
Chapter 1

Explicit One-Step Methods

Remark 1.1. Contents. This course presents methods for the numerical so-
lution of explicit systems of initial value problems for ordinary differential
equations of first order

y�(x) = f(x,y(x)), y(x0) = y0.

For the most part, only initial value problems for scalar ordinary differen-
tial equations of first order

y�(x) = f(x, y(x)), y(x0) = y0, (1.1)

are considered, for simplicity of presentation. The extension of the results
and the methods to systems is generally straightforward.

It will be always assumed that there is a unique solution of the initial
value problem in a neighborhood of the initial value. In applications, the
independent variable is often the time. ✷

1.1 Consistency and Convergence

Definition 1.2. Grid, step size. A grid is a decomposition Ih of the interval
I = [x0, xe]

Ih = {x0, x1, . . . , xN = xe}
with x0 < x1 < . . . < xN . The differences between neighboring grid points
hk = xk+1 − xk are called step sizes. For an equidistant grid, the notation
h = hk will be used for the step size, see Figure 1.1. ✷

Remark 1.3. Explicit and implicit methods. Let y(xk) denote the solution of
(1.1) in the node xk and yk a numerical approximation of y(xk). A numerical
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Fig. 1.1 Equidistant grid.

method for the solution of (1.1) on a grid Ih is called explicit, if an approxi-
mation yk+1 in xk+1 can be calculated directly by inserting already computed
values yi, i ≤ k, in some formula(s). Otherwise, the method is called implicit
method. Implicit methods require in each step the solution of a generally
nonlinear equation for computing yk+1. ✷

Definition 1.4. One-step method, incremental function. A one-step
method for the computation of an approximation yk+1 of the solution of
(1.1) on a grid Ih has the form

yk+1 = yk + hkΦ (x, y, hk) , k = 0, 1, . . . , y0 = y(x0). (1.2)

Here, Φ(·, ·, ·) is called incremental function of the one-step method. ✷

Example 1.5. One-step methods, incremental functions. The explicit or for-
ward Euler method

yk+1 = yk + hkf (xk, yk) , k = 0, 1, 2, . . . , y0 = y(x0),

is an explicit one-step method with the incremental function

Φ (x, y, hk) = f (xk, yk) .

The computation of yk+1 requires only the substitution of already computed
values in the function f(x, y) from the initial value problem (1.1).

The implicit or backward Euler method

yk+1 = yk + hkf (xk+1, yk+1) , k = 0, 1, 2, . . . , y0 = y(x0),

is an implicit one-step method with the incremental function

Φ (x, y, hk) = f (xk+1, yk+1) .

One has to solve an equation for computing yk+1. The complexity of this step
depends on f(x, y). ✷

Remark 1.6. Representation of implicit one-step methods. Explicit one-step
methods require only that known values are inserted in the incremental func-
tion. Hence, their incremental function can be written finally in the form
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ŷk+1

y(xk+1)

y(xk)

lek+1

Fig. 1.2 The local error.

Φ (xk, yk, hk). For the considerations in this section, one can adopt the point
of view that also implicit one-step methods can be written as explicit one-
step methods, because the data for the nonlinear equation are xk, yk, and hk.
However, generally one does not know the concrete form of the incremental
function. ✷

Example 1.7. Incremental function of the implicit Euler method. The incre-
mental function of the implicit Euler method on an equidistant grid can be
written in the form

Φ (x, y, h) = f (x+ h, y + hΦ (x, y, h)) ,

which allows formally the representation of this method as explicit one-step
scheme. ✷

Definition 1.8. Local error. Let ŷk+1 be the result of one step of an explicit
one-step method (1.2) with the initial value y(xk), i.e.,

ŷk+1 = y(xk) + hkΦ (xk, y(xk), hk) .

Then,

le (xk+1) = lek+1 = y (xk+1)− ŷk+1

= y (xk+1)− (y(xk) + hkΦ (xk, y(xk), hk)) (1.3)

is called local error, see Figure 1.2 ✷

Remark 1.9. The local error. In the literature, sometimes

y (xk+1)− y(xk)

hk

− Φ (xk, y(xk), hk)

is defined to be the local error.
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For the local error, one starts from the solution of the initial value problem
and considers the error after one step of the numerical method.

One should require for a reasonable method that the local error is small
in an appropriate sense. ✷

Definition 1.10. Consistent method. Let y(x) be the solution of the ini-
tial value problem (1.1), hmax = maxk hk, and

S := {(x, y) : x ∈ [x0, xe], y ∈ R} .

The one-step method (1.2) is said to be consistent, if for all f ∈ C(S), which
satisfy in S a Lipschitz condition with respect to y, it holds

lim
hmax→0

�
max
xk∈Ih

|le (xk+1)|
hk

�
= 0

or

lim
hmax→0

�
max
xk∈Ih

|f(xk, y(xk))− Φ (xk, y(xk), hk)|
�

= 0. (1.4)

Both conditions are equivalent, compare Remark 1.11. ✷

Remark 1.11. Approximation of the derivative with the incremental function.
For bounded incremental functions, it is obvious that the local error con-
verges to zero if hmax → 0, because in this case it holds hk → 0 and
y(xk+1) → y(xk), such that this statement follows from (1.3). Consistency
requires more, namely that the incremental function approximates the deriva-
tive of the solution sufficiently well. Applying (1.3) and (1.1) yields

le (xk+1)

hk

=
y (xk+1)− y(xk)

hk

− Φ (xk, y(xk), hk)

≈ y�(xk)− Φ (xk, y(xk), hk)

= f (xk, yk)− Φ (xk, y(xk), hk) ,

compare (1.4). ✷

Example 1.12. Consistency of the explicit Euler method. For the explicit Euler
method, it is Φ (xk, y(xk), hk) = f (xk, y(xk)) . Hence, condition (1.4) from
Definition 1.10 is satisfied and the method is consistent. ✷

Remark 1.13. Quality of the approximation of the incremental function. For
practical purposes, not only the consistency itself but the quality of the ap-
proximation of the derivative by the incremental function is essential. The
quality allows a comparison of different one-step methods. For simplicity of
presentation, let hk = h for all k. ✷
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Definition 1.14. Order of consistency. An explicit one-step method (1.2)
has the consistency order p ∈ N, if p is the largest natural number such that
for all functions f ∈ C(S), which satisfy a Lipschitz condition with respect
to y, it holds

|le (xk + h)| ≤ Chp+1

for all xk ∈ Ih, for all Ih with h ∈ (0, H], and with the constant C > 0 being
independent of h. The constant C might depend on derivatives of y(x), on
f(x, y), and on partial derivatives of f(x, y). ✷

Example 1.15. Order of consistency of the explicit Euler method. Consider
the explicit Euler method and assume that the function y(x) is two times
continously differentiable. Then, it follows with Taylor series expansion and
using the differential equation that

|le (xk + h)| = |y(xk + h)− ŷk+1|

= |y(xk) + hy�(xk) +
h2

2
y��(xk + θh)− y(xk)− h f (xk, y(xk))� �� �

=y
�
(xk)

|

=
h2

2

��y��(xk + θh)
�� ≤ h2

2
�y�

C
2
([x0,xe])

,

with θ ∈ (0, 1). Since there is no way to replace the term on the right-hand
side by a term with a larger power of h, the method has consistency order 1.

✷

Remark 1.16. Consistency and convergence. The consistency is a local prop-
erty of a one-step method. For practical purposes, it is important that the
computed solution converges to the analytic solution if the grid becomes finer
and finer. Of course, the order of convergence is of importance, too.

It will be shown that, under certain conditions, the convergence of a one-
step method follows from its consistency and that the order of convergence
equals the consistency order. ✷

Definition 1.17. Convergent method, order of convergence. A one-
step method (1.2) converges for the initial value problem (1.1) on the interval
I = [x0, xe], if for each sequence of grids {Ih} with hmax = maxhk

hk → 0 for
the global error

e(xk, h) = y(xk)− yk, xk ∈ Ih,

it follows that
max
xk∈Ih

|e(xk, h)| → 0 for hmax → 0.

The one-step method has the order of convergence p∗, if p∗ is the largest
natural number such that for all step lengths hmax ∈ (0, H], for some H > 0,
it holds
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|e(xk, h)| ≤ Chp
∗

max ∀ xk ∈ Ih,

where C > 0 is independent of hmax. ✷

Lemma 1.18. Estimate for a sequence of real numbers. Assume that
for real numbers xn, n = 0, 1, . . ., the inequality

|xn+1| ≤ (1 + δ) |xn|+ β

holds with constants δ > 0, β ≥ 0. Then, it holds that

|xn| ≤ enδ |x0|+
enδ − 1

δ
β, n = 0, 1, . . . .

Proof. With induction, problem for exercises. �

Theorem 1.19. Connection of consistency and convergence. Let y(x)
be the solution of the initial value problem (1.1) with f ∈ C(S). Let a Lip-
schitz condition hold for the second argument of the incremental function

|Φ(x, y1, h)− Φ(x, y2, h)| ≤ M |y1 − y2|
∀ x ∈ [x0, xe], y1, y2 ∈ R, h ∈ (0, H], (1.5)

with M ∈ R fixed. Assume that for the local error the estimate

|le (xk + h)| ≤ Chp+1 ∀ xk ∈ Ih, h ∈ (0, H] (1.6)

is valid and assume that y0 = y(x0).
Then, it follows for the global error that

|e(xk+1, h)| ≤ C
eM(xk+1−x0) − 1

M
hp, (1.7)

where C is independent of h.

Proof. Using Remark 1.6 and the representation of the local error (1.3), one finds that

yk+1 = yk + hΦ (xk, yk, h) ,

y(xk+1) = y(xk) + hΦ (xk, y(xk), h) + le
�
xk+1

�
, k = 0, 1, . . . .

Then, it follows with the triangle inequality, the assumption on the local error (1.6), and

the Lipschitz condition of the incremental function (1.5) that

��e(xk+1, h)
�� =

��y(xk+1)− yk+1

��
=

��y(xk)− yk + le
�
xk+1

�
+ h

�
Φ (xk, y(xk), h)− Φ (xk, yk, h)

���
=

��e(xk, h) + le
�
xk+1

�
+ h

�
Φ (xk, y(xk), h)− Φ (xk, yk, h)

���
≤ |e(xk, h)|+

��le
�
xk+1

���+ h |Φ (xk, y(xk), h)− Φ (xk, yk, h)|
≤ |e(xk, h)|+ Ch

p+1
+ hM |y(xk)− yk|

= (1 + hM) |e(xk, h)|+ Ch
p+1

.
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This sequence of inequalities has the form that was considered in Lemma 1.18. One obtains

with e(x0) = 0

��e(xk+1, h)
�� ≤ e

(k+1)hM |e(x0)|+ C
e
(k+1)hM − 1

hM
h
p+1

= C
e
M(xk+1−x0) − 1

M
h
p
.

�

Remark 1.20. To Theorem 1.19.

• The constant in the error bound might be very large because of the ex-
ponential term, in particular if M is large or the interval is long.

• The consideration of a constant step length is only for simplicity of presen-
tation. The result of the theorem holds also for non-constant step lengths
with h = maxk hk.

• One-step methods compute an approximation yk of the solution in the
grid points xk, k = 0, 1, . . . , N . To enable a better comparison with
the analytic solution, one connects these points linearly from (xk, yk) to
(xk+1, yk+1). In this way, one obtains a piecewise linear approximation of

the solution that is defined on [x0, xe]. This function is called yh(x). The

considerations from above can be extended to yh(x).

✷

1.2 Explicit Runge–Kutta Schemes

Remark 1.21. Idea. The Euler methods are only of first order. The idea of
Runge1–Kutta2 methods consists in using an incremental function Φ(x, y, h)
that is a linear combination of values of f(x, y) in different points. With this
approach, one obtains methods of higher order for the cost of evaluating more
values of f(x, y).

This approach can be illustrated well at the integral equation that is equiv-
alent to the initial value problem (1.1). For simplicity, let the right-hand side
of (1.1) depend only on x. Then, the integral equation has the form

y(x) = y0 +

� x

x0

f(t) dt. (1.8)

The idea of the Runge–Kutta methods consists in approximating the right-
hand side by a quadrature rule, e.g., in the interval [xk, xk+1] by

� xk+1

xk

f(t) dt ≈ hk

s�

j=1

bjf
�
xk + cjhk

�

1
Carle David Tolmé Runge (1856 – 1927)

2
Martin Kutta (1867 – 1944)
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with the weights bj and the nodes xk + cjh.
In the following, only hk = h for all k will be considered for the sake of

simplicity. ✷

Definition 1.22. Runge–Kutta methods, increments, and stages. A
Runge–Kutta method has the form

yk+1 = yk + hΦ(x, y, h), k = 0, 1, . . . , y0 = y(x0),

where the incremental function is defined with the help of

Ki(x, y, h) = f


xk + cih, yk + h

s�

j=1

aijKj(x, y, h)




by

Φ(x, y, h) =

s�

i=1

biKi(x, y, h),

with c1, . . . , cs, b1, . . . , bs, aij ∈ R, i, j = 1, . . . , s. The quantities Ki(x, y, h),
i = 1, . . . , s, are called increments. The natural number s ∈ N is the number
of stages of the method.

An equivalent definition is as follows

y
(i)
k+1 = yk + h

s�

j=1

aijf
�
xk + cjh, y

(j)
k+1

�
, (1.9)

Φ(x, y, h) =

s�

i=1

bif
�
xk + cih, y

(i)
k+1

�
. (1.10)

The intermediate values y
(i)
k+1 are called stages. ✷

Remark 1.23. Butcher3 tableau. For the reason of clarity, one writes a Runge–
Kutta scheme in general in form of a tableau, the so-called Butcher tableau

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
c3 a31 a32 · · · a3s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

=⇒ c A

bT
. (1.11)

Here, c are the nodes, A is the matrix of the method, and b are the weights.
✷

3
John C. Butcher, born 1933
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Remark 1.24. Increments and Butcher tableau. For explicit Runge–Kutta
schemes, the increments can be computed one after the other by inserting
values in given formulas

K1(x, y, h) = f(xk, yk),

K2(x, y, h) = f (xk + c2h, yk + ha21K1(x, y, h)) ,

...

Ks(x, y, h) = f


xk + csh, yk + h

s−1�

j=1

asjKj(x, y, h)


 . (1.12)

The Butcher tableau has the form

0
c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

.

A Runge–Kutta method is explicit if and only if the matrix of the method is
a strict lower triangular matrix. ✷

Example 1.25. Explicit Euler scheme. The explicit Euler scheme is an explicit
Runge–Kutta scheme with the Butcher tableau

0

1
.

In the integral equation, the approximation

� xk+1

xk

f(t, y(t)) dt ≈ hf (xk, y(xk))

is used, see the proof of the Theorem of Peano, lectures notes of Numerical
Mathematics I. ✷

Theorem 1.26. Consistency of explicit Runge–Kutta schemes. Let
f ∈ C(S), see Definition 1.10. An explicit Runge–Kutta scheme is consistent
if and only if

s�

i=1

bi = 1. (1.13)

Proof. From the continuity of f(x, y) and the definition (1.12) of the increments of an

explicit Runge–Kutta scheme, it follows that

lim
h→0

Ki(x, y, h) = f(xk, y(xk)), ∀ (x, y) ∈ S, i = 1, . . . , s,
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for the case that the initial value of this step is yk = y(xk). The continuity of the absolute

value function gives

lim
h→0

|f(xk, y(xk))− Φ (xk, y(xk), h)| = lim
h→0

�����f(xk, y(xk))−
s�

i=1

biKi(x, y, h)

�����

=

�����f(xk, y(xk))−
s�

i=1

bi lim
h→0

Ki(x, y, h)

�����

=

�����f(xk, y(xk))

�
1−

s�

i=1

bi

������ = 0

if and only if
�s

i=1 bi = 1. Hence, the condition (1.4) in Definition 1.10 is satisfied. �

Theorem 1.27. Interpretation of the increments. Let for the solution
of (1.1) hold y ∈ C2([x0, xe]), let f ∈ C(S), and let f be Lipschitz continuous
in the second argument. If yk = y(xk) and

ci =
i−1�

j=1

aij , i ≥ 2, (1.14)

holds, then Ki(x, y, h) is an approximation of at least first order (of consis-
tency) to y�(xk + cih), i.e.,

y�(xk + cih)−Ki(x, y, h) = O
�
h2

�
.

Proof. The proof follows by induction.
i = 2. For i = 2, it follows with (1.1), the Lipschitz continuity, and Taylor series

expansion that

��y�(xk + c2h)−K2(x, y, h)
��

=
��f
�
xk + c2h, y(xk + c2h)

�
− f

�
xk + c2h, y(xk) + ha21f(xk, y(xk))

���
≤ L |y(xk + c2h)− y(xk)− ha21f(xk, y(xk))|

= L
���y(xk) + c2hy

�
(xk) +O(h

2
)− y(xk)− ha21y

�
(xk)

���

= L
���(c2 − a21)hy

�
(xk) +O(h

2
)
��� .

Hence, in the case c2 = a21, the difference is of order O(h
2
).

i > 2. Let the asymptotic order of the errors be proved for all indices 2, . . . , i−1. Then,

one gets in the same way as for i = 2

��y�(xk + cih)−Ki(x, y, h)
��

=

������
f (xk + cih, y(xk + cih))− f


xk + cih, y(xk) + h

i−1�

j=1

aijKj(x, y, h)



������

≤ L

������
y(xk + cih)− y(xk)− h

i−1�

j=1

aijKj(x, y, h)

������
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= L

������
y(xk) + cihy

�
(xk) +O(h

2
)− y(xk)− h

i−1�

j=1

�
aij

�
y
�
(xk + cjh) +O(h

2
)
��

������

= L

������
cihy

�
(xk) +O(h

2
)− h

i−1�

j=1

�
aij

�
y
�
(xk) +O(h)

��
������

= L

������
h


ci −

i−1�

j=1

aij


 y

�
(xk) +O(h

2
)

������
.

The order of the difference O(h
2
) is given, if ci =

�i−1
j=1 aij . �

Remark 1.28. Conditions on the coefficients for certain orders of convergence.
The conditions from Theorems 1.26 and 1.27 are satisfied for many ex-
plicit Runge–Kutta schemes. The goal consists in determining the coefficients
b1, . . . , bs, and aij in such a way that one obtains an order of consistency as
high as possible. The consistency order of a Runge–Kutta scheme with s
stages can be derived from the Taylor series expansion of the local error. Let
(1.13) be valid, then one obtains, e.g.,

• A Runge–Kutta scheme with the parameters (A, b, c) has at least consis-
tency order p = 2 if

s�

j=1

bjcj =
1

2
. (1.15)

This condition will be shown in Example 1.29 for s = 2.
• If in addition

s�

j=1

bjc
2
j =

1

3
and

s�

j=1

bj

s�

k=1

ajkck =
1

6

hold, then the order of consistency is at least p = 3.

The proof of the last statement and conditions for even higher order con-
sistency can be found in the literature, e.g. in (Strehmel & Weiner, 1995;
Strehmel et al., 2012, Section 2.4.2). ✷

Example 1.29. Runge–Kutta methods with 2 stages. For the investigation of
2-stage Runge–Kutta schemes, one considers for simplicity the so-called au-
tonomous initial value problem

y�(x) = f(y(x)), y(x0) = y0.

One has for the increments

K1(y, h) = f(yk),

K2(y, h) = f (yk + ha21K1(yk, h)) = f (yk + ha21f(yk))

= f(yk) + ha21f(yk)∂yf(yk) +O(h2).
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If the initial value is exact, it follows for the incremental function that

Φ(y(xk)) = b1K1(y, h) + b2K2(y, h) (1.16)

= (b1 + b2)f(y(xk)) + hb2a21f(y(xk))∂yf(y(xk)) +O(h2).

The Taylor series expansion of the solution has the form

y(xk + h) = y(xk) + h y�(xk)� �� �
=f(y(xk))

+
h2

2
y��(xk) +O

�
h3

�
.

One obtains with the chain rule

y��(x) =
d

dx
y�(x) =

d

dx
f(y(x)) = ∂yf(y)y

�(x) = ∂yf(y)f(y(x)).

Now, it follows for the local error, using Taylor series expansion and (1.16),
that

le(xk + h) = y(xk + h)− y(xk)− hΦ(y(xk))

= y(xk) + hf(y(xk)) +
h2

2

�
∂yf(y(xk))f(y(xk))

�
+O

�
h3

�
− y(xk)

−h
�
(b1 + b2)f(y(xk)) + hb2a21f(y(xk))∂yf(y(xk)) +O(h2)

�

= h
�
1− (b1 + b2)

�
f(y(xk)) + h2

�
1

2
− b2a21

�
f(y(xk))∂yf(y(xk))

+O
�
h3

�
.

To achieve an order of consistency as large as possible, the first two terms
have to vanish. One obtains with the condition c2 = a21 that

b1 + b2 = 1, b2a21 =
1

2
⇐⇒ b2c2 =

1

2
.

The first equation is the general condition for consistency (1.13) and the
second condition is exactly (1.15) for s = 2. These two conditions character-
ize all 2-stage explicit Runge–Kutta methods that possess consistency and
convergence order 2

c2 c2
1− 1

2c2

1
2c2

, with c2 �= 0.

In the case c2 = 1/2, one obtains the method of Runge (1895)

1/2 1/2

0 1
.
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This method corresponds with respect to the approximation of the integral
in (1.8) to the application of the mid point rule.

For c2 = 1, one gets the method of Heun4 (1900)

1 1

1/2 1/2
,

which corresponds to the use of the trapezoidal rule for the numerical quadra-
ture in (1.8). ✷

Remark 1.30. Autonomous ordinary differential equations. Every explicit first
order ordinary differential equation

y�(x) = f(x,y(x))

can be transformed into an autonomous form

ỹ�(x) = f̃ (ỹ(x)) =

�
f(x,y(x))

1

�

by introducing the function

y(x) := x and ỹ(x) :=

�
y(x)
y(x)

�

and noting that (y(x), x) are just the components of ỹ(x). ✷

Theorem 1.31. Consistency and convergence of explicit Runge–
Kutta methods. Let y(x) be the solution of the initial value problem (1.1)
with f ∈ C(S) and let f(x, y) satisfy a Lipschitz condition in the second ar-
gument. Then, an explicit Runge–Kutta scheme that is consistent of order p
converges also with order p.

Proof. The incremental function of an explicit Runge–Kutta scheme is a linear combina-
tion of values of the right-hand side f(x, y). Thus, the assumptions of Theorem 1.19 are

satisfied, since the Lipschitz condition in this theorem follows from the assumed Lipschitz
condition on the right-hand side of the differential equation. The statement of the theorem
follows now directly from Theorem 1.19. �

Remark 1.32. Explicit Runge–Kutta methods of higher order. Analogously to
2-stage methods, it is possible to derive conditions on the coefficients of an
explicit Runge–Kutta scheme in order to construct methods of higher order.
An important question is the minimal number of stages that is necessary
to be able to reach a certain order. Some answers to this question are from
Butcher (1963, 1965, 1985):

p 1 2 3 4 5 6 7 8

min s 1 2 3 4 6 7 9 11
.

4
Karl Heun (1859 – 1929)
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✷

Example 1.33. Classical Runge–Kutta scheme (1901). The so-called classical
Runge–Kutta scheme has four stages and the Butcher tableau

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

.

It is based on the Simpson5 rule. The center node of the Simpson rule is used
twice, c2 = c3, but with a different second argument for the computation of
the increments. This method is of fourth order. ✷

1.3 Step Length Control

Remark 1.34. Motivation. The considerations so far did not provide a way for
estimating a good step length for solving a given initial value problem with
prescribed accuracy and with as little work as possible.

• If the steps are too large, then the numerical solution might be too inac-
curate.

• If the steps are too small, then the numerical simulation might take much
longer than necessary.

A good step length depends certainly on the concrete problem and generally
it will change within the considered interval. For these reasons, the step
length should be controlled during the numerical simulation of the initial
value problem.

A typical approach consists in computing two approximations of the so-
lution in a node with different methods and to draw conclusions on the
size of the local error, based on the difference of these approximations. Of
course, the consideration of the global error would be better. However, The-
orem 1.19 shows that on the one hand, the global error is influenced by
problem-dependent terms, like the length of the interval [x0, xe] or the Lip-
schitz constant. On the other hand, the global error is expected to be small
only if the local errors are small. ✷

5
Thomas Simpson (1710 – 1761)
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y(x0 + 2h)

yh

x0 + hx0 x0 + 2h

y0

y(x0 + h)

y2h

y2×h

Fig. 1.3 Sketch of the Richardson method.

1.3.1 The Richardson Method

Remark 1.35. Idea. Given a numerical method for solving an initial value
problem and given a step length h. The Richardson6 method consists of the
following steps, see also Figure 1.3:

1. Starting from a node (x0, y0) and using a step length of 2h, an approxi-
mation y2h at the node x0 + 2h will be computed.

2. Two approximations yh and y2×h in x0 + h and x0 + 2h are computed
with two steps of length h.

3. The step length will be controlled by comparing y2h and y2×h.

In general, the more accurate approximation will be y2×h. In addition, it will
be demonstrated that it is possible to improve the accuracy of y2×h with the
information obtained by this method. ✷

Example 1.36. Richardson method for an explicit 2-stage Runge–Kutta meth-
od. Consider an explicit 2-stage Runge–Kutta scheme. One obtains in the
first step of the Richardson method, using (1.9), (1.10),

y
(1)
2h = y0,

y
(2)
2h = y0 + 2ha21f(x0, y0),

y2h = y0 + 2h [b1K1(x, y) + b2K2(x, y)]

= y0 + 2h
�
b1f(x0, y

(1)
2h ) + b2f

�
x0 + 2c2h, y

(2)
2h

��
,

or written as Butcher tableau

0
2c2 2a21

2b1 2b2

.

Note that because of the step length 2h, the weights sum up to 2.
The second step of the Richardson method yields

6
Lewis Fry Richardson (1881 – 1953)
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y
(1)
2×h = y0,

y
(2)
2×h = y0 + ha21f(x0, y0),

y
(3)
2×h = yh = y0 + h

�
b1f

�
x0, y

(1)
2×h

�
+ b2f

�
x0 + c2h, y

(2)
2×h

��
,

y
(4)
2×h = yh + ha21f(x0 + h, yh),

y2×h = yh + h
�
b1f(x0 + h, yh) + b2f

�
x0 + h+ c2h, y

(4)
2×h

��
.

Inserting the formula for yh in the last two lines, one sees that the Butcher
tableau of this method is

0
c2 a21
1 b1 b2

1 + c2 b1 b2 a21
b1 b2 b1 b2

.

That means, the computation of y2×h is equivalent to the computation of an
approximation with the help of an explicit 4-stage Runge–Kutta scheme.

Altogether, five function evaluations are needed:

f(x0, y0), f
�
x0 + 2c2h, y

(2)
2h

�
, f

�
x0 + c2h, y

(2)
2×h

�
,

f(x0 + h, yh), f
�
x0 + h+ c2h, y

(4)
2×h

�
.

In the case of a s-stage Runge–Kutta method, (3s− 1) function evaluations
are required. This number is rather large and the high costs per time step
are a disadvantage of the Richardson method. ✷

Remark 1.37. Comparison of both approximations. Consider a one-step meth-
od

yk+1 = yk + hΦ(x, y, h)

of order p. Let the initial value y(x0) be exact, then it follows for the local
error in x0 + 2h that

y(x0 + 2h)− y2h = C(x0)(2h)
p+1 +O

�
hp+2

�
. (1.17)

For estimating the local error of y2×h it will be assumed that the incremen-
tal function Φ(x, y, h) is Lipschitz continuous in the second argument. This
assumption is always satisfied for explicit Runge–Kutta schemes if f(x, y)
possesses this property, see the proof of Theorem 1.31. It is

y2×h = yh + hΦ (x+ h, yh, h) . (1.18)

Let
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ŷ2×h = y(x0 + h) + hΦ (x+ h, y(x0 + h), h) (1.19)

be the iterate that is computed with the exact starting value in x0+h. Using
the definition of the consistency order, one obtains with (1.18) and (1.19)

y(x0 + 2h)− y2×h

= (y(x0 + 2h)− ŷ2×h) + (ŷ2×h − y2×h)

=
�
C(x0 + h)hp+1 +O

�
hp+2

� �
+
�
y(x0 + h) + hΦ (x+ h, y(x0 + h), h)

−yh − hΦ (x+ h, yh, h)
�
.

For the terms with the incremental function, one gets from the Lipschitz
continuity and the consistency order for the first step

|hΦ (x+ h, y(x0 + h), h)− hΦ (x+ h, yh, h)| ≤ hL |y(x0 + h)− yh|� �� �
O(hp+1)

= O
�
hp+2

�
.

It follows, applying again the consistency error for the first step, that

y(x0 + 2h)− y2×h

= C(x0 + h)hp+1 + y(x0 + h)− yh +O
�
hp+2

�

= C(x0 + h)hp+1 + C(x0)h
p+1 +O

�
hp+2

�
+O

�
hp+2

�

= 2C(x0)h
p+1 +O

�
hp+2

�
, (1.20)

where one assumes that C(x0 + h) = C(x0) + O(h), i.e., that the constants
do not change too rapidly.

Neglecting in (1.17) and (1.20) the higher order terms allows to eliminate
y(x0 + 2h) and solve for the constant, yielding

C(x0) =
1

2

�
y2×h − y2h
2p − 1

�
1

hp+1 . (1.21)

From (1.20), it follows for the local error of the more accurate method that

y(x0 + 2h)− y2×h =
y2×h − y2h
2p − 1

+O
�
hp+2

�
. (1.22)

The first term on the right-hand side is a computable approximation of this
local error. ✷

Remark 1.38. Increasing the accuracy, local Richardson extrapolation. Rear-
ranging terms in (1.22) gives
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y(x0 + 2h)−
�
y2×h +

y2×h − y2h
2p − 1

�
= O

�
hp+2

�
.

Then,

y2×h = y2×h +
y2×h − y2h
2p − 1

is an approximation of the solution of order p + 1. This approach is called
local Richardson extrapolation. ✷

Remark 1.39. Automatic step length control. From (1.22) and (1.21), it follows
that

err =
|y2×h − y2h|

2p − 1
≈ 2C(x0)h

p+1 (1.23)

is a computable approximation of the local error. This approximation will be
compared with a prescribed tolerance. Often, a so-called scaled tolerance sc
is used, (Hairer et al., 1993, p. 167) or (Strehmel et al., 2012, p. 61). The
scaled tolerance is a combination of an absolute tolerance atol and a relative
tolerance rtol

sc = atol + max {|y0| , |y2×h|} rtol.
Then, the scaled error

errsc =
|y2×h − y2h|
(2p − 1)sc

is defined.

• If errsc ≤ 1 ⇐⇒ err ≤ sc, then the performed step will be accepted.
Starting from y2×h or y2×h, the next step will be performed.
An important aspect is the choice of the step length hnew for the next
step. The guideline is that the scaled error for the next step should be
on the one hand still smaller than or equal to 1 but on the other hand as
close to 1 as possible. Following (1.23), it should hold

1 =
errnew
sc

=
2C (x0 + 2h)hp+1

new

sc
≈ 2C(x0)h

p+1
new

sc

=
2C(x0)h

p+1

sc

�
hnew

h

�p+1

≈ errsc

�
hnew

h

�p+1

,

i.e., hnew has to be chosen such that

hnew ≈
�

1

errsc

�1/(p+1)

h. (1.24)

• If errsc > 1, then the performed step will be rejected. The Richardson
method is repeated from (x0, y0) with a step length hnew < h.
That means, the work that was spent for performing the step with step
length h was wasted. One likes to avoid this situation.

✷
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Remark 1.40. Issues of the practical implementation. In practical simulations,
one uses some modifications of (1.24) for stabilizing the algorithm.

• A safety factor α ∈ (0, 1) is introduced

hnew = α

�
1

errsc

�1/(p+1)

h,

often α ∈ [0.8, 0.9].
• One likes to avoid large oscillations of the sizes of subsequent steps. For
this reason, a factor for the maximal increase αmax of the new step size
with respect to the current step size and a factor for the maximal decrease
αmin < αmax are used. Then, one obtains

hnew = hmin

�
αmax,max

�
αmin,α

�
1

errsc

�1/(p+1)
��

.

If a very large step length is proposed

α

�
1

errsc

�1/(p+1)

> αmax,

then the factor αmax becomes effective and similarly αmin for the case
that a very small step length is proposed.

• Usually, one prescribes a minimal step length hmin and a maximal step
length hmax and requires for all step lengths that hk ∈ [hmin, hmax].

• In the first step, one has to estimate h. Generally, this estimate has to
be corrected. In practice, this correction is done very fast by algorithms
for automatic step length control. An algorithm for determining a good
initial step length can be found in (Hairer et al., 1993, p. 168).

✷

1.3.2 Embedded Runge–Kutta Schemes

Remark 1.41. Motivation, embedded Runge–Kutta schemes. Richardson ex-
trapolation is quite expensive in terms of evaluations of the incremental
function. It is possible to construct a step length control that needs less
evaluations, with so-called embedded Runge–Kutta schemes.

The idea of embedded Runge–Kutta schemes consists in computing nu-
merical approximations of the solution at the next time with two one-step
methods with different order. The methods are chosen in such a way that
it is possible to use the evaluations of the incremental function for both of
them. That means, one has to construct a Runge–Kutta scheme of the form
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x0 + hx0

y0

y(x0 + h)

ỹ1

y1

Fig. 1.4 Sketch of embedded Runge–Kutta schemes.

0
c2 a21
...

. . .

cs as1 · · · as,s−1

b1 · · · bs−1 bs
b̃1 · · · b̃s−1 b̃s

,

which is the short form of

0
c2 a21
...

. . .

cs as1 · · · as,s−1

b1 · · · bs−1 bs

and

0
c2 a21
...

. . .

cs as1 · · · as,s−1

b̃1 · · · b̃s−1 b̃s

,

such that

y1 = y0 + h

s�

i=1

biKi(x, y)

is order of p and

ỹ1 = y0 + h

s�

i=1

b̃iKi(x, y)

is of order q, see Figure 1.4. In general, it is q = p− 1 or q = p+ 1. ✷

Example 1.42. Runge–Kutta–Fehlberg 2(3) method. Consider explicit Runge–
Kutta schemes with 3 stages
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0
c2 a21
c3 a31 a32

b1 b2 b3 p = 2

b̃1 b̃2 b̃3 q = 3

.

One of the schemes should be of order 2 and the other one of third order.
There are 11 parameters to choose. From Theorem 1.26, Theorem 1.27, and
Remark 1.28, it follows that 8 equations have to be satisfied

c2 = a21,

c3 = a31 + a32,

b1 + b2 + b3 = 1,

b2c2 + b3c3 =
1

2
,

b̃1 + b̃2 + b̃3 = 1,

b̃2c2 + b̃3c3 =
1

2
,

b̃2c
2
2 + b̃3c

2
3 =

1

3
,

b̃3a32c2 =
1

6
.

That means, one has to set three parameters. First, one can choose c2 = 1,
b3 = 0. Then, it follows from the first equation that a21 = 1, from the fourth
equation that b2 = 1/2, and from the third equation that b1 = 1/2. Now,
one chooses c3 = 1/2. From the sixth and seventh equation, it follows that
b̃2 = 1/6 and b̃3 = 4/6. Then, one gets from the fifth equation b̃1 = 1/6
and from the eighth equation a32 = 1/4. Finally, the second equation gives
a31 = 1/4. The resulting methods have the form

0
1 1
1/2 1/4 1/4

1/2 1/2 0 p = 2
1/6 1/6 4/6 q = 3

.

The method with order q = 3 is the Simpson rule. The complete embedded
approach is called Runge–Kutta–Fehlberg7 2(3) method (RKF 2(3)). ✷

Remark 1.43. Error estimate, theoretical drawback. By construction, it holds
for the embedded scheme that

y1 = y(x0 + h) +O
�
hp+1

�
, ỹ1 = y(x0 + h) +O

�
hq+1

�
.

7
Erwin Fehlberg (1911 – 1972)
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It follows that

|err| := |ỹ1 − y1| =
���y(x0 + h) +O

�
hq+1

�
− y(x0 + h) +O

�
hp+1

����

=
���O

�
hp+1

�
+O

�
hq+1

���� (1.25)

is an estimate of the main error term of the Runge–Kutta scheme of order
q∗ = min{p, q}. That means, one obtains only an estimate of the error of the
lower order method. To obtain information only on the lower order method
is the main theoretical drawback of this approach, since one is interested
actually in the higher order method and one will continue the computation
also from the higher order approximation. ✷

Remark 1.44. Automatic step length control, I Controller. Let h be the step
size that was used for computing y1 of order p and ỹ1 of order q with p < q.
From (1.25), one has

|err| = |y1 − ỹ1| = Chp+1. (1.26)

Given a tolerance tol for the maximal local error.

• One approach consists in controlling the error per step (EPS). Then, one
requires that

r1 = |err| ≤ tol. (1.27)

If this condition is satisfied, then the current step is accepted. Next, one
requires for the new step size that the local error is equal to the tolerance

Chp+1
new = tol,

with C from (1.26) This requirement gives

hnew =

�
tol

C

�1/(p+1)

=

�
tol

Chp+1

�1/(p+1)

h.

With (1.26) and (1.27), the new step length is computed by

hnew =

�
α tol

|err|

�1/k

h =

�
α tol

r1

�1/k

h, (1.28)

where k = p+ 1 and α ∈ (0, 1) is again a safety factor.
• Another way is the consideration of the error relative to the current step
length, the so-called error per unit step (EPUS),

r1 =
|err|
h

≤ tol. (1.29)

The satisfaction of a condition of form (1.29) leads to a new step of form
(1.28) with k = p.



1.3 Step Length Control 25

• If (1.27) or (1.29) is not satisfied, then the step is rejected and it will be
repeated with a step length smaller than h.

• A generalization of this approach is the so-called I Controller. Replacing
in (1.28) 1/k by kI gives

hnew =

�
α tol

r1

�kI

h.

For obtaining a useful automatic step length control mechanism, the
choice kI = 1/k or equivalently kkI = 1 is not necessary. The follow-
ing choices can be found in the literature

kkI ∈ [0, 2] ⇐⇒ kI ∈ [0, 2/k] stable control,
kkI ∈ (1, 2) ⇐⇒ kI ∈ (1/k, 2/k) fast and oscillating control,
kkI ∈ (0, 1) ⇐⇒ kI ∈ (0, 1/k) slow and smooth control,

kkI = 1 ⇐⇒ kI = 1/k standard I Controller.

There are more sophisticated controllers that are used in practical simu-
lations, see Söderlind (2002) for an overview.

✷

Remark 1.45. Methods used in practice. In practice, one uses, e.g.,

• RKF 4(5), s = 6, Fehlberg (1964),
• RKF 7(8), s = 13, Fehlberg (1969),
• DOPRI 4(5) (or DOPRI 5(4) or DOPRI5), s = 6, Dormand8, Prince9:
Dormand & Prince (1980),

• DOPRI 7(8), s = 13, Prince & Dormand (1981).

The standard routine ode45 from MATLAB uses DOPRI 4(5). ✷

Remark 1.46. Fehlberg trick. The Fehlberg trick requires that

Ks = f

�
xk + csh, yk + h

s−1�

i=1

asiKi

�
!
= f

�
xk + h, yk + h

s�

i=1

biKi

� �� �
yk+1

�
,

i.e., the last evaluation of the incremental function of the old step can be used
as first value of the incremental function in the new step. The conditions for
applying this trick are

asi = bi, i = 1, . . . , s− 1, bs = 0, cs = 1.

It can be applied, e.g., in DOPRI 4(5). This trick works only if hold ≈ hnew.
✷

8
John R. Dormand

9
P. J. Prince


