides in the literature, e.g. in
Heuser (2006). ✷

Example A.26. Appropriate ansatz (Störgliedansatz). Consider

y′′(x)− y′(x) + 2y(x) = cosx.

The appropriate ansatz is given by

yi(x) = a cosx+ b sinx =⇒

y′i(x) = −a sinx+ b cosx =⇒

y′′i (x) = −a cosx− b sinx.

Inserting into the equation gives
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−a cosx− b sinx+ a sinx− b cosx+ 2a cosx+ 2b sinx = cosx =⇒

(−a− b+ 2a) cosx+ (−b+ a+ 2b) sinx = cosx.

The last equation is satisfied if the numbers a, b solve the following linear
system of equations

a− b = 1, a+ b = 0 =⇒ a =
1

2
, b = −

1

2
.

One obtains the special solution

yi(x) =
1

2
(cosx− sinx) .

✷

Remark A.27. Variation of the constants. If one cannot find an appropriate
ansatz, then one can try the variation of the constants. This approach will
be demonstrated for the second order differential equation

y′′(x) + a1y
′(x) + a0y(x) = f(x). (A.14)

Let yh,1(x), yh,2(x) be two linearly independent solutions of the homogeneous
differential equation such that

yh(x) = c1yh,1(x) + c2yh,2(x)

is the general solution of the homogeneous equation. Now, one makes the
ansatz

yi(x) = c1(x)yh,1(x) + c2(x)yh,2(x)

with two unknown functions c1(x), c2(x). The determination of these func-
tions requires two conditions. One has

y′i(x) = c′1(x)yh,1(x) + c1(x)y
′

h,1(x) + c′2(x)yh,2(x) + c2(x)y
′

h,2(x)

= (c′1(x)yh,1(x) + c′2(x)yh,2(x)) + c1(x)y
′

h,1(x) + c2(x)y
′

h,2(x).

Now, one sets the term in the parentheses zero. This is the first condition. It
follows that

y′′i (x) = c′1(x)y
′

h,1(x) + c1(x)y
′′

h,1(x) + c′2(x)y
′

h,2(x) + c2(x)y
′′

h,2(x).

Inserting this expression into (A.14) gives
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f(x) = c′1(x)y
′

h,1(x) + c1(x)y
′′

h,1(x) + c′2(x)y
′

h,2(x) + c2(x)y
′′

h,2(x)

+a1
(
c1(x)y

′

h,1(x) + c2(x)y
′

h,2(x)
)
+ a0 (c1(x)yh,1(x) + c2(x)yh,2(x))

= c1(x)
(
y′′h,1(x) + a1y

′

h,1(x) + a0yh,1(x)
)

︸ ︷︷ ︸

=0

+c2(x)
(
y′′h,2(x) + a1y

′

h,2(x) + a0yh,2(x)
)

︸ ︷︷ ︸

=0

+c′1(x)y
′

h,1(x) + c′2(x)y
′

h,2(x).

This is the second condition. Summarizing both conditions gives the following
system of equations

(
yh,1(x) yh,2(x)
y′h,1(x) y

′

h,2(x)

)(
c′1(x)
c′2(x)

)

=

(
0

f(x)

)

.

This system possesses a unique solution since yh,1(x), yh,2(x) are linearly
independent from what follows that the determinant of the system matrix,
which is just the Wronksi matrix, is not equal to zero. The solution is

c′1(x) = −
f(x)yh,2(x)

yh,1(x)y′h,2(x)− y′h,1(x)yh,2(x)
, c′2(x) =

f(x)yh,1(x)

yh,1(x)y′h,2(x)− y′h,1(x)yh,2(x)
.

The success of the method of the variation of the constants depends only on
the difficulty to find the primitives of c′1(x) and c′2(x).

For equations of order higher than two, one has the goal to get a lin-
ear system of equations for c′1(x), . . . , c

′

n(x). To this end, one sets for each
derivative of the ansatz the terms with c′1(x), . . . , c

′

n(x) equal to zero. The
obtained linear system of equations has as matrix the Wronski matrix and
as right-hand side a vector, whose first (n− 1) components are equal to zero
and whose last component is f(x). ✷

Example A.28. Variation of the constants. Find the general solution of

y′′(x) + 6y′(x) + 9y(x) =
e−3x

1 + x
.

The general solution of the homogeneous equation is

yh(x) = c1e
−3x + c2xe

−3x,

see Example A.23. The variation of the constants leads to the following system
of linear equations

(
e−3x xe−3x

−3e−3x (1− 3x)e−3x

)(
c′1(x)
c′2(x)

)

=

(
0

e−3x

1+x

)

.

Using, e.g., the Cramer rule, gives
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c′1(x) = −
e−6x

(
x

1+x

)

(1− 3x+ 3x)e−6x
= −

x

1 + x
,

c′2(x) =
e−6x

(
1

1+x

)

(1− 3x+ 3x)e−6x
=

1

1 + x
.

One obtains

c1(x) = −

∫
x

1 + x
dx = −

∫
1 + x

1 + x
dx+

∫
1

1 + x
dx = −x+ ln |1 + x| ,

c2(x) =

∫
1

1 + x
dx = ln |1 + x| .

Thus, one gets

yi(x) = (−x+ ln |1 + x|) e−3x + ln |1 + x|xe−3x

and one obtains for the general solution

y(x) = (−x+ ln |1 + x|+ c1) e
−3x + (ln |1 + x|+ c2)xe

−3x.

Inserting this function into the equation proves the correctness of the result.
✷

A.2 Linear Systems of Ordinary Differential Equations

of First Order

A.2.1 Definition, Existence and Uniqueness of a

Solution

Definition A.29. Linear system of first order differential equations.

In a linear system of ordinary differential equations of first order one tries
to find functions y1(x), . . . , yn(x) : I → R, I = [a, b] ⊂ R, that satisfy the
system

y′i(x) =

n∑

j=1

aij(x)yj(x) + fi(x), i = 1, . . . , n,

or in matrix-vector notation

y′(x) = A(x)y(x) + f(x) (A.15)

with
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y(x) =






y1(x)
...

yn(x)




 , y′(x) =






y′1(x)
...

y′n(x)




 ,

A(x) =






a11(x) · · · a1n(x)
...

. . .
...

an1(x) · · · ann(x)




 , f(x) =






f1(x)
...

fn(x)




 ,

where aij(x), fi(x) ∈ C(I). If f(x) ≡ 0, then the system is called homoge-
neous. ✷

Theorem A.30. Superposition principle for linear systems. Consider
the linear system of ordinary differential equations (A.15), then the superpo-
sition principle holds:

i) If y1(x) and y2(x) are two solutions of the homogeneous systems, then
c1y1(x) + c2y2(x), c1, c2 ∈ R, is a solution of the homogeneous system,
too.

ii) If y0(x) is a solution of the inhomogeneous system and y1(x) is a solu-
tion of the homogeneous system, then y0(x) + y1(x) is a solution of the
inhomogeneous system.

iii) If y1(x) and y2(x) are two solutions of the inhomogeneous system, then
y1(x)− y2(x) is a solution of the homogeneous system.

Proof. Direct calculations, exercise. �

Corollary A.31. General solution of the inhomogeneous system.

i) If y1(x),y2(x), . . . ,yk(x) are solutions of the homogeneous system, then

any linear combination
∑k

i=1 ciyi(x), c1, . . . , ck ∈ R, is also a solution of
the homogeneous system.

ii) The general solution of the inhomogeneous system is the sum of a spe-
cial solution of the inhomogeneous system and the general solution of the
homogeneous system.

Theorem A.32. Existence and uniqueness of a solution of the initial

value problem. Let I = [x0 − a, x0 + a] and aij ∈ C(I), fi ∈ C(I), i, j =
1, . . . , n. Then, there is exactly one solution y(x) : I → R

n of the initial
value problem to (A.15) with the initial value y(x0) = y0 ∈ R

n.

Proof. The statement of the theorem follows from the theorem on global existence and
uniqueness of a solution of an initial value problem from Picard–Lindelöf, see lecture notes

Numerical Mathematics I or the literature.

Since the functions aij(x) are continuous on the closed (compact) interval I, they are
also bounded due to the Weierstrass theorem. That means, there is a constant M with

|aij(x)| ≤ M, x ∈ I, i, j = 1, . . . , n.

Denoting the right hand side of (A.15) by f(x,y), it follows that
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‖f(x,y1)− f(x,y2)‖∞ = max
i=1,...,n

|fi(x,y1)− fi(x,y2)|

= max
i=1,...,n

∣
∣
∣
∣
∣
∣

n∑

j=1

aij(x)y1,j(x) + fi(x)−

n∑

j=1

aij(x)y2,j(x)− fi(x)

∣
∣
∣
∣
∣
∣

= max
i=1,...,n

∣
∣
∣
∣
∣
∣

n∑

j=1

aij(x) (y1,j(x)− y2,j(x))

∣
∣
∣
∣
∣
∣

≤ n max
i,j=1,...,n

|aij(x)| max
i=1,...,n

|y1,i(x)− y2,i(x)|

≤ nM ‖y1 − y2‖∞ ,

i.e. the right hand side satisfies a uniform Lipschitz condition with respect to y with the

Lipschitz constant nM . Hence, the assumptions of the theorem on global existence and
uniqueness of a solution of an initial value problem from Picard–Lindelöf are satisfied. �

A.2.2 Solution of the Homogeneous System

Remark A.33. Scalar case. Because of the superposition principle, one needs
the general solution of the homogeneous system

y′(x) = A(x)y(x) (A.16)

for finding the general solution of (A.15). The homogeneous system has al-
ways the trivial solution y(x) = 0.

In the scalar case y′(x) = a(x)y(x), the general solution has the form

y(x) = c exp

(∫ x

x0

a(t) dt

)

, c ∈ R, x0 ∈ (a, b),

see lecture notes Numerical Mathematics I or the literature. Also for the
system (A.16), it is possible to specify the general solution with the help of
the exponential. ✷

Theorem A.34. General solution of the homogeneous linear system

of first order. The general solution of (A.16) is

yh(x) = e
∫

x

x0
A(t) dt

c, c ∈ R
n, x0 ∈ (a, b). (A.17)

The integral is defined component-wise.

Proof. i) (A.17) is a solution of (A.16). This statement follows from the derivative of
the matrix exponential and the rule on the differentiation of an integral with respect to
the upper limit

y′
h(x) =

d

dx

(

e

∫
x
x0

A(t) dt
c

)

=
d

dx

(∫ x

x0

A(t) dt

)

e

∫
x
x0

A(t) dt
c = A(x)e

∫
x
x0

A(t) dt
c.
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ii) every solution of (A.16) is of form (A.17). Consider an arbitrary solution ỹh(x) of
(A.16) with ỹh(x0) ∈ Rn. Take in (A.17) c = ỹh(x0). Then, it follows that

yh(x0) = e

∫
x0
x0

A(t) dt
ỹh(x0) = e0

︸︷︷︸

=I

ỹh(x0) = ỹh(x0).

That means, e
∫
x
x0

A(t) dt
ỹh(x0) is a solution of (A.16) which has in x0 the same initial

value as ỹh(x). Since the solution of the initial value problem is unique, Theorem A.32, it

follows that ỹh(x) = e

∫
x
x0

A(t) dt
ỹh(x0). �

A.2.3 Linear Systems of First Order with Constant

Coefficients

Remark A.35. Linear system of first order differential equations with constant
coefficients. A linear system of first order differential equations with constant
coefficients has the form

y′(x) = Ay(x) + f(x), A =






a11 · · · a1n
...

. . .
...

an1 · · · ann




 ∈ R

n×n. (A.18)

Thus, the homogeneous system has the form

y′(x) = Ay(x). (A.19)

Its general solution is given by

yh(x) = eAxc, c ∈ R
n, (A.20)

see Theorem A.34. ✷

Remark A.36. Elimination method, substitution method for the homogeneous
system. One needs, due to the superposition principle, the general solution of
the homogeneous system. In practice, it is generally hard to compute exp(Ax)
because it is defined by an infinity series. For small systems, i.e. n ≤ 3, 4, one
can use the elimination or substitution method for computing the general
solution of (A.19). This method is already known from the numerical solution
of linear systems of equations. One solves one equation for a certain unknown
function yi(x) and inserts the result into the other equations. For differential
equations, the equation has to be differentiated, see Example A.37. This
step reduces the dimension of the system by one. One continues with this
method until one reaches an equation with only one unknown function. For
this function, a homogeneous linear differential equation of order n has to
be solved, see Section A.1.3. The other components of the solution vector of
(A.19) can be obtained by back substitution. ✷
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Example A.37. Elimination method, substitution method. Find the solution
of

y′(x) =

(
−3 −1
1 −1

)

y(x) ⇐⇒ y′1(x) = −3y1(x)−y2(x), y
′

2(x) = y1(x)−y2(x).

Solving the second equation for y1(x) and differentiating gives

y1(x) = y′2(x) + y2(x), y′1(x) = y′′2 (x) + y′2(x).

Inserting into the first equation yields

y′′2 (x)+y′2(x) = −3 (y′2(x) + y2(x))−y2(x) ⇐⇒ y′′2 (x)+4y′2(x)+4y2(x) = 0.

The general solution of this equation is

y2(x) = c1e
−2x + c2xe

−2x, c1, c2 ∈ R.

One obtains from the second equation

y1(x) = y′2(x) + y2(x) = (−c1 + c2) e
−2x − c2xe

−2x.

Thus, the general solution of the given linear system of differential equations
with constant coefficients is computed by

y =

(
−c1 + c2

c1

)

e−2x +

(
−c2
c2

)

xe−2x.

Note that one can choose the constants in y2(x), but the constants in y1(x)
are determined by the back substitution. If the constants should be choosen
by y1(x), one obtains

y =

(
C1

C2 − C1

)

e−2x +

(
C2

−C2

)

xe−2x.

If an initial condition is given, then corresponding constants can be deter-
mined. ✷

Remark A.38. Other methods for computing the general solution of the ho-
mogeneous system. There are also other methods for computing the general
solution of (A.19).

• The idea of the method of main-vectors and eigenvectors consists in trans-
forming the system to a triangular system. Then it is possible to solve
the equations successively. To this end, one constructs with the so-called
main-vectors and eigenvectors an invertible matrix C ∈ R

n×n such that
C−1AC is a triangular matrix. One can show that such a matrix C exists
for each A ∈ R

n×n. Then, one sets
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y(x) = Cz(x) =⇒ y′(x) = Cz′(x).

Inserting into (A.19) yields

Cz′(x) = ACz(x) ⇐⇒ z′(x) = C−1ACz(x).

This is a triangular system for z(x), which is solved successively for the
components of z(x). The solution of (A.19) is obtained by computing
Cz(x).

• The method of matrix functions is based on an appropriate ansatz for the
solution.

However, the application of both methods becomes very time-consuming for
larger n, see the literature. ✷

Remark A.39. Methods for determining a special solution of the inhomoge-
neous system. For computing the general solution of the inhomogeneous sys-
tem of linear differential equations of first order with constant coefficients,
one needs also a special solution of the inhomogeneous system. There are
several possibilities for obtaining this solution:

• Method of the variation of constants. One replaces c in (A.20) by c(x),
inserts this expression into (A.18), obtains conditions for c′(x), and tries
to compute c(x) from these conditions.

• Appropriate ansatz (Störgliedansätze). If each component of the right
hand side f(x) has a special form, e.g., a polynomial, sine, cosine, or
exponential, then it is often possible to find the special solution with an
appropriate ansatz.

• Method of elimination. If the right hand side of f(x) of (A.18) is (n− 1)
times continuously differentiable, then one can proceed exactly as in the
elimination method. One obtains for one component of y(x) an inhomoge-
neous ordinary differential equation of order n with constant coefficients,
for which one has to find a special solution. A special solution for (A.18)
is obtained by back substitution.

✷


