
Chapter 2

Numerical Methods for Stiff Ordinary
Differential Equations

2.1 Stiff Ordinary Differential Equations

Remark 2.1. Stiffness. It was observed in Curtiss & Hirschfelder (1952) that
explicit methods failed for the numerical solution of initial value problems for
ordinary differential equations that model certain chemical reactions. They
introduced the notation stiffness for such chemical reactions where the fast
reacting components arrive in a very short time in their equilibrium and
the slowly changing components are more or less fixed, i.e., stiff. In 1963,
Dahlquist found out that the reason for the failure of explicit Runge–Kutta
methods is their bad stability, see Section 2.3. It should be emphasized that
the stability properties of the equations themselves are good, it is in fact a
problem of the explicit methods.

There is no unique definition of stiffness in the literature. However, essen-
tial properties of stiff systems are as follows:

• There exist, for certain initial conditions, solutions that change slowly.
• Solutions in a neighborhood of these smooth solutions converge quickly
to them.

A definition of stiffness can be found in (Strehmel & Weiner, 1995, p. 202),
(Strehmel et al., 2012, p. 208). This definition involves a certain norm that
depends on the equation and it might be complicated to evaluate this norm.
If the solution of (1.1) is sought in the interval [x0, xe] and if the right-hand
side of (1.1) is Lipschitz continuous in the second argument with Lipschitz
constant L, then an approximation of this definition is as follows. A system
of ordinary differential equations is called stiff if

L (xe − x0) � 1. (2.1)

The term on the left-hand side corresponds to the term in the exponential of
the error bound (1.7) for the global error. Thus, the first factor in the error
bound is very large.

Another definition of stiffness will be given in Definition 2.28. ✷
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Fig. 2.1 Solutions of Example 2.2, left: first component, right: second component.

Example 2.2. Stiff system of ordinary differential equations. Consider the sys-
tem

y�1 = −80.6y1 + 119.4y2,

y�2 = 79.6y1 − 120.4y2,

in (0, 1). This system is a linear system of ordinary differential equations that
can be written in the form

y� =

�
−80.6 119.4
79.6 −120.4

�
y.

Taking as Lipschitz constant, e.g., the l1 norm of the system matrix (column
sums), one gets L = 239.8 and condition (2.1) is satisfied. The general solution
of this system is, compare Appendix A.2.3,

y(x) = c1

�
3
2

�
e−x + c2

�
−1
1

�
e−200x.

The first component is the slowly changing one and the second component the
quickly (close to x = 0) changing one. The constants are determined by the
initial condition. If the initial condition is such that c2 = 0, then the solution
is smooth for all x > 0. Otherwise, if c2 �= 0, then the solutions changes
rapidly for small x while approaching the smooth solution, see Figure 2.1 ✷

2.2 Implicit Runge–Kutta Schemes

Remark 2.3. Motivation. If the upper triangular part of the matrix of a
Runge–Kutta method, see Definition 1.22, is not identical to zero, the Runge–
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Kutta method is called implicit. That means, there are increments that de-
pend not only on previously computed increments but also on not yet com-
puted increments. Thus, one has to solve a nonlinear problem for computing
these increments. Consequently, the implementation of implicit Runge–Kutta
methods is much more involved compared with the implementation of ex-
plicit Runge–Kutta methods. Generally, performing one step of an implicit
method is much more time-consuming than for an explicit method. However,
the great advantage of implicit methods is that they can be used for the
numerical simulation of stiff systems, see the stability theory in Section 2.3.

✷

Remark 2.4. Derivation of implicit Runge–Kutta methods. Implicit Runge–
Kutta schemes can be derived from the integral representation (1.8) of the
initial value problem. One can show that for each implicit Runge–Kutta
scheme with the weights bj and the nodes xk + cjh there is a corresponding
quadrature rule with the same weights and the same nodes, see the section
on Gaussian quadrature in Numerical Mathematics I. ✷

Example 2.5. Gauss–Legendre quadrature. Consider the interval [xk, xk+h] =
[xk, xk+1]. Let c1, . . . , cs be the roots of the Legendre polynomial Ps(t) of
degree s with the arguments

t =
2

h
(x− xk)− 1 =⇒ t ∈ [−1, 1].

There are s mutually distinct real roots in (−1, 1). After having computed
c1, . . . , cs, one can determine the coefficients aij , bj such that one obtains a
method of order 2s, see Example 2.8. ✷

Remark 2.6. Simplifying order conditions. The order conditions for an im-
plicit Runge–Kutta scheme with s stages are the same as given in Theo-
rems 1.26, 1.27, and Remark 1.28. These conditions lead to a nonlinear system
of equations for computing the parameters of the scheme. These computa-
tions are generally quite complicated.

A useful tool for solving this problem are the so-called simplifying order
conditions, introduced in Butcher (1964):

B(p) :

s�

i=1

bic
k−1
i =

1

k
, k = 1, . . . , p,

C(l) :

s�

j=1

aijc
k−1
j =

1

k
cki , i = 1, . . . , s, k = 1, . . . , l, (2.2)

D(m) :

s�

i=1

bic
k−1
i aij =

1

k
bj

�
1− ckj

�
, j = 1, . . . , s, k = 1, . . . ,m,

with 00 = 1.
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One can show that for sufficiently large values l and m, the conditions
C(l) and D(m) can be reduced to B(p) with appropriate p. ✷

Remark 2.7. Interpretation of B(p) and C(l). Consider the initial value prob-
lem

y�(x) = f(x), y(x0) = 0.

With the fundamental theorem of differential calculus, one sees that this
problem has the solution

y(x0 + h) =

� x0+h

x0

f(ξ) dξ = h

� 1

0

f (x0 + hθ) dθ.

A Runge–Kutta method with s stages gives

y1 = h

s�

i=1

bif (x0 + cih) .

Consider in particular the case that f(x) is a polynomial f(x) = (x−x0)
k−1,

k ∈ N \ {0}. Then, the analytical solution has the form

y(x0 + h) = h

� 1

0

(hθ)
k−1

dθ =
(hθ)k

k

�����

θ=1

θ=0

=
hk

k
. (2.3)

The Runge–Kutta scheme yields

y1 = h

s�

i=1

bi(cih)
k−1 = hk

s�

i=1

bic
k−1
i . (2.4)

Comparing (2.3) and (2.4), one can observe that condition B(p) means that
the quadrature rule that is the basis of the Runge–Kutta method is exact for
polynomials of degree (p− 1).

Condition C(1) is (1.14) with the upper limit s

ci =

s�

j=1

aij , i = 1, . . . , s. (2.5)

✷

Example 2.8. Classes of implicit Runge–Kutta schemes.

• Gauss–Legendre schemes. The nodes of the Gauss–Legendre quadrature
are used. A method with s stages possesses the maximal possible order
2s, where all nodes are in the interior of the intervals. To get the optimal
order, one has to show that B(2s), C(s), D(s) are satisfied, see (Strehmel
et al., 2012, Section 8.1.2), i.e.,
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s�

i=1

bic
k−1
i =

1

k
, k = 1, . . . , 2s,

s�

j=1

aijc
k−1
j =

1

k
cki , i = 1, . . . , s, k = 1, . . . , s, (2.6)

s�

i=1

bic
k−1
i aij =

1

k
bj

�
1− ckj

�
, j = 1, . . . , s, k = 1, . . . , s.

An example is the implicit mid point rule, whose coefficients can be de-
rived by setting s = 1 in (2.6). One obtains the following conditions

b1 = 1, b1c1 =
1

2
, a11 = c1, b1a11 = b1 (1− c1) .

Consequently, the implicit mid point rule is given by

1/2 1/2

1
.

• Gauss–Radau1 methods. These methods are characterized by the feature
that one of the end points of the interval [xk, xk+1] belongs to the nodes.
A method of this class with s stages has at most order 2s− 1.
Examples (s = 1):

◦ 0 1

1
s = 1, p = 1,

◦ 1 1

1
s = 1, p = 1, implicit Euler scheme.

The first scheme does not satisfy condition (2.5).
• Gauss–Lobatto2 methods. In these methods, both end points of the interval
[xk, xk+1] are nodes. A method of this kind with s stages cannot be of
higher order than (2s− 2).
Examples:

◦ trapezoidal rule, Crank3–Nicolson4 scheme

0 0 0
1 1/2 1/2

1/2 1/2
s = p = 2.

1
Rodolphe Radau (1835 – 1911)

2
Rehuel Lobatto (1797 – 1866)

3
John Crank (1916 – 2006)

4
Phyllis Nicolson (1917 – 1968)
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◦ other scheme
0 1/2 0
1 1/2 0

1/2 1/2
s = 2, p = 2.

The second scheme does not satisfy condition (2.5).

✷

Remark 2.9. Diagonally implicit Runge–Kutta methods (DIRK methods). For
an implicit Runge–Kutta method with s stages and a full matrix A, one has
to solve a coupled nonlinear system for the increments K1(x, y), . . . ,Ks(x, y).
This step is expensive for a large number of stages s. A compromise is the
use of so-called diagonally implicit Runge–Kutta (DIRK) methods

c1 a11 0 0 · · · 0
c2 a21 a22 0 · · · 0
c3 a31 a32 a33 · · · 0
...

...
...

. . .

cs as1 as2 · · · ass
b1 b2 · · · bs−1 bs

.

In DIRK methods, one has to solve s independent nonlinear equations for the
increments. In the equation forKi(x, y), only the stagesK1(x, y), . . . ,Ki(x, y)
appear, where K1(x, y), . . . ,Ki−1(x, y) were already computed. ✷

2.3 Linear Stability Theory

Remark 2.10. On the stability theory. The stability theory studies numerical
methods for solving the linear initial value problem

y�(x) = λy(x), y(0) = 1, λ ∈ C. (2.7)

It will turn out the even at the simple initial value problem (2.7) the most
important stability properties of numerical methods can be explored. The
solution of (2.7) is

y(x) = eλx.

If the initial condition will be slightly perturbed to be 1+δ0, then the solution
of the perturbed initial value problem is

ỹ(x) = (1 + δ0)e
λx = eλx + δ0e

λx.

If λ = a+ ib with a = Re(λ) > 0, then the difference
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|y(x)− ỹ(x)| =
���δ0eλx

��� = |δ0| |eax|
���eibx

��� = |δ0| |eax|

becomes for each δ0 �= 0 arbitrarily large if x is sufficiently large. That means,
the initial value problem (2.7) is not stable in this case. In this situation, one
cannot expect that any numerical method is stable. Hence, this situation is
not of interest for numerical simulations.

In contrast, if Re(λ) < 0, then the difference |y(x)− ỹ(x)| becomes arbi-
trarily small and the initial value problem is stable, i.e., small changes of the
data result only in small changes of the solution. For Re(λ) = 0, the difference
|y(x)− ỹ(x)| is at least bounded. These cases, in particular the first one, are
of interest for the stability theory of methods for solving ordinary differential
equations.

This section considers one-step methods with equidistant meshes with step
size h. The solution of (2.7) in the node xk+1 = (k + 1)h is

y(xk+1) = eλxk+1 = eλ(xk+h) = eλheλxk = eλhy(xk) =: ezy(xk),

with z := λh ∈ C, Re(z) ≤ 0. Now, it will be studied how the step from xk

to xk+1 looks like for different one-step methods. In particular, large steps
are of interest, i.e., |z| → ∞. ✷

Example 2.11. Behavior of different one-step methods for one step of the
model problem (2.7).

1. Explicit Euler method. The general form of this method is

yk+1 = yk + hf (xk, yk) .

In particular, one obtains for (2.7)

yk+1 = yk + hλyk = (1 + z) yk =: R(z)yk.

It holds, independently of Re(z), that lim|z|→∞ |R(z)| = ∞.
2. Implicit Euler method. This method has the form

yk+1 = yk + hf (xk+1, yk+1) .

For applying it to (2.7), one can rewrite it as follows

yk+1 = yk + hλyk+1 ⇐⇒
(1− z)yk+1 = yk ⇐⇒

yk+1 =
1

1− z
yk =

�
1 +

z

1− z

�
yk =: R(z)yk.

For this method, one has, independently of Re(z), that lim|z|→∞ |R(z)| =
0.

3. Trapezoidal rule. The general form of this method is
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yk+1 = yk +
h

2
(f(xk, yk) + f(xk+1, yk+1)) ,

which can be derived from the Butcher tableau given in Example 2.8. For
the linear differential equation (2.7), one gets

yk+1 = yk +
h

2
(λyk + λyk+1) ⇐⇒

�
1− z

2

�
yk+1 =

�
1 +

z

2

�
yk ⇐⇒

yk+1 =
1 + z/2

1− z/2
yk =

�
1 +

z

1− z/2

�
yk =: R(z)yk.

Let z = 2r (cos(φ) + i sin(φ)). Inserting this expression gives

lim
|z|→∞

����
1 + z/2

1− z/2

���� = lim
r→∞

����
1 + r (cos(φ) + i sin(φ))

1− r (cos(φ) + i sin(φ))

����

= lim
r→∞

����
1/r + (cos(φ) + i sin(φ))

1/r − (cos(φ) + i sin(φ))

����

=
|(cos(φ) + i sin(φ))|
|− (cos(φ) + i sin(φ))| =

1

1
= 1.

Hence, one has that lim|z|→∞ |R(z)| = 1 for the trapezoidal rule, inde-
pendently of φ, and with that independently of Re(z).

The function R(z) describes for each method the step from xk to xk+1. Thus,
this function is an approximation of ez, which has for different methods dif-
ferent properties, e.g., the limit for |z| → ∞. ✷

Definition 2.12. Stability function. Let 1 = (1, . . . , 1)T ∈ Rs, Ĉ = C ∪
∞, where ∞ has to be understood as in function theory (Riemann sphere),
and consider a Runge–Kutta method with s stages and with the parameters
(A, b, c). Then, the function

R : Ĉ → Ĉ, z �→ 1 + zbT (I − zA)−11 (2.8)

is called stability function of the Runge–Kutta method. ✷

Remark 2.13. Stability functions from Example 2.11. All stability functions
from Example 2.11 can be written in the form (2.8). One obtains, e.g., for
the trapezoidal rule

b =

�
1/2
1/2

�
, I − zA =

�
1 0
− z

2 1− z
2

�
, (I − zA)

−1
=

1

1− z
2

�
1− z

2 0
z
2 1

�
,

from what follows that
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1 + zbT (I − zA)−11 = 1 +
z

1− z/2

�
1

2
− z

4
+

z

4
+

1

2

�
= 1 +

z

1− z/2
.

✷

Theorem 2.14. Form of the stability function of Runge–Kutta meth-
ods. Given a Runge–Kutta scheme with s stages and with the parameters
(A, b, c), then the stability function R(z) is a rational function defined on Ĉ,
whose polynomial order in the numerator and in the denominator is at most
s. The poles of this functions might be only at values that correspond to the
inverse of an eigenvalue of A. For an explicit Runge–Kutta scheme, R(z) is
a polynomial.

Proof. Consider first an explicit Runge–Kutta scheme. In this case, the matrix A is a

strictly lower triangular matrix. Hence, I − zA is a triangular matrix with the values one

at its main diagonal. This matrix is invertible and it is

(I − zA)
−1

= I + zA+ . . .+ z
s−1

A
s−1

, (2.9)

which can be checked easily by multiplication with (I − zA) and using that A
s
= 0 since

A is strictly lower triangular. It follows from (2.8) and (2.9) that R(z) is a polynomial in

z of degree at most s.
Now, the general case will be considered. The expression (I−zA)

−1
1 can be interpreted

as the solution of the linear system of equations (I − zA)ζ = 1. Using the Cramer rule,

one finds that the i-th component of the solution has the form

ζi =
detAi

det(I − zA)
,

where Ai is the matrix that is obtained by replacing the i-th column of (I − zA) by the
right-hand side, i.e., by 1. The numerator of ζi is a polynomial in z of order at most (s−1)

since there is one column where z does not appear. The denominator is a polynomial of

degree at most s. Multiplying with zb
T
from the left-hand side gives just a rational function

with polynomials of at most degree s both in the numerator and in the denominator.

There is only one case where this approach does not work, namely if

det(I − zA) = det(z(I/z −A)) = z
s
det(I/z −A) = 0,

i.e., if 1/z is an eigenvalue of A. �

Theorem 2.15. Solution of the initial value problem (2.7) obtained
with a Runge–Kutta scheme. Consider a Runge–Kutta method with s
stages and with the parameters (A, b, c). If z−1 = (λh)−1 is not an eigen-
value of A, then the Runge–Kutta scheme is well-defined for the initial value
problem (2.7). In this case, it is

yk = (R(hλ))k, k = 0, 1, 2, . . . .

Proof. The statement of the theorem follows directly if one writes the Runge–Kutta
scheme for (2.7) and applies induction. exercise �

Definition 2.16. Stability domain. The stability domain of a one-step
method is the set
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S := {z ∈ Ĉ : |R(z)| ≤ 1}.
✷

Remark 2.17. Desirable property for the stability domain. The stability do-
main of the initial value problem (2.7) is, see Remark 2.10,

Sanal = C−
0 := {z ∈ C : Re(z) ≤ 0},

since R(z) = ez. In this domain, the solution decreases (for Re(z) < 0) or its
absolute value is constant (for Re(z) = 0). A desirable property of a numerical
method is that it should be stable for all parameters where the initial value
problem is stable, i.e., C−

0 ⊆ S. ✷

Definition 2.18. A-stable method. If for the stability domain S of a one-
step method, it holds that C−

0 ⊆ S, then this one-step method is called
A-stable. ✷

Lemma 2.19. Property of an A-stable method. Consider an A-stable
one-step method, then it is |R(∞)| ≤ 1.

Proof. By the assumption C−
0 ⊆ S, the absolute value of the stability function is bounded

from above by 1 for all |z| → ∞ with Re(z) ≤ 0. From Theorem 2.14, it follows that
the stability function has to be a rational function where the polynomial degree of the

numerator is not larger than the polynomial degree of the denominator, since otherwise

the function is unbounded for |z| → ∞. It is known from function theory that such rational
functions are continuous in ∞. Hence, it is |R(∞)| ≤ 1. �

Remark 2.20. On A-stable methods. The behavior of the stability function
for |z| → ∞, z ∈ C−

0 , is of utmost interest, since it describes the length of
the steps that is admissible for given λ such that the method is still stable.
However, from the property |R(∞)| ≤ 1, it does not follow that the step
length can be chosen arbitrarily large without loosing the stability of the
method. ✷

Definition 2.21. Strongly A-stable method, L-stable method. An A-
stable one-step method is called strongly A-stable, if it satisfies in addition
|R(∞)| < 1. It is called L-stable (left stable), if even it holds that |R(∞)| = 0.

✷

Example 2.22. Stability of some one-step methods. The types of stability de-
fined in Definitions 2.18 and 2.21 are of utmost importance for the quality of
a numerical method.

1. Explicit Euler method. It is R(z) = 1 + z, i.e., the stability domain is the
closed circle with radius 1 and center (−1, 0), see Figure 2.2. This method
is not A-stable. For |λ| large, one has to use very small steps in order to
get stable simulations.
The smallness of the step lengths for stable simulations of stiff problems
is the basic problem of all explicit methods.


