
Chapter 9

Other Krylov Subspace Methods for
Non-Symmetric Systems

Remark 9.1. Motivation. The Krylov subspace methods GMRES and FOM
for solving general linear systems of equations have the disadvantage that
their costs (in memory and flops) increases with the number of iterations,
since there is no short recurrence. A remedy is to use restarted versions,
compare Remark 5.9. However, the restart might lead to a considerably slower
rate of convergence. This section presents alternative approaches that are
based on short recurrences but which fulfill the properties of minimizing the
residual (like GMRES) or of the residual being orthogonal to the Krylov
subspace (like FOM), respectively, not longer. ✷

Remark 9.2. Biorthogonal bases. The starting point of the alternative algo-
rithms is the construction of a pair of biorthogonal bases

�
v(1), . . . , v(k)

�
of Kk

�
r(0), A

�
= span

�
r(0), Ar(0), . . . , Ak−1r(0)

�
,

�
w(1), . . . , w(k)

�
of Kk

�
r(0), AT

�
= span

�
r(0), AT r(0), . . . ,

�
AT

�k−1

r(0)
�

such that �
w(j), v(i)

�
= δij .

These bases can be constructed with the Lanczos biorthogonalization proce-
dure. ✷

Algorithm 9.3. Lanczos biorthogonalization procedure. Given a ma-

trix A ∈ Rn×n and r(0) ∈ Rn.

1. v(1) = r(0)/
���r(0)

���
2

2. w(1) = v(1)

3. β0 = 0, γ0 = 0

4. v(0) := 0, w(0) = 0
5. for j = 1 : k
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6. s = Av(j)

7. z = ATw(j)

8. αj = (w(j), s)

9. ṽ(j+1) = s− αjv
(j) − βj−1v

(j−1)

10. w̃(j+1) = z − αjw
(j) − γj−1w

(j−1)

11. γj =
���ṽ(j+1)

���
2

12. v(j+1) = ṽ(j+1)/γj

13. βj =
�
w̃(j+1), v(j+1)

�

14. w(j+1) = w̃(j+1)/βj

15. endfor

✷

Remark 9.4. On the Lanczos biorthogonalization procedure.

• There is a short recurrence in Algorithm 9.3.

• Note that the basis of Kk

�
r(0), A

�
will be in general not orthogonal

as well as the basis of Kk

�
r(0), AT

�
. For non-symmetric matrices, the

computation of an orthogonal basis is not possible with a short recurrence.
• In the case A = AT , Algorithm 9.3 is exactly the Lanczos Algorithm 5.12.
• Algorithm 9.3 requires two matrix-vector products, lines 6 and 7.
• A critical point of Algorithm 9.3 is the product of the transposed of A
with a vector, line 7. In some applications, A is not given explicitly. Then,
AT is usually not available. But much more important, the application of
a number of preconditioners, see Chapter 8, becomes complicated if AT

appears in the algorithm.

✷

Theorem 9.5. Computation of a pair of biorthogonal bases. Assume

that
�
w̃(j), v(j)

�
�= 0 for all j = 1, · · · , k. Then, the Lanczos biorthogonaliza-

tion procedure computes a pair of biorthogonal bases.

Proof. The theorem is proved by induction. The statement is true if k = 1 since w
(1)

=

v
(1)

, line 2 and
���v(1)

���
2
= 1, line 1. For k = 2, it can be proved directly from the algorithm,

in a similar way as for the general case.

Assume, the statement is proved for i = 1, . . . , k − 1 with k − 1 ≥ 2, and suppose�
w̃

(j)
, v

(i)
�
=

�
w

(j)
, v

(i)
�
= 0 for i �= j, 1 ≤ i, j ≤ k−1 and

�
w

(i)
, v

(i)
�
= 1, 1 ≤ i ≤ k−1.

The choice of γk−1 implies
���v(k)

���
2
= 1 and line 14 and the choice of βk−1 give

�
w

(k)
, v

(k)
�
=


 w̃

(k)

�
w̃

(k)
, v

(k)
� , v

(k)


 =

�
w̃

(k)
, v

(k)
�

�
w̃

(k)
, v

(k)
� = 1.

Using lines 12 and 9, the assumption of the induction, and the definition of αk−1 leads to
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�
w

(k−1)
, v

(k)
�
=

�
w

(k−1)
,
ṽ
(k)

γk−1

�

=
1

γk−1



�
w

(k−1)
, Av

(k−1)
�
− αk−1

�
w

(k−1)
, v

(k−1)
�

� �� �
=1

−βk−2

�
w

(k−1)
, v

(k−2)
�

� �� �
=0


 = 0.

One obtains analogously
�
w

(k)
, v

(k−1)
�
= 0. Moreover, using the lines 12, 9, the assump-

tion of the induction, line 10 (with z = A
T
w

(k−2)
), and the definition of βk−2 gives

�
w

(k−2)
, v

(k)
�

=
1

γk−1



�
w

(k−2)
, Av

(k−1)
�
− αk−1

�
w

(k−2)
, v

(k−1)
�

� �� �
=0

−βk−2

�
w

(k−2)
, v

(k−2)
�

� �� �
=1




=
1

γk−1

��
w

(k−2)
, Av

(k−1)
�
− βk−2

�

=
1

γk−1

��
A

T
w

(k−2)
, v

(k−1)
�
− βk−2

�

=
1

γk−1

��
w̃

(k−1)
, v

(k−1)
�
+ αk−2

�
w̃

(k−2)
, v

(k−1)
�

� �� �
=0

+γk−3

�
w̃

(k−3)
, v

(k−1)
�

� �� �
=0

−βk−2

�

= 0.

Analogously, one checks that
�
w

(k)
, v

(k−2)
�

= 0 and in a similar way, one obtains
�
w

(k)
, v

(j)
�
= 0 and

�
w

(j)
, v

(k)
�
= 0 for j < k − 2. �

Remark 9.6. Matrix representation of the Lanczos biorthogonalization proce-
dure. For the matrix representation of the Lanczos biorthogonalization pro-
cedure, the matrices

Vk =
�
v(1) . . . v(k)

�
, Wk =

�
w(1) . . . w(k)

�
∈ Rn×k

are introduced. From Algorithm 9.3, it follows that

AVk = Vk+1Tk+1,k, ATWk = Wk+1T̂k+1,k (9.1)

with

Tk+1,k =




α1 β1

γ1 α2

. . .
. . .

. . .

βk−1

αk

γk




, T̂k+1,k =




α1 γ1
β1 α2

. . .
. . .

. . .

γk−1

αk

βk




,


